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Junpei Zhong, Yu-fai Fung, and Mingjun Dai 

 

Abstract: Particle Filter (PF) is a sophisticated model estimation technique based on simulation. Due 

to the natural limitations of PF, two problems, namely particle impoverishment and sample size depen-

dency, frequently occur during the particles updating stage and these problems will limit the accuracy 

of the estimation results. In order to alleviate these problems, Ant Colony Optimization is incorporated 

into the generic PF before the updating stage. After executing the Ant Colony optimization, impove-

rished particle samples will be re-positioned and closer to their locally highest likelihood distribution 

function. Our experimental results show that the proposed algorithm can realize better tracking per-

formance when comparing to the generic PF, the Extended Kalman Filter and other enhanced versions 

of PF. 

 

Keywords: Ant colony optimization, filtering theory, model estimation, particle filters. 

 

1. INTRODUCTION 

 

Particle Filter (PF), which is widely used for solving 

non-linear and non-Gaussian state estimation problems 

[1], is based on point mass particles that represent the 

probability densities. Therefore, in state estimation 

problems, PF is often used as an alternative to the 

Extended Kalman Filter (EKF) [2] or the Unscented 

Kalman Filter (UKF) [3]. With infinite samples, PF can 

approach the Bayesian optimal estimate [4], so it is more 

accurate than the EKF or UKF. Although this optimal 

situation is not available in real applications, the 

advantage of Particle Filters makes them useful in non-

Gaussian and non-linear environments, such as in the 

control of Unmanned Aerial Vehicle (UAV) [5] and 

Autonomous Underwater Vehicle (AUV) [6]. However, 

particle impoverishment is inevitably induced due to the 

random particles prediction and re-sampling applied in 

generic PF [7]. After several iterations, if the generated 

particles are too far from the likelihood distribution, their 

particle weights will approach zero while only a few 

particles will be carrying a much higher weight, making 

these particles not efficient to produce accurate estimate 

results. Some algorithms employ different sampling 

strategies to reduce the impoverishment, such as Binary 

Search [8], Systematic Resampling [9] and Residual 

Resampling [10]. These algorithms achieve their targets 

by copying the important samples and discarding 

insignificant ones based on their weighting. However, in 

the mean while, the robustness of the filtering is lost, 

because the diversity of particles is reduced in a certain 

extent as discussed in [11].  

Advocated by Doucet [12], a more refined strategy is 

to implement an optimal proposal distribution functions 

which minimize the variance of the importance weights. 

This result has been proved in [13] that the proposal 

distribution 

1 1( | , ) ( | , )t t t t

t t
q s s z p s s z

− −

=  minimizes the 

variance of the importance weights conditional on st-1 

and zt. Other than the generic PF utilizes the transition 

model as the proposal distribution, extended Kalman 

Filter [14] and Unscented Kalman Filter [15] are 

employed as the model estimation methods to derive the 

optimal proposal distribution.  

Ant Colony Optimization (ACO) is an iterative 

optimization method similar to the Genetic Algorithm. It 

has proved to be able to produce good optimization 

performance in many fields and this inspires us to apply 

ACO to optimize the particles distribution before the 

updating step and consequently minimizes the particle 

impoverishment problem. In this paper, we will first 

introduce the fundamental particle filter mechanism. The 

ACO improved Particle Filter (PFACO) together with an 

introduction of the ACO algorithm will be discussed in 

Section 3. In Section 4, the performance of the PFACO, 

the generic PF as well as other devised PF (i.e. extended 

Kalman Particle Filter and Unscented Particle Filter) will 

be compared and finally, conclusion is given in Section 5. 

 

2. PARTICLE FILTERS 

 

Firstly we derive the optimal Bayesian solution of the 

posterior distribution. Assuming that the system (xk) and 

measurement ( )
k
y  equations for Bayesian estimation 
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are governed by the following equations. 
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=  (1) 

( , ),
k k k k
y h x v=  (2) 
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k
f × →R R R  is a nonlinear function of 

the previous state xk and process noise wk, : x
n

k
h ×R  

v z
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→R R  is a nonlinear function of state 
k
x  and 

measurement noise .
k
v  { }

k
w  and { }

k
v  are assumed 

to be independent noises. Assuming that the pdf of the 

initial state 
0

( )p x  is known, our problem is to compute 

the posterior density 
1:

( | )
k k

p x y  of each state xk recur-

sively. 

A general expression of the prior probability 

distribution of the first order Markov system can be 

derived by Chapman-Kolmogorov equation with (1) and 

result is given in (3). 
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where 
1: 1k
y
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 is defined as the history observation 

sequence with random variables. 

With the observation yk 

in each time step, the posterior 

probability distribution is calculated by 

1: 1

1:
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In the above equation, the denominator 
1: 1

( | )
k k

p y y
−

=  

1: 1
( | ) ( | )

k k k k k
p y x p x y dx

−∫  is a constant value, which 

is available from the likelihood function and statistical 

characteristic of the observation noise.  

The recurrence relations of (3) and (4) form the basis 

for the optimal Bayesian solution. However, this 

recursive propagation of the posterior density is just an 

optimal solution in theory, and it never can be obtained 

analytically because the integration in (3) is usually 

intractable. In the next section, the Particle Filters (also 

known as Sequential Monte Carlo methods) are 

introduced and its capability to approximate the optimal 

Bayesian solution will be discussed. 

 

2.1. Generic particle filters 

Particle filters are algorithms to perform recursive 

Bayesian estimation using Monte Carlo simulation and 

importance sampling, in which the posterior density is 

approximated by the relative density of particles in a 

neighborhood of state space: 

0: 1: 0: 0:

1
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where the weighting value i

k
w  is updated according to 

1
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It can be shown that as N →∞  the approximation 

(5) approaches the true posterior density ( )1:
|

k k
p x y  

[16]. 

The PF algorithm is illustrated in the following 

pseudo-codes. 

Algorithm 1: The generic PF 

{ } { }1 1
1 1

, , ,

N N
i i i i

k k k k k
i i

x w PF x w y
− −

= =

   =      
 

1) Initialization: Generate particle samples { }0 0
1

,

N
i i

i

x w

=

 

2) Prediction:  

For i =1:N 

� Predict ( )
1

~ | ,i i i

k k k k
x q x x y

−

 

� Assign the particle a weight (Eqn. 6) 

End For 

3) Measurement update  

� Calculate total weight: { }
1

N
i

k
i

t sum w
=

 =   
  

� For i=1:N 

---Normalize: 1i i

k k
w t w

−

=   

� End For 

4) Resampling 

 

2.2. Particle impoverishment  

During the iteration, the variance of the particle 

weights will probably increase very quickly [16], 

especially in applications with large variance noise, 

which is named Particle impoverishment. 

Particle impoverishment [7] occurs when the likeli-

hood distribution is so narrow that the overlapping 

region of likelihood and the prior distribution is too small 

[17]. As a result, particle weights of most particles 

become relatively smaller; the reason is that only a few 

particles are dispersed in the region of likelihood, as 

shown in Fig. 1(a). Another reason of causing the 

problem is that the likelihood lies in the tail of the prior 

distribution as shown in Fig. 1(b). If such situation 

occurs repeatedly, all but one sample will have negligible 

weights.  

Let us discuss the situation when particle impoverish-

ment occurs. If samples from the posterior and proposal 

distribution are taken, it can be seen that samples which 

are far away from each other make corresponding 

weighting values decrease during the iterations from (6), 

while just a small number of particles can maintain their 

weight values. This iteration runs over time, so the 

variance of the whole set of particles increases and a 

detailed proof can be found in [4]. In such cases, we 

want the samples taken from the proposal distribution to 

be comparable to those from the posterior distribution. 

If the likelihood is so narrow (mostly happens when 

the measurement is too accurate) then probably a few 

particles from the proposal distribution will lie within the 

region of the likelihood. Thus their weights are so small 

and they are negligible in the posterior density estimation 

as shown in (6). The efficiency of the whole particle set 
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decreases. There is another situation that particle 
impoverishment happens. The new measurements (i.e., 
the likelihood) appear in the tail of the prior, because the 
prior model (mostly the transition model used in general 
cases [16]) becomes not accurate enough. So particles 
predicted from the prior density will distribute far from 
the likelihood. Therefore most of the particles have small 
weights. 

Resampling methods, such as Sequential Importance 
Sampling (SIS) [8,18], is employed to solve these 
problems. Besides of SIS, some improved re-sampling 
methods have been developed [9,10,19-21]. However, 
since these sampling techniques produce a suboptimal 
solution, in some applications, only one sample is 
remained and copied to the whole particle set after 
several steps of resampling. This is called losing of 
particle diversity [11]. 

In addition to particle impoverishment, sample size 
dependency is another problem. If the size of the particle 
set is small, potentially there may not have sufficient 
particles that can approach the true state, which will limit 
the filter from converging. In generic particle filters, the 
only way to solve this problem is to increase the number 
of particle, but that will abbreviate the computational 
requirements. 

 
2.3. Devised version of particle filters 

In order to eliminate the particle impoverishment and 
dependency problems, researchers focused on the 
following methods. 

 Improving resampling methods and techniques such 
as Binary Search [8], Systematic Resampling [9] 

and Residual Resampling [10] have been proposed. 
However, these methods are not ideal because the 
copied samples are no longer statistically 
independent after resampling therefore the previous 
convergence result will be lost. It is called losing 
sampling diversity [11]. 

 Optimizing the proposal distribution with modified 
PF algorithms such as Extended Kalman Particle 
Filter [22], or Unscented Particle Filter [23]. These 
methods are discussed in the next section. 

 
2.3.1 Extended Kalman particle filter 

Extended Kalman Particle Filter tried to construct the 
proposal distribution function by incorporating the 
current observation with the optimal Gaussian approxi-
mation of the state obtained from the Extended Kalman 
Filter (EKF) [24,25]. It relies on the first order Taylor 
series expansions of the likelihood and transition prior, 
as well as a Gaussian assumption on all random variables 
in question. In this framework, the EKF approximates 
the optimal MMSE estimator of the system state by 
calculating the conditional mean of the state, given all 
observations. In other words, the EKF implements the 
following recursive approximation (7) to the true 
posterior filtering density, 

ˆ( | ) ( | ) ( , ).t t
t N t t tp s z p s z N x P≈ =  (7) 

However, although EKF possibly builds a better proposal 
distribution by making a Gaussian assumption on the 
form of the posteriors as well as introducing inaccuracies 
due to linearization. In fact, the current observation at 
time t in the proposal distribution generated by EKF will 
not be Gaussian. This can be easily shown by a Bayes’ 
rule expansion of the proposal distribution.  

 
2.3.2 Unscented particle filter 

Similar to Extended Kalman PF, the Unscented PF 
uses Unscented Kalman Filter (UKF) as a distribution 
generation within the PF framework. UKF is regarded as 
having a bigger support overlap with the true posterior 
distribution than the overlap achieved by the EKF 
estimates. This is in part related to the fact that the UKF 
calculates the posterior covariance accurately to the third 
order by a deterministic sampling technique known as 
the unscented transform to recursive minimum mean-
square-error (RMMSE) estimation [26] to pick a minimal 
set of sample points (called sigma points) around the 
mean, while the EKF relies on a first order biased 
approximation. The sigma points in UKF are then 
propagated through the non-linear functions, from which 
the mean and covariance of the estimation are then 
recovered up to the second order of the Taylor expansion 
[23]. Consequently, the result is that Unscented Particle 
Filter has a proposal distribution which can capture the 
true mean and covariance more accurately to the optimal 
one than extended Kalman Particle Filter does. In 
addition, this technique removes the requirement to 
explicitly calculate the Jacobians, which for complex 
functions could be a difficult task by itself. 

(a) Narrow likelihood. 

(b) Likelihood lies in the tail of prior distribution. 
Fig. 1. Limitations in generic particle filter. 
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3. ANT COLONY OPTIMIZATION ASSISTED 

PARTICLE FILTER 

 

Ant Colony Optimization (ACO) algorithm is 

essentially a biologically inspired system based on agents 

that simulate the natural behavior of ants [27]. The 

utilization of such a system as a new metaheuristic 

method was first proved to be successful in solving the 

traveling salesman problem (TSP) [28]. Furthermore, 

this new metaheuristic method has been shown to be 

robust and versatile and has been applied successfully in 

solving a range of combinatorial optimization problems 

[29], including the quadratic assignment problem 

[30,31],vehicle routing problem [32], fault detection [33] 

and rough data reduction [34]. 

The ACO is derived from the natural optimization 

ability demonstrated by ants. When finding food, they 

tend to take the best route (or path) between their nest 

and some external landmark because their particular 

pheromone trail becomes higher if more ants choose the 

same trail. The closer the landmark is to the nest, the 

higher the number of round-trips can be made by each 

ant. The higher the concentration of pheromones, more 

ants will choose this route over others that might be 

available. This iterative process achieves optimal trails 

between the endpoints. So the ACO algorithm uses the 

mathematical formulas to simulate this natural 

optimization process. 

The ACO algorithm is based on the following 

mechanisms. 

1) Given a problem, a candidate solution is associated 

with a path or a vertex that corresponds to a moving ant 

in reality. In our application, for example, each ant is 

associated with a particle being generated; the particles 

(ants) move along a path in the state space, a particle 

with new state is regarded as a vertex. So the new 

particle set forms a candidate solution; 

2) when an ant follows a path, the amount of phero-

mone along that path is increased with a certain level; 

3) when an ant has to choose between two or more 

paths, the path with a larger amount of pheromone and 

shorter distance has a greater probability of being chosen 

by it; 

4) the amount of pheromone associated with a trail is 

under evaporation with time. This characteristic makes 

the path towards the optimized state will always 

correspond to the maximum pheromone. 

The direction of movement for an ant is based upon 

the following probability function defined in (8). While 

an ant has not yet completed the movement, the 

following equation is used to identify the next path to be 

taken until they converge to an optimal solution. 

allowed

[ ( )] [ ( )]
( ) ,

[ ( )] [ ( )]

k

ij ijk
ij

is is

s

t t
p t

t t

α β

α β

τ η

τ η

∈

=

∑
 (8) 

where ijη  is a heuristic value that is available as a priori. 

This probability distribution is biased by the parameters 

α and β that determine the relative influence of the 

pheromone trails and the heuristic information, 

respectively. These two parameter definitions vary in 

different problems. For example, in TSP, if 0,α =  the 

closest cities are more likely to be selected, which runs 

like a classic stochastic greedy algorithm; if 0,β =  

only pheromone update is dominated in the probability 

function, which probably leads to rather poor results and, 

in particular, for values of 1,α >  it results in the rapid 

emergence of a stagnation situation [35], that is, a 

situation in which all ants will concentrate along the 

same path and construct a suboptimal solution [36].  

 

3.1. Ant colony optimization in PF 

To optimize the re-sampling step of the generic 

particle filter, we incorporate ACO into the PF and 

utilize the ACO before the updating step. As mentioned 

before, a single ant will replace the randomly-generated 

particle in the Sequential Monte Carlo concept and they 

will converge to the local peak of the optimal proposal 

distribution function in the following optimizing step. 

The τ(t), as shown in (9), is affected by every 

movement of the particle by the following equation: 

( 1) (1 ) ( ) ( )

set of particles lie in the movement path

( 1) (1 ) ( ) set of other particles,

ij ij ij

ij ij

t t t

j

t t j

τ ρ τ τ

τ ρ τ

+ = − +∆


∈
 + = − ∈

 (9) 

where 0 1ρ< ≤  is the pheromone evaporation rate, ∆τ 

is a constant enhanced value if particle j is located 

between the starting particle and the end point. The 

pheromone trail definition implies that with more ants 

going through the same path, it will enhance the amount 

of pheromone in this trail, while the pheromone of paths 

for which fewer ants have traversed will decline 

proportionally with time. The longer time it takes for an 

ant to travel along the path and back again, the 

pheromones will evaporate more. By comparison, the 

pheromone value remains high in the shortest path 

because most of the ants finally choose this path. For 

example, let us define ant i to be the one intending to 

move during the iteration and ant j lies in the path 

between ant i and the potential destination, as shown in 

(9), the pheromone ijτ  enhancement will be executed 

during this iteration based on the target of the stochastic 

move. In addition to the enhancement, we also know that 

all pheromone values τ  associating with ant i 
*

( ),
i

τ  

including ijτ  are reduced when the pheromone is 

evaporated at each iteration.  

The heuristic function (β) as stated in the above 

section, is now defined as the reciprocal of the distance 

between two particles (end points): 

1
( ) .ij

ij

t
d

η =  (10) 

Finally, we need to evaluate the fitness function of 

each particle. It is proportional to the weight function, 
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denoting the rate of a particle approaching the true state. 

The optimization step runs iteratively based on a 

probability function obtained from (11). It represents the 

probability of a particle i selecting particle j among N-1 

particles as the moving direction.  

all particles

[ ( )] [ ( )]
( ) ,

[ ( )] [ ( )]

ij ij

ij

is is

s

t t
p t

t t

α β

α β

τ η

τ η

∈

=

∑
 (11) 

where α and β are parameters with the same definition as 

defined in the original ACO. The parameter α ( )ijτ  has 

an initial value equal to the particle weight, as stated in 

(0) .ij jwτ =  (12) 

During iterations, ijτ  is either enhanced or decreased 

by (6) depending on whether the particle j lies in the 

movement path and the parameter β is determined by 

(10).  

The ACO algorithm converges when Pij approaches 1 

[37], so it implies that the particle i definitely re-locates 

to a closer proximity of particle j. When this 

convergence holds during each iteration, most particles 

converge to this particle j, which is represented as the 

neighborhood of higher likelihood (higher weights) 

based on (11). In this process, two parameters determine 

the relative influence. If 0,α =  all particles choose to 

remain in their original positions so the algorithm 

degenerates to a generic PF; if 0,β =  particles tend to 

move towards neighborhood around higher likelihood, so 

the distribution is approaching ( | ).
k k

p y x  

Furthermore, the ACO terminates until all the moved 

particles’ positions converge to the high likelihood 

region (the general or local optimal solution) within a 

certain threshold, defined in (13). 

(1 ) ( ) constant value,j j
Threshold w randn= − × ×  (13) 

where w is the weight of the target particle, randn is a 

normal distributed random number. 

A pseudo-program describing the algorithm is given 

below. 

Algorithm 2: The ACOPF Algorithm 

1 1 1 1
[{ , } ] [{ , } , ]i i N i i N

k k i k k i k
x w ACOPF x w y

= − − =
=  

1) The initialization and prediction steps [(1~2) in 

Algorithm 1] 

2) ACO assisted PF 

While the distance between particles and their targets 

are not within a certain threshold (Eq. 13) and the 

iteration times does not exceed the maximum value 

� Choose particle i whose distance is within the 

threshold  

� Select the moving target based on the probability 

(Eq. 11) 

� Move towards the target with a constant velocity 

� Update the parameters of the ACO (e.g. η, τ), and 

particle weights 

3) End While 

4) Update Step [(3~4) in Algorithm 1] 

5) Resampling 
 

Optimized by the ACO, the particle impoverishment 

problem is alleviated. The particle samples tend to be 

around high likelihood regions. As a result, most of the 

particles which are scattered far away from the true state 

will converge to states that represent high probability as 

shown in Fig. 2. Therefore, when configured with 

suitable parameters (ρ, τ0, η0, ∆τ, constant value of 

threshold, etc.), ACO is able to balance between the 

diversity and the impoverishment of particle filters.  

In addition, since the impoverished particles are 

concentrated in the higher likelihood region, these 

particles will produce better contribution in the Monte 

Carlo simulation, so that sample size dependency 

problem of the generic particle filter is also minimized. 

Because particle j as a moving target has a higher 

weight and shorter distance than the other particles, pij 

(denoted by the length of arrow) is larger than other 

probabilities. Therefore particle i moves towards particle 

j. Comparing with Fig 1(a), particles are closer to the 

local maximum pdf, so that the particle impoverishment 

is avoided. 

 

4. CASE STUDY 

 

A nonlinear single variable economic model [23], de-

fined by (14) and (15), is employed to test the perfor-

mances of various PFs, including Extended Kalman Fil-

ter [38], Unscented Kalman Filter [22,39,40], generic PF 

(PF with sequential importance re-sampling) [16], ex-

tended Kalman PF [16], Unscented PF [23] and PFACO. 

To fully compare the results, the generic PF, extended 

Kalman PF and Unscented PF are all implemented with 

and without MCMC [16]. 

2( 1) 1 sin(4 10 ) 0.5 ( ) ( ),x t t x t w tπ
−

+ = + × + +  (14) 

2( )
( ), t 30

5( )
( )

2 ( ), t 30,
2

x t
u t

y t
x t

u t


+ ≤

= 
− + + >


 (15) 

Fig. 2. The PFACO Demonstration. 
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where w(t) stands for the zero-mean white noise, and 

( )u t  stands for noise with Gamma distribution [40]. The 
variance of w(t) is 5

1 ,10
−

×  and the two parameters of 

the Gamma distribution, k  and ,θ  equal to 7 and 2, 

respectively. 

From t = 1 to 60 in a single test run, given the noise 

measurement, the state sequence 
t
x  was estimated by 

all filtering methods. In order to minimize the effect of 

randomness, all experiments included 30 runs. For all PF 

algorithms, the number of particles used was 200. Tables 

1 and 2 show the mean and variance of the Root Mean 

Square Error (RMSE) obtained from different PF algo-

rithms. 

From Tables 1 and 2, we can conclude that our PFACO 

can produce the best result with the smallest RMS error. 

In addition, the variance of our method is also the 

smallest comparing to other methods, implying that the 

PFACO can give more stable performance according to 

[41]. 

The average execution time in each run is measured 

and given in Table 3. As listed in Table 3, the PFACO 

takes a longer computational time when comparing to the 

Kalman Filters and generic PF, which generally lead to 

larger estimation error. But comparing to similar PFs 

with improved proposal distribution including the ex-

tended Kalman Particle Filter and Unscented Kalman 

Particle Filter (both with and without MCMC), the PFACO 

takes shorter execution time since we pre-define a max-

imum iteration times.  

Fig. 3 represented the estimation results from all filters 

of one run, which shows that the PFACO can track the 

estimation accurately throughout the whole experiment. 

The PFACO performs better than other PF in the single 

variable estimation test. Besides, the extended Kalman 

Particle Filter performs worse than generic PF, especially 

from time interval 1 to 30, it may be caused by the transi-

tion function with white noise, for which the EKF proba-

bility cannot track very well, even compared to the ge-

neric PF. After the time 30, with another measurement 

function, almost all PF perform quite well. 

 

Fig. 3 The diagram of different PF tracking result. 

 

 

Table 1. RMS value of error. 

Filters RMS Error 
RMSE Percentage 

(EKF=100%) 

EKF 0.98087 100 

UKF 0.68237 69.57 

Generic PF 0.77918 79.44 

PF+MCMC 0.79492 81.04 

PF+EKF 0.95391 97.25 

PF+UKF 0.3792 38.66 

PF+EKF+MCMC 0.95354 97.21 

PF+UKF+MCMC 0.39387 40.16 

PF+ACO 0.28153 28.70 

 

Table 2. Variance of RMS error. 

Filters Variance 

EKF 0.059334 

UKF 0.029767 

Generic PF 0.054233 

PF+MCMC 0.041409 

PF+EKF 0.044244 

PF+UKF 0.021977 

PF+EKF+MCMC 0.049126 

PF+UKF+MCMC 0.01669 

PF+ACO 0.001619 

 

Table 3. Execution time of filters. 

Filters Time (Sec) 

EKF 0.53321 

UKF 0.92803 

Generic PF 0.89604 

PF+MCMC 1.958 

PF+EKF 5.935 

PF+UKF 11.6809 

PF+EKF+MCMC 10.0614 

PF+UKF+MCMC 22.8866 

PFACO 3.1854 
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5. CONCLUSIONS 

 

In a noisy tracking problem, generic Particle filter, as a 

method derived from sequential Monte Carlo Method, is 

easy to cause particle impoverishment and sampling 

dependency. The major cause of these problems is due to 

the randomly generated particles that usually cannot fully 

cover the distribution density function. In this paper, we 

proposed a new algorithm that utilizes the Ant Colony 

Optimization to re-arrange the particles before the 

updating step of particle filters. After the ACO 

optimization, particles will approach the higher 

likelihood density function and therefore it will minimize 

the problems of particle impoverishment and sample 

dependency. Our experimental results illustrated that the 

ACO assisted PF produces better tracking performance 

in solving the single variable nonlinear estimation 

problem. In addition, its computation time is shorter than 

other improved versions of PF. 
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