Grasping with Flexible Viewing-Direction with a
Learned Coordinate Transformation Network*

Cornelius Weber, Konstantinos Karantzis and Stefan Wermter
Hybrid Intelligent Systems, School of Computing and Technology
University of Sunderland, Sunderland, SR60DD, UK
Web: www.his.sunderland.ac.uk
{cornelius.weber, stefan.wermter}@sunderland.ac.uk, konstantinos.karantzis@gmail.com

Abstract— We present a neurally implemented control system
where a robot grasps an object while being guided by the visually
perceived position of the object. The system consists of three
parts operating in a series: (i) A simplified visual system with
a what-where pathway localizes the target object in the visual
field. (ii)) A coordinate transformation network considers the
visually perceived object position and the camera pan-tilt angle to
compute the target position in a body-centered frame of reference,
as needed for motor action. (iii)) This body-centered position
is then used by a reinforcement-trained network which docks
the robot at a table so that it can grasp the object. The novel
coordinate transformation network which we describe in detail
here allows for a complicated body geometry in which an agent’s
sensors such as a camera can be moved with respect to the
body, just like the human head and eyes can. The network is
trained, allowing a wide range of transformations that need not
be implemented by geometrical calculations.

Index Terms— Neural Networks, Frame of Reference Trans-
formations

I. INTRODUCTION

The control of the human body is a complex task due to the
complexity of its geometry and the difficulty to extract infor-
mation from the world by sensors like vision and to transform
it into a motor-relevant representation. For the simple task of
grasping an object, for example, we need to (i) visually localize
an object, (ii) infer its position in body-centered coordinates
which are relevant for control of the arm and hand and (iii)
activate the relevant muscles to perform the grasping. Here
we present a neural model which consists of three systems,
(i) a visual, (ii) a coordinate transform and (iii) a motor
system, which performs such a task on a simulated PeopleBot
robot. The complexity of the human body is addressed by the
anthropomorphic robot’s camera which can pan-tilt its gaze
direction during the task. This parallels eyes and/or the head
moving with respect to the body, which makes it necessary to
transform a visually identified location into a body-centered
location as is relevant for the motor control.

In [14] we have implemented a visually controlled robotic
grasping (docking) action that was learned by reinforcement

*This work is part of the MirrorBot project supported by EU Grant IST-
2001-35282

learning. The assumption that the robot camera was fixed to the
body allowed a direct match from pixel coordinates to body-
centered coordinates. Because of the fixed camera, objects had
to be in a confined space so that they were visible. Such
a grasping maneuver is demonstrated at the following URL.:
www.his.sunderland.ac.uk/robotimages/Cap0001.mpg . In [9]
the camera is allowed to move, but it is assumed that it
is already fixating the target when computing the direction
of the object. Hence a reaching map can be defined using
only the camera posture. When a robot or the object is
moving, however, a camera can hardly fixate the object, in
particular when using commercially available, slow pan-tilt
camera mounts.

A. Coordinate Transformations

The robotic problem of coordinate systems has its example
in humans. Our sensory system provides us with information
about objects of interest in sensory frames of references
(coordinate systems) which are not directly applicable to the
motor system. For example, a bright object will activate certain
photo-receptors on the retina, but this information cannot be
directly used to control the joint angles of an arm to reach
the object. Additional information such as the eye- or head
position needs to be integrated. In humanoid robots such
coordinate transformations also need to be accounted for,
specifically to allow movement of their pan-tilt camera.

1) Geometry: For simplicity we will in the following as-
sume that eye- and head position are not distinguished, which
accounts for a pivoting camera mounted on a robot body. Fig. 1
visualizes the geometry of our setup with a simple robot, a
PeopleBot. It shares with humanoid robots its pan-tilt-able
camera, while an arm reaching movement is substituted for
by a whole body movement of the PeopleBot.

If the robot is to grasp the fruit object on the table, then the
following coordinates are important for controlling the motors:
the distance d of the robot to the target object and the angle 6
at which the object is to the left or the right of the robot body.
The angle ¢ which defines the robot rotation with respect to
the table border will later be used for the motor coordination,
but is not important for now.

Fig. 1. The PeopleBot robot in its environment. The relevant motor
coordinates (in a body centered frame of reference) are the distance d between
the robot and the target, and the angle 0 of the target away from the forward
direction (white dotted lines) of the robot. Known to the robot are the pan
angle p and tilt angle ¢ of the camera (which points into the direction of the
long black arrow) and the horizontal and vertical image pixel coordinates h
and v of the perceived target object (the black frame indicates the image seen
by the robot camera). The values d,6 have to be computed from h,v and
p, t via the coordinate transformation network. The motor network will later
receive additional information ¢, which is the robot orientation angle w.r.t.
the axis perpendicular to the table edge.

While d and 6 are important for motor control, the robot
sensory system represents the object only visually, delivering
the perceived horizontal and vertical positions & and v of the
object in the visual field. Knowing also the camera pan- and
tilt angles p and ¢, it is possible to compute d and 6. An
assumption we make is a constant elevation of the camera over
the target object which allows that the distance of the object
can somehow be estimated from how low it is perceived. This
compensates for not using a stereo camera.

In summary, (d,0) are a function of (h,v,p,t) which the
coordinate transformation network has to learn. It would be
possible, even with complicated human geometries, to compute
this function using deterministic vectorial transformations.
Humans, however, learn this function allowing for adaptations
during evolution and ontogenesis.

2) Biology: In the mammalian cortex transitions are made
between visual representations and motor representations in
the posterior parietal cortex (PPC). It is situated at a strategic
position between the visual cortex and the sensory cortex and
consists mainly of Brodmann’s areas 5 and 7. PPC neurons

are modulated by the direction of hand movement, as well
as by visual object position, eye position and limb position
signals [2]. These multi-modal responses allow the PPC to
carry out computations which transform the location of targets
from one frame of reference to another [3], [4].

3) Previous Models: Models of neural coordinate transfor-
mations originally dealt with “static” sensory-motor mappings,
in which, for example, Cartesian coordinates (x1,z2) of an
object (e.g. as seen on the retina) are neurally transformed
into joint angles (61,6;) of an arm required to reach the
target [7]. However, this model is static in the sense that it
does not account for the influence of another variable, such
as the rotation of the head. In order to account for such a
modulating influence we need dynamic, adjustable mappings.

A standard way to achieve such a mapping is to feed two
inputs into the hidden layer such as Cartesian coordinates ¢
and head rotation r. These inputs use population codes x°
and =" where the location of an approximately Gaussian-
shaped activation hill encodes the value. Both inputs are used
in a symmetric way. The working principle of the use of the
hidden layer is described for the case of one-dimensional input
layers as [11]: “One first creates a 2-dimensional layer with an
activity equal to the [outer] product of the population activity
in ¢ and x". Next, a projection from this layer to an output
layer implements the output function z = f(x¢,z").”

Such a network with two one-dimensional input layers, a
one-dimensional output layer and a two-dimensional hidden
layer has been termed a basis function network [5]. Because
of its structure, the output layer is symmetric with the input
layers, so the network can be used in any direction. Lateral
weights within each layer allow for a template fitting pro-
cedure during which attractor network activations generate
approximately Gaussian-shaped hills of activations. In a “cue
integration” mode the network can receive noisy input at all
three visible layers in which case it will produce the correct,
consistent hills with maximum likelihood.

The gain field architecture [10] adds a second hidden layer
which subtracts certain inputs to remove unwanted terms from
the solution on the first hidden layer. This allows it to encode
the position of a hill of activation and also its amplitude. Since
this breaks the symmetry between the input layers and the
output layer, the network is used only in one direction.

The use of the hidden layer as the outer product of input lay-
ers has the advantage that the hidden code or weights can easily
be constructed using algebraic transformations. Therefore a
learning algorithm for all the weights is not given with these
models. A specific disadvantage is the large dimensionality
of the hidden layer: if both input layers are two-dimensional,
then the hidden layer would have to be represented as a four-
dimensional hyper-cube.

4) Proposed Model: Here we propose a network which
learns the transformation. Every unit is connected with all
other units by connection weights which are trained by an

where
bod
(body) cerebral cortex
where eye-pos| -~ N_ "=
(retinal) - corpussallosum R
Y N
J actor «j— \
\ state !
what S eye—-mo! ,)
~ /

cerebellum .
brain stem retina

Fig. 2. The full model overlaid on a sketch of the brain. The boxes denote
the implemented areas, or layers, of neurons; round if in the visual system,
oval-boxes if in the coordinate transform system and rectangular if in the
motor system. Thick arrows represent trained connections, partially in both
connections as the arrow heads suggest, a thin arrow denotes mere copying.
Green arrow color denotes self-organized learning as neural activations on one
of the sides was not given during training. Blue denotes associative learning
where all activations were given for training. Red arrows denote error-driven
or reinforcement learning of connections.

associative learning rule [1]. The learning rule is biologically
plausible using only local, Hebbian and anti-Hebbian learning,
and furthermore allows to include any number of additional
hidden units in order to make the network more powerful in
generating a complex data distribution. The hidden code would
self-organize during learning without requiring the network
designer to construct it.

During learning, all three areas receive their respective
coordinate as training data in a symmetric fashion, while after
learning, missing information in any area can be recovered
based on the principle of pattern completion. Using two-
dimensional input areas coding a visually perceived object
position and the camera pan-tilt position, we show that this
auto-associative attractor network is able to generate the corre-
sponding body-centered object position which is required for
the robot motor control. This is done without an additional
hidden layer, thereby significantly reducing the network com-
plexity w.r.t. the previous methods.

Il. METHODS AND RESULTS

The overall system is shown in Fig. 2, suggestively overlaid
on a sketch of the brain. It is a starting point to implement a
fully neurally controlled agent, consisting of a visual system
to localize the target object, a coordinate transform system
accounting for the complexity of the agent’s body and a motor
system for action execution.

The model not only covers a small portion of cortical areas,
but also the simulated areas would cover only a small part of

TABLE |
THE SIMULATED AREAS AND THEIR SIZES.

[Area | Size | Comments
Visual network
retina 3 x 48 x 32 | red, green, blue layers
what 64 x 48
where (retinal) 48 x 32 connected only with “what”
Coordinate transformation network
where (retinal) 24 x 16 connected only with “eye-pos”
and “where (body)”
eye-pos 20 x 20
where (body) 20 x 20
Action network
eye-mov 2 pan, tilt
state 20 x 20 x 20
critic 1
actor 4 forward, back, turn left, right

each area (e.g. approximately four hypercolumns in the visual
cortex), thus, areas are displayed too large in Fig. 2. The sizes
of the simulated areas are given in Table I.

A. Visual Network

The visual system consists of three areas. The “retina”
receives the color image of the robot camera, a “what” area
extracts features from the image and based on the activated
features, a “where” area localizes the object of interest. Its
size matches the size of the “retina” (see Table 1), and a hill
of neural activation represents the perceived object location at
the corresponding “retinal” location. Fig. 3 shows an example
of how these areas are being activated.

To refer to biology, the “retina” area rather represents the
LGN and the “what” area represents the primary visual cortex
V1, since unsupervised learned recurrent connections between
these areas establish edge detector-like neuron responses on the
“what” area [12]. The “where” area received the object location
during learning, so was effectively trained in a supervised
manner. Details are described in [13].

retina "what" "where"

orange

Fig. 3. The visual network localizing an orange object correctly in two
situations in the presence of a distractor apple object. Active units in the
“what” and “where” areas are depicted in lighter color.

Fig. 4. The connection weights from the visual “where” area to the two
motor units controlling tilt (left) and pan (right) of the camera. Red indicates
negative connections which cause a tilt upward (and the object to be perceived
more downward) or a pan to the left. Blue indicates positive weights, causing
movement into the opposite directions.

Eye Movement: In order to keep the target object constantly
in view, two neural units controlled the camera to make a
“saccade” toward the target object after every evaluation of
the image. These have been trained based on their error after
causing a “saccade”. This error was the distance in vertical
direction 6 and in horizontal direction 5" of the perceived
target object after movement to the middle of the retina. First,
the units’ activations a*-" were computed from the “where”
unit activations a@* according to:

a’h = g w;”ha;".
i

A camera movement was made in proportion to these acti-
vations, then the error was measured and the weights were
changed according to

i
Aw"™" =~ svh el

This scheme is simple and efficient rather than biologically
accurate. Resulting weights are shown in Fig. 4. Irregularities
originate from some mis-localizations of the “what”-"where”
network in small regions during training.

B. Coordinate Transformation Network

1) Encoding of the Data: The coordinate transformation
network has as inputs the visually perceived target object
position and the camera position, and as output the target
object position in a body-centered frame of reference. All
positions are coded as a neural activation code, as shown in
Fig. 5. That is, each two-dimensional position is encoded on
a two-dimensional sheet of neurons. The neurons maintain an
activity pattern that has the shape of one localized hill, and
the position of this hill encodes the two-dimensional vector.

a) Visual “Where” Area: The hill of activation coding
for the visually perceived object location (visual “where”
area) is taken from the visual system. However, in order to
allow all areas of the coordinate transformation network to
have comparable sizes, the visual system’s “where” area was
down-scaled to half the size for use here (see Table I). This
may alternatively be regarded as allowing only units on every
second row and column to make any connections with the
other two areas of the coordinate transformation network.

where (retinal) eye-pos

where (body)

@ = Q302 : d
& -60°
290° 3 -90°

- 5 0° 900
horizontg pan 90 6

Fig. 5. The three areas involved in the coordinate transformation (cf. Fig. 2).
The lower part of each figure denotes the space encoded by the neurons in
the upper part where active neurons are displayed as hills. A hill of neural
activation carries the information about the corresponding position of each
vector. The visual “where” area, left, represents the object position as perceived

on the retina; the eye-position area, middle, codes the pan- and tilt values of
the robot camera; the body-centered “where” area, right, codes the object

position in body centered coordinates: this is encoded by the square root of
the distance d, and the body centered angle of the target 6 (cf. Fig. 1).

b) Eye-Position Area: The “eye-pos” area encodes the
robot camera pan- and tilt position which is directly readable
from the camera unit interface.

c) Body-Centered “Where” Area: The body-centered
“where” area encodes the object position in a body-centered
frame of reference, which is directly usable for the motor
control. There are different ways to parameterize this position,
such as using Cartesian coordinates w.r.t. the main, forward
axis of the robot. We chose instead as one coordinate the
angle 0 of the object away from the main axis and as the
second coordinate the square root v/d of the distance d between
the robot and the object. The angle is naturally important for
how the robot must turn, while the distance is particularly
important at close ranges, because the robot can bump with its
“shoulders” into the table if it turns near the table. The square
root function extends near ranges, thus more neurons will be
devoted to more critical areas for the grasping action.

2) Generation of Data: Instead of theoretically computing
the body-centered position from the visual and pan-tilt po-
sitions, we use the gazebo robot simulator to generate this
data. After training, the neural network can compute the body-
centered position of the target.

The data was collected by moving the simulated PeopleBot
robot within the area which would be covered later for the
docking. This was necessary, because the PeopleBot model
in the gazebo simulator does not allow it to be randomly
placed at any given position (which would have simplified data
collection). The simulated PeopleBot was started at the goal-
position and then moved into random positions in the field
by a random series of: turn — backward movement — turn —
backward or forward movement — turn. Following this, the
robot moved approximately to the goal by its learned rein-
forcement strategy (see next chapter), using absolute position
information that can be retrieved by the simulator. Thus the
coordinate transformation network was circumvented for data
collection. Also the visual network was replaced by a color
blob-finding algorithm in order to get a more precise estimate
of the position and to be able to sort out invalid data where

the target object was not seen in the visual field.

At the end of a movement sequence, a “reset” flag caused the
simulation to restart from the beginning, i.e. the exact goal-
position, and another sequence of data sampling was done.
Since the distances traveled by the robot are influenced by
the load of the computer processor, movement was done in a
speed approximating real-time and was not accelerated. The
data was collected as a file, and learning of the coordinate
transformation network was done off-line with a randomized
order in which the data was shown.

Inspection of the data showed inconsistencies, in that given
visual and pan-tilt coordinates (h,v,p,t) were not always
paired with the same body-centered coordinates (d,). We
have two explanations for these. First, the data were generally
taken while the robot and pan-tilt camera were moving, thus,
reading the sensor and odometry values one after another, with
them possibly being buffered by the simulator, means that the
values originate from differing times. This will cause relatively
small mismatches. Secondly, we have found large mismatches
at small distances d ~ 0 where at different values of 4 the
perceived input values (h,v,p,t) can be the same.

3) Architecture: The coordinate transformation network
consists of three fully connected areas which represent the
respective coordinates as neural population codes, as visualized
in Fig. 5. The three areas together constitute one attractor
network, so if information is absent on one area, then it will
be filled-in by a process of pattern completion. By allowing
a full connectivity and by not specifying the direction of
information flow (what is input and what is output), we set only
very general constraints that are compatible with associative
information processing in the cortex.

4) Training: The interrelations of the coordinates on the
three areas in terms of statistical correlations are learned by
the Boltzmann machine framework. With its binary stochastic
units it is powerful in learning a given data distribution.
The learning rule uses randomized unit update rather than
structured information flow, so it lends itself to highly inter-
connected networks and allows to introduce additional hidden
units if performance needs to be enhanced.

Let us term the whole network activation vector x =
(aretinal geye—pos gbody) consisting of the concatenated ac-
tivations of all areas. The Boltzmann machine learning rule
distinguishes two running modes: in the clamped phase the
data distribution is forced upon the visible units of the network
(in our case, all units are visible). This distribution is termed
P with the upper index “+” denoting the clamped phase
The other running mode is the free running phase in which
the distribution P, over the network states arises from the
stochasticity of the units and is determined by the network
parameters, such as weights and thresholds. The upper index
“—" denotes the free running phase

The goal of learning is that the distribution P, generated
by the network approximates the data driven distribution P;

which is given. P, ~ ¢ P@® is a Boltzmann distribution
which depends on the network energy E(x) = >, ; w;;zz;
where w;; denotes the connection weight from neuron j to
neuron 4. Therefore P, can be molded by training the network
parameters. Derivation of the Kullback-Leibler divergence
between P, and P; w.r.t. the network parameters leads to
the learning rule (see e.g. [8]):

AU}Z‘]‘:6<ZP£_{E2'(EJ' — ZP;ELL};I%) (1)

{z} {z}

with learning step size ¢ = 0.001. Computing the left term
corresponds to the clamped phase of the learning procedure,
the right term to the free running phase. Without hidden units,
the left term in Eq. (1) can be re-written as ZZ"’M aj'x! where
1 is the index of a data point. Without hidden units thus the
clamped phase does not involve relaxation.

The right term of Eq. (1) can be approximated by sampling
from the Boltzmann distribution. This is done by recurrent
relaxation of the network in the free running phase. The

stochastic transfer function
1
P(z;(t+1)=1) = (2
EEAD=) =

computes the binary output =; € {0,1} of neuron ¢ at time
step t+ 1. Repeated relaxation approximates a Boltzmann
distribution of the activation states.

During training, the two phases are computed alternately.
One randomly chosen data point (similar to Fig. 5) accounts for
the clamped phase. Its continuous values are allowed in Eq. 2.
Then a relatively short relaxation of the network, consisting
of updating all units for 15 iterations using Eq. (2) accounts
for the free running phase. Units are initialized in this phase
by activating every unit the first iteration with a probability of
0.1, regardless of its position.

Self-connections were omitted and a threshold 6; was added
to each unit. This is treated as a weight that is connected to
an external unit with a constant activation of —1.

5) Performance: We initialize the network activations with
a hill of activation on each of the visual “where” area and the
eye-position area, taken from the training data. After initializ-
ing the body-centered “where” area with zero activation, we
are interested in whether the network dynamics according to
Eqg. 2 produce a hill of activation at the correct location. Fig. 6
shows the average deviations between the correct location and
the generated hill. The average distance is approximately one
unit, with some outliers at a few positions.

C. Action Network

The state space is made from the representation in the
body-centered “where” area along two dimensions and a
representation of the robot rotation angle ¢ along the third
dimension. A narrow Gaussian represents a position in this
state space, as visualized in Fig. 7 a).

90° - o
' BN '
S M-
o J RN
45 4 7741\ < g~
Ve L2 frya §<
o ol NI
DL N v
S N
457 - f \/k Agf\\
Ao N
-90° L '
T T T T
om im 1.41m 2m
d

Fig. 6. Errors by the coordinate transformation network on the body-centered
“where” area. Arrows show from the correct position in space of (6, v/d) to
the position predicted by the network. An average over 2000 data samples is
taken. Note that not the entire space was covered by the robot movements.

In [14] we have described the actor-critic reinforcement
learning algorithm [6] applied to this docking action in a
close range to the target with fixed camera and thus without
involving the coordinate transformation network. A video of
the robot performing this docking action can be seen at:
http://www.his.sunderland.ac.uk/robotimages/Cap0001.mpg .

The result of learning is a complex weight structure from
the state space to the critic and to the four motor units (actor),
as shown in Fig. 7 b) and c), respectively.

I1l. DISCUSSION

The model is shown controlling the PeopleBot robot
in the gazebo simulator at the following web address:
http://www.his.sunderland.ac.uk/supplements/humanoids05/

In summary, we have presented a neural network which
controls a visually guided grasping / robotic docking action
while allowing movement of its camera w.r.t. its body. It
integrates essential processing steps of the brain, such as
vision, coordinate transformations and movement control.

As the first model known to us that learns such a dynamic
coordinate transformation, it learns in a supervised fashion in
that the body-centered “where” location was retrieved from
the simulator. Next, we will address its self-organization from
the inputs. This would be in particular useful as the data
from the simulator were erroneous when retrieved during robot
and camera pan-tilt movement, while self-organized data from
vision and pan-tilt readings are expected to be consistent. Since
the reinforcement learning scheme does not require a specific
organization of the data within the state space, it allows for
such self-organization and also grounding the robot behavior
in the real world. Our fully learned network is a basis for this,
and is as well directly applicable to humanoid shaped robots.

a) state space activation vector

| 9Ld° - |

b) critic input weights
| T EEEEEE |

¢) actor input weights

LS

Fig. 7. Representations in the state space. a) shows the coordinates of the state
space. Each small rectangle represents the body-centered “where” space (cf.

Figs. 5 and 6). The robot rotation angle ¢ is then represented by multiplexing
the “where” space 20-fold. It ranges from —90 °, left to 90°, right. The blobs
that can be seen represent an example activation vector which has the shape of
a Gaussian in this 20 x 20 x 20-dimensional cube. b) shows the critic unit’s
weights from the state space after learning. Large weights, i.e. high fitness
values, are assigned near the target, i.e. at small distances d and around zero
values of the angles 6 and . c) shows weights (blue denotes positive, red
negative weights) from the state space to the actor which consists of the four
motor units (from top to bottom: right, left, back, forward).

REFERENCES

[1] D. Ackley, G. Hinton, and T. Sejnowski. A learning algorithm for
Boltzmann machines. Cognitive Science, 9:147-69, 1985.

[2] C.A. Buneo, M.R. Jarvis, A.P. Batista, and R.A. Andersen. Direct
visuomotor transformations for reaching. Nature, 416:632—6, 2002.

[3] Y.E. Cohen and R.A. Andersen. A common reference frame for move-
ment plans in the posterior parietal cortex. Nature Review Neuroscience,
3:553-62, 2002.

[4] J.D. Crawford, W.P. Medendorp, and J.J. Marotta. Spatial transforma-
tions for eye-hand coordination. J. Neurophysiol., 92:10—-9, 2004.

[5] S. Deneve, P.E. Latham, and A. Pouget. Efficient computation and cue
integration with noisy population codes. Nature Neurosci., 4(8):826-31,
2001.

[6] D.J. Foster, R.G.M. Morris, and P. Dayan. A model of hippocampally
dependent navigation, using the temporal difference learning rule. Hip-
pocampus, 10:1-16, 2000.

[7]1 Z. Ghahramani, D.M. Wolpert, and M.I. Jordan. Generalization to local
remappings of the visuomotor coordinate transformation. J. Neurosci.,
16(21):7085-96, 1996.

[8] S. Haykin. Neural Networks. A Comprehensive Foundation. MacMillan
College Publishing Company, 1994.

[9] L. Natale, G. Metta, and G. Sandini. A developmental approach to
grasping. In Developmental Robotics AAAI Spring Symposium, 2005.

[10] E. Sauser and A. Billard. Three dimensional frames of references
transformations using recurrent populations of neurons. Neurocomputing,
64:5-24, 2005.

[11] A. van Rossum and A. Renart. Computation with populations codes
in layered networks of integrate-and-fire neurons. Neurocomputing, 58-
60:265—70, 2004.

[12] C. Weber. Self-organization of orientation maps, lateral connections, and
dynamic receptive fields in the primary visual cortex. In G. Dorffner,
H. Bischof, and K. Hornik, editors, Proc. ICANN, pages 1147-52.
Springer-Verlag Berlin Heidelberg, 2001.

[13] C. Weber and S. Wermter. Object localization using laterally connected
"what” and "where” associator networks. In Proc. ICANN/ICONIP,
pages 813-20. Springer-Verlag Berlin Heidelberg, 2003.

[14] C. Weber, S. Wermter, and A. Zochios. Robot docking with neural vision
and reinforcement. Knowledge-Based Systems, 17(2-4):165—72, 2004.

