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Introduction

The structure of orientation maps, has been
shown to minimize the length of horizontal
connections in V1, given certain connection
patterns as a function of orientation differ-
ence. We take a V1 model network with
horizontal connections.
Neural Activations are maintained in
this network by recurrent computations con-
stituting an associator network.
Weight Learning has been performed
for the purpose of memorizing the net-
work’s internal representation of natural im-
age patches.
Neuronal Shifting is performed here to
assess whether minimizing the lengths of the
learnt connections leads to a realistic ori-
entation map. After convergence, horizon-
tally directed tension forces are in balance.
The results with 1024 neurons and 16×16
pixel retinal input show that the neurons ar-
range topographically and form an orienta-
tion map similar to one hypercolumn in V1.

The image sequences below show
neurons shifting to these positions.
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•Top level: horizontal V1 connections
The attractor network with weights W lat learns to
memorize the input z in its continuous activations z̃.
The learning rule is given in the next right box.

Here we will regard their physical forces and a possible
relation to topographic mappings. In the following, 2-D
computational indices that define a cell’s position on
a grid are considered as continuous 2-D positions on a
cortical sheet and will be modified by cell-shifting.

•Lower level: visual edge detectors
They are models for V1 simple cells and supply pre-
processed visual input to the top level. The simple
cells (their recsptive fields seen here as background) were
learnt by a generative model via overcomplete, sparse
coding from grey-scale natural image patches.

Symbols: x = visual input; W bu = recognition weights;
z = hidden code; g = logistic transfer function; W td =
generative weights, used only during learning.

The hidden units’ activations z are determined by the data and the lower
level network. If any two units tend to fire together, this will in the following
influence W lat via learning.

Weight Learning

•Activation initialization

z̃i(t
0) = zi(t

0)
The attractor network activations are initialized with
the output of the model’s simple cells.

•Activation update

z̃i(t + 1) = g(~wlat
i · z̃(t))

Recurrent relaxation for a few iterations ...

•Lateral weight learning

∆wlat
ij ≈ (zi(t

end) − z̃i(t
end)) · z̃j(t

end−1)

Learning uses the difference between the bottom-up
input and the attractor network activations. The at-
tractor network tries to remember the bottom-up in-
put as good as possible. (If during relaxation time the
bottom-up input changes slightly, then invariances
can be built into the attractor network.)
The background behind these lines shows the learnt
lateral weights.

The learnt horizontal attractor network
weights are in the following interpreted as
physical connections which exert a force be-
tween any two mutually connected units.

Neuronal Shifting

The neuron’s indices which define them on a computational grid
are now interpreted as 2-D positions on a cortical sheet. The neu-
ron’s positions are unsorted so far. Pulled by the lateral weights,
we can shift the neurons’ positions until all forces are in balance.

•Position shifts
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– an attractive force which pulls neurons together is propor-
tional to the absolute values of the weights between neurons

– a repulsive force which prevents the neurons to collapse into
one point is inversely proportional to the distance between
any two neurons (scale parameter η)

•Cost function
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where dij = ‖~xi − ~xj‖ =
√

∑
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Hence we have ∆~xi = −∇~xi
E . In shifting the neurons’

positions, we minimize this cost function by gradient descent.

Discussion

• In order to minimize horizontal weight length, similar neu-
rons shift together. Neurons are similar w.r.t. receptive
field position and orientation tuning.

• The number of neurons, and the receptive field size corre-
spond to a structure no larger than a “hyper-column” in
V1. Therefore we are not able to see larger structures such
as patterned orientation maps.

• Whether the resulting map structure is bioloigally realis-
tic depends on (i) the lateral weights and (ii) the forces.
Since the forces are straightforward to implement, rather
the lateral weights are critical, and how they are learned.

• Therefore, this method can be used to check whether lateral
weights, and their learning rules, may be realistic.

• Neurons are not known to do far horizontal movements
though. However, we assume that minute movements would
be possible in order to balance forces, and that in the bio-
logical system, all forces must be in balance.
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