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Goal-Directed Feature Learning

Cornelius Weber and Jochen Triesch

Abstract—Only a subset of available sensory information is
useful for decision making. Classical models of the brain’s
sensory system, such as generative models, consider all ele-
ments of the sensory stimuli. However, only the action-relevant
components of stimuli need to reach the motor control and
decision making structures in the brain. To learn these action-
relevant stimuli, the part of the sensory system that feeds into
a motor control circuit needs some kind of relevance feedback.
We propose a simple network model consisting of a feature
learning (sensory) layer that feeds into a reinforcement learning
(action) layer. Feedback is established by the reinforcement
learner’s temporal difference (delta) term modulating an oth-
erwise Hebbian-like learning rule of the feature learner. Under
this influence, the feature learning network only learns the
relevant features of the stimuli, i.e. those features on which
goal-directed actions are to be based. With the input pre-
processed in this manner, the reinforcement learner performs
well in delayed reward tasks. The learning rule approximates
an energy function’s gradient descent. The model presents a
link between reinforcement learning and unsupervised learning
and may help to explain how the basal ganglia receive selective
cortical input.

I. INTRODUCTION

THROUGHOUT life, we learn to perform actions, to
recognize objects and scenes, and, importantly, to ig-

nore irrelevant information. As we walk, unconsciously, we
combine features from vestibular, tactile and visual systems
that inform us about our posture to keep the right balance.
Our balance system ignores irrelevant visual features such as
colors. But in addition to features from the vestibular system,
it also takes into consideration relevant visual features such
as the horizon that provides information on the own orienta-
tion in space. Action selection is generally based on selected
sensory inputs, as opposed to all available inputs. For this to
happen, sensory representations need to adjust to tasks.

Evidence for long-term changes of sensori-motor neural
representations has been obtained during habit learning in
the rat striatum [1]. The striatum receives direct cortical input
and is part of the basal ganglia. Doya [2] proposed that un-
supervised learning happens in the cortex and reinforcement
learning in the basal ganglia. Accordingly, the cortex pre-
processes data to yield a representation that is suitable for
reinforcement learning by the basal ganglia [3].

However, it remains open how the striatum reads the
relevant inputs from the cortex, i.e. which features are read
from the cortical activation pattern that are relevant for
selecting actions and obtaining rewards.
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Sensory representations can be influenced by task de-
mands. In the classical view of the sensory cortex, neurons
such as edge detectors in visual cortex V1, adapt merely
to the statistics of the incoming data. However, this limited
view is challenged since reward, such as a few drops of
water, can influence neuronal responses in rat V1 [4]. Even in
an experiment without such a reward, if and only if certain
stimuli are important for the decision about an action, the
corresponding neurons’ tuning curves in monkey V1 increase
their slope [5]. Such learning effects, despite being observed
in the cortex, suggest an influence of reinforcement learning.

So, how do the basal ganglia receive their cortical in-
put? Models that contain cortico-striatal mappings [6], [7],
[8], [9] address mainly the functional integration of these
structures, rather than an integrated account of learning.
Biological evidence suggests a δ-modulated learning rule for
cortico-striatal synapses: synapses between the cortex and
the striatum are potentiated when the substantia nigra is
stimulated [10]. The substantia nigra supplies the striatum
with dopamine that is hypothesised to mediate a reward
prediction error (below, the δ-signal) in reward seeking tasks.

A. Reinforcement Learning (RL) Models

In the reinforcement learning literature, it is often assumed
that incoming data is in the form of a suitable state space rep-
resentation. For example, hierarchical reinforcement learning
models such as the options framework (see [11] for a review)
re-organize such a state/action space into tree structures to
allow for more efficient decisions.

Another class of models tackles the problem of having
more possible states than can be implemented by a lookup
table. For example, TD-Gammon is a 3-layer network in
which a relatively small number of input units encodes a
large space by a distributed code [12], [13]. The weights are
trained via a backpropagation algorithm such that the output
encodes the state’s value. The learning rule is non-local, and
the network has shortcomings for biological interpretation,
since the representations of the middle layer(s) are not easily
interpretable.

Other algorithms that organize the input space make
specific assumptions about representations in that space. For
example, the Parti-game algorithm [14] and Reinforcement
Learning of Visual Classes [15] divide a continuous space
and assume a topology, so that when a state is being
split, useful new states are created that are similar to the
divided state. Instance-based methods such as the U-Tree
algorithm [16] record all raw experiences, which may not be
computationally permissive and may not generalize well to
realistic situations.
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Feature learning is often treated as unsupervised learn-
ing. Comparatively little work has addressed how neuronal
networks can learn optimized features for a reinforcement
learner.

B. Embedding RL Models
Other approaches to a more integrative view of brain

function originate from recurrent network models or models
of unsupervised learning. Such models are furnished with
reward-dependent signals that mimic the effect of dopamine
to include reinforcement learning. For example, when spike-
timing dependent plasticity (STDP) is modulated by a
reward-dependent signal, a recurrent network can solve distal
reward problems [17], [18], [19], [20].

RL ideas are also incorporated into other network types.
A feedforward model of a cortico-striatal mapping extends
unsupervised learning and explains various response prop-
erties of striatal neurons that receive visual input [21]. In
that model, a dopamine signal modulates neural activations,
and thereby learning, when saccades are being made to a
rewarded position. Similarly, the attention-gated reinforce-
ment learning model (AGREL) [22] can learn features in the
context of 1-of-n classification tasks. A δ signal modulates
learning directly in the case of correct trials. As a model
of vergence eye movements, AGREL learns disparity-tuned
visual cells [23]. However, these feedforward models do not
deal with delayed rewards.

C. Model Idea
Our starting point extends the assignment of a modulatory

signal within a feedforward network. Instead of assigning
it only when a reward is given, we take advantage of a RL
algorithm and assign a δ signal to modulate learning globally
and throughout extended phases of learning.

In reinforcement learning (for an introduction, see [24]), a
reward is given only at the end of a successful trial, i.e. when
an agent that started at a random state reaches a goal state. In
the simplest models, during learning, i.e. over many repeated
trials, a value function builds up (encoded in the weights) that
increases toward states that are more proximal to the goal.
A scalar δ encodes the prediction error between estimates of
neighboring state values. The δ is used to modulate learning
of the action weights that encode both, value function and
action strategy. This addresses the temporal credit assignment
problem and allows RL to deal with delayed rewards.

We use the same δ to modulate an otherwise Hebbian
learning of a winner-take-all feature layer that feeds into the
action layer, building on a suggestion in [25]. The δ value
is large only when an action leads to a state that is better
than predicted, and can become negative during random
actions. Hence, this learning signal tends to be positive for
surprisingly reward predicting features, which characterizes
the important learning phases, and is small in average for
less relevant features.

The winner-take-all characteristics of the feature layer
(cf. self-organizing maps, SOM) lends itself to preprocess
raw data for a reinforcement learner, because its output is

characterized by a single active unit. Standard RL networks
assume that on their input layer, a single active unit describes
the state of the agent. In existing models that involve such
preprocessing of the sensory data [26], [27], [28], [29], [30],
the SOM units represent the entire input space, influenced
only by the density of the input data. Unlike these models,
our proposed δ-modulated winner-take-all network considers
goal-relevance of sensory input dimensions, and learns to
neglect irrelevant parts of the input.

II. A HEURISTIC LOCAL LEARNING RULE

The model consists of an input layer holding a sensory
vector I . A hidden feature layer learns features of the input
and encodes a state vector s, of which only one unit is active
at a time. An output action layer with activation vector a

represents the currently selected action by one activated unit.
The network is feedforward with full connectivity between
adjacent layers, as shown in Fig. 1.

feature weights

action weights

input

action

state s

a

W

Q

I

Fig. 1. Feed-forward model architecture drawn schematically. From each
layer to the next, only the connections to one recipient unit are shown.

The activation and learning algorithm is given in Table I.
Listed are the processing steps for one trial, i.e. one sequence
of actions that lasts until a reward r = 1 is obtained in the
goal state, while elsewise r = 0. At the beginning of each
trial, the agent is placed at a new random position.

The algorithm inherits the top-level structure of the
SARSA algorithm [24]. Hence, Table I resembles a descrip-
tion of SARSA [3]; only steps (1) and (6) are extended to
involve the feature weights.

The procedure is as follows. In step (0), the agent performs
an action and reads the new sensor values I ′. From these
values, in (1) the (internal) state representation s′ is obtained
via the feature weights W and a winner-take-all operation.
In steps (2) and (3), an action is chosen stochastically using
the action weights Q. Step (4) computes the value v′ of
the new state based on the next possible actions and the
correspondingly used weights Q. Step (5) computes the
prediction error δ between the time-discounted current value
(discount factor γ = 0.9) and the earlier value v, considering
also the reward r, if delivered (r = 0, else).
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Initialization
(i0) Set agent to random position. Get sensory input I

(i1) Winning feature unit m = argmaxj

P
n WjnIn

Compute old state sj = 1, if j = m, else 0

(i2) Action unit input hi =
P

l Qilsl = Qim

(i3) Softmax action selection Prob(ai =1) = e2hi
P

k e2hk

(i4) Value v =
P

k,l Qklaksl

Repeat until trial ends successfully, i.e. until r = 1

(0) Act. Observe new sensory input I′ and reward r

(1) Winning feature unit m = argmaxj

P
n WjnI′n

Compute new state s′j = 1, if j = m, else 0

(2) Action unit input hi =
P

l Qils
′

l
= Qim

(3) Softmax action selection Prob(a′

i =1) = e2hi
P

k e2hk

(4) Value v′ =
P

k,l Qkla
′

k
s′
l

(5) Prediction error δ = r + γv′ − v

(6a) Actor weight update ∆Qij ∝ δ aisj

(6b) Feature weight update ∆Wjn ∝ δ sj In

If r = 1, update also ∆Wjn ∝ δ s′j I′n
(6c) Normalize and rectify �Wj = [ �Wj/‖ �Wj‖]

+

(7) New becomes old I, s, a, v ← I′, s′, a′, v′

TABLE I
SARSA ALGORITHM EXTENDED WITH HEBB-LIKE FEATURE LEARNING

In step (6), the action layer weights Q are trained, es-
sentially by a δ-modulated Hebbian rule with state s and
action a as pre- and post-synaptic values, as in normal
SARSA. The feature layer weights are also updated by a
δ-modulated Hebbian rule, with pre-synaptic activations I

and post-synaptic activations s.
As a variation to the Hebb-like rule, we also tried replacing

the weight updates in step (6b) of Table I by the following
“Kohonen” update:

∆Wjn ∝ δ sj(In −Wjn)

∆Wjn ∝ δ s′j(I
′
n −Wjn) (if rewarded)

in which the pre-synaptic activation term is replaced by the
difference between the input I and the current weight vector
Wj of the winning unit. This is as in traditional Kohonen-
like SOMs [31] without neighbourhood interaction. Novel is
the δ term.

The weights W are normalized to length 1 for each feature
unit, which ensures that a unit that wins for one data point
will not also win for all others. Since all data values are
non-negative, the weights W are rectified to be positive.

The feature layer performs competitive learning, similar to
K-means clustering (K being the number of feature units),
or to a SOM in which the neighborhood interaction is set
to zero. The δ term makes sure that the feature layer learns
only when there is learning progress, that is, when currently
relevant data are encountered. Since unimportant components
of the data are not correlated with the learning progress, on
average, they will not contribute to learning.

In addition to the steps mentioned, we impose a weight

decay on the action weights Q as

∆Qij ←− ∆Qij − ηQ3

ij

with a small constant η = 0.00003. This term does not
influence initial learning, but prevents large weights from
emerging after very long training durations. These would
limit the network’s potential to unlearn and to re-adapt to
new tasks in our re-learning experiments. Other schemes
like noise on the parameters [32], here the Q, may also be
possible.

III. A GRADIENT DESCENT LEARNING RULE

For a better understanding, we derive the gradient of an
energy function, which will lead to a non-local learning rule.
We will later see that the learning rule in step (6b) of Table I
may be regarded as a somewhat crude approximation to such
a gradient descent, by simply omitting the non-local terms.

We recall that the action weights Q estimate values v

of actions a in states s. These values approximate a value
function that increases toward the rewarded state, the goal of
the agent’s actions. In our network, the states are functions
of the inputs I via the feature weights W . Let Θ = (Q, W )
denote the network parameters. Taking the stance of [24]
(Chapter 8), the v = v(Θ) values shall be updated to
minimize a mean squared error

E =
1

2

∑

s,a

PΠ(s, a)(V Π(s, a)− v(s, a))2

where V Π(s, a) is the “true” value given the current action
policy Π (which, too, depends on the network parameters Θ).
The difference term that replaces the old estimate v using a
better estimate v′ obtained from the next time step is

V Π
− v = r + γv′

− v = δ

which is step (5) in Table I. The probability distribution
PΠ(s, a) is the on-policy distribution of state-action pairs
that the agent follows. In on-line learning, this distribution
is implicit in the selection of data, selected according to step
(3) in Table I and retrieved via steps (0) through (2). The
on-line update of network parameters becomes

∆Θ ∝ −

∂E

∂Θ
= (V Π

− v)
∂

∂Θ
v

Using v =
∑

k,l Qklaksl, as given in step (4) in Table I, we
obtain the action weight update

∆Qij ∝ −

∂E

∂Qij

= δ ai sj

which is step (6a) of Table I. A derivative to the feature
weights is not possible using a winner-take-all mechanism
(step (1) in Table I), which is not a differentiable function.
A close approximation is a softmax function, which becomes
winner-take-all-like with a sufficiently large parameter β (we
will use β = 100 in our simulations):

sj = g(hj) =
eβhj

∑
k eβhk

, where hj =
∑

n

WjnIn
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Fig. 2. Data. The sensory input I at any time instant consists of four features, two horizontal and two vertical bars, one in each half of the input area
(separated by the dotted line). Note periodic boundary conditions. An action moves the features into one of four directions from one time step to the next,
as indicated by the arrows (a feature may fail to move with a certain probability). A reward R is given when the “rewarded feature” (here a horizontal bar
in the upper half) appears at a specific location (shown as “reward condition”). The network must learn the relevant features (here, the upper horizontal
bars) and an action strategy. After reward is given, all features are set to a new random position.

Considering that Wjn influences not only sj of feature unit
j but the activations sk of all feature layer units, we have

∆Wjn ∝ −

∂E

∂Wjn

= −

∑

k

∂E

∂sk

∂sk

∂hj

∂hj

∂Wjn

= δ
∑

k

Qik

∂sk

∂hj

In

where we have assumed that action unit i was the activated
one. Using the following identities for the softmax function
[33]

∂sj

∂hj

= sj(1− sj) and
∂sj

∂hk,k �=j

= −sksj

we obtain

∆Wjn ∝ δQijsj(1− sj)In − δ
∑

k,k �=j

Qiksk sjIn

= δQijsjIn − δ
∑

k

Qiksk sjIn

The first term is similar to the feature weight update in
step (6b) of Table I, except for the factor Qij that arises
through backpropagation and that denotes how strong state
neuron j contributes to the output.

The second term represents a competitive decay term that
has a larger suppressive effect if strong activations sk in the
feature layer are paired to large weights Qik. If exactly one
feature unit is active, sj = 1, and for all others sk,k �=j = 0,
i.e. if a clear winner is found, then the first and the second
term cancel, so learning has converged.

Note that this learning rule is not local, first, because of
the weight Qij to an action unit and, second, because of the
second term summing over activations on the feature layer.

In our experiments, we will apply weight normalization
and rectification to this “Softmax” rule as described in Sec-
tion II. We will also test this without these weight constraints
(“Softmax no constr.”).

IV. SCENARIO

We devised artificial data that would require a model to
learn select feature detectors for learning an action strategy.
At each point in time, four features are shown to the model,
each being a short bar consisting of just two pixels. Two of

these features are in the upper half of the input, two in the
lower half; in each half, one bar is vertically oriented and
the other horizontally. Fig. 2 shows example data.

When an action is made, all features make a small trans-
formation: they move up, right, down or left, depending on
one of four actions chosen. There is a 20% probability for
each feature to fail doing this transformation, assuring that
over time the positions of the features with respect to each
other are independent. Both halves of the input have periodic
boundary conditions, i.e. a feature that leaves on one side
enters the opposite side; the two pixels of a bar may then be
on opposite sides of each half of the input area.

Of the four bars present at each instant, three are irrel-
evant. The remaining one belongs to the relevant feature
class, because its position determines reward: a reward is
given whenever the relevant bar is at one specific position,
irrespective of the position of the other three bars.

To learn an action strategy, it is not sufficient to learn the
relevant bar only at the position where it is when rewarded.
Instead, all bars of this class (for example, all horizontal
bars in the upper half of the input area) are relevant. This
bar needs to be watched whereever its current location; the
action needs to be chosen such as to move the bar of this
class to the specific position (reward condition). Hence, the
appropriate action leading to reward depends on the currently
present bar of one class that can be any bar of this class.

These data test for two capabilities of the model: (i)
Subspace discovery, meaning that there are relevant features
only in one half of the input area. The other half shall be
disregarded, despite similar input distributions. (ii) Feature
detection, meaning that of two different feature classes in
the same area (horizontal and vertical bars), only the features
belonging to one class shall be learnt. This is more difficult,
because relevant and irrelevant features overlap.

In addition, we will test the model for re-learning ability. A
previously learnt feature will become irrelevant after a given
time, and instead, a new feature becomes relevant.

V. RESULTS

The input layer of the network is of size 12×6, consisting
of two sub-areas of size 6 × 6 each. Hence, given the four
stimuli at varying positions, there are 364 possible input
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iteration 100,000 200,000 300,000 400,000

reward
condition

SARSA weights Q

feature weights W

Fig. 3. Weights trained with the Hebb rule of Table I. Weight matrices Q and W from the end of the four training phases are shown, as denoted by the
iteration number, and dependent on the reward condition during the respective learning phase. Each of the 4 square fields of Q denotes the input field of
an action unit that performs an action to move the bars to the direction that is indicated over the leftmost Q-weights. Each of the 36 rectangular fields of
W is a receptive field of a feature unit. Large positive weights are displayed dark. It is clearly seen that the feature units specialize on processing the bars
of one of the four classes.

patterns; more than permissible for direct table-based RL1.
The hidden layer consists of 6×6 units; hence, it has exactly
the number of units required to learn one (the relevant)
feature class, such as all horizontal bars in the upper half
of the input. The output layer consists of 4 action units
representing the four directions to move the bars to. Weights
were initialised with sparse small positive random values.

The resulting weights trained with the algorithm in Table I
and data as in Fig. 2 are shown in Fig. 3. To the left, weights
after 100,000 runs are shown during which a reward was
given whenever the upper horizontal bar was at a specific
position, as indicated at the top of the figure (“reward
condition”). It can be seen that most hidden units have feature
weights that match one of the upper horizontal bars. How-
ever, relevant features that are far from the rewarded position
(i.e. in the corners) are not learnt. Instead, irregularities exist,
such as weights to the lower input area, and weights with

1The network easily learns larger input sizes, such as 12 × 12 [34],
however, we restrict sizes here for clearer display.

vertical orientation.
Network action performance is shown in Fig. 4 for the four

tested learning rules. While it takes on average more than 50
steps for a random actor to stumble upon the reward, after
100,000 iterations the network has learnt to reach the goal in
around five steps on average, after random positioning2. The
gradient-derived “Softmax” learning rule leads to the best
performance, requiring only four steps on average to reach
the goal.

A. Re-Learning
For continued learning after the initial 100,000 runs,

Figure 3 shows weights (for the “Hebb” rule in Table I),
and Figure 4 shows the networks’ further performances,
after the rewarded feature was changed (indicated as “reward
condition” in both figures). After this change, the old action
strategy based on the formerly relevant features leads – at

2Three steps on average are optimal, which would amount to a practical
average of 3.6 steps, because of the 20% probability of an action to fail.
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Fig. 4. Learning progress. The graph shows the average number of steps
the agent takes until reaching the goal, averaged over 1000 trials, on a log-
scale. The x-axis denotes the number of trials. The insets show the “reward
condition”; each condition being constant during 100,000 trials.

best – to random movements, and rewards unpredicted by the
network. During this phase, the existing action- and feature
weights may be unlearned by a negative δ term. For the
regular Hebb rule, the feature weights adopt the shape of the
relevant feature class (Fig. 3).

In Fig. 4, it can be seen that for the “Softmax” rule the
performance reaches a level comparable to the first phase of
learning. For the other learning rules, however, improvement
during the re-learning phases is worse than in the first phase,
indicating susceptibility to initial conditions. The influence
of earlier learning phases is reflected in the structure of the
feature weights in the second, third and fourth column of
Fig. 3: there are some “remnant” feature weights that have
been trained in earlier learning phases. It also seems that the
action weights Q are “lazy” when adapting to new situations,
since they retain similarities in their structure across the
different learning conditions.

B. Feature Coding
Both winner-take-all networks, either with “Hebb” or

“Kohonen” updates, discover the short bars as relevant
features, as seen in the structure of their weights W in
Figure 5. The “Softmax” rule, which involves a distributed
code, represents the bars less clearly. The Softmax rule
without weight constraints, shown in the rightmost column in
Figure 5, leads to only few units developing receptive fields.
These have negative weights (displayed lighter than the pre-
dominant grey that denotes here zero) and positive weights in
a horizontal stripe-like fashion, almost reminiscent of Gabor
filters, suggesting that a data point is coded by an additive
as well as subtractive combination of feature components.

Analogously, non-negativity constraints lead to parts-based
representations in unsupervised learning methods [35], par-
ticularly when sparse neuronal firing is imposed [36].

VI. DISCUSSION

We have presented a new model that solves the distal
reward problem of reinforcement learning while simulta-
neously performing feature learning. It learns a bars task
which is challenging even for humans: when a reward is
given whenever one of several features appears at a specific

position, it is hard to track which feature consistently appears
at the same position over several trials. What limits human
performance is not the absence of relevant information, but
its accessibility, which is affected by the distractors. Such
situations can be mastered by top-down guided learning [37].
Accordingly, in our model, the unsupervised feature learner
is aided by a higher-level reinforcement learner to discover
the relevant features.

A. Other Methods of Feature Extraction

We have also experimented with a few other models of
feature extraction for the first processing step. Some sparse
coding models may have difficulties extracting very sparse
codes, as opposed to just sparse codes: in case of the data
consisting of two 2-pixel sized bars, a sparse code is already
realized when four units code for one pixel each. The code
is, however, very sparse only if two units code for the bars.
For our data, some sparse coding models would extract the
pixels instead of the short bars.

The Földiák model [38] allows for a precise adjustment of
the mean unit activations and inter-unit correlations, using
neuronal thresholds and lateral weights. It learns the short
bars data well, but only if these are presented homoge-
neously. During the reinforcement learning phase, however,
the frequency at which horizontal bars appear varies over the
input area, because systematic, goal-directed movements are
being made. We would expect similar problems with models
that maintain firing rate homeostasis of the feature units (e.g.
[39]).

A model by Lücke [40] tolerates uneven activation statis-
tics across the feature layer, and also succeeds on the
subspace data. It enforces a soft competition, whereby the
winning unit suppresses others, together with a weight
normalization. However, it led to less clear horizontal line
detectors on the short-lines data. We conclude that a simple
winner-take-all model works best for two reasons. First, the
data are set up to contain exactly one relevant feature (e.g.
the horizontal bar). Second, one unit defines the state for the
reinforcement learning algorithm best. Both aspects cannot
be improved by allowing more units to become active.

B. Reinforcement Learning vs. Planning

Recently, we have proposed a planning algorithm that can
be used in place of reinforcement learning [41]: in the initial
exploration phase, the agent learns a world model of every
possible state transition, and is later able to plan a route to
any location that is its current goal (see also [42], [43]). We
conjectured that one must resort to reinforcement learning
when it is hard to learn a world model. For the bars data,
which we present here, the world model would have to learn
also the irrelevant bars, because in the initial exploration
phase, no reward related information is being used. Hence, in
this specific example, reinforcement learning is more efficient
than planning, because it aids in filtering out irrelevant data.
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SARSA weights Q

feature weights W

Fig. 5. Weights Q and W resulting from different algorithm versions trained for 100,000 iterations (first reward condition).

C. Applications
There are several possible applications. One is visually-

guided balancing in which the model would discover that
of all visual features, those that characterize the horizon
give useful information about the agent’s orientation in
space. Another example is grasping an object. A network for
grasping would learn to retrieve input from the parietal reach
region (PRR) of the posterior parietal cortex, which becomes
active when an object is presented at a specific position
relative to the hand [44]. For a robotic implementation, we
have formerly trained a “what-where” network by supervised
learning, which feeds the position of an object into the state
space of a reinforcement learner [45]. We would expect
that the SARSA-driven feature learner presented here would
extract the action-relevant features from the “what” pathway.
These would correspond to visual features that convey the
location of the object.

D. Extensions
For richer visual processing, it would be worth investi-

gating whether the model can be extended to a hierarchical
architecture by applying the δ-signal to more layers con-
currently. For example, are visual or visuo-motor cortical
neurons, such as in the PRR, themselves trained using
reinforcement signals? In the AGREL model, a reward signal
helped visual disparity selective cells to emerge, albeit with
instantaneous rather than delayed reward [23]. Our SARSA-
derived δ signal, which can anticipate a reward, extends the
possibilities of reward influence in the cortex.

For the sake of simplicity and generality, we have not
exploited topography. In our data, two horizontal bars that
are one pixel above/below each other have no overlap. If the
bars were spatially blurred (convolved with a Gaussian), then
neighboring bars would overlap, and it would be useful to
map them to neighboring units on the feature layer, and to
perform similar actions. RL can make use of such a blurry
state space representation for more robustness and faster
learning [46], [45], at the cost of fine-discrimination of states.
In our re-learning experiments, topographic neighborhood
interactions might help training those units that retain the
formerly relevant features and that remain inactive. Further
solutions exist to help such inactive units, such as a con-
science rule that punishes units that are too frequently active
[47].

E. Incremental Learning
The re-learning experiments demonstrate the network’s

flexibility, akin to neurons of the striatum during habit
learning. While rats learnt a T-maze task, striatal neurons
were first maximally active at the junction, i.e. when the
decision had to be made as to which arm of the maze to
go into [1]. When learning progressed, neurons shifted the
location of maximal response to the beginning and ending
of the maze, suggesting involvement in some higher-level
behavior. We proposed that the performance at the junction
may have been taken over by the motor cortex [48]; another
candidate may be the cerebellum. Given such a module that
learns to imitate the RL network (including striatum), the RL
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network could then re-assign its sensory resources to perform
other, possibly higher-level tasks.
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