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A Neural Model for the Adaptive Control of Saccadic Eye
Movements
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Abstract—Several studies have suggested different cost func-
tions to explain the kinematic characteristics of saccades. How-
ever, these studies do not present any neural implementation
of the optimization procedure they use. Instead, they are based
on optimal control theory approaches that provide a global
analytical solution rather than a local adaptation scheme. In this
study, we propose a model comprised of an open-loop neural
controller and an adaptation unit. The neural controller receives
the initial target position as input. The adaptation unit, which
is the neural interpretation of a simple cost function, evaluates
the optimality of this controller and induces weight changes
in the controller via a local learning rule. Realistic saccades
are obtained with the proposed model. We speculate that the
superior colliculus and the cerebellum behave quite similar to
our model’s neural controller and adaptation unit.

I. INTRODUCTION

THE relationship between the duration, peak velocity and
the amplitude of saccadic eye movements is known

as the “main sequence”. The main sequence of saccades
is stereotyped: The duration increases linearly with sac-
cadic amplitude, and the peak velocity increases linearly
for low amplitudes and then undergoes a soft saturation
for larger amplitudes [1]. The velocity profiles of saccadic
eye movements are smooth and symmetric for low saccadic
amplitudes, while they become skewed for larger amplitudes
[2].
The kinematic and dynamic characteristics of saccades are

determined by the oculomotor plant properties and the neural
control signals. Most studies consider a linear plant as a
model of the oculomotor system, since a study by Van Opstal
and colleagues [3] showed that it is not necessary to use a
complicated plant model in order to obtain realistic saccades.
Instead, an appropriate neural control signal is enough. This
study exploited a second order linear oculomotor plant, and
by utilizing the Fourier deconvolution method, calculated the
necessary control signals to obtain a biologically realistic
response from the plant. The general form of the optimal
neural control signals achieved by this method is compatible
with neuronal firing patterns observed in the medial superior
temporal (MST) area of the cortex and the oculomotor neural
integrator (NI) neurons of the brainstem [4][5]. This suggests
that the choice of a linear plant is plausible for modeling the
oculomotor system.
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Much effort has been put forth in order to identify the
optimality principles which underly the kinematic character-
istics of saccades. To this end, several studies have suggested
different cost functions. Early studies have proposed that the
saccade trajectories are optimized in such a way that they
minimize the time to reach the target [6]. This assumption
alone, however, leads to a bang-bang control solution [7],
for which the resulting velocity profiles are not biologically
plausible [8].
Another suggestion was made by Harris and Wolpert

by assuming that there exists additive white noise in the
neural command, whose instantaneous power (variance) is
proportional to the power of the command signal [9]. Based
on this assumption, the variance of the eye response increases
when one tries to decrease the saccadic duration by recruiting
larger command signals. As a result, a trade-off emerges
between the speed and the accuracy of saccades. The optimal
solution to this trade-off is a trajectory that is biologically
plausible [10].
Chen-Harris and colleagues extended the model of Harris

and Wolpert by introducing an internal feedback which
consists of two forward models [11]: A forward model of
the oculomotor plant that predicts the state of the eye, and
a forward model of the target motion that predicts the state
of the target. This feedback is used to generate the neural
control signal when the input is the target position. The feed-
forward controller is optimized in a similar way to the study
of Harris and Wolpert [10], which requires re-optimization
for every saccadic duration.
In a different approach, Kardamakis and Moschovakis

exploited the minimal-effort principle in order to obtain
an optimal control signal for coordinated saccadic eye and
head movements [12]. In this way, the squared sum of the
eye torque signals integrated over the movement period is
minimized to obtain the optimal control signal. This approach
achieves unimodal velocity profiles with shorter acceleration
and longer deceleration phases, which is compatible with the
main sequence characteristics.
Although the two latter approaches have been successful in

explaining the kinematics of saccades in terms of satisfying
some optimality criteria, they do not propose any neural im-
plementation for the optimization procedure they use. In fact,
the optimization procedures used by these approaches are
based on Pontryagin’s extremum principle, which requires
boundary conditions at the initial and the final time of the
saccadic movement, and provides a global analytical solution
rather than a local adaptation procedure. It may be speculated
that such a solution is the result of evolution, however,
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Fig. 1. Model Architecture. There is one delay line per retinotopic position of the target. The read-out neuron is linear and each weight parameter wij

is adapted locally by the adaptation unit. The dashed lines account for the adaptation signals pathway.

numerous experimental results indicate that saccadic eye
movements are constantly adapted [13].
In this study, we introduce a model based on an open-loop

neural controller. We try to obtain an adaptation mechanism
which on one side is local and biologically realistic, and
on the other side minimizes a cost function. The neural
controller receives the initial target position as the input and
does not rely on the predicted states of the eye and the target
in order to generate the neural control signal. The adaptation
mechanism evaluates the optimality of the controller with
respect to the cost function and induces parameter changes
via a local learning rule.

II. MODEL DESCRIPTION

The model architecture consists of two pathways: “con-
trol” and “adaptation”. The control pathway is a neural
network comprised of a number of delay lines and one
read-out neuron, as shown in Fig. 1. There is one delay
line per target position. The activity of the neurons in
delay lines is only dependent on the initial position of the
target object in the scene and the progress of time. These
activities are integrated by the read-out neuron to create the
neural control signal that drives the oculomotor plant. The
second pathway comprises the adaptation unit, the structure
of which is derived from the adaptation rule (see Section II-
C). It combines the information that is required to adjust the
connection weights of the control pathway.

A. Open-loop Controller
The model perceives the retinotopic object position, i.e.

the object position with respect to retina coordinates, which
is expressed as the visual error, rvis(t). When a target
object appears, depending on the initial value of rvis(t), the
corresponding delay line is activated (Fig. 1). A saccade is

initiated when the first neuron in a delay line starts firing.
The next neurons in the delay line start firing in a successive
manner. The firing pattern of each neuron is defined as a
Gaussian function. As a result, a Gaussian wave of activity
is propagated through the delay line. Given column j is
activated at time t = 0, this propagation can be formalized
as:

sij(t) = A exp
(
−

(i− t
∆t

)2

2σ2

)
, (1)

where sij(t) represents the instantaneous firing rate of the
neuron i in line j, ∆t is the sampling period, σ2 is the
variance, and A scales the height of the activity peak.
The linear read-out neuron integrates the activity of the

delay lines by means of weighted connections. This linear
combination forms the neural command signal, u(t), needed
to drive the oculomotor plant:

u(t) =

N∑
j=1

M∑
i=1

wijsij(t). (2)

wij represents the weighted connection between neuron i

in delay line j and the read-out neuron.N is the total number
of delay lines and M is the number of neurons in each delay
line. Since we allow the neural command u(t) to become
negative, we define it as the difference between the firing
rates of the agonist and the antagonist motor neurons [14]
driving the oculomotor plant.
The response of the plant is the eye position in head

coordinates, reye(t). It can be retrieved as the convolution
between the neural control signal and the impulse response
of the plant, h(t):

reye(t) =

∫ t

0

u(τ)h(t− τ)dτ, (3)
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Fig. 2. The impulse response of the oculomotor plant, h(t).

where we assume reye(0) = ṙeye(0) = 0 as the initial
condition.
The details of calculating the impulse response h(t) are

given in the Appendix. In this model, we use a linear 3-
pole oculomotor plant with time constants T1 = 223 ms,
T2 = 14 ms, and T3 = 4 ms, and the DC gain K = 0.217,
according to [15]. These time constants are obtained from
a mechanical model of the eye muscles that formulates the
eye position, velocity and acceleration in terms of the neural
activities stimulating motoneurons. The parameters of such
mechanical models are estimated in such a way that the
model’s kinematic behavior matches the experimental data
[16][17]. The impulse response h(t) corresponding to these
values is plotted in Fig. 2.

B. Cost Function
Assuming robj as the object position in head coordinates,

we define the visual error as:

rvis(t) = robj − reye(t). (4)

We define a cost function that addresses the following
objectives:
1) The gaze should reach the target as soon as possible
and then stand still on the target position. Therefore,
the cost function should depend on the absolute value
of the visual error, |rvis(t)|. This dependency can be
established via any arbitrary function of |rvis(t)|. Three
examples are shown in Fig. 3. Convex functions such
as the square function do not seem a good choice
since they do not penalize small visual errors. We
also do not choose concave functions such as the
square root, but we will proceed with the absolute
value function, because it results in more compatibility
with neurophysiological observations, as we will see in
Section IV.

2) The power of the neural control signal should be
constrained. This assumption may be viewed as a
regularization [18]. It also reflects the effect of signal-
dependent noise [9], as it reduces the variability of
the neural control signal by preventing its power from
becoming too large. Since the neural control signal
is linearly dependent on the weight values, the cost
function should depend on the absolute values of the
weight parameters. Thus, the large values of these
parameters will be penalized regardless of their sign.

Accounting for these objectives, we define the cost func-
tion as:

E =

∫ T

0

|rvis(t)|dt + kreg

N∑
j=1

M∑
i=1

|wij |
n, (5)

where T has a sufficiently large value so that the integral
covers the whole movement duration, and kreg � 1 is a
small positive coefficient, which determines the contribution
of the weight limiting term to the total cost. We set n = 4
since this value leads to the results which have the most
similarity to the experimental data.
It is worth noting that the integration duration T also

covers part of the fixation period. This property of the cost
function is in accordance with a study on humans [19] and
another study on monkeys [20], which show that a delayed
visual error signal, up to several hundred milliseconds, is still
able to induce saccadic adaptation.

C. Adaptation
We use the gradient descent method for minimizing the

cost function. To this end, we first calculate the partial
derivative of the cost function with respect to each weight
parameter:

∂E

∂wij

=

∫ T

0

∂

∂wij

|robj − reye(t)|dt + kreg

∂

∂wij

N∑
j=1

M∑
i=1

w4
ij

=

∫ T

0

(−sign(robj − reye(t)))
∂reye(t)

∂wij

dt + 4kregw
3
ij

= −

∫ T

0

sign(rvis(t))
∂reye(t)

∂wij

dt + 4kregw
3
ij , (6)

where the function sign(x) is defined as:

sign(x) =

⎧⎨
⎩
−1 if x < 0;

0 if x = 0;
+1 if x > 0.

Using (3) we can calculate the partial derivative of reye(t)
with respect to wij :

∂reye(t)

∂wij

=
∂

∂wij

∫ t

0

u(τ)h(t− τ)dτ

=

∫ t

0

∂u(τ)

∂wij

h(t− τ)dτ,

and since

∂u(t)

∂wij

=
∂

∂wij

N∑
j=1

M∑
i=1

wijsij(t) = sij(t),

we obtain:

∂reye(t)

∂wij

=

∫ t

0

sij(τ)h(t− τ)dτ. (7)
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Fig. 3. The first term of the cost function can be any arbitrary function of rvis(t). Three examples (square, absolute value and square root) are shown
here.

By substituting (7) into (6), the final form of the error
function gradient is calculated as:

∂E

∂wij

=−

∫ T

0

sign(rvis(t))

(∫ t

0

sij(τ)h(t − τ)dτ

)
dt

+ 4kregw
3
ij . (8)

Now that we obtained the gradients, the weight adaptation
rule can be defined based on the gradient descent method as:

∆wij = −δij

∂E

∂wij

, (9)

where ∆wij represents the step change in wij , and δij is the
learning rate, which is adaptive (see Appendix).
The block diagram representation of the adaptation mech-

anism is shown in Fig. 1 (grey area). This representation
is inspired by equations (8) and (9) in the following way:
The inner integral of (8) suggests that there exists a forward
model of the oculomotor plant inside the adaptation unit with
the same impulse response as the oculomotor plant, which
receives a copy of the neural activity in delay lines as input.
The response of this forward model is modulated by the sign
of the visual error and then integrated over duration T (see
(8)). According to (9), the resulting signal acts on the same
connection of the neuron that has stimulated the adaptation
unit, which is shown by a dashed arrow in Fig. 1.

III. RESULTS
We simulated our model using MATLAB. The simulation

time step was set to 1 ms. After about 500 iterations of
the adaptation procedure for each target position, the model
reached a stable response. We set the simulation time T to
300 ms, which was enough for learning the saccades with
amplitudes up to 80◦.
We trained the model for target object positions from 1◦

to 19◦ with different values of σ and kreg, and we compared
the results to the experimental data obtained from an infrared
eye tracker system tracking horizontal eye movements [15].
The parameter values σ = 0.002 and kreg = 0.016 led to
the best match between the simulation and the experimental
results (Fig. 4).
The neural control signals and the correponding plant

responses for three target object positions, 10◦, 20◦, and 30◦,
are depicted in Fig. 5. The neural command signals comprise
two main phases: The saccadic phase in which the neural

command is large; and the fixation phase where the neural
command has a roughly constant but slightly oscillating
positive value. The mean value of the neural command in the
fixation period is proportional to the target position, and the
small oscillations lead to slight eye drifts which are negligible
because of their low contribution to the cost function. In fact,
the eye plant filters out the high frequency inputs so that
the eyes do not follow these oscillations. The decrease of
the firing rate at the end of the plot is a boundary effect.
No matter how long the simulation time T is, this effect is
always observed at the final time.
The general form of the optimized neural control signals

shown in Fig. 5 resembles the firing patterns of burst-tonic
neurons responsible for saccadic eye movements [5]. In both,
a fast increase in the firing rate is followed by a slow decrease
(the “burst” phase); then follows an oscillatory steady state
that maintains the fixation period (the “tonic” phase). It is
worth noting that the neural command becomes negative for
a short time when the target position is 10◦, which means
the antagonist force is stronger than the agonist force in
this period of time. Our model integrates the activity of the
agonist and the antagonist muscles by introducing a single
neural command that is allowed to become negative.
For small saccadic amplitudes, the velocity profiles are

smooth and almost symmetric (Fig. 6-a), which is com-
patible with experimental results for these target positions
[2]. However, as the figure shows, the symmetry of velocity
profiles is not preserved when the amplitude is increased.
This phenomenon is also observed in experimental studies
(Fig. 6-b). The main reason for the former symmetry is that
the effect of weight updating (9) on the saccadic velocity
is symmetric when the second term of the cost function (5)
is small enough. This effect becomes biased against large
weights when the second weight regulating term grows as a
result of an increase in target eccentricity.

IV. DISCUSSION
Using the architecture of Fig. 1 and considering a simple

cost function defined by (5) we were able to reproduce
the essential characteristics of saccadic eye movements. The
proposed cost function does not directly penalize the saccadic
duration, instead, it punishes the total visual error integrated
over the saccadic and part of the fixation period. Therefore,
in addtition to saccadic movement modeling, our model also
explains the motor command generation immediately after
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Fig. 4. Comparing the main sequence plots of the proposed model to
experimental data. The solid lines represent model results after learning,
with parameters σ = 0.002 and kreg = 0.016. The dots are experimental
data taken from [15].
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Fig. 5. Model behavior for saccades to targets at 10◦ , 20◦ , and 30◦:
(a) optimized neural command signals defined as the difference between
agonist and antagonist neural commands; (b) eye position (eccentricity) in
head coordinates. Target positions are shown by dashed lines. Learning is
performed with parameters σ = 0.002 and kreg = 0.016.

a saccade, before the visual feedback from the target is re-
established.
The learning mechanism of our model is derived from the

proposed cost function. Since this mechanism locally adjusts
the connection weights of the neural controller, it is also
a biologically plausible learning rule. Simplifying equations
(8) and (9), the synaptic weight adaptation has the following
form:

∆wij = δij

∫ T

0

sign(rvis(t)) s′ij(t) dt− 4δijkregw
3
ij , (10)

where s′ij(t) =
∫ t

0
sij(τ)h(t − τ)dτ is the response of

the oculomotor forward model to the pre-synaptic activity.
Since vision is impaired during saccades [13], there should
be a second oculomotor forward model which provides the
sign of the visual error to the adaptation mechanism using
the current neural control signal, u(t), as input. Therefore,
sign(rvis(t)) is dependent on u(t) which represents the post-
synaptic activity. Consequently, the adaptation mechanism in
(10) is composed of two terms: First, a term which depends
on pre- and post-synaptic activities passed through forward
models of the oculomotor plant; Second, a weight decay term
(−4δijkregw

3
ij ) which is independent of the neural activities.

Regardless of the location of these forward models, we
speculate that the local adaptation mechanism in (10) might
be responsible for the learning of saccadic eye movements.
The cerebellum has been widely regarded as a neural

substrate where the internal models of the motor system are
located (see [21] for a review), and the most convincing neu-
rophysiological data for internal models has been obtained
for eye movements [22]. Bastian suggests that the cerebellum
performs feedforward correction on the movement based on
the error assigned to the previous movement [23]. Interest-
ingly, for saccadic eye movements, an experimental study by
Soetedjo and Fuchs indicates that the complex spike activity
of Purkinje cells (P-cells) in the vermis of the oculomotor
cerebellum signals the sign (direction) but not the magnitude
of the visual error during saccade adaptation [24], a finding
which is in accordance with the adaptation mechanism of our
model described in (10). Based on the mentioned studies, the
architecture of Fig. 1 will be more realistic if we assume
the adaptation unit as part of the cerebellar vermis. This
assumption, however, requires several parallel implementa-
tions of the forward model for each weighted connection. The
existence of parallel climbing fibers in the cerebellum, which
carry error signals in motor command coordinates [25], may
promise a possible neural basis for parallel forward models,
but further investigation is needed.
So far we speculated on possible neural substrates respon-

sible for the adaptation. Now we look for possible neural
substrates that are managing open-loop control of saccades.
Takemura and colleagues analyzed the relationship between
the firing patterns of the P-cells in the ventral parafloccu-
lus (VPFL) area of the cerebellum and ocular following
responses [4]. A second order linear regression method was
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Fig. 6. Comparing model velocity profiles to experimental data. (a) Adapted
velocity profiles for target positions from 5◦ to 80◦. (b) Experimental
data taken from [2]. In both plots, the symmetry degrades gradually as
the saccadic amplitude increases.

used to reconstruct these signals based on three aspects of
the eye movement: position, velocity and acceleration. This
second-order linear method was able to regenerate temporal
firing patterns of VPFL neurons. When a single set of
coefficients was used for different visual stimuli in order to
reconstruct the firing pattern of the cells in VPFL, the best fits
were found for P-cells in this area. This observation implies
that there is a linear relationship between the firing pattern
of P-cells in the cerebellar VPFL and the eye kinematics.
Therefore, it is plausible to assume that the oculomotor plant
receives neural commands from the P-cell layer in the VPFL
area of the cerebellum. Hence, the cerebellar VPFL is a
strong candidate for the neural controller of our model. More
specifically, we can consider the neural delay line structure
as a model of the granular layer and the read-out neuron
as a P-cell, in accordance with the cerebellar models which
assume the granular layer as a basis for the spatio-temporal
representation of the input signals and the P-cell layer as a
layer that receives weighted projections from the granular
layer [26][27].
Another possible candidate for the neural controller is

the superior colliculus (SC). It has been widely assumed
that the caudo-rostral spread of activation emerging among
the build-up cells of the SC is caused by the visual error
feedback signal during saccadic eye movements [28][29][30].
One of the most important predictions of these models is
that interrupting this spread should delay the arrival of the

activity at the rostral SC, and the eye should reach the
target with delay. However, a lesion experiment performed
on the SC does not support this idea: Aizawa and Wurtz
observed that instead of delaying the reach time, the lesion
results in a curved trajectory that does not end at the target
position [31]. Motivated by this observation, Nakahara and
colleagues suggested that the spread of activity is a mere
epiphenomenon of the asymmetric horizontal connections
within the SC [32]. This suggestion supports our assumption
that the neural activity propagation in the delay lines is a self-
reliant process which does not rely on any external feedback.
Fig. 7 shows the cerebellum-based part of our speculation

on possible neural substrates responsible for the control and
the learning of saccades. In this regard, control and learning
are both accomplished by the cerebellum. However, we can
not ignore the possible role of the SC in saccadic neural com-
mand gereration. Indeed, more experimental investigations
are needed to clarify the contribution of the cerebellum or
the SC to the open-loop control of saccadic eye movements.

V. FUTURE WORK

The present model only addresses the generation of sac-
cades along one spatial axis, requiring one delay line for
every target position along this axis. A naı̈ve approach to
generalize the model would be to introduce one delay line
for every 2-D retinal location. However, this would require a
very large quantity of neurons. As an alternative, one could
introduce two separate 1-D controllers for the horizontal and
vertical components of an eye movement. Such an approach
has been successfully implemented in [33]. Furthermore,
a liquid state machine (LSM) [34] may serve as a more
biologically realistic alternative to our delay line structure.
In addition, the LSM has been suggested as a model of the
cerebellum [35]. Another open issue is a neural implemen-
tation of the forward model we are relying on, and a model
that describes how the parameters of such a forward model
are adapted. To this end, we can use the temporal sequence
learning approach introduced in [36] to perform forward
model learning. Finally, the adaptive open-loop controller
model idea can be generalized to other ballistic motor control
tasks beyond saccadic eye movements, by finding appropriate
cost functions that underly such control tasks.

APPENDIX

Oculomotor Plant Model
The oculomotor plant in our model has the following

transfer function:

H(s) = K[(1 + T1s)(1 + T2s)(1 + T3s)]
−1,

where T1, T2 and T3 are the time constants and K repre-
sents the DC gain of the plant. Using the inverse Laplace
transform, the impulse response of the plant can be retrieved
as:

h(t) = K(k1e
−

t
T1 + k2e

−
t

T2 + k3e
−

t
T3 ),

2745



Fig. 7. Biological interpretation of the model architecture, based on cerebellum.

where:

k1 =
T1

T 2
1 + T2T3 − T3T1 − T1T2

,

k2 =
T2

T 2
2 + T3T1 − T1T2 − T2T3

,

k3 =
T3

T 2
3 + T1T2 − T2T3 − T3T1

.

Learning Algorithm

For fast convergence with the gradient descent approach,
we use an adaptive learning rate. The method we use is
quite similar to the RPROP algorithm [37] with a slight
modification: Instead of using the sign of the error for
updating weights, we directly use the error value. This
method provides a local adaptive learning scheme where the
learning rate is adapted according to changes in the sign
of the gradient. If the gradient has the same sign in two
successive iterations, the learning rate of the corresponding
weight parameter will increase by a factor η+; otherwise, it
will decrease by a factor η−. This adaptation process can be
formalized as:

δk+1
ij =

⎧⎪⎪⎨
⎪⎪⎩
min(η+δk

ij , δmax) if ∂E
∂wij

k
· ∂E

∂wij

k+1
> 0,

max(η−δk
ij , δmin) if ∂E

∂wij

k
· ∂E

∂wij

k+1
< 0,

δk
ij if ∂E

∂wij

k
· ∂E

∂wij

k+1
= 0,

where k + 1 represents the current and k represents the
previous iteration number of the adaptation procedure, δmax

is the maximum and δmin is the minimum allowed value for
the learning rate.
The cost function (5) is highly non-linear and therefore

expected to suffer from the local minima problem. Since
the RPROP based learning method allows for larger learning
rates without resulting in instabilities, it is less prone to be
entangled in local minima.
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