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Abstract. In this paper we describe a fuzzy logic based approach for
providing biologically based motivations to be used in evolutionary mo-
bile robot learning. Takagi-Sugeno-Kang (TSK) fuzzy logic is used to
motivate a small mobile robot to acquire complex behaviors and to per-
form environment recognition. This method is implemented and tested
in behavior based navigation and action sequence based environment
recognition tasks in a Khepera mobile robot simulator. Our fuzzy logic
based motivation technique is shown as a simple and powerful method
for a robot to acquire a diverse set of fit behaviors as well as providing
an intuitive user interface framework.

Keywords: Fuzzy logic, evolutionary, mobile robot, environment recog-
nition, AEM.

1 Introduction

Providing more natural and intuitive interfaces between robots and people is
clearly seen as desirable and beneficial. Much recent research has focused on
providing more intuitive and natural interfaces for robotic control [1, 2].

Towards this goal we have developed a fuzzy logic based method that pro-
vides a natural interface in order to give a variety of motivations used in robotic
learning. To test the validity of the proposed method we tested the fuzzy logic
based method on behavior based navigation and environment recognition tasks
within a Khepera robot simulator. The results show that the method has poten-
tial for improving human understanding of robotic behavior learning as well as
provides a method for generating greater diversity of robotic behaviors. To the
best of our knowledge fuzzy logic has not been used before in this manner in a
robotics application.

In our experiments we studied two different tasks for testing with fuzzy based
motivations in the Khepera robot simulator: basic behavior based navigation and
action based environmental modeling (AEM).

Behavior based architectures (e.g. subsumption) in general do not use world
models, representative or symbolic knowledge and there is a tight coupling be-
tween sensing and action (moving). This design philosophy promotes the idea
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that robots should be inexpensive, robust to sensor and other noise, incremen-
tal, uncalibrated and without complex computers and communication systems.
Planning actions based on internal world representations in not seen as some-
thing beneficial because of its inherent error and associated costs. Behavior based
learning systems typically used include reinforcement learning, neural networks,
genetic algorithms, fuzzy systems, case and memory based learning [3, 4]. Behav-
ior based navigation as implemented in the Khepera simulator YAKS [5] inputs
sensor values directly into a neural network that drives left and right motors for
navigation in different rooms.

Action-based environmental modeling (AEM) also follows this less is more
philosophy by using a simple mobile robot with local sensors in order to navigate
and perform environment recognition in various scenarios (rooms). AEM uses a
small action set (e.g. go straight, turn left, turn right, turn around) in order to
perform a sequence of actions based on sensed states in a specific environment.
The search space of suitable behaviors is huge and designing suitable behaviors
by hand is very difficult therefore Yamada [6] has used a genetic algorithm within
a Khepera simulator to find suitable behaviors for AEM.

In the training phase of the AEM procedure and for each room of the set of
rooms being recognized the robot executes an action sequence which is converted
into an environment vector. These vectors are repeatedly fed into a SOM [18]
network in order for the neural network to learn without supervision which
is the output node (r-node) that corresponds to each room. The environment
vector used for each room and the winning output node is also stored as a
room instance. The next step is a test phase in which the robot executes an
action sequence in one of the rooms previously used and the r-node for the test
room is determined using the previously trained SOM network. The robot then
determines which room used during training has the minimum distance to the
current test room by using 1-Nearest Neighbor with Euclidean distance. Fitness
considerations include returning to his original starting neighborhood (homing),
ability to identify the room it is in (accuracy), and using the shortest possible
sequence (efficiency). Collision avoidance is implicit in the efficiency measure;
the final fitness is the sum of all three [6].

In Section 2, we describe fuzzy logic in robotic control. Our method and how
it was implemented is described in Section 3. In Section 4 and 5 we describe and
summarize our test results. Finally, in Section 6 some conclusions are drawn.

2 Fuzzy Logic in Robotic Behavioral Control

Fuzzy logic systems produce actions using a set of fuzzy rules and variables.
These variables are referred to as linguistic variables and indicate a degree of
membership of the variable to a particular fuzzy set. The degree of membership
(between 0 and 1) is defined by a membership function which maps a crisp input
to a fuzzy output (fuzzifier). Fuzzy logic control systems consist of: fuzzifier,
fuzzy rule base, fuzzy inference engine, and a defuzzifier. In many applications
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fuzzy logic provides a more natural interface that gives greater flexibility than
traditional logic [7].

Fuzzy logic has been used widely in various robotic applications such as
robotics behavioral fusion. Flakey and Marge are two robots that used fuzzy
based implementations to blend different possible behaviors for things such as
collision avoidance, goal seeking, docking, and wall following [8, 9]. These ro-
bots had issues with scalability and exponential growth in the rule base which
they attempted to manage by: reduction of input spaces and using contexts
with a limited world model [8], or by using independent distributed fuzzy agents
and weighted vector summation via fuzzy multiplexers for producing the final
command signals for its drive and steer mechanism [9]. More recently other
fuzzy logic strategies have been used in mobile robotics including: neuro-fuzzy
controllers for behavior design (based on direction, distance and steering) [10],
fuzzy based modular motion planning [11], fuzzy integration of groups of be-
haviors [12], multiple fuzzy agents used in behavior fusion [13], GA based neuro
fuzzy reinforcement learning agents used in training a walking robot [14], and
behavior based fuzzy logic integration for robotic navigation in challenging ter-
rain [15]. As far as our research shows fuzzy logic has not been previously used
in robotics in terms of motivating actions and behaviors. We have implemented
such motivations as fuzzy fitness functions for robotic behaviors.

3 Fuzzy Motivations for Robotic Learning

Motivation as currently viewed by psychologists as an internal state or condition
(e.g. a need, desire or want) that serves to influence the intensity and direction
of behavior. Motivation is generally accepted as involved in the performance of
learned behaviors. That is a learned behavior may not occur unless it’s driven
by a motivation. There are many sources for motivations including: behavioral,
social, biological, cognitive, affective, and spiritual [16]. Differences in motiva-
tions are key drivers in helping to produce a variety of behaviors which have a
high degree of benefit (or fitness) for the organism.

In our experiments, we use motivation settings in order to determine the
fuzzy fitness of a robot in various environments. In terms of robotic learning
the motivations that we consider include: curiosity (C), homing (H), orientation
(O), and energy (E, the opposite of laziness). The membership functions used
for each of the four motivations in our experiment is shown in Fig. 1.

The Takagi-Sugeno-Kang (TSK) fuzzy logic model is used, TSK fuzzy logic
does not require deffuzification as each rule has a crisp output that is aggregated
as a weighted average [17]. As shown in Fig. 2, the fuzzy motivations considered
include the parameters of C, H, O and E, which are used as input settings
(between 0 and 1) prior to running each experiment, with the sum kept at one.
A run environment (room) is selected and the GA initial robot population is
randomly initialized. After this, each robot in the population performs its task
(navigation and optionally environment recognition) and a set of fitness values
(a, g, l, b) corresponding to the performed task are obtained.
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Fig. 1. Fuzzy membership functions

Fig. 2. System Overview

The fitness criteria and the variables that correspond to them are: amount
of area explored (a), proper action termination and escape from original neigh-
borhood area (g), environment recognition (l) and percent of battery usage (b).
These fitness values are calculated after the robot completes each run. The a

value is determined by considering the percentage area explored relative to the
optimum, g is determined by

g = 1 −

final distance to the robot home

maximum possible distance
,

l is currently not used and determined only off-line, finally b is the estimated
total energy consumption of the robot considering each step.

The final fuzzy motivation fitness value (F ) is calculated using TSK based
fuzzy logic (four fuzzy variables with five membership functions each: 45 = 1024
different fuzzy rules) as shown in Fig. 3 and using the membership functions
from Fig. 1 to compute µ values. For the coefficient array C we used a linear
function. A sample fuzzy rule (number 10) is given as follows:

if (Y[1] == V.H.) and (Y[2] == L) and (Y[3] == V.L.) and (Y[4] == V.L.) then
f[10] = X[1]Y[1]C[5]+X[2]Y[2]C[2]+X[3]Y[3]C[1]+X[4]Y[4]C[1]
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Algorithm FuzzyFitness

Input:

N : number of fuzzy motivations;
M : number of membership functions per motivation;
X[N ] : array of motivation values preset;
Y [N ] : array of fitness values;
C[N ] : array of coefficients;
µ[N ][M ] : matrix of membership values for each motivation;

Variables:

w[n] : the weight for each fuzzy rule being evaluated;
f [n] : the estimated fitness;
n, x0, x1, . . . , xN : integers;

Output:

F : the fuzzy fitness value calculated;
begin

n := 1;
for each x1, x2, . . . , xN := 1 step 1 until M do

begin

w[n] := min{µ[1][x1], µ[2][x2], . . . , µ[N ][xN ]};

f [n] :=
∑

N

i=1
X[i]Y [i]C[xi];

n := n + 1;
end;

F := (
∑

N
M

i=1
w[i]f [i])/(

∑
N

M

i=1
w[i]);

end;

Fig. 3. Fuzzy Fitness Algorithm

3.1 Implementation Environment

We used the simulator YAKS (Yet Another Khepera Simulator) for our imple-
mentation. YAKS is a simple open source behavior based simulator [5] that uses
neural networks and genetic algorithms in order to provide a navigation environ-
ment for a Khepera robot. Sensor inputs are directly provided into a multilayer
neural network in order to drive left and right wheel motors. A simple genetic
algorithm is used with 200 members, 200 generations, mutation of 1%, and elite
reproduction. Random noise (6%) is injected into motor actions and sensors
to improve realism. The GA provides with a mechanism for updating neural
network weights used by each robot in the population that is being optimized.
Figure 4 shows where the fuzzy fitness algorithm and AEM are incorporated into
the simulator.

As seen in Fig. 5, to implement AEM, we select a highly fit robot (correspond-
ing to the neural network in Fig. 4) and make him navigate in all environments
(rooms). This navigation produces actions which are saved as action sequences.
These action sequences are converted using chain coding into an environment
vector [6]. These vectors are fed into the SOM network for unsupervised learn-
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Fig. 4. Fuzzy fitness and AEM implementation

ing. After learning the SOM network associates a vector with one of its output
nodes (r-nodes).

Fig. 5. AEM Overview

For our implementation of SOM we select an input of 400 actions (steps) and
a linear output layer of 128 nodes. The actions are obtained by converting each
motor command (Motor L and Motor R) which is a real value between 0 and 1
into an action (left 30◦, right 30◦, turn 180◦, go straight).

After training SOM we evaluate it by using the same robot and at random
select a room for him to navigate in. The SOM network is evaluated by the ability
of the robot to recognize which room (r-node) it navigates in. This ability could
be fed as the orientation value in the fuzzy fitness calculation.

4 Navigation and Environment Recognition Experimental

Results

4.1 Scenario 1: Navigation

We tested behavior based navigation in five different rooms. For comparison and
as an example, we selected two sets of fuzzy motivation criteria. This scenario
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did not include environment recognition (AEM). In order to contrast the effect
of curiosity, the first criterion (C, H, O, E) used was (.8, .1, 0, .1) and the
second was (.5, .3, 0, .2). We stopped each experiment after 400 steps. As seen
in the examples of Fig. 6, during the simulations performed average fuzzy fitness
in the first generation was 0.1 and gradually increased. Figures 7 and 8 show
some representative results of navigation by various robots after fuzzy fitness
optimization.
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Fig. 6. Fitness Evolution Examples: (a) low curiosity (b) high curiosity

4.2 Scenario 2: Environment Recognition

We tested behavior based environment recognition using five different rooms.
For comparison we selected two sets of fuzzy motivation criteria (C, H, O, E),
the first criterion used was (.8, .1, 0, .1) and the second was (.5, .3, 0, .2). We
stopped each experiment after 400 steps.

During testing, the same robot (neural net) was made to navigate and recog-
nize five rooms with the following shapes: H, T, L, Square and Rectangle. The
procedure was repeated 10 times for each room. The threshold for r-node recogni-
tion was set at 10 nearest neighbor nodes in the SOM output layer. Environment
recognition is the % recognition of which room the robot actually visited. Tables
1 and 2 show our results.

5 Discussion

The results of our experiments are summarized below:
(1) Navigation: By changing the different motivation factors the character-

istics of robot navigation were changed. With lower curiosity and higher homing
the robot conserved its battery (battery usage was around 50%) and the robot
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Fig. 7. Navigation with (C, H, O, E) as (.8, .1, 0, .1)

Fig. 8. Navigation with (C, H, O, E) as (.5, .3, 0, .2)



Fuzzy Motivations by Mobile Robot 9

Table 1. Navigation and Environment Recognition with (C, H, O, E) as (.8, .1, 0, .1)

Room shape Average Fitness % of Optimal Exploration % Recognition % Battery usage

H 0.6421 93.84 80.00 79.19
T 0.6686 91.77 100.00 78.45
L 0.6507 97.04 100.00 79.58

Square 0.6699 99.88 100.00 79.56
Rectangle 0.6377 95.29 100.00 79.88

Table 2. Navigation and Environment Recognition with (C, H, O, E) as (.5, .3, 0, .2)

Room shape Average fitness % of Optimal Exploration % Recognition % Battery usage

H 0.2465 54.66 20.00 57.90
T 0.2694 57.84 0.00 59.66
L 0.2707 57.93 0.00 59.67

Square 0.3274 80.63 100.00 74.64
Rectangle 0.267 57.70 0.00 59.60

managed to explore only around 50% of the region. With higher curiosity the
robot explored more and used a higher amount of battery but it did not return
home very often.

(2) Environmental Recognition: Different motivation factors affected the
capacity of the robot to recognize its environment. With lower curiosity the ro-
bot managed to recognize its environment much less than with higher curiosity
values. With higher curiosity, the environment vector generated was more rep-
resentative of the room shape which would explain this result. The orientation
efficiency value (l) could be determined by the % recognition of which room
the robot actually ran in but was not included in the fitness calculation as the
orientation value (O) was set to zero.

6 Conclusions

In general this method was shown as an effective mechanism for generating a
variety of robotic behavior within a framework that is simple and intuitive to
understand.

Future work includes: the integration of other motivations such as urgency for
completing specific missions, integration of % recognition into the fuzzy fitness
calculation, the construction of a low cost robot specifically designed to test this
method, and the possible real-time extensions to this method.
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