Fire Together — Wire Together — Come Together
f FIAS Frankfurt Institute or JOHANN WOLFGANG ¢34 GOETHE

' N ] Tension May Co-Sh V1 Orientation M -
for Advanced Studies curoial 1ension lviay L0-o511ape HenLatlion viaps UNIVERSITAT

C lius Weber & Jochen Tri h
ornelius Weber & Jochen Triesc FRANKFURT AM MAIN

Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University Frankfurt. Email: c.weber@fias.uni-frankfurt.de /
\ \ \ \ \
Introduction Neural Activation Weight Learning Neuronal Shifting Discussion I
The Structure Of Orientation :l’rlaps7 has been : . . o i o T()p leve].: hOI'iZOﬂtal V]. COnrlletCti()nS - | The neuronjs indiCGS Wthh deﬁne them on a ComPUtational grld o In Order tO minimize hOl‘iZOIltal Welght length7 Simﬂaf neu-
shown to minimize the length of horizontal _ ] _ The attractor network with weights W' learns to K Acglvatlo% 1n_1t1allzat10n i are now interpreted as 2-D positions on a cortical sheet. The neu- rons shift together. Neurons are similar w.r.t. receptive
connections in V1, given certain connection . _' : memorize the_ir’_lput' z 1n its _eentinuous activations z. Zz(t ) = Zz(t ) defadt el s e ron’s positions are unsorted so far. Pulled by the lateral weights, field position and orientation tuning.
patterns as a function of orientation differ- e - ~The learning rule 1s given in the next right box. - The a,ttra,ctor network activations are mltlahzed Wlth we can shift the neurons’ positions until all forces are in balance. e The number of neurons, and the receptive field size corre-
ence. We take a V1 model network with ' 5 i : the output of the model S 81mple eells SHag e Position shifts spond to a structure ne larger than a “hyper-column” in
horizontal connections. Here we will regard their physical forces and a possible = ' e V1. Therefore we are not able to see larger structures such
Neural Activations are maintained in | _ ~_relation to topographic mappings. In the following, 2-D ' ’ACtlvatlon update e AT A N N U Li = tterned orientat;
. . ) % | = 5 , . s T et T; ~ Z (lwijl + lwjil) = 55——=7 ) " 75—= as patterned orientation maps.
this network by recurrent computations con (T v e o o computational ‘indices that define a cell’s position on .Z_Z( o) ) g( w; Z(t)) , ~— |Z; — 2| |Z; — 2| _ S _
stituting an associator network. A ,r ,T\ - - a'grid are considered as Contmuous 2-D positions on a S Reeurrent rel'axa;tion for a few iterations. / attraction als; * Whether the reseltmg HHap strue.ture 18 blolelgally realis-
: : | HEPUISION tic depends on (i) the lateral weights and (ii) the forces
Weight Learning has been performed OO 7= g(\/\/bux) eortlcal sheet and will be modified by cell-shifting. - . . . '
for the purpose of memorizing the net- | ° Lateral Welght lear nlng e —an attractive force which pulls neurons together is propor- Since the forees are stra.lg.htforward to implement, rather
work’s internal representation of natural im- | - EA N BRI | Awﬁ?t ~ iz (tend) — (tend) ) 2 *(tend_l): tional to the absolute values of the weights between neurons the lateral weights are critical, and how they are learned.
age patches. o Lower level: _VISU_al. edge d_eteCtorS ' — a repulsive force which prevents the neurons to collapse into e Therefore, this method can be used to check whether lateral
Neuronal Shifting is performed here to Wi They are models for V1 simple cells and supply pre- Leammg uses the dlfference between the bottom-up one point is inversely proportional to the distance between weights, and their learning rules, may be realistic.
heth imigine the | he of th o processed visual input to the top level. The simple input and the attractor network activations. The at- ,
assess whether minimizing the lengths of the . il i : | - ) Sl e any two neurons (scale parameter 7) e Neurons are not known to do far horizontal movements
loarnt tions leads t Listic ori- - cells (their recsptive fields seen here as background) were - tractor network tries to remember the bottom-up in- .
C SRR, e o B T o learnt by a generative model via overcomplete, sparse - put as good as possible. (If during relaxation time the though. However, we assume that minute movements would
entation map. After convergence, horizon- | Y a6 PIELE, 5P ot i ol ih Cost f ti be possible in order to balance forces, and that in the bio-
tally directed tension forces are in balance. coding from grey-scale natural i image patches. - ottom-up input changes slightly, then invariances e LOSU Iuncrion loical It : 1
(=) @ {im ¥ . D s : ~ can be built into the attractor network.) ogical system, all forces must be m balance.
The results with 1024 neurons and 16 x 16 Symbols r = visual input; W = recognition weights; 5 & i e 1
bixel retinal input show that the neurons ar- . | " 2 = hidden code; g = logistic transfer function; td — The baekground behmd these hnes shows the learnt_ E = 5(2(‘1‘}@]' +|wj|) dij — 1 Z In dw)
range topographically and form an orienta- b fmt K generative weights, used only duripg'leaming. lateral Welghts . i o e 0,J Acknowledgments
tion map similar to one hypercolumn in V1. | Y il e | R, et The learnt horizontal attractor network where  d;; = ||7; — @ = \/ Sop(wi —xj )2
The hidden units’ aetlvatloles z are determined by the dete and the 1OW€1” Weights are in the fOHOWing interpreted as We acknowledge financial support by the FKuropean Union
The 1mage sequences below show level network. If any two units tend to fire together, this will in the following physical connections which exert a force be- Hence we have Ar; = —VzFE. In shifting the neurons’ through project MEXT-CT-2006-042484 (“PLICON”) and by
neurons shifting to these positions. influence W' via learning. tween any two mutually connected units. positions, we minimize this cost function by gradient descent. the Hertie Foundation.
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The blue color of each neuron denotes the
X-position
of the receptive field
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The color of each neuron denotes its
orientation tuning
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