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Introduction

Reinforcement learning of complex tasks presents at least two major problems. The 
first problem is caused by the presence of sensory data that are irrelevant to the task. It 
will be a waste of computational resources if an intelligent system represents information 
that are irrelevant, since in such a case state spaces will be of high dimensionality and 
learning will become slow. Therefore, it is important to represent only the relevant data. 
Unsupervised learning methods such as independent component analysis can be used to 
encode the state space [1]. These methods are able to separate sources of relevant and ir-
relevant information in certain conditions, however, all data are represented.

The second problem arises when information about the environment is incomplete as 
in so-called partially observable Markov decision processes. This leads to the perceptual 
aliasing problem, where different world states appear the same to the agent even though 
different decisions have to be made in each of them. To overcome this problem, one 
should constantly estimate the current state based also on previous information. This esti-
mation process is traditionally performed using Bayesian estimation approaches such as 
Kalman filters and hidden Markov models [2].

The above-mentioned methods for solving these two problems are merely based on 
the statistics of sensory data without considering any goal-directed behaviour. Recent 
findings from biology suggest an influence of the dopaminergic system on even early 
sensory representations, which indicates a strong task influence [3,4]. Our goal is to 
model such effects in a reinforcement learning approach.

Model Architecture

- An input sensory later, a hidden state layer and an output action layer.
- Soft-max activation functions for each neuron,  with the inverse temperature parameter 
  β that controls the amount of exploration vs. exploitation.
- Stochastic action selection based on output layer activation.

Figure 1. Model architecture. (a) Extended recurrent architecture includes two memory layers which 
hold the state and the action vectors of the previous time step. (b) Simple recurrent architecture includes 
only one memory layer for the previous state vector.

Temporal Difference Learning

- Learning is performed by gradient descent on the following energy function:

  where:
-                  is the policy(Π)-dependent distribution of state action pairs;
-                  is the current estimate of the value function that is estimated by the network:

-                   is the true policy-dependent value function that is estimated as:

  where rt is the reward signal and γ is the future value discount factor.
- The following weight update rules emerge as a result:

Reinforcement Learning Scenario

- Four visual features consisting of four bars
- Four actions to move the visual field, with periodic boundary condition
- 10% probability for each action to fail
- 50% probabily for each bar to be invisible

Figure 2. Reinforcement learning scenario. Visual features are upper horizontal (UH), upper vertical 
(UV), lower horizontal (LH), and lower vertical (LV) bars. Black color indicates visible and gray color in-
visible bars, which appear as the background to the network. An action moves the features into one of 
four directions from one time step to the next, as indicated by the arrows. A reward R is given when the 
``rewarded feature'' (UH) appears at a specific location (shown as ``reward condition'').
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Experiments and Results

Figure 3. (Above)  Action performance for simple and ex-
tended recurrent architectures, as well as the memory-less 
feedforward network. The performance is defined as the av-
erage number of steps taken by the agent to reach the goal. 
The optimal performance is 3.3 (dotted horizontal line).

Figure 4. (Right) Receptive fields emerging from first layer 
connections (right). Obviously the weights are coding the 
relevant feature (UH). 

Figure 5. Predicted network input compared to real input for three successive time steps that lead 
to the goal (the final position of the upper horizontal bar is the goal position). Note that features are 
randomly switched off, and the network tries to predict the current position of the relevant feature 
regardless of other features’ positions. The action space consists of going up (U), down (D), right (R) 
and left (L).

Figure 6.  (Left) Prediction accuracies for UH, UV, LH and LV features, calculated for the first-order 
prediction task. (Right) Preference to the relevant feature (UH) versus prediction order. For all cases 
the preference approaches 1 for overly long-lasting trials, meaning that for high prediction orders 
the networks do not show preference to predict the relevant feature.

Discussion

Our proposed model learns both, to ignore task-irrelevant and to predict missing 
relevant features of sensory information. It learns a bars task which is challenging 
even for humans: when a reward is given whenever one of several features appears at 
a specific position, it is hard to track which feature consistently appears at the same 
position over several trials. This scenario becomes even more complicated when the 
bars randomly disappear from the visual field.

The experimental setup used in this study is one step toward getting reinforce-
ment learning to deal with realistic image data with pixel information. Many reinforce-
ment learning approaches still rely on hand-crafted, abstract state spaces to model 
learning mechanisms of the brain, whereas in our model a goal-directed state space 
is autonomously shaped.
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