
Reservoir Computing for Sensory Prediction and
Classification in Adaptive Agents

Cornelius Weber1, Kazuhiro Masui2, Norbert Michael Mayer2, Jochen Triesch1,
and Minoru Asada2

1 Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe Uni-
versity, Frankfurt am Main, Germany

2 JST ERATO Asada Project, Dept. of Adaptive Machine Systems, Gradu-
ate School of Engineering, Osaka University, Japan

Abstract. Artificial neural networks are an in silico laboratory for studying
the dynamics of the brain. In recurrent networks, the units’ activations are
recurrently fed back into the network. Thereby complex network dynamics
emerge that extend over longer time scales than the individual units’ activation
time constants. The recurrent echo-state networks with their fixed connection
weights acquire an internal representation that uniquely depends on the input
history, but not on the initial state of the network. We present echo-state
networks as models of sensory systems and sketch two examples of their usage in
learning agents. The first example is gesture classification from moving camera
images, and the second is a conceptual account of timing. Furthermore, we
review a recent idea of self-prediction augmenting an echo-state network. The
weights self-predicting the internal state filter out external noise, and improve
the network performance significantly. Together, this chapter presents exciting
new developments in the field of reservoir computing.

1 Introduction

Artificial neural networks is the branch of machine learning that most directly
takes inspiration from the brain. Since the brain is far too complicated and too
large to understand and to simulate in detail, existing artificial neural networks
represent simplified models of isolated aspects of brain function. Systems models
cannot integrate all the diversity of neuronal cell types and their variety in
functionality. Rather it is of interest, what is the computational goal of a
neuronal structure.

Current models of sensory systems use various concepts to define the goals
of learning. Accordingly, sensory systems constitute generative models, or in-
ternal representations of the environment, and they use sparse-, independent-
and maximum entropy codes. In visual and auditory systems, internal represen-
tations are of much higher dimensionality than the input; e.g. the visual cortex
has many more neurons than the eye. The methodology of choice to learn in-
ternal sensory representations is unsupervised learning. Intuitively the goals of
unsupervised learning express that neural activity in the sensory system should
be as variable as possible in order to use the resources optimally, and at the
same time must reflect the information of the environment in a reproducible
manner.

1



The goals of motor systems are very different from those of sensory systems.
The outputs are of much lower dimensionality than the inputs, e.g. there are
fewer body and limb muscles than there are neurons in the motor cortex. Co-
ordinated motor patterns result in actions, and their goal is often to seek a
reward. The methodology of choice to learn action strategies is reinforcement
learning [21] in which an agent learns by trial and error to perform an action to
receive a reward. This yields a powerful method to develop goal-directed action
strategies.

adaptable weights

CriticState space

Actor

Figure 1: Architecture for reinforcement learning. A single active unit in the
state space encodes the current situation of the agent. The critic unit encodes
the value of the current state. One of the actor units is activated to encode
the action the agent is going to take. The critic and the actor units receive
connections from all state space units, but only one unit’s connections are shown
for clarity. The faint structure on the left denotes sensory preprocessing. This
is required to obtain a usable state space encoding from raw sensory input. Our
central tenet is that reservoir computing, or an ESN, is a viable model of sensory
pre-processing.

How do motor systems interact with sensory systems? In [23] we draw a
picture that the motor system is directly subject to the top-level goals of an an-
imal, a human, or generally, an agent. Subject to reinforcement learning (RL),
the motor system needs to implement a compatible neural architecture and rep-
resentation. Figure 1 depicts an architecture commonly used for RL. It consists
of an input layer that represents the state of the agent by the activation of one
computational unit while all other units are silent. An output layer represents
a chosen action by a corresponding unit. A critic guides learning. Given the
low dimensionality of muscles, the output layer is not a problem. The high
dimensionality of sensory input, however, leads to a “curse of dimensionality”
problem: in high dimensions, not every state can be represented by a dedicated
unit of the state space.

A solution to this problem may be that — guided by unsupervised learning
— the sensory system maps the raw sensory stimulus into a low-dimensional

2



state space in which states are action-relevant. Ideally, two different sensory
states would only be distinguished if they required different actions. So if two
situations require the same action, then they need not be distinguished in the
first place because that would cause unnecessary load to the decision system.
In order for the sensory system to “know” which situations to distinguish and
which ones not, there must be feedback from the motor system.

Algorithms dealing with sensory environments that are too large to define
a state space directly are reviewed in [25]. Some methods reduce (and pre-
process) the sensory space to an action-relevant subspace, or, in an alternative
view, enhance the sub-part of the sensory space that is task-relevant.

One method is by directing limited sensory system capabilities, such as the
focus of attention, or the center of foveated vision, to task-relevant environmen-
tal features [24]1. Acquiring task-relevant features leads to “consistent” internal
states, i.e. states that can be used to assign a value by the critic (cf. Fig. 1). “In-
consistent” internal states are those that cannot distinguish between different
relevant environmental states (“perceptual aliasing”). They can be identified
in that actions taken from them lead to inconsistent values (e.g. a given action
from a given state yields conflicting values when repeated). A sensor-action
strategy that directs the sensors (or the attention) to relevant environmental
states can therefore also be based on a strategy of maximizing the state value,
reminiscent of the motor action strategy.

Another method dealing with a large sensory input dimensionality is to
increase the sensory system resolution where different sensory states are mapped
to the same internal representation. This can be done by growing a classification
tree that obtains new branches whenever a new distinction, i.e. a new class, has
to be introduced (CS-QL and G-algorithms in [25]).

Sensory and motor systems are even more interrelated if one considers that
the goals of actions — the external rewards — are perceived via the sensory
system. The goals may even lie solely within the sensory system: for example,
one may orient the eyes to a visual target for sole visual recognition of the object
but without aiming at any further action. Moreover, perception itself can be
regarded as an active process: selecting a particular position in the visual field
by “covertly” attending to it shares properties of “overtly” attending to that
position by moving the eyes into that direction.

Several combined models take account of the fact that sensory and motor
systems are tightly interconnected [19, 10, 2]. In these models, sensory and
motor systems form loops in that the motor output is recurrently fed back
toward the sensory representations (together with the “real” sensory input),
however, they do not depict a unified theory of both systems. A step toward
modeling goal-directedness in a sensory system is demonstrated in a model
of “attention-gated reinforcement learning” [20], however, this model does not
learn action strategies as in reinforcement learning.

The high-level goals of unsupervised learning described above coincide with
1This leads to deictic representations in which markers are attached to these sensation- or

action-relevant environmental features.

3



the idea of echo-state networks and the related liquid state machines [16], which
are both more generally addressed by the term reservoir computing. Without
bothering about learning, the design principle of the “echo-state condition”
for recurrent neural networks facilitates rich and complex neural activations,
reminiscent of maximum entropy coding. This ensures that the information
of an input data sequence is captured for a long history time in the network’s
activations. Only (a) linear readout unit(s) may be trained, for example in order
to perform a classification or prediction task based on the reservoir’s state.

Recent experiments show that the visual cortex of cats can be used as a
reservoir for advanced visual processing and classification tasks [18]. Thus, one
way to approach the sensor processing in the brain can be to look at it as an echo
state network, at least to the extent that the effective recurrent connectivity of
cortical tissue seems to obey the below described echo state condition.

Section 2 introduces the Echo State Network (ESN). Section 3 shows by
example that the ESN can classify a real-world stimulus. The result, a vector
with one-of-n active unit, is ready to be used for the state space input of a
reinforcement learner. Section 4 conceptually shows how an ESN can perform
timing. This skill may be adopted by another neural structure that receives
ESN input. Section 5 shows how feedback can improve the robustness of an
ESN. Chapter 6 concludes with a discussion.

2 Standard Echo State Network

We orient the definitions on those in [12, 13]. The definition of the echo-state
condition outlined by Jaeger in [12] is also described in the following in a slightly
more compact form.

Recurrent Layer

adaptable weights

random weights

Input units Output units

W

W

in

out

W
rec

Figure 2: Principle architecture of ESN networks. Of the three different weight
types, one example weight each is labeled.

4



Consider a time-discrete recursive function xt+1 = F (xt ,ut) that is defined
at least on a compact region of the vector-space x ∈ Rn and where xt are to be
interpreted as internal states and ut is some external input sequence, i.e. the
stimulus.

The definition of the echo-state condition is the following: Assume an infinite
stimulus sequence: ū∞ = u0,u1, . . . and two random initial internal states
of the system x0 and x′0. To both initial states x0 and x′0 the sequences
x̄∞ = x0,x1, . . . and x̄′∞ = x′0,x′1, . . . can be assigned.

xt+1 = F (xt ,ut) (1)
x′t+1 = F (x′t ,ut) (2)

Then the system F (.) fulfills the echo-state condition if independent from
the set ut and for any (x0,y0) and all real values ε > 0 there exists a δ(ε) for
which the square Euclidean distance

d(xt ,x′t) ≤ ε (3)

for all t ≥ δ.
The ESN is designed to fulfil the echo-state condition. The ESN consists

of three layers (cf. Fig. 2). The first layer is the input. Here the stimulus is
presented to the network. The subsequent hidden layer is recurrently connected.
The final layer is the output layer, which is trained to reproduce the teacher’s
output. The network dynamics is defined for discrete time-steps t .

The equation of the dynamics of the hidden layer is

xlin,t+1 = Wrecxt + Winut (4)
xt+1 = tanh (xlin,t+1 ) (5)
yt+1 = Woutxt+1 (6)

where the vectors ut ,xt , yt , are the activations of the input-, hidden- and
output layer neurons, respectively, and Win, Wrec, Wout are the matrices of
the respective synaptic weight factors.

As mentioned above, in the classic ESN approach learning is restricted to
the connections Wout between the hidden and the output layer. These weights
are set by solving a system of equations:

Woutxt = yteach
t (7)

This is obtained from writing all data points into vectors xt and yteach
t (for

sufficiently long time series the solution is over-defined). All other connections
are chosen random. In order to fulfill the echo-state condition the connectiv-
ity matrix Wrec of the weights of the hidden layer should meet the following
requirements:

• C1: Necessary for the echo state condition is that the spectral radius
(maximum of absolute values of eigenvalues) of Wrec is below one.

5



• C2: Sufficient is that the biggest singular value of Wrec is smaller than
one 2.

For all matrices Wrec that fulfill requirement 1, but do not fulfill requirement
2 no general rule is known whether or not the network meets the echo-state
condition. Thus, for these matrices there is a critical regime border. In the fol-
lowing, a network that meets both requirements is called a sub-critical network.
All connectivity matrices Wrec can easily be transformed to matrices that fulfill
the second or both requirements by multiplying an appropriate scalar prefactor
to the matrix.

If both conditions are met, we get an exponential convergence law (cf. Eq. 3):

d(xt ,x′t) ≤ aηt , (8)

with a constant a and η < 1. Without training, the reservoir units do not per-
form any systematic processing of the input. For example, there is no discernible
hierarchical processing as in the visual system. One important remaining func-
tion of the reservoir is redundancy reduction: even if the input is fairly mono-
tonic in time or if input components are dependent, the reservoir activations
will nevertheless have a rich spatio-temporal structure. This rich structure is
suitable for separation into classes by the readout units. In summary, the echo-
state network is a model of a sensory system that is ready-to-use after very
simple training.

Online Learning by using the Recursive Least Square Method One
simple way of of adapting the weights Wout in the output layer is to use the
Recursive Least Square Method (RLS) [7]. The RLS adaptive algorithm mini-
mizes the square error between desired signals and unknown system’s outputs.
The parameter 0 < λ ≤ 1 is known as the forgetting factor. When λ < 1, the
weighting factors give more weight to the recent samples of the error estimates
(and thus to the recent samples of the observed data) compared to the old ones.
In other words, the choice of a small λ results in a scheme, which puts more
emphasis on the recent samples of the observed data and tends to forget the
past.

We give a brief summary of the standard iterative RLS algorithm. At each
iteration n an input vector x(n) denotes the recurrent layer’s activations. The
teacher signal vector is yteach(n). We start with an initial guess of the weights
Wout and an auxiliary square matrix Ψλ. These two matrices are updated at
iteration n based on their previous values Wout(n − 1) and Ψλ(n − 1). Each
iteration computes the output vector y(n), the updated weights Wout(n), and
the updated matrix Ψλ(n). An iteration consists of the following steps.

1. Computation of a gain vector k (which has the dimensionality of x):

2A closer sufficient condition has been found in [3]. It is slightly better than the one
outlined here, but still leaves a gap to the necessary condition.

6



v(n) = Ψλ(n− 1) x(n) (9)

k =
1

λ + xT (n) v(n)
v(n) (10)

2. Filtering:

y(n) = Wout(n− 1) x(n) (11)

3. Error estimation:

e(n) = yteach(n) − y(n) (12)

4. Adaptation of the output weights:

Wout(n) = Wout(n− 1) + e(n) kT (n) (13)

5. Ψλ(n) update:

Ψλ(n) = λ−1(Ψλ(n− 1) − k(n) xT (n) Ψλ(n− 1)). (14)

Echo State Networks for Prediction As an ansatz to understand how the
formation of sensory representations and the formation of action strategies are
related, we consider an echo state network as a simplified sensory representation.
Next we will present several approaches that relate to this concept. In the
following, we use a variant of this method to classify gestures.

3 Classification of Gestures using Echo State
Networks

The ESN is used as a gesture recognizer, demonstrating that it can classify a
continuous-valued input vector that arrives as a time sequence as belonging to
one of several classes.

A traditional approach to classifying time sequence data is to introduce de-
layed weights such as in Time Delay Neural Networks. These are of feedforward
type. Their delayed weights introduce a delay of 1, 2, . . . , n time steps between a
value arriving at an input node and the weighted signal arriving at the receiving
unit. For longer time periods this is not biologically plausible since axons and
dendrites are relatively fast. In the ESN all weights transfer information from
one iteration time step to the immediately following time step. It is only through
the recurrent computations that the network stores a history of activities.

When tracking a plain hand, it is unreliable to distinguish the hand region
and face region because of similarity of their color. Therefore, we use a color ball
to solve above in this experiment. One gesture pattern is given and the computer

7



samples tracking data by Camshift. Camshift is part of the OpenCV library
[1]. It is an algorithm for tracking colored objects. For each video frame, the
raw image is converted to a color probability distribution. Color distributions
derived from video image sequences change over time, so the algorithm was
modified to adapt dynamically to the probability distribution it is tracking.
The current size and location of the tracked object are reported and used to set
the size and location of the search window in the next video image.

Sampled data are the velocity (dx, dy) of the object’s center and the change-
able moving angle θ defined below.

dx(t) = x(t)− x(t− 1) (15)
dy(t) = y(t)− y(t− 1) (16)

θ(t) = arccos
−{dx(t−1)dx(t)+dy(t−1)dy(t)}√

dx2(t−1)+dy2(t−1)
√

dx2(t)+dy2(t)
(17)

Each data is normalized between -1 and 1. The sampled data length is 200
steps for one gesture. The number of output nodes corresponds to the number of
gesture patterns. Each output node works as a gesture recognizer. The weights
Wout of the ESN are trained after all gesture data are sampled with batch
learning. The learning and recognition system is shown in Fig. 3.

For the task a network with a hidden layer of 100 neurons and a random,
orthonormal matrix with all eigenvalues being 0.8 was used. Each gesture was
represented as one bin of the output, resulting in a 5-dimensional output vector.
Training was done as described in Section 2. During the test phase the gesture
corresponding to the maximum output bin was assumed to be recognized.

We trained five gestures as shown in Fig. 4: (i) horizontal movement, (ii)
vertical movement, (iii) clockwise movement, (iv) anticlockwise movement, and
(v) figure 8-shape movement.

One gesture is iterated until the end of sampling data. Input data which
is intended as gesture or not, is given to the ESN that has already finished
learning sequentially and the network’s output nodes return their values. The
maximum value of each node is recognized as the corresponding gesture. Table 1
summarizes the recognition results. The 8-shape figure is hard to distinguish,
because its movement pattern overlaps with those of the clockwise and anti-
clockwise movements.

Input Gesture Training Rate(%) Test Recognition Rate(%)
Horizontal 99 91
Vertical 99 85
Clockwise 99 87
Anticlockwise 94.5 96
8-shape 84 65

Table 1: Recognition rates for each gesture for training and test data.

8



Figure 3: Gesture recognition system using an ESN.

4 Echo State Networks for Timing

Dopamine neurons in the midbrain are important for reward learning in such
structures in the brain to which they project dopamine. They become active
during unexpected rewards, or during the occurrence of reward-predicting (“con-
ditioned”) stimuli. They do not react to expected rewards: if one second after a
conditioned stimulus a reward is persistently given, they continue firing at their
resting firing rate during reward delivery. However, if the reward is unexpec-
tantly retained, then they will briefly stop firing at the expected time of reward
delivery [11]. This demonstrates their ability to measure time over a relatively
long time scale of approximately one second. How can these dopamine neurons
perform such timing without change of firing within this timing period?

There are several variants of predictive models that can explain how time
can be measured. One model [5] accounts for reward prediction in simplified ex-
perimental settings that can be decomposed into two phases: the inter-stimulus
interval (ISI) between the reward-predictive cue and the reward, and the inter-

9



Figure 4: By using ESN it is possible to recognize gestures in real-time. The six
screen shots each show the response of the ESN to a gesture in the real time test
phase. Each left window displays an image that was fetched by a USB camera.
Each upper right window displays input data (red = dx; green = dy; cyan =
θ). Each lower right window displays the ESN’s output data (red = horizontal;
green = vertical; cyan = clockwise; magenta = anti-clockwise; black = 8-shape
movement). The lowest screenshot on the right side depicts the reaction of the
system to an arbitrary, unspecific gesture.

trial interval (ITI) between the reward and the start of the next experiment
(signalled by the reward-predictive cue). However, in this setup, the timing
duration and the variance is defined directly by a Gaussian function, hence the
model does not explain how timing may be implemented by a neural substrate.

Another model implements neuronal units with different temporal response
properties each, setting up a “spectrum” of varying responses [9]. It is doubtful
though whether the time constants of individual neurons (typically in the order
of tens of milliseconds) can explain delays that last seconds. However, the idea
of introducing heterogeneous neurons with differential temporal properties may

10



also benefit other neural network methodologies such as reservoir computing.

t0

t1 t2

t3

t4

t5

t0

t5

adaptable weights

CriticState space

Actor

Input units

Recurrent layer

W
out

rec
W

Figure 5: An ESN used for timing. A packet of neural activity starts travelling
at time t0 at the corresponding unit and arrives at t5 at another unit.

Figure 5 diplays the idea, how one or two neurons in the state space per-
form timing over a longer time span without changing their firing properties
during that time span. The simple idea is that another neural structure, a
recurrent layer, represents a slowly moving packet of neural activation. This
packet moves along the neurons labeled according to the time that they become
active, t0, t1, . . .. Only a subset of the recurrent layer neurons, those active at
t0 and at t5 in the figure, are connected to the state space units. Hence the
recurrent layer can activate the state space units at arbitrary time (or silence
them via inhibitory connections).

One issue that needs to be resolved is how to implement a moving packet of
activation on the recurrent layer. The activations are shaped by the recurrent
weights Wrec. A general ESN with random weights will produce ongoing acti-
vation change even when the input does not change, however, it is unlikely to
create a regular pattern. A custom-tailored attractor network can easily produce
a moving activity hill of which the shape and speed can be well determined [26].
Calcium waves that emerge intrinsically in the cortex [8] may provide target
signals for supervised learning of such moving activity patterns.

Another issue is to train the readout weights Wout. The dashed weights
in Fig. 5 depict a possible solution in which two units of the state space are
specifically activated at the time steps t0 and t5. How can such a solution be
obtained by learning? Standard ESN learning (cf. Eq. 7) works only if the state
space units’ activations were given at any time. This is not the case, but we
can characterize and further constrain the properties of these activations. The
task here is to be coding-efficient in the state space: different units should only
be recruited if either an action is to be taken or if the value of a state changes.
Elsewise a given unit may remain active for some time. This information is not
in the reservoir, but is available only in a top-down stream from the critic and
actor.

11



Learning rules that feed back over several layers, as required here, are rare in
reinforcement learning. “Attention-gated reinforcement learning” [20] is one of
them, but it does not deal with time delays. We propose to give a reinforcement
signal if the value function changes drastically during a task (i.e. at time step
t5 in the figure) to learn the connections Wout of the recurrent layer. Hence,
only when task-relevant progress is made the recurrent layer should trigger a
state change in the state space layer. By unfolding time in the recurrent layer
the algorithm could thereby learn to deal with delays.

These considerations lead to a direction of possible future research. While it
is simple to design a solution to the timing problem by hand, we do not know of
a coherent framework that links reinforcement learning and ESMs, or reinforce-
ment learning and unsupervised learning. Inspiration from neuroscience may
lead to a better understanding.

5 Optimization of the Reservoir

Initially, the ESNs have been proposed for a random connectivity. It is still
an open question which type of reservoir is optimal to preserve the information
of the stimulus statistics in the best way. The representation needs to be suf-
ficiently complex to handle a lot of information. However, a downside to the
capability of handling complexity is the susceptibility to noise in the input. A
predictive attractor network has been proposed for denoising neural representa-
tions in visual cortex [22]. Accordingly, the recurrent network activations render
the response properties of V1 neurons largely independent of visual contrast. As
other forms of adaptation, spike timing dependent plasticity (STDP) and intrin-
sic plasticity (IP) shape the network structure and dynamics in ways that allow
the discovery of patterns in input time series and lead to good performance in
time series prediction [14].

We suggest here a way of prediction that resembles in effect a Kalman ap-
proach, and can be seen as one possibility of denoising the input. We briefly
introduce the approach, for a detailed outline please refer [17].

In the following, self-prediction was implemented into the modified ESN in
the following way. The update rule of the recurrent layer is now (cf. Eqs. (4-5))

xlin,t+1 =
(
(1− α)Wrec + αWpred

)
xt + (1− α)Winut (18)

xt+1 = tanh (xlin,t+1 ) (19)

where α is a constant parameter. Hence, not only the connections Wout to the
output yteach

t must be learned but also recurrent connections Wpred predicting
the linear response of the neurons xlin,t+1 (cf. Eq. 4) in the next time step. Thus,
the teaching signal is

{yteach
t , xlin,t+1}. (20)

In analogy to Eq. (7), the weights can be calculated by solving a system of linear
equations

Woutxt = yteach
t (21)

12



Wpredxt = xlin,t+1 (22)

for all times t of the teaching period (except the initial transient period).
If the quality of the prediction is sufficient, Wpredxt should be close to

Wrecxt + Winut . In these situations, the dynamics of the network remains
almost unaffected by the value of α, as one can see in Eq. (18). In situations
where prediction is poor, α is expected to determine the degree to which the
dynamics are modulated by the internal model of the system, versus the actual
observed data.

If α is equal to 1, the network becomes independent from the input. Of
course, in the present context, this makes only sense in the case of periodic
or at least quasi-periodic output signal. In this case, the network becomes an
autonomous pattern generator. A value of α being 0 results in the modified
network reverting to the original ESN. Other values of α result in some mixture
of the two. The dynamics of the system are identical in both the initial network
and the network after implementing the prediction. From a formal point of view
merely the weights of the network are changed. Thus, one can write Eq. (18)
as:

xlin,t+1 = Wrec
newxt + Win

newut (23)

where Wrec
new = (1−α)Wrec+αWpred and Win

new = (1−α)Win. In this way the
equation is formally equivalent to the equation for the ESN (cf. Eq. 4), except
that Wrec is replaced by Wrec

new and Win by Win
new. For sufficiently high values

of α the echo-state condition is no longer fulfilled, in particular if α is equal to
1. For the simulation details, we refer to the initial publication [17].

Figure 6 displays the output of the trained network with respect to a target
signal for various levels of α. It can be seen that the unmodified ESN is most
sensitive to noise in the input signal. As expected, the case of α = 1.0 results in
output that well reflects the structure of the input signal, since the network
dynamics have been optimized to reflect the dynamics of the target signal.
However, since this network receives no input it can no longer synchronize with
the target signal. Best performance was observed for quite high values of α,
corresponding to a network with dynamics that are a mixture of both echo
states (that are a function of the input history) and self prediction states (that
are a function of network’s model of the input history).

Figure 7 displays the mean square error relative to signal amplitude for
varying values of α. As α increases, so does the correct performance of the net-
work up to approximately a value of 0.97, at which point performance decreases
sharply. In this case of large α, the network dynamics is governed primarily by
the network model, with minimal correction provided by the input signal.

These preliminary results indicate that the inclusion of self prediction may
improve the performance of an ESN performing a function mapping task in the
presence of additive noise. We emphasize that the present results should not
be taken as conclusive. However, the inclusion of self prediction modules may
represent an interesting direction for extending the basic ESN architecture.

13



α = 0 α = 0.8

0 20 40 60 80 100
Iteration

-1

-0,5

0

0,5

1

O
ut

pu
t L

ev
el

0 20 40 60 80 100
Iteration

-1

-0,5

0

0,5

1

O
ut

pu
t L

ev
el

α = 0.97 α = 1

0 20 40 60 80 100
Iteration

-1

-0,5

0

0,5

1

O
ut

pu
t L

ev
el

0 20 40 60 80 100
Iteration

-1

-0,5

0

0,5

1

O
ut

pu
t L

ev
el

Figure 6: Effect of varying α for the modified ESN operating on input data with
0.015% relative error. Solid line shows network output, dashed line shows the
target output signal synchronous to the network input. The trained pattern is
sin3(0.24t), the input signal is sin(0.24t). α = 0 is a standard ESN.

6 Discussion

Echo-state networks have recently emerged as a paradigm for studying recurrent
dynamics of fixed-weight neural networks, and they have a couple of applica-
tions.

By making use of the temporal dynamics they are predestined to measure
time over periods longer than individual units’ time constants, be it only one of
several functions they are able to perform. The brain with its fast and simple
neurons can so represent slow and complex events in the “external” world. A
simple example of a reservoir that computes time is that of a line attractor
which produces a moving hill of activity [26]. Autonomously generated, periodic
activity fluctuations are also generated by predictive recurrent connections in
the absense of input (α = 1, Fig. 6). A relation to models of predictive horizontal
connections in visual cortex [22] indicates that ESNs may be implemented in
the brain within the horizontal connections that are abundant in all cortical

14



0 0,2 0,4 0,6 0,8 1α
0

0,05

0,1

0,15

0,2

R
el

. s
qu

ar
e 

er
ro

r

Figure 7: Network error to a noisy input signal: The network error depends on
the value of α. For high values of α the network error increases again due to
the lacking synchronization of the output signal to the input signal.

areas.
Besides representing the world, the brain also performs goal-directed be-

havior. An example tailored to reinforcement learning is an echo state network
that captures a dynamical system with temporally dependent rewards such that
the goodness value (Q-function) of every state can be retrieved [4]. In a more
general view, a reservoir represents the real world, predicting a future expected
state, hence acts as a forward model.

Also, representation and prediction of the external world subserve goal ori-
ented behavior. Dopamine neurons in the midbrain become active when re-
wards, such as food, are obtained. They modulate learning in other structures
so to facilitate actions leading to these rewards; hence they set the future goals.
In learnt situations, dopamine neurons are predictive: if the reward is unexpec-
tantly retained, then they will briefly pause their regular firing at the expected
time of reward delivery. They can “measure” such delay times over a relatively
long time scale of seconds; therefore, their clock is unlikely to be internal. We
have proposed here that the cortex as their afferent network structure imple-
ments this clock. As a graphic example, a line attractor network that produces
a moving hill of activity can capture time in the distance that the hill moves.

It has been proposed that unsupervised learning of world representation can
be assigned to the cortex, while reinforcement learning of goal-directed actions
can be assigned to the basal ganglia [6]. Both learning paradigms require specific
architectures. Unsupervised learning seems to prefer recurrent architectures
while reinforcement learning prefers feedforward architectures.

15



Earlier we have tried to understand the control system of an agent acting
in an environment from the perspective of reinforcement learning in the basal
ganglia [23]. It turns out that basal ganglia output feeds into the thalamus of the
brain which is also the major input structure to the cortex. While basal ganglia
output is traditionally regarded as action- or behavior selection, it can therefore
also modify upcoming sensory input directly, such as by means of attention.
This underlines that the sensory system of the brain is strongly dependent on
the motor system. An implementation of feedback from the output units has
been proposed in [15]. It remains to be explored further how different systems
of the brain that compute different functions individually can be combined to
subserve a common goal.

Acknowledgments We acknowledge financial support by the European Union
through projects FP6-2005-015803 and MEXT-CT-2006-042484 and by the Her-
tie Foundation. A summer school project by Olav Krigolson, Luis Rivera, Is-
abella Cattinelli and Dimitri Ognibene contributed to some of the ideas and
literature.

References

[1] Gary R. Bradski. Computer vision face tracking for use in a perceptual
user interface. Intel Technology Journal, Q2:15, 1998.

[2] J. Brown, D. Bullock, and S. Grossberg. How laminar frontal cortex and
basal ganglia circuits interact to control planned and reactive saccades.
Neural Networks, 17:471–510, 2004.

[3] M. Buechner and P. Young. A Tighter Bound for the Echo State Property.
IEEE Transaction on Neural Networks, 17(3):820–824, 2006.

[4] K. Bush and C. Anderson. Modeling reward functions for incomplete state
representations via echo state networks. In Proc. IJCNN, pages 2995–3000,
2005.

[5] N.D. Daw, A.C. Courville, and D.S. Touretzky. Dopamine and inference
about timing. In Proc. ICDL, 2002.

[6] K. Doya. What are the computations of the cerebellum, the basal ganglia
and the cerebral cortex? Neural Networks, 12:961–74, 1999.

[7] B. Farhang-Boroujeny. Adaptive Filters. Wiley, 1999.

[8] O. Garaschuk, J. Linn, J. Eilers, and A. Konnerth. Large-scale oscillatory
calcium waves in the immature cortex. Nat Neurosci, 3:452–9, 2000.

[9] S. Grossberg and J.W.L. Merrill. A neural network model of adaptively
timed reinforcement learning and hippocampal dynamics. Cog Brain Res,,
1:3–38, 1992.

16



[10] T.E. Hazy, M.J. Frank, and R.C. O’Reilly. Towards an executive without a
homunculus: computational models of the prefrontal cortex/basal ganglia
system. Phil. Trans. R. Soc. B, 2007.

[11] J.R. Hollerman and W. Schultz. Dopamine neurons report an error in the
temporal prediction of reward during learning. Nature Neurosci, 1(4):304–
9, 1998.

[12] H. Jaeger. The ’echo state’ approach to analysing and training recurrent
neural networks. In GMD Report 148, GMD German National Research
Insitute for Computer Science, 2001.

[13] H. Jaeger. Adaptive nonlinear system identification with echo state net-
works. In Proc. of NIPS 2002, 2003. AA14.

[14] A. Lazar, G. Pipa, and J. Triesch. Fading memory and time series pre-
diction in recurrent networks with different forms of plasticity. Neural
Networks, 20:312–22, 2007.

[15] W. Maass, P. Joshi, and E.D. Sontag. Principles of real-time comput-
ing with feedback applied to cortical microcircuit models. In B. Weiss,
Y. Schölkopf and J. Platt, editors, Advances in Neural Information Pro-
cessing Systems, Vol. 18, pages 835–42, 2006.

[16] W. Maass, T. Natschläger, and H. Markram. Real-time computing with-
out stable states: A new framework on for neural computation based on
perturbations. In NeuroCOLT Technical Report, 2001. NC-TR-01-113.

[17] N. Mayer and M. Browne. Echo state networks and self-prediction. Lecture
Notes in Computer Science, 3141:40 – 47, 2004.

[18] D. Nikolic. The brain as a liquid state machine. 2006. NIPS 2006: Workshop
on Echo State Networks and Liquid State Machines, published online.

[19] T.J. Prescott, T. Stafford, and K. Gurney. A robot model of the basal
ganglia: Behavior and intrinsic processing. Neural Networks, 19:31–61,
2006.

[20] P.R. Roelfsema and A. van Ooyen. Attention-gated reinforcement learn-
ing of internal representations for classification. Neur Comp, 17:2176–214,
2005.

[21] R.S. Sutton and A.G. Barto. Reinforcement Learning: An Introduction.
MIT Press, Cambridge, MA, 1998.

[22] C. Weber. Self-organization of orientation maps, lateral connections, and
dynamic receptive fields in the primary visual cortex. In G. Dorffner,
H. Bischof, and K. Hornik, editors, Proc. ICANN, pages 1147–52. Springer-
Verlag Berlin Heidelberg, 2001.

17



[23] C. Weber, M. Elshaw, S. Wermter, J. Triesch, and C. Willmot. Reinforce-
ment Learning: Theory and Applications, chapter Reinforcement Learning
Embedded in Brains and Robots. 2008.

[24] S.D. Whitehead and D.H. Ballard. Learning to perceive and act by trial
and error. Machine Learning, 7:45–83, 1991.

[25] S.D. Whitehead and L.J. Lin. Reinforcement learning of non-Markov deci-
sion processes. Artificial Intelligence, 73:271–306, 1995.

[26] K. Zhang. Representation of spatial orientation by the intrinsic dynamics of
the head-direction cell ensemble: A theory. J Neurosci, 16:2112–26, 1996.

18


