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1. Introduction

The neuroscience evidence reviewed in (Rizzolatti & Arbib 1998) suggests that mir-
ror neurons are involved in the comparation of ‘goal directed actions’ and the per-
ception of them during competent performance by others. Goal directed actions
invariably involve the processing of sequences of more primitive actions. The com-
plex manual tasks such as those discussed in (Rizzolatti & Arbib 1998) share some
similarities with simple syntax acquisition. In either case the task is to produce or
recognise a useful sequence out of primitive elements. Our model of the mirror
system is a synergy of this.

Classical interpretations of language acquisition typically lead to connectionist
models of syntax acquisition as the passive acquisition of implicit knowledge con-
cerning a syntax (Reber 1989; Cleeremans 1993). It is also explicit in the axioms
on which Gold based his formal learning theorem (Gold 1967). It seems highly
unlikely to us that psychologically speaking such an interpretation is correct. Af-
ter all, what is the point in acquiring knowledge if it is not to use it? The model
mirror system described in the next section makes active use of knowledge already
acquired during further learning. In the next section we also discuss a suitable test
for the system. We then detail our results which are subsequently discussed. Finally
we present our conclusions.

2. Overview of our model system

We propose that as knowledge begins to be acquired through passive adaptation to
predominantly correct data, this knowledge is actively used by the learner. In our
model this utilisation occurs in two ways. It occurs through the attempted produc-
tion of syntactically correct sentences. Feedback can then be provided, in the form
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of recognition of correct constructions, and this additional knowledge can be inte-
grated into the production process. Secondly, we can measure how well the system
estimates it has already stored the information contained in the example presented.
It can then modify the degree to which it adapts itself to optimise for novel infor-
mation. Note that this measure does not require feedback itself to be calculated. It
is simply an estimate generated by the learner on its own use of acquired knowl-
edge. It does not measure if that knowledge is naive or incorrect only the degree to
which it is used. However as the learner’s acquired knowledge improves this util-
isation representation maps into a confidence measure. This can be quantified by
feedback.

A high level representation of our model is given in Figure 1. The parts in
the square boxes represent the ‘mirror neuron system’ that we have developed our
abstract model of. In our model the learner examines a newly generated represen-
tation and deems the produced sequence to be worthy of production only if the
utilisation measure is sufficiently high for all parts of the sequence and the learner
knows that its knowledge is good. This requires the calculation of a threshold for
a filter. This is calculated in a computationally efficient non-neural manner. It rep-
resents a minimum firing rate necessary for all neurons to be firing at in order to
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Figure 1. High level representation of model mirror system.
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Experimental neuroscience results indicate that mirror cells are highly selec-
tive, only firing when their specific associated goal directed action occurs (Rizzo-
latti & Arbib 1998). In order to facilitate this within our model we require that in
addition to input from the utilisation system the mirror field receives high level
input from both the sequence production mechanism and from the central exec-
utive! or external input fields. The former selectively stimulates individual mirror
neurons at a sub critical level allowing for full activity to occur when additional
stimulation is received from the utilisation system. The latter is necessary to form
associations between high level goals and sets of individual sequences.

To test our model we used the formal deterministic stochastic finite state gram-
mar (DSFSG) displayed in Figure 2. It was developed by Reber (1989) in 1965.
It was designed to be just complicated enough to take a little over an afternoon
of exposure to learn by competent humans. It has been used in a series of psy-
chology experiments by Reber and his colleagues over a number of years and was
used in a sequence prediction task for a connectionist neural network by Cleere-
mans (1993). This formal language task sits nicely on the bridge between action
sequence production such as has been reported on in the papers of Rizzolatti and
others (Rizzolatti & Arbib 1998; Gallese, Fadiga, Fogassi, & Rizzolatti 1996), by
macaque monkeys, and language processing classically associated with Broca’s area
in humans.

Syntactically correct ‘Reber strings’ are generated by walking through the finite
state system shown in Figure 2. The grammar possesses six nodes. For a given sub-
sequence generated from Figure 2 it requires both the current and the preceding
term in the sequence to accurately identify the current node during a transversal.
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Figure 2. The DSFSG devised by Reber.
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The learning task that we set our system was to acquire enough information
from the environment concerning the grammar to be able to produce strings that
conform to the grammar in a manner that is indistinguishable from the production
of strings directly from the DSFSG. This was to be achieved by the coupled use of
positive examples and feedback concerning the correctness of tentatively produced
strings by the learning agent. Externally supplied strings can also be analysed by
the system. Hence in our model there is a link between the evaluation of external
input and of internally generated sequences.

We used a simple recurrent neural network (SRN) for the sequence prediction
task (Elman 1991). Such networks are known to be well suited to learning DSFSGs
since, if they are not over complicated, the SRN’s associated error surface is effi-
ciently minimised by learning to represent the nodes of the DSFSG as the internal
states of the network. We used three hidden nodes, since three bits span eight bi-
nary states and there are six nodes in the Reber grammar. We used standard logistic
sigmoid functions as the activation function for the hidden nodes and normalised
exponential functions for the outputs. This choice of output generates a control-
lable ‘n-of-¢’ probability distribution estimate with n > 1 as the temperature pa-
rameter of the normalised exponentials 7'+ 0. We used a negative log likelihood
function with subtracted entropy as the error function to be minimised. We used
backpropagation for training. Training sequences were generated stochastically di-
rectly from the DSFSG. We summed errors over a sequence before updating the
network and used an explicit momentum term, both to help smooth convergence
towards a local optimum.

Elsewhere we have investigated the effects of training this system using a com-
petent teacher which can vary its inputs to improve the acquisition of the network
in response to behaviourally realistic output from the learning agent (Womble
2000), where further details concerning the system can also be found. In this work
we concentrate on the effects of applying feedback to the system.

To summarise, we wish to compare performance of the basic system conven-
tionally trained using randomly generated sets of strings to both the case where the
system analyses its own generated strings to reject those that are likely to be wrong
and using self reflexive learning to selectively enhance information stored in the
network.

In order to fully analyse these paradigms we investigated the following criteria
for successful performance:

—  We use a 1-norm measure on the predictive error against the correct probability
distribution of the next character within a sequence. This measure is summed
over a test set of strings and normalised, both with respect to the different
lengths of different sequences and over the length of the test set. We generated
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a test set directly from the DSFSG, selecting the first 1 most probable strings
to be generated.

There are three related measures concerning the utilisation and effects of the
self reflexive analysis of the learning agent’s own production performance.
These measures are calculated over a set of strings. This set of strings can
be generated by the learning agent in which case they correspond to inter-
nal reflection on performance, or the strings could be provided externally. The
measures are

— the largest utilisation measure for an incorrectly selected term in a sequence
(denoted max{fail});

— the smallest utilisation measure for a correctly selected term in a sequence
(denoted min{pass});

— and the relative values of each; in particular we are interested in states for
which

r}’leip{min{pass}} > r?ea%({max{fail}}, (1)

where S denotes a sequence in a test set T..

There are three ‘behavioural’ measures. These examine only what would be ex-
ternally available to interacting agents (including human observers) and cor-
responds to the ‘¢’ ‘toy’ Turing test as defined by Harnad (2001). Ultimately
these measures are the most important concerning the apparent performance
of the system. These three measures are

— the raw (non-filtered) string production success rate;

— the filtered string production success rates;

— the %I’ test itself which is a measure on the difference in the distribution
of sets of strings generated by the learning agent and those generated by a
competent agent. We weight the contribution of each sequence with respect
to its asymptotic frequency in the set of strings generated directly from the
DSESG, so that more frequently occurring strings contribute proportionally
more to the measure

M
diias = Y fioa(S)- fea (S0 — fais(SD)] (2)

i=1

where f denotes a frequency, RG refers to the Reber Grammar, MS refers
to the mirror system, S; is the i-th different sequence in a test set of N se-
quences for which there are M different sequences, and |...| denotes the
1-norm distance measure.
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3. Results

The 1-norm error was carefully calculated using the 755 most frequent strings gen-
erated by the DSFSG, with each string weighted according to the asymptotic fre-
quency distribution. For this value a little over 97% of the asymptotic frequency
distribution of the infinite set of Reber strings is spanned. This is a deep search,
with the probability of the least frequent of these strings occuring naturally be-
ing only 271° & 1 in 32000. We found it quite easy to reduce the 1-norm error
per element in a sequence, per string to below 0.1, and with a little more work to
around 0.05. However to get below this value a significant amount of searching is
required. Our best results using standard backpropagation generated a 1-norm er-
ror of 0.0173. To get this we had to perform many searches, and used adaptation
of the learning rate ) to facilitate convergence to the best local minimum we could
find. The results for the system in this state along with results for our lowest 1-norm
error system trained using the full feedback system, are given in the following table:

Training 1-norm dyias pias Filtered
Paradigm Error Mean SD Success
BP & Filter 0.0173 22.87e-06 1.65e-06 100.0%
MN System 0.0085 12.32e-06 1.04e-06 100.0%
DSFSG 0.0000 4.904e-06 1.35e-06 100.0%
Incorrect Unfiltered Min Max
Rejections Success Pass Fail
BP & Filter 0.00% 92.05% 0.4905 0.0795
MN System 0.00% 91.63% 0.8646 0.1361
DSFSG 0.00% 100.0% 1.0000 0.0000

The results quoted are based on 5000 self generated test strings for all measures
based on system production, and were repeated 10 times for the calculation of dpiss
means and standard deviations.

Figure 3 show detailed results comparing difference measures for these systems
to that of the DSFSG itself. For the best backpropagation trained system we found
that the difference measure remains fairly indistinguishable to external analysis up
to a test set size of about 100 generated strings, the mean for the learning system lies
at a single standard deviation from the DSFSG at about the 150 string size, and the
learning system becomes clearly distinguishable (the =+ single standard deviation
bands no longer overlap) at about 300 string test sets. While for the lowest 1-norm
error feedback trained system, these test set sizes are about 200, 700 and 1000 re-
spectively, and at the 5000 string test set size the full active learning mirror system
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Figure 3. Plot of difference measure for minimum 1-norm error found using the basic
neural network. The difference measure for the DSESG is given for reference. The mean
and standard deviations (SD) were calculated from 20 trials for each size of test set.

has a difference measure of only about 54% of the best results using just filtering.
Finally we note that without the filtering mechanism the system generates illegal
strings about 8% of the time, and is thus clearly distinguishable from the DSFSG.

4. Discussion

The results from the standard backpropagation training show that it is possible to
train the SRN to perform the prediction task quite well. The minimum pass results
show that our net trained in this way comfortably satisfies the test criteria discussed
by Cleeremans (1993).

A useful way to decompose the contributions to the 1-norm error generated
by the SRN is to split it into errors in the probability distribution for the next
potentially correct characters, and the error caused by non-zero components of
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Figure 4. Plot of difference measure for minimum 1-norm error found using the ab-
stracted mirror system. The difference measure for the DSFSG is given for reference.

The mean and standard deviations (SD) were calculated from 20 trials for each size of
test set.

the distribution associated with incorrect next selections. This splits the error into
components associated with metrical and topological error respectively. Under this
view a simple filter mechanism will produce complete success when the probabil-
ity for any correct next character is greater than the worst topological error. An
approximate condition for this is given by (1).

Our results show that for standard backpropagation it is hard to find a solution
for which criterium (1) holds. However for our best network it did. An examina-
tion of the utilisation measure shows that topological error has been minimised
very well for this network, but that there still exists a behaviourally significant
metrical error, something that the filter mechanism set up utilising basic feedback
cannot improve upon. However our results clearly show that using full feedback
learning as described by our model mirror system the metrical information can
be significantly improved. This is due to the modification in the batch learning
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technique we have introduced in the feedback mechanism. Using the utilisation
measure, contributions to the direction in weight space through which the net-
work adapts is biased in favour of contributions for which the utilisation was low
i.e. for which the network has a relatively poor representation. The effect of this is
to improve the performance of the SRN selectively around the regions where the
metrical information is poor. However this is at the cost of some interference. The
reason for the significant improvement in the behavioural error measures lies in
the fact that providing the condition (1) holds then any topological error can be
filtered out from the perceived external output of the learning agent.

It is noteworthy that a system which learns how to process sequences in this
manner will, when producing strings, suffer from errors reminiscent of charac-
teristic errors in classical Broca’s aphasics, when the filtering system is disabled.
This provides further circumstantial support for the argument that while biological
mechanisms may be significantly different at a low level, at least at a modular level
our connectionist network contains some of the characteristics of the biological
system from which it was inspired.

The results reported here provide empirical evidence supporting the claim that
the apparent problems of learning from only positive examples (Gold 1967) can be
neatly circumvented using feedback learning, and that this approach is a plausible
mechanism for L1 acquisition in humans. While our system is not a detailed model
of a biological mirror system at a neural level, we do claim that the high level mech-
anisms used in our model for learning (positive examples, feedback, and optionally
intelligent teaching by a competent teaching agent) are plausible mechanisms dur-
ing infant language learning, and our results show that they have the potential to
be successful. As a minimum our results indicate that at least for context free gram-
mars up to the complexity of Reber grammars, positive examples and feedback are
sufficient for the acquisition process to succeed.

5. Conclusion

The results clearly show that contrary to the claims made by Cleeremans (1993)
the use of positive only data for the implicit acquisition of the DSFSG of Reber,
when applied to an SRN hand crafted to use the ideal network topology for the
acquisition of the grammar, is a difficult task. Given that it is usually thought that
the gradient decent backpropagation techniques used during the adaptation of the
artificial system are more powerful than those available to the biological system,
and that the Reber Grammar is obviously significantly simpler than any natural
language we argue that the positive only learning mechanism is likely to be insuf-
ficient for language acquisition, in line with Gold’s formal analysis (Gold 1967).
However our results show that when feedback is available and is used by our ab-
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stracted mirror neuron system to both analyse tentative production and to modify
the learning process the production performance of a learning agent on the syn-
tax acquisition task presented by the Reber Grammar can become behaviourally
indistinguishable from that of a competent agent. Finally we note that since the
system developed here is equally applicable to goal directed actions as it is to syn-
tax acquisition the mirror neuron production/perception comparation system on
which it is based could quite plausibly provide an explanation for the emergence
of modern natural language processing from a mechanism previously adapted for
complex goal directed actions synthesized from a vocabulary of more basic actions.

Note

1. For the purposes of our model we mean by central executive only that an instruction to
spontaneously generate a particular sequence is initiated externally to the mirror system.
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