
Learning Natural Language Filtering under Noisy ConditionsStefan WermterDepartment of Computer ScienceUniversity of Hamburg22765 Hamburg, GermanyAbstractThis paper describes a novel AI technique, calledplausibility networks, that allows for learning to �l-ter natural language phrases according to prede�nedclasses under noisy conditions. We describe the auto-matic knowledge acquisition for representing the wordsof natural language phrases using signi�cance vec-tors and the learning of �ltering of phrases accord-ing to ten di�erent domain classes. We particularlyfocus on examining the �ltering performance undernoisy conditions, that is the degradation of these �l-tering techniques for incomplete phrases with unknownwords. Furthermore, we show that this technique al-ready scales up for a few thousand real-world phrases,that it compares favorably to some classi�cation tech-niques from information retrieval, and that it can dealwith unknown words as they might occur based on in-complete lexicons or speech recognizers.1 Introduction: The importance oflearning robust language �lteringfrom an application contextSo far there have been relatively few natural lan-guage systems that have been used in real practicecompared to the number of developed natural lan-guage models and prototypes. Two of the most im-portant general problems with current applications innatural language processing are the issues of scalingup and robustness. First, many clever natural lan-guage prototypes have demonstrated clear abilities intheir restricted domains but do not tackle the problemof scaling up vertically or horizontally. By horizontalscaling we mean the transfer of knowledge from onedomain area to a new one, by vertical scaling we meanthe extension for dealing with hundreds, thousands,or even millions of words, phrases, or sentences. Inboth, vertical and horizontal scaling, manual knowl-edge acquisition has been a major factor restricting

the prototypes from scaling up quickly. One promis-ing approach to tackle this problem is to incorporatelearning capabilities and automatic knowledge acquisi-tion directly into the natural language systems. With-out such techniques it seems unlikely that natural lan-guage systems can be scaled up easily.Second, besides the pressing need for scaling up andlearning, there is a second evenly important problemof processing incomplete natural language. Even ifthe domain is restricted the potential number of textor speech utterances which do not follow the assumednatural language constructions is usually large. Theviolation of syntactic, semantic, or even pragmatic reg-ularities in natural language is the norm and thereforeshould receive a primary place in processing naturallanguage. Furthermore, dealing with unknown wordsis an important general requirement for natural lan-guage systems since either knowledge sources may notbe complete (e.g., lexicons) or may not be able to ana-lyze a word (e.g., speech recognizers). In this paper weconcentrate on learning the semantic �ltering of nat-ural language phrases under noisy incomplete condi-tions and we particularly focus on learning a semanticclassi�cation of complete and incomplete phrases. Wewill describe the training and testing of a substantialnumber of phrases taken from a real-world library cor-pus and we examine to what extent the network candeal with gradually increasing noise in the form of un-known words. Finally, we will relate our approach toprevious natural language techniques for dealing withill-formed incomplete input and to potential bene�tsfor building speech language systems.2 Learning natural phrases in plausi-bility networksIn this paper we address the issues of scalingup and robust processing in natural language sys-tems by incorporating automatic knowledge acquisi-tion and fault-tolerant training directly into plausi-



bility networks. Plausibility networks are part of theoverall framework SCAN, a Symbolic ConnectionistApproach to learning structural, semantic, and con-textual interpretations of Natural language [9] [10].Here we concentrate on learning semantic class as-signments as an example for integrating techniquesof automatic knowledge acquisition and fault-toleranttraining into natural language systems.2.1 Automatic knowledge acquisition asthe basis for scaling upIn order to deal with the problem of scaling up we�rst had to choose an area which contained a wholevariety of real-world natural language constructionsfrom di�erent domains. Furthermore, this area shouldenable us to clearly evaluate the performance. Wechose the task of �ltering natural language titles froma university library classi�cation since this classi�ca-tion contains many thousand German and English ti-tles as natural language phrases and since the prede-�ned association of each title with a certain semanticclass allows for a clear performance evaluation. Thesemantic classes (domains) were theology/religion TR,history/politics HP, law LA, mathematics MA, chem-istry CH, computer science CS, electrical engineeringEE, materials/geology MG, art/architecture AA, andmusic MU.Each word in a phrase was represented with anautomatically acquired 10-element signi�cance vectorwhich is part of the incremental input to plausibilitynetworks (see �gure 1). Each element in the signi�-cance vector of a word represented the normalized fre-quency of this particular word across the ten semanticclasses of the library corpus. This word representationmay be less detailed than a manually encoded seman-tic feature vector speci�cally designed for each word,but signi�cance vectors have the advantages of auto-matic acquisition and primary encoding of class sig-ni�cances for words. Furthermore, our word represen-tations re
ect more directly the signi�cance of certainwords for certain classes: domain-independent wordslike \in" or \and" show relatively low signi�cance val-ues across all classes while domain-dependent wordslike \theorem" are mainly signi�cant for mathematicsand partially for computer science but not for arts andreligion.After the word representation had been acquiredautomatically, the main task of �ltering phrases ac-cording to their semantic classes had to be learned.Simple recurrent networks have been shown to be pow-erful methods for processing 3-word sequences from asmall arti�cial corpus [2]. Based on simple recurrent
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Figure 1: General structure of a recurrent plausibilitynetworknetworks we derived the general plausibility networkswhich use supervised learning [5] for generalizing regu-larities from single instances and which contain simplefeedforward models and simple recurrent networks asspecial cases [10]. Plausibility networks can consist ofan arbitrary number of hidden layers and an arbitrarynumber of recurrent connections (context layers CL)which therefore allow to process multiple precedingcontexts. Plausibility networks are used for plausibleclassi�cation tasks and the general version of plausi-bility networks is shown in �gure 1.Each phrase was incrementally presented to a plau-sibility network: at the input layer each word repre-sentation of a phrase was associated with its desiredsemantic class at the output layer. The input layercontained 10 units for the word representation, theoutput layer 10 units for the desired semantic classes.In each training step the current activation of the unitsof the hidden layer was saved in a context layer andrecurrently fed into the network for the subsequentword/class association. These recurrent connectionsenabled the network to integrate the preceding con-text of a word during the learning of the class assign-ment to a phrase. Furthermore, this training regimeallowed the network to learn to make a class assign-ment as early as possible.In our experiments we used 2000 English and Ger-man phrases from the library corpus. 1000 phrases



were used for training and 1000 were reserved for test-ing new phrases. The phrases of the test set (and theirrepresentations) were not part of the training set. Var-ious architectures and parameter settings were testedand a network with 10 units in the hidden layer anda single context layer performed best. After trainingthe plausibility network for 400 cycles using the BP-training procedure [5] and a learning rate of 0.000001for 200 epochs and 0.00001 for 200 epochs, the net-work could assign the correct semantic context classat the end of most phrases. Only 2.4% of the phrasesof the training set and 5.5% of the test set had anincorrect �nal class assignment. These results weretaken as a benchmark for our question to what ex-tent this network architecture could deal with noisyincomplete and incorrect phrases.2.2 Fault-tolerant incomplete training forrobust processingWe will now focus on examining fault-toleranttraining in order to examine robust processing. We in-troduced noise to the network in the form of unknown\empty" words. This represents an important test forthe robustness behavior since unknown words can oc-cur because of incomplete lexicons, incomplete priorinput analysis as in speech recognizers, etc. Further-more, unknown words modify the sequential order ofsemantic preferences in phrases. Unknown words wererepresented by a signi�cance vector whose units hadthe value 0. We introduced several degrees of noise inthe form of unknown words into our original corpusof 2000 titles. Randomly we replaced 5%, 10%, and20% of the words of the title phrases before trainingand testing. The same network architecture with thesame learning rate was used in order to allow a clearcomparison of the degradation under noisy conditions.A summary of the results on the training phrases andthe test phrases is shown in table 1.As we described above the bottom line for completephrases is 2.4% error rate on the training phrases and5.5% on the test phrases. The network can deal withnoisy unknown phrases depending on the added noise.Table 1 shows that 5% more noise just lead to 1.5%(3.9% - 2.4%) performance loss on the training phrasesand 0.9% performance loss on the test phrases. Simi-larly 10% noise lead to only 4.2% performance loss onthe training phrases and only 2% on the test phrases.Finally 20% noise provide just 4.7% and 6.7% less per-formance. That is, of course unknown words reducethe performance of the network, however, it is impor-tant to point out that the degradation of the networkis graceful since the performance of the network de-

Percentage Error rate Performanceof added noise training loss training0 2.4 -5 3.9 1.510 6.6 4.220 7.1 4.7Percentage Error rate Performanceof added noise testing loss testing0 5.5 -5 6.4 0.910 7.5 2.020 12.2 6.7Table 1: Performance of the recurrent plausibility net-work for unrestricted phrasesgrades much less than the percentage of added noise.The reason for this graceful degradation and robustbehavior is the preceding context of phrases learnedin the context layer in the plausibility network. Forunknown words a correct hypothesis about the currentsemantic context class can only be made based on thecontext since the vector of an unknown word does notprovide any activation for the network. In the follow-ing examples we will analyze various noisy examplesin more detail. These examples were all taken fromthe test set using 10% noise of unknown words.2.2.1 Complete examples without noiseFirst, we show two phrases without unknown words.Since the start of the two phrases (\the" and \intro-duction to") does not contain words with a signi�cancefor a certain class a class is not yet assigned (markedby \-*"). Only after signi�cant words have been foundthe network can correctly assign the music class MUand the mathematics class MA respectively.1. The -*music MUof MUafrica MU



2. Introduction -*to -*numerical MAlinear MAalgebra MAand MAoptimisation MA2.2.2 Examples with single unknown wordsWhile the �rst two phrases do not contain any noiseall the following phrases demonstrate the ability ofthe network to deal with unknown words. Examples 3and 4 show two phrases which start with \introductionto" for which the class electrical engineering EE andmathematicsMA can only be assigned after signi�cantwords for these classes have been seen (\robot" and\probability"). However, there is also one unknownword within each example 3 through 7. The unknownwords are illustrated as \- - -"; the original word isshown in brackets behind the unknown words. In theseexamples the network assigns the correct class even fornoisy phrases with one unknown word. This processis independent from the semantic classes: electricalengineering EE, mathematics MA, chemistry CH, andarts and architecture AA in these examples.3. Introduction -*to -*robot EEprogramming EEin EE--- (Basic) EE4. Introduction -*to -*probability MA--- (models) MA5. The -*chemistry CHof CHthe CHcatalyzed CHhydrogenation CHof CHcarbon CH--- (monoxide) CH

6. Improvement MA--- (of) MAthe MAaverage MAlinkage MAmethod MA7. A -*history -*of -*--- (western) -*architecture AA2.2.3 Examples with double unknown wordsThe examples so far have illustrated that the networkcan still assign the correct class to phrases if a singleword is unknown. The recurrent knowledge of thecontext layer of the network allows for representing thepreceding context and for keeping the current class.Without the recurrent architecture of the network thisbehavior would not be possible. In the next set ofphrases we examine the behavior for more unknownwords.8. Photometric CHmethods CHin CHinorganic CH--- (trace) CH--- (analysis) CH9. Hybrid MAand MA--- (mixed) MA--- (finite) MAelement MAmethods MA10.Communicating EE* CS--- (with) EE* CSdatabases CSin CS--- (natural) CSlanguage



11.--- (the) -*--- (politics) -*of -*public -*expenditure HPExamples 8 to 11 show that the recurrent hiddenlayer of the plausibility network can also bridge twounknown words, even if they occur in a row as in exam-ples 8 and 9. Example 10 shows that the network canalso assign multiple classes if the words are signi�cantfor di�erent classes. In this case \communicating - - -"could in fact start a phrase for electrical engineeringEE and computer science CS. Only when more speci�cknowledge is available (\databases ...") the networkvotes for a computer science class alone. Example11 illustrates that initial unknown words can be dealtwith (\-*") as long as some class-speci�c knowledgeabout the class history/politics HP is available later.2.2.4 Examples with triple unknown wordsand examples for mistakesExamples 12 and 13 show that the plausibility net-work can even deal with three unknown words in arow and assign the desired classes computer scienceCS and music MU. Examples 14 and 15 show a simi-lar behavior for two German phrases. Finally, we alsoshow examples 15 and 16 that illustrate two of the re-maining mistakes. In example 15, the subphrase \DiePolizei" (the police) is assigned to the law LA classalthough the given library classi�cation assigned it tothe history/politics HP class. Since this incompletephrase does not contain further signi�cant knowledgethe network stays with this class assignment. How-ever, we should note, that - although this example iscounted as a mistake with respect to the library classi-�cation - this title might in fact be part of a law class.Finally, the last example shows another �nal mistakebased on the underspeci�ed contents of the word \en-gineering". Using only this initial word followed bythree unknown words the network can not assign aparticular class, since engineering occurs across manydi�erent classes (e.g. electrical engineering EE, math-ematics MA, computer science CS, materials/geologyMG...). Since this is the only speci�c knowledge forthe network, it is not possible to assign a certain class,although the complete title \engineering compositematerials" could be assigned to the MG class by theplausibility network.

12.Diagonalization CS--- (over) CS--- (polynomial) CS--- (time-computable)CSsets CS13.--- (a) -*--- (generative) -*--- (theory) -*of -*tonal MUmusic MU14.Historische HPLeitlinien HPfuer HP--- (das) HP--- (Militaer) HPder HP--- (neunziger) HPJahre HPEnglish: Historical guidelines forthe armed forces of the 90ies15.Die -*Polizei LA* (should be HP)--- (in) LA*--- (der) LA*--- (Bundesrepublik) LA*English: The police in Germany16.Engineering -*--- (composite) -*--- (materials) -*3 Discussion: comparison with pre-vious e�orts in robust natural lan-guage �lteringThere are several approaches for natural languageprocessing which address the issues of scaling up androbustness. First, approaches from information re-



trieval compute super�cial representations for match-ing queries and documents, that is, text �ltering orclassi�cation according to the desired response for aquery (e.g., [6]). Information retrieval approacheslike boolean keyword techniques or statistical weight-ing techniques have the potential of being fast, easyto compute, and robust but rely crucially on largerdocuments rather than phrases. In many classi�cationtechniques from information retrieval, single terms arecombined, for instance with boolean operators or sta-tistical measures. However, usually the sequential or-der in phrases is not taken into account and singlephrases like \computer century" and \century com-puter" are interpreted equally for retrieval. One mainreason why this can be done in information retrievalis the larger size of documents for classi�cation. How-ever, for classifying phrases there is much less contextthan in documents so that the sequential order shouldbe exploited for �nding the class of a phrase. Tech-niques from information retrieval like average vectorweighting and average vector weighting after the elim-ination of stop word lists do not consider sequentialityand the results for these techniques are independentof the order of the words. Average vector weightingand average vector weighting after stop word elimina-tion were tested on our test set and showed just 49.4%and 72% of correct class assignments compared to the94.5% of the plausibility networks. These examina-tions suggest that information retrieval techniques -while fast, robust, and scalable for document �ltering- cannot directly be used for phrase �ltering.Second, approaches of symbolic semantic analyzingemphasized the predictive semantics of a language seg-ment and therefore relaxed constraints on the requiredorder of grammatical constituents. These approachestackled the classi�cation of complete stories based onsketchy scripts [1], pattern rules [3], and conceptualanalyzing [4]. For instance, a system CONSTRUEis described in [3] which focused on the classi�cationof stories into speci�ed classes based on handcodedpatterns. A pattern contained weighted words andphrases that could occur in the stories. A patternmatch was suggested by probable and possible pat-terns of a story. Furthermore detailed patterns couldthen decide about the more speci�c class. In general,this approach worked well, but relied a lot on man-ual encoding of patterns. For instance, the knowledgeengineering e�ort for a redevelopment of a story classi-�cation system CONSTRUE [3] has been estimated as8 person months. Our described �ltering techniqueswould need much less knowledge engineering due tothe automatically generated word representations and

the learning plausibility networks. In summary, tech-niques from information retrieval and symbolic se-mantic analyzing as outlined above have a potentialfor scaling up and robustness due to their broad andweak techniques. However, techniques from informa-tion retrieval crucially rely on larger text documentsfor classi�cation and techniques from symbolic seman-tic analyzing often use manually-encoded representa-tions rather than automatically acquired or learnedrepresentations.Furthermore, our techniques and experiments pro-vide a test for integrating robustness and learning ca-pabilities directly in bigger architectures for speechand language (e.g., [11] [7] [8]). Current speaker-independent continuous speech recognizers are still un-reliable due to the complexity of the mapping from thesignal to a sequence of words. For instance, di�erentspeeds, dialects, accents, moods, word use, grammat-ical competence, use of prosody etc. in
uence thismapping. Therefore, in many cases speech recogniz-ers produce word hypotheses together with their con-�dence values but many con�dence values are undera certain threshold of reliability. In these cases of un-certain incomplete hypotheses of word sequences a fur-ther semantic or contextual analysis has to deal withunknown words. Since connectionist plausibility net-works have been shown to be able to process phraseswith unknown words in an incremental fault-tolerantmanner, they have the potential for dealing with un-certain or unknown speech input.4 ConclusionsWe have used plausibility networks as a novel AItechnique for addressing the crucial issues of scalingup and robustness in practical natural language sys-tems. Scaling up and robustness were identi�ed as twomajor problems that have restricted the developmentof real-world natural language systems. In order to ad-dress these issues we have used automatic knowledgeacquisition for scaling up and fault-tolerant trainingfor providing robustness. These techniques showedgood performance using several versions of a corpusof 2000 real-world title phrases. We believe that thiskind of bottom-up learning in plausibility networks (1)has demonstrated real-world capabilities based on asubstantial amount of library titles (2) and more gen-erally has a lot of potential for related real-world taskslike processing language based on incomplete knowl-edge sources (e.g., lexicons) and incomplete analysis(e.g., speech recognizers).
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