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Abstract. We investigate how structured information processing within
a neural net can emerge as a result of unsupervised learning from data.
The model consists of input neurons and hidden neurons which are re-
currently connected. On the basis of a maximum likelihood framework
the task is to reconstruct given input data using the code of the hid-
den units. Hidden neurons are fully connected and they may code on
different hierarchical levels. The hidden neurons are separated into two
groups by their intrinsic parameters which control their firing properties.
These differential properties encourage the two groups to code on two
different hierarchical levels. We train the net using data which are either
generated by two linear models acting in parallel or by a hierarchical
process. As a result of training the net captures the structure of the data
generation process. Simulations were performed with two different neu-
ral network models, both trained to be maximum likelihood predictors
of the training data. A (non-linear) hierarchical Kalman filter model and
a Helmholtz machine. Here we compare both models to the neural cir-
cuitry in the cortex. The results imply that the division of the cortex
into laterally and hierarchically organized areas can evolve to a certain
degree as an adaptation to the environment.

1 Introduction

The cortex is the largest organ of the human brain. However, a mammal can
survive without a cortex and lower animals do not even have a cortex. Essential
functions like controlling inner organs and basic instincts reside in other parts
of the brain. So what does the cortex do? An other way to put this question is:
what can the lower animals not do? If lower animals cannot learn a complex
behavior we may infer that they cannot understand a complex environment. In
other words: the cortex may provide a representation of a complex environment
to mammals.

This suggests that the cortex is a highly organized structure. On a macro-
scopic scale, the cortex can be structured into dozens of areas, anatomically and
physiologically. These are interconnected in a non-trivial manner, making neu-
rons in the cortex receive signals primarily from other cortical neurons rather
than directly from sensory inputs. In the absence of input the cortex can still
generate dreams and imagery from intrinsic spontaneous activity. Recurrent con-
nectivity between its areas may be the key to these capabilities.
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The cortex is, nevertheless, a sheet of neuronal tissue. Across its two dimen-
sions, it hosts many functionally distinct areas (e.g. 65 areas in cat [12]) which
process information in parallel as well as via hierarchically organized pathways
[5]. The earliest manifestations of areas during corticogenesis are regionally re-
stricted molecular patterns (“neurochemical fingerprints” [6]) which appear be-
fore the formation of thalamo-cortical connections [4].

Considering connectivity, there are up to ten times more area-to-area connec-
tions than areas. Thus, the description of cortico-cortical connectivity is more
complex and requires modeling to be understood. Abstract geometrical models
[12] suggest that topological neighborhood plays an important but not exclusive
role in determining these connections.

Recently we presented computational models [14][13] in which the connec-
tions between areas are trained from neuronal activity. The maximum likelihood
framework makes the network develop an internal representation of the environ-
ment, i.e. of the causes generating the training data.

Our recent models belong to two groups: one [14] we may call a non-linear
Kalman filter model [11][9] in which neurons are deterministic and have a contin-
uous transfer function. The other [13] is a Helmholtz machine [3] where hidden
neurons are stochastic and binary. The dynamics of neuronal activations also dif-
fer: in the deterministic model, neurons integrate the inputs from several sources
and over time. In the stochastic model, computations are separated and do not
need to be integrated over time. The activation terms at different times are then
summed up in the learning rules.

The model areas are determined a priori by the intrinsic functional properties
of their neurons. More precisely, hidden neurons are divided into two groups
which differed in their firing properties by corresponding parameter changes.
Thus one group responds with stronger activity to a given input than the other
group. In consequence the first group learns to process activity patterns which
occur more frequently. The input space can thereby be divided into two groups.
Using lateral weights among the hidden neurons, these two models allow hidden
neurons to code using two hierarchical levels. When presented with hierarchically
generated data, some of the hidden neurons establish a second hierarchical level
by grouping together other neurons via their lateral weights while their weights
to the input neurons decline.

In this contribution we want to inquire principles according to which the
connectivity between cortical areas arises. We set up a model for the development
of the connectivity between connectionist neurons and consider the macroscopic
areas to be made up of a (small) group of microscopic neurons. A key idea is that
such groups are distinguished by their neuronal properties prior to learning. We
thereby do not address the possibility that intrinsic neuronal properties (other
than those determined by their weights) can be dynamically changed during
development.
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Fig. 1. The cortico-cortical connection matrix of the cat. On both axes, the 65 cortical
areas are arranged into the four complexes, visual system, auditory system, somato-
sensory system and fronto-limbic system. Connections along the horizontal axis are
afferent, and those along the vertical axis are efferent. Strong connections are depicted
dark, weaker connections are depicted in a lighter grey, missing connections white. Self
connections (diagonal) are omitted. Data was taken from [12].

1.1 Review of Biological Data

Cortical areas can be hard to distinguish. For this reason, different criteria may
be combined:

– Chemical properties: recent findings suggest that a “neurochemical finger-
print” [6] determines the earliest compartmentalization in corticogenesis [4].

– Architecture: staining can reveal a different structure. This method is reliable
only for a few areas [5].

– Physiological properties. As an example, topographic organization is mea-
surable w.r.t. the visual field in half of all visual cortical areas [5].

– The connectivity ”fingerprint”, i.e. the connectivity pattern to other cortical
areas. So, if two areas had similar connectivity patterns, then they would be
the same.

An estimate of the number of cortical areas is 65 in the cat [12] and 73 in the
macaque [15]. The number of connections reported by Young [12] between these
areas is 1139 in the cat (Fig. 1) which represents 27.4% of all possible connec-
tions (only ipsilateral connections are considered). The number of connections
reported in the macaque [15] is 758 which represents 15% of all possible connec-
tions. Most of the connections are bidirectional: they consist of axons going into
both directions. There are only 136 reported one-way connections which is 18%
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of the total (macaque). Together there is a mean of approximately 10 input- and
10 output-connections per area.

The cortex can be divided into 4 complexes (see Fig. 1 for the cat data)
with different functionality and sizes: visual cortex 55%, somato-sensory 11%,
motor 8%, auditory 3% and 23% for the rest [5]. There are 25 areas plus 7
visual-association areas in the visual system of the macaque. The number of
connections within this system is 305, i.e. 31% of all possible connections. The
somato-sensory/motor system has 13 areas with 62 connections, i.e. 40% of all
possible connections. Thus, connectivity between areas within one complex is
higher than average.

The connection strengths between areas (i.e. density of fibers) comprise two
orders of magnitude [5]. Only 30-50% of connections may be reliably found across
different animals. Sizes of areas also vary: V1 and V2 take each 11-12% of the
surface area (macaque [5]), the smallest areas are 50-times smaller. There is even
a 2-fold variability in the size of single areas from one brain to another [5] within
animals of the same species and age.

Finally, it should be noted that every visual area is connected to non-cortical
areas. The number of these connections may out-range the number of cortico-
cortical connections.

Table 1. The roles of intrinsic and activity dependent developmental mechanisms.
Neural connections as well as areas are the result of an interplay between both intrinsic
and activity dependent mechanisms.

intrinsic activity dependent
what is meant genetic description learning
how does it work chemical markers Hebbian learning
when does it appear early late
its targets cell movement,

cell differentiation, connections
connections

its results layers, areas receptive field properties,
barrels, areas

2 Methods

Commonly used model architectures have a pre-defined structure because the
order in which neuronal activations are computed depends on the architecture.
An architecture as in Fig. 2 b) for example does not allow a two-stage hierarchy
to develop. An architecture as in Fig. 2 c) does not allow the hierarchically
topmost units (the three dark units) to develop connections to the input.

A more general structure is a full connectivity between all neurons, as in
Fig. 2 a). The only restriction we have chosen here is that input units are not
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Fig. 2. Three different model architectures. In each of them the activations x on the
input units are represented by hidden unit activations u. W are recognition weights,
V are generative weights, indexed in the left figure with the number of the layer of
termination and origin. a) architecture of our model. The lateral recognition weights
W11 and generative weights V11 (top) allow each hidden neuron to take part in a
representation u1 on a lower and u2 on a higher hierarchical level. Dark units differ
from the white hidden units by a parameter of their transfer function only. Depending
on the structure of the data training will result in one of the two other architectures
shown: b) a parallel organization and c) a hierarchical organization of the two areas.

connected to other input units. Learning rules for such architectures exist, like
the well-known Boltzmann machine learning rule. The purpose of our study is to
let structures as in Fig. 2 b),c) self-organize from this general, full connectivity.

2.1 Different Approaches to Maximum Likelihood

The goal of maximum likelihood is to find the model which can best explain, i.e.
generate, the whole data set {xµ}. If the data are independent, we have:

p({xµ}|V ) =
�

µ

p(xµ|V ) =
�

�

µ

p(xµ, u|V ) du

where u is the hidden unit activation vector. The data xµ and the hidden rep-
resentation u are related to each other, so u is an internal representation of a
data point. Through learning the model parameters V adjust to the whole data
set, so the weights are a representation of the whole environment.

The integration across the hidden code u which is necessary to obtain the
probability distribution of the model generating the data is computationally in-
feasible. Different approximations therefore must be done which lead to different
models. Examples are shown in Fig. 3.

On the left branch of Fig. 3, the integral over the hidden code is replaced by
the “optimal” hidden code vector uopt which generates a certain data item with
highest probability. This estimates a current system state u which relates to an
observed process through x = V u + e with noise e. With a linear transform
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p(x ,u V)du = p(x ,u    V)|� opt|

W = -V T W = V-1

{         }u   -1,0,1

W = VT

Kalman filter ICA Boltzmann machine Helmholtz machine

separateW,V

Maximum likelihood

Fig. 3. Approximations used to arrive at different models.

V and in the case of Gaussian noise e we would arrive at a Kalman filter [11].
However, we will assume a non-Gaussian “sparse” prior in our model which we
then term a non-linear Kalman filter. In the special case of an invertible weight
matrix, one arrives at an ICA algorithm [2] (see [10] for comparison).

On the right branch, the hidden code vector is discretized such that the
integral may be computed. Having weight symmetry and a strict gradient ascent
algorithm for training the weights which maximizes the likelihood we arrive
at the Boltzmann machine (standard literature, e.g. [7]). Separate treatment
of recognition weights and generative weights leads to the Helmholtz machine
[3]. A practical but heuristic algorithm to train this network is the wake-sleep
algorithm [8].

For gradient based training of the weights, the performance of the network
in generating the data is permanently measured. The way in which the data set
is used for the generation of the data throughout learning distinguishes the two
models which we explore in this contribution:

– Kalman filter model: when the model generates data, a “target” data
point xµ is always selected which has to be reconstructed by the model.

– Helmholtz machine: without any data point selected, the model has to
generate any of the given data points with the appropriate probability.

Thus, whether there is or there is no data point present influences the way in
which the fast changing model parameters, the activations, are used:

– Kalman filter model: the goal is to find, given a data point, the poste-
rior distribution of the fast changing model variables, i.e. the hidden unit
activations. As an approximation, the optimal representation uopt which
maximizes the posterior probability to generate that data point is selected.

– Helmholtz machine: generation of the data is separated in time from the
process of recognition: a “wake phase” characterized by presence of data is
distinguished from a “sleep phase” during which the net generates its own
“fantasy” data.
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2.2 Architecture and Notation

Weights: The network architecture as well as some of the variables are depicted
in Fig. 2, left. Input units (below) are linear and receive the data. Recogni-
tion weights W10 transfer information from the input units to all hidden units.
Generative weights V01 transfer information from the hidden units to the input
units. Lateral weights W11 and V11 transfer information from all hidden units
to all hidden units. They are also distinguished into recognition weights, W11,
and generative weights, V11, depending on whether they are used to transfer
information upwards within the functional hierarchy or downwards towards the
input units, respectively. In the Kalman filter model, W10 = V T

01 and W11 = V T
11.

Activations: The data cause an activation vector x on the input neurons. Hidden
unit activation vectors have to be assigned to a virtual hierarchical level: in a
hierarchical organization, the order of neuronal activation updates is a series
where the number of update steps which are needed to propagate information
from a data point to a neuron defines its hierarchical level. A hidden neuron
is regarded to code on the first hierarchical level if it is activated by the input
units. We denote this activation u1. A hidden neuron is regarded to code on the
second hierarchical level if it is activated by its input from other hidden neurons
via lateral weights only but not from the input units directly. We denote this
activation u2. Note that both activations, u1 and u2, occur on all hidden units.
Activations are distinguished by the way they arise on a neuron and may coexist
in the Kalman filter model.

Parameters: Please see [14] and [13] for the values of all parameters in the
non-linear Kalman filter model and the Helmholtz machine, respectively.

2.3 The Kalman-Filter Algorithm

The Kalman-filter algorithm can be separated into two steps: (i) calculation of
the reconstruction errors x̃0(t) on the input units and x̃1(t) on the first hidden
level and (ii) adjustment of activations in order to decrease these errors. Both
steps are repeated until equilibrium is reached in which case the optimal hidden
representation of the data has been found.

(i) compute reconstruction errors: x̃0(t) = x − V01u1(t)

(i) compute reconstruction errors: x̃1(t) = W10x̃0(t) − V11u2(t)

(ii) adjust hidden unit activations: h1(t) = u1(t) + εu((2β − 1) W10x̃0(t)

(ii) adjust hidden unit activations: h1(t) = u1(t) + (1 − β) V11u2(t))

(ii) adjust hidden unit activations: h2(t) = u2(t) + εu W11x̃1(t)

where transfer functions u1(t + 1) = f(h1(t)) and u2(t + 1) = f(h2(t)) are
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used. εu denotes the activation update step size and β denotes the trade-off
between bottom-up and top-down influence.

After repetition of these two steps until convergence the weights are updated
(with step sizes εw) according to:

Δwij
10 = εw

10u
i
1 x̃j

0 Δwik
11 = εw

11u
i
2 x̃k

1

2.4 The Wake-Sleep Algorithm (Helmholtz Machine)

The wake-sleep algorithm consists of two phases.
First, in the wake phase, data are presented. Then the net finds a hidden

representation of the data and based on this representation, the net re-estimates
the data.

Wake
phase

infer hidden code: uw
1 = fw

m(W10x) uw
2 = fw

m(W11u
w
1 )

reconstruct input: sw
1 = V11u

w
2 sw

0 = V01u
w
1

After one-sweep computation of these equations the difference between the
data and the re-estimation is used to train the generative weights (ε are the
respective learning step sizes):

ΔV11 = ε11 (uw
1 − sw

1 ) · (uw
2 )T ΔV01 = ε01 (x − sw

0 ) · (uw
1 )T

Secondly, in the sleep phase, a random “fantasy” activation vector is pro-
duced in the highest level. The net then generates the corresponding “fantasy”
data point and based on this, the net re-estimates the activation vector on the
highest level.

Sleep
phase

initiate hidden code at highest level: ss
2 = fs

b(0)

generate input code: ss
1 = fs

b(V11s
s
2) ss

0 = V01s
s
1

reconstruct hidden code: us
1 = fs

m(W10s
s
0) us

2 = fs
m(W11s

s
1)

After obtaining these variables the difference between the original activation
vector and the re-estimation is used to train the recognition weights:

ΔW10 = ε10 (ss
1 − us

1) · (ss
0)

T ΔW11 = ε11 (ss
2 − us

2) · (ss
1)

T

2.5 Weight Constraints

In order to discourage a hidden neuron to be active at all processing steps,
competition between all incoming weights of one neuron is introduced by an
activity-dependent weight constraint for both models. This encourages a hidden
neuron to receive input from the input neurons via W10 or from other lateral
neurons via W11 but not both.
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– In the Kalman filter model, recognition weights wij
10 from input neuron j to

hidden neuron i and lateral recognition weights wik
11 from hidden neuron k to

hidden neuron i receive the following activity dependent weight constraint
which is added to the weight learning rules:

Δwijconstr

10 = − λw |h̄i|wij
10 �wi�2

Δwikconstr

11 = − λw |h̄i|wik
11 �wi�2

where λw is a scaling factor. �wi�2 =
�N

l (wil
10)

2 +
�H

l (wil
11)

2 is the sum
of the squared weights to all N input units and all H hidden units and
|h̄i| = |hi

1| + |hi
2| is the mean of absolute values of the inner activations of

hidden neuron i at the final relaxation time step. Generative weights are
made symmetric to the recognition weights, i.e. V01 = WT

10 and V11 = WT
11.

– For the Helmholtz machine, the weight constraint term which is added to
the learning rule treats positive and negative weights separately. Using the
Heaviside function Θ(x) = 1, if x > 0, otherwise 0, we can write:

Δwijconstr

= − λw h̄i Θ(wij) wij
�

j�

Θ(wij�
) (wij�

)2

where h̄ = uw
1 + uw

2 + us
1 + us

2 is the sum of all activations which have been
induced by the recognition weights. The indices j, j � extend over all input
and hidden units. The wake-sleep algorithm is not a gradient descent in an
energy space. It easily gets stuck in local minima. To improve the solutions
found, generative weights V01 and V11 as well as lateral recognition weights
W11 were rectified, i.e. negative weights were set to zero.

The weight constraints scale the length but do not change the direction of a
hidden neuron weight vector. They are local in the sense that they do not depend
on any weight of any other hidden neuron.

2.6 Distinguishing the Modules

In order to help two distinct areas to evolve, the hidden neurons are separated
into two groups by assigning them different intrinsic parameters of their transfer
functions. The key idea is that neurons from one area are more active than
neurons from the other. The more active neurons will then respond to the more
frequent features that can be extracted from the data; the less active neurons
are expected to learn those features which do not occur as often. Note that these
differences can distinguish hierarchical levels.

– In the Kalman filter model, a difference in one parameter among the hidden
neurons will be sufficient to initiate the segregation process, either in parallel
or hierarchically, depending on the data. The transfer function

f(hi) = hi − λ · 2hi

1 + h2
i



62 C. Weber and K. Obermayer

Kalman filter model

0

0.5

1

-2 0 2 4 6 8

m=0, n=10

m=6, n=40

pr
ob

ab
ili

ty
 o

f 
ac

tiv
at

io
n

net input

(middle level)

(highest level)

Helmholtz machine

0

0.5

1

-2 0 2 4 6 8

m=0, n=10

m=6, n=40

pr
ob

ab
ili

ty
 o

f 
ac

tiv
at

io
n

net input

(middle level)

(highest level)

Fig. 4. Neuronal transfer functions.

is depicted in Fig. 4, left, with the two different values of the parameter λ
which controls the sparseness of neuronal firing. Larger values of λ make a
neuron respond with smaller activation to a given input.

– For the Helmholtz machine a stochastic transfer function is chosen for the
hidden neurons (Fig. 4, right):

fm(hi) =
ehi + m

ehi + m + n

By this function, the stochastic “ON”-state can be traced back to two distin-
guished sources. First, the activation from the neurons input, hi and second,
the parameter m. Both increase the probability for the neuron to be “ON”.
We refer to the latter as spontaneous or endogenous activity. The parameter
n adds some probability for the neuron to be “OFF”, thus encourages sparse
coding.
We chose the parameters such that they matched the precise role the neurons
should play in the wake-sleep algorithm. Especially the hierarchical setting
has to be considered as it is more difficult to achieve this kind of structure.
Two distinct physiological properties of the neurons are important for the
role they play in the wake-sleep algorithm and thus two parameters are var-
ied. (i) Neurons in the highest hierarchical level are responsible for initiation
of the hidden code, i.e. they have to be spontaneously active without any
primary input. For this reason we assigned high resting activity to the units
which are designed for the higher level by setting the parameter m to a high
value. (ii) Lower level neurons should respond to input. This applies both
to recognition when there is input from the input neurons and to generation
when there is input from the highest units. High responsitivity is achieved
by a strong gain – or a small sparseness parameter n.
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3 Results

3.1 Generation of the Training Data

The data consist of discrete, sparsely generated elements. These are lines of 4
different orientations on a 5 × 5 grid of input neurons. In the parallel paradigm,
horizontal and 45◦ lines are generated with probability 0.05 whereas the other
group, vertical and 135◦ lines are generated twice as often, with probability 0.1
each (Fig. 5, a)). As a result of training, the group of more active neurons is
expected to preferably code for the more frequent data elements, and vice versa
(cf. [14][13]).

a)

b)

Fig. 5. Examples of stimuli x used for training. a) Stimuli generated by two models in
parallel. b) Stimuli generated by a hierarchical model. White means a positive signal
on a grey zero value background.

In the hierarchical paradigm, one of 4 orientations are chosen, which repre-
sents a decision process within a higher hierarchical level. Then, on the lower
level, lines from the formerly chosen orientation only are generated (with prob-
ability 0.3 each). See Fig. 5, b).

3.2 Results of Training

Parallel Structure: Parts a) of Figs. 6 and 7 show the resulting weight matrices
after both nets have been trained on the parallelly generated data. The neurons
have extracted the independent lines from the data. In general, neurons in the
upper half (Kalman filter) or upper third (Helmholtz machine) code for the more
frequent lines (90◦ and 135◦, in polar coordinates), whereas neurons in the lower
parts code for the less frequent lines (0◦ and 45◦).

The reason for this division of labor is that neurons in the upper part are
more active. In case of the Helmholtz machine, the critical factor is the resting
activity, more than the responsitivity to input. The reason for this may be that
in the initial phase of training, input is generally low and the resting activity
accounts for most of the learning.

Hierarchical Structure: Parts b) of Figs. 6 and 7 show the resulting weight
matrices after training on the hierarchically generated data. Only in the case of
the Helmholtz machine, the input is decomposed into the independent lines; the
Kalman filter model generates the data using a superposition of several, more
complex features each of which reflect one orientation but not an individual line.
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Fig. 6. Kalman filter model results. Left: the recognition weight matrices W10 and
right: the lateral recognition weight matrices W11 after training. Each square of the
weight matrices shows a receptive field of one of the 4×6 hidden neurons. Each neuron
has weights to one of the 5 × 5 input neurons (left) and lateral weights (right). Here,
black indicates negative, white positive weights. Contrast is sharpened by a piecewise
linear function such that weights weaker than 10 percent of the maximum weight value
are not distinguished from zero and weights stronger than 60 percent of it appear like
the maximum weight value. Short lines between left and right matrices indicate the
area boundaries.
a) Parallel organization of areas: weights W10 to the inputs generally code for 0◦ and
45◦ lines in the lower half and on 90◦ and 135◦ lines in the upper half. b) Hierarchical
organization of areas: neurons in the lower half code for the input via W10 while mainly
neurons in the upper half group together some of the neurons in the lower half via W11.
Receptive fields which code for lines of 45◦ orientation are marked by a frame.

In the case of the Helmholtz machine, such a superposition cannot generate the
data because the generative weights V are constrained to be positive.

Hierarchical structure has emerged such that, first, the less active neurons
in the lower parts have pronounced weights to the input, and second, the more
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Fig. 7. Helmholtz machine model results. Architecture and display as in Fig. 6. Nega-
tive weights are brighter than the background (frame), positive weights are darker. For
lateral weights (right), zero weights are depicted white (there are no negative weights).
a) Areas have organized in parallel: weights W10 to the inputs code for 90◦ and 135◦

lines in the upper third and predominantly for 0◦ and 45◦ lines in the lower two thirds.
b) Areas have organized hierarchically: neurons in the lower two thirds code for the
input via W10 while four neurons in the upper third each integrate via W11 units from
the lower two thirds which code stimuli of one direction. Neurons which code for lines
of 45◦ orientation are marked by a frame.

active neurons in the upper parts have more lateral weights to the less active
hidden neurons. These lateral connections group together neurons which code
for the same orientation. In the Kalman filter model, results are fuzzy, because
even neurons on the second level code in a distributed manner. Some neurons
also code on both the first and second hierarchical level.

Outliers are found in both models. Note that it is only the data that changed
between the parallel and vertical setting. All parameters and also initial condi-
tions like randomized weights were the same in both settings for each model.
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4 Discussion

Fig. 8 overlays the model computations onto the neural circuitry of the cortex
(cf. [9]). Model weights W and V are identified with bottom-up and top-down
inter area connections, respectively. Computations which are local in the model
are identified to computations within a cortical “column”. This means that they
are localized along the surface of the cortex but extend through the six layers. We
identify layer 4 as the locus of bottom-up information reception and layer 6 as
the locus of top-down information reception. Layers 2/3 integrate both of these
inputs and are the source of the outputs (after transmission through a transfer
function). These go directly to a higher area and via layer 5 (not considered in
the model) to a lower area.

I
II
III

IV

VI
V

2 2u =f(h )

V  u11 2

W  x10 0

u =f(h )1 1x 0

11VW10

11 1W  u

Fig. 8. Proposed computations of neurons, projected into the six cortical layers. The
hierarchical level of the three areas increases from left to right. The drawn connections
are proposed to be the main connections collected from anatomical literature. The area
depicted to the left corresponds to the input layer of the models. There, data x0 origin
from layers 2/3. Alternatively, one can treat this as thalamic input.

Both models, the non-linear Kalman filter model and the Helmholtz machine,
can be identified with this connection scheme and the notations of the model
equations can be applied to Fig. 8. Both models use basic computations like
the scalar product between the inter-area weights and the activations from the
source area of an input. These computations follow directly from the anatomy.

The differences between the models lie in the way bottom-up and top-down
input is integrated within one area. In the Kalman filter model, all activation
values u1, u2 which are needed for training are computed incrementally, thus,
they are maintained over a whole relaxation period. It is biologically implausible
that each hidden neuron keeps track of both values. In the Helmholtz machine
(wake-sleep algorithm), activations from the bottom-up and the top-down path
are computed serially, they flow from one hierarchical level to the next. Even
though a neuron belongs logically to two hierarchical levels, when it is activated
on a certain level it can forget the previous activation on another level. The
update dynamics is biologically plausible and reminiscent of a synfire chain model
[1]. However, during recognition there is no feedback from higher cortical areas.
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In the case of the Kalman filter model, when the learning rule is evaluated, all
relevant terms are present. In the case of the Helmholtz machine, the full learning
rule is split into two parts which are evaluated at separate times, a “wake” mode
when data activate the input units and a “sleep” mode when hidden neurons
become spontaneously active. If data is missing, we have shown that spontaneous
activity on its own can in principle mould the internal structure of the network
[13] in a restricted way.

More subtle differences between the two models certainly cannot show up in
the anatomy: the time order of the neuronal computations, the initialization of
activities and the learning rules. On the other hand, there are restrictions in the
models: only the main streams are considered, lateral connections are omitted.
Furthermore, in the models, no learning takes place within a cortical “column”.
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