

FIAS Frankfurt Institute for Advanced Studies

The structure of orientation maps, has been shown to minimize the length of horizontal connections in V1, given certain connection patterns as a function of orientation differ- ence. We take a V1 model network with horizontal connections. Neural Activations are maintained in this network by recurrent computations con- stituting an associator network. Weight Learning has been performed for the purpose of memorizing the net- work's internal representation of natural im- age patches. Neuronal Shifting is performed here to assess whether minimizing the lengths of the learnt connections leads to a realistic ori- entation map. After convergence, horizon- tally directed tension forces are in balance. The results with 1024 neurons and 16×16 pixel retinal input show that the neurons ar- range topographically and form an orienta- tion map similar to one hypercolumn in V1. The image sequences below show neurons shifting to these positions.	W ^b
Neural Activations are maintained in this network by recurrent computations con- stituting an associator network. Weight Learning has been performed for the purpose of memorizing the net- work's internal representation of natural im- age patches. Neuronal Shifting is performed here to assess whether minimizing the lengths of the learnt connections leads to a realistic ori- entation map. After convergence, horizon- tally directed tension forces are in balance. The results with 1024 neurons and 16×16 pixel retinal input show that the neurons ar- range topographically and form an orienta- tion map similar to one hypercolumn in V1. The image sequences below show neurons shifting to these positions.	WŁ
age patches. Neuronal Shifting is performed here to assess whether minimizing the lengths of the learnt connections leads to a realistic ori- entation map. After convergence, horizon- tally directed tension forces are in balance. The results with 1024 neurons and 16×16 pixel retinal input show that the neurons ar- range topographically and form an orienta- tion map similar to one hypercolumn in V1. The image sequences below show neurons shifting to these positions.	W ^b
The image sequences below show neurons shifting to these positions.	
	Th lev inf
The blue color of each neuron denotes the X -position of the receptive field	
left right	
The blue color of each neuron denotes the Y -position of the receptive field	
The color of each neuron denotes its orientation tuning	

Fire Together – Wire Together – Come Together Neuronal Tension May Co-Shape V1 Orientation Maps

Frankfurt Institute for Advanced Studies, Johann Wolfgang Goethe University Frankfurt. Email: c.weber@fias.uni-frankfurt.de

dden units' activations z are determined by the data and the lower twork. If any two units tend to fire together, this will in the following $e W^{lat}$ via learning.

The learnt horizontal attractor network weights are in the following interpreted as physical connections which exert a force between any two mutually connected units.

Cornelius Weber & Jochen Triesch

Weight Learning

Activation initialization

The attractor network activations are initialized with the output of the model's simple cells.

Recurrent relaxation for a few iterations

• Lateral weight learning $\Delta w_{ij}^{lat} \approx (z_i(t^{end}) - \tilde{z}_i(t^{end})) \cdot \tilde{z}_j(t^{end-1})$

Learning uses the difference between the bottom-up input and the attractor network activations. The attractor network tries to remember the bottom-up input as good as possible. (If during relaxation time the bottom-up input changes slightly, then invariances can be built into the attractor network.)

The background behind these lines shows the learnt

Neuronal Shifting

The neuron's indices which define them on a computational grid are now interpreted as 2-D positions on a cortical sheet. The neuron's positions are unsorted so far. Pulled by the lateral weights, we can shift the neurons' positions until all forces are in balance.

• Position shifts

$$\Delta \vec{x}_i \approx \sum_j \left(\underbrace{(|w_{ij}| + |w_{ji}|)}_{\text{attraction}} - \underbrace{\frac{\eta}{\|\vec{x}_i - \vec{x}_j\|}}_{\text{repulsion}} \right) \cdot \frac{\vec{x}_i - \vec{x}_j}{\|\vec{x}_i - \vec{x}_j\|}$$

-an attractive force which pulls neurons together is proportional to the absolute values of the weights between neurons -a repulsive force which prevents the neurons to collapse into one point is inversely proportional to the distance between any two neurons (scale parameter η)

• Cost function

$$E = \frac{1}{2} \Big(\sum_{i,j} (|w_{ij}| + |w_{ji}|) d_{ij} - \eta \sum_{i,j} \ln d_{ij} \Big)$$

where $d_{ij} = \|\vec{x}_i - \vec{x}_j\| = \sqrt{\sum_r (x_{ir} - x_{jr})}$

Hence we have $\Delta \vec{x}_i = -\nabla_{\vec{x}_i} E$. In shifting the neurons' positions, we minimize this cost function by gradient descent.

JOHANN WOLFGANG

FRANKFURT AM MAIN

GOETHE

