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A Hybrid Symbolic/Connectionist Model for
Noun Phrase Understanding

STEFAN WERMTER & WENDY G. LEHNERT

This paper describes a hybrid model which integrates symbolic and connectionist
techniques for the analysis of noun phrases. Our model consists of three levels: (1) a
distributed connectionist level, (2) a localist connectionist level, and (3) a symbolic level.
While most current systems in natural language processing use technigues from only one
of these three levels, our model takes advantage of the virtues of all three processing
paradigms. The distributed connectionist level provides a learned semantic memory
model. The localist connectionist level integrates semantic and syntactic constraints. The
symbolic level is responsible for restricted syntactic analysis and concept extraction. We
conclude that a hybrid model is potentially stronger than models that rely on only one
processing paradigm.

KEYWORDS: Natural language processing, connectionism, hybrid models, parallel distri-
buted processing, relaxation networks, backpropagation, connectionist/symbolic sys-
tems.

1. Introduction

In recent years there has been a growing interest in using connectionist techniques for
natural language processing. While traditionally the analysis, representation, and
generation of patural language were exclusively dominated by symbolic approaches,
lately connectionist techniques have received increased attention because of their
attractive properties including noise resistance, learning behavior, neural plausibility,
associative retrieval, and knowledge integration.

There have been at least two main directions of work in connectionist artificial
intelligence: implementation-oriented and task-oriented. Implementation-oriented con-
nectionism tries to show how symbolic representations and computations can be
implemented with connectionist techniques. Connectionist systems have been de-
veloped to implement semantic networks (Shastri, 1988), rule-based systems (Tour-
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etzky & Hinton, 1988; Shastri & Ajjanagadde, 1989), representation languages like
KL-ONE (Derthick, 1988), hierarchies and tree-like structures (Hinton, 1988; Pollack,
1988). Other connectionist systems show how symbolic computations can be imple-
mented, e.g. variable binding (Touretzky & Hinton, 1985), sequential processing
(Jordan, 1986; Elman, 1988), and recursion (Pollack, 1989). This implementation-
oriented research demonstrates that connectionist models can, at least to a certain
extent, implement symbolic structures and computations.

Task-oriented connectionism tries to show how specific tasks can be modeled with
connectionist techniques. Numerous tasks in natural language processing have been
attacked in recent years, e.g. parsing (Fanty, 1985; Hanson & Kegl, 1987; Howells,
1988; Kwasny, 1988), word sense disambiguation (Corttrell & Small, 1983; Bookman,
1987), anaphor resolution (Allen, 1987), compound noun understanding (Wermter,
1989b), sentence generation {Gasser, 1988), script and concept understanding (Dolan
& Dyer, 1988; Miikkulainen & Dyer, 1989), language acquisition (Rumelhart &
McClelland, 1986), and role assignment (McClelland & Kawamoto, 1986; St John &
McClelland, 1988). These approaches demonstrate that connectionist models are
useful for certain restricted tasks in natural language processing.

Implementation-oriented and task-oriented connecticnism both demonstrate
several advantages and disadvantages of symbolic and connectionist processing tech-
niques. Although purely connectionist systems (Waltz & Pollack, 1985; Sejnowski &
Rosenberg, 1986; Hanson & Kegl, 1987) and purely symbelic systems (Charniak,
1983; Dyer, 1983; Riesbeck & Martin, 1986; Grosz et al., 1987; Hirst, 1987) have both
shown impressive results, it has become obvious that connectionist techniques and
symbolic techniques exhibit complementary strengths (Dyer, 1988; Lehnert, 1988;
Touretzky, 1988; Hendler, 1989). While symbolic processing has advantages in
representing schemata, recursive structures, variable binding, inheritance hierarchies,
and sequential control, connectionist processing has advantages in associative retrieval,
noise resistance, knowledge integration, generalization, and learning. Because of these
mutually complementary properties, hybrid symbolic/connectionist systems promise to
be more powerful than systems operating within only one paradigm.

In this paper we present a hybrid model for understanding noun phrases. This
model combines localist and distributed connectionist techniques with symbolic tech-
niques. The model consists of three levels: (1) distributed connectionist networks are
used to learn semantic relationships between nouns, (2) localist connectionist networks
integrate semantic constraints and syntactic constramts, and (3) symbolic techniques
provide a restricted syntactic analysis and concept extraction. In Section 2 we describe
our domain and our noun representation, in Section 3 the distributed connectionist
level, in Section 4 the localist connectionist level, and in Section 5 the symbelic level.
We show how a hybrid model can be used to understand noun phrases from a scientific
technical domain.

2. The Domain: Noun Phrases in Scientific and Technical Sublanguages

Noun phrases are the dominant source of information in scientific and technical
sublanguages (Hirschman, 1986). Because noun phrases are so important, natural
language processing systems in these domains need a powerful and flexible model for
understanding noun phrases. To investigate such a model we chose noun phrases from
the NPL (National Physics Laboratory) corpus (Sparck Jones & Van Rijsbergen,
1976) as our domain. The NPL corpus contains queries and titles of scientific articles
from the physical sciences. For example:



Hybrid Noun Phrase Analysis 257

e Effects of electromagnetic fields on turbulences in gases.

e Note on the cause of ionization in the F-region.

e Radio emission by plasma oscillations in nonuniform plasmas.

e Calculation of fields on plasma ions by collective coordinates.

o An iterative analogue computer for use with resistance network analogues.

Syntactic, semantic, contextual, and world knowledge are all necessary for understand-
ing complex noun phrases containing multiple prepositional phrases. In the past, several
techniques have been developed to describe the problem of attaching prepositional
phrases to the correct constituents (Prepositional Phrase Attachment; for instance,
Kimball, 1973; Frazier & Fodor, 1978; Ford et al., 1982; Crain & Steedman, 1985; Wilks
et al., 1985; Dahlgren & McDowell, 1986; McClelland & Kawamoto, 1986; Schubert,
1986; Hirst, 1987; Lehnert, 1987). Our hybrid approach is different from these
approaches because we integrated distributed connectionist networks, localist connec-
tionist networks, and symbolic techniques for understanding noun phrases.

Now we describe the representation of nouns in our domain of the physical
sciences. We represent a noun as a binary vector of 16 features. This feature
representation was developed as follows. First, we used thesaurus knowledge (EJC,
1967, NASA, 1985) for classifying the nouns occurring in the noun phrases. We
categorized each noun according to the most general term in the hierarchy that
describes the noun. This step abstracted specific nouns like ‘carbon resistor’, ‘noise
fluctuation’, and ‘transistor’ to more general terms like ‘resistor’, ‘variation’, and
‘semiconductor device’. Then, we grouped these most general thesaurus terms into 16
classes which form the basis of our feature representation. These 16 features describe
the basic meaning of a noun in our domain.

For example, the term ‘carbon resistor’ is dominated by ‘resistor’ at the most
general level and ‘transistor’ is dominated by ‘semiconductor device’. ‘Resistor’ and
‘semiconductor device’ belong to the class (and therefore have the feature) ELECTRIC
OBJECT. Each noun can have multiple features. For instance, the noun ‘acceleration’
has the features CHANGING-EVENT and ENERGY. Table I shows all features aleng with
examples taken from the corpus. Having described the domain enceding, we now turn
to a description of our three-part model.

Table I. Semantic features of the nouns and examples

Semantic features Examples

MEASURING-EVENT Observation, investigation, research

CHANGING-EVENT
SCIENTIFIC-FIELD
PROPERTY
MECHANISM
ELECTRIC-OBJECT
PHYSICAL-OBJECT
RELATION
ORGANIZATION-FORM
GAS
SPATIAL-LOCATION
TIME

ENERGY

MATERIAL
ABSTRACT-REPRESENTATION
EMPTY

Amplification, acceleration, loss
Mechanics, ferromagnetics

Intensity, viscosity, temperature
Experiment, technique, theorem
Transistor, resistor, amplifier

Earth, crystal, vehicle, room

Cause, dependence, interaction
Layer, level, stratification, F-region
Air, oxygen, atmosphere, nitrogen
Antarctic, earth, range, region, source
June, day, time, history

Rediation, ray, light, sound, current
Aluminum, water, carbon, vapor
Note, data, equation, term, parameter
Cavity, vacuum
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3. Learning Semantic Prepositional Relationships in Distributed
Connectionist Networks

In this section we describe semantic prepositional relationships and examine how they
can be learned. Based on our feature representation, backpropagation networks learn
underlying regularities of prepositional relationships from a corpus of training noun
phrases. The learned regularities are used for attaching prepositional phrases to
appropriate constituents within new noun phrases.

3.1. Semantic Prepositional Relationships

Within noun phrases, nouns can be connected with prepositions, as in ‘Symposium on
hydrodynamics in ionosphere’. Understanding these noun phrases relies on under-
standing prepositional relationships. A prepositional relationship is the semantic rela-
tionship between the features of two nouns which are connected by a preposition.
Prepositional relationships can be either plausible or inplausible. Plausible preposi-
tional relationships are possible relationships, such as ‘symposium on hydrodynamics’.
Implausible prepositional relationships are relationships which are not reasonable.
‘Symposium in ionosphere’ is implausible because symposiums do not take place in the
outer atmosphere.

Knowing about the plausible prepositional relationships ‘symposium on hydrody-
namics’ and ‘hydrodynamics in ionosphere’ and knowing about the implausible preposi-
tional relationship ‘symposium in ionosphere’, we must interpret the noun phrase
‘symposium on hydrodynamics in ionosphere’ so that the prepositional phrase ‘in
ionosphere’ attaches to ‘hydrodynamics’, but not to ‘symposium’. Since knowledge
-about the plausibility of the prepositional relationship between two nouns can help to
rule out implausible interpretations of the whole noun phrase, we have trained
backpropagation networks to learn the plausibility of prepositional relationships.

3.2. Learning Semantic Prepositional Relationships with Backpropagation Networks

We use backpropagation networks (Rumelhart ez al., 1986) to learn the plausibility of
prepositional relationships within noun phrases. For each preposition there is one
backpropagation network that determines the plausibility of the prepositional relation-
ships (see Figure 1). One network consists of three layers of units. The input layer
consists of 32 binary units (values 0 and 1) representing 16 features for each of the
two nouns. The single real-valued output unit determines whether the prepositional
relationship is plausible (value 1) or implausible (value 0). Twelve real-valued hidden
units encode the mapping from the input units to the output units from a training set.
All levels in the backpropagation network are fully connected. We need one training
set of prepositional relationships for each preposition.

First we concentrated on the three prepositions ‘in’, ‘of’, and ‘on’. We randomly
extracted 50 noun phrases from our corpus which contained only these three preposi-
tions, for instance:

o Note on the cause of ionization in the F-region.
o International symposium on fluid mechanics in the ionosphere.

Based on these 50 noun phrases, we built one training set for each preposition. Each
training example in the training set consists of two feature vectors for the two nouns
together with the binary plausibility value for the prepositional relationship between
these nouns. The plausibility value is set to 1 if the prepositional relationship in the
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Output unit
(Plausibility value)

‘Wts (Semantic fea‘tyy'

‘ Noun1 in Noun2 ‘

Figure 1. Backpropagation network for the prepositional relationships of ‘in’.

training set is plausible and is set to 0 otherwise. From now on and where the context
is clear, we will use the term prepositional relationship for both the semantic
relationship between the two nouns and the representation of this semantic relationship
as a training instance. Each noun in the 50 noun phrases is stored in a lexicon with its
name and the associated 16 features. The following examples show two nouns with
their features using the same feature order as in Table 1.

F-region (00000010111000600)
Ionization (0101100000000000)

Now we will describe the training for the prepositional relationships for ‘in’. There
were 124 prepositional relationships for the preposition ‘in’ in the 50 noun phrases.
Since most of these prepositional relationships in the 50 existing noun phrases are
plausible prepositional relationships, most training examples would be plausible prepo-
sitional relationships.! We added the 124 inverse prepositional relationships to the 124
prepositional relationships so that the training set for ‘in’ consists of 248 prepositional
relationships. An inverse prepositional relationship is a prepositional relationship in
which the order of the two nouns is changed. Including inverse prepositional relation-
ships in the training set prevents the network from being overloaded with too many
plausible relationships since most of the inverse prepositional relationships are im-
plausible. We illustrate the prepositional relationships and the inverse prepositional
relationships for the preposition ‘in’ for our example ‘Note on cause of ionization in
F-region’ together with their plausibility values in Table II.

3.2.1. Training results for the prepositional relationships for ‘in’. Now we show the
results for the training set with the 248 prepositional relationships for ‘in’. We

Table II. Prepositional relationships for ‘in’ in the phrase ‘Note on
cause of ionization in F-region’

Prepositional relationships Inverse prepositional relationships
Note in F-region Q F-region in note 0
Cause in F-region 1 F-region in cause 0

Ionization in F-region 1 F-region in ionization 0
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conducted three runs training three backpropagation networks with the prepositional
relationships for ‘in’. The three different runs show that our training does not depend
on a fortuitous initialization of the weights in the network. In each run the backpropa-
gation network was trained for 1600 epochs (396 800 prepositional relationships) with
the learning rate 7=0.01 and weight change momentum a=0.9. The weights in the
backpropagation network were updated after each complete epoch.

After the training phase was completed, the trained networks were tested with the
training set. To interpret the tests we introduce the terms ‘error tolerance’, ‘error rate’,
and ‘total error’. The error tolerance determines how much the actual outcome of the
outpur unit could deviate from the desired outcome 0 for an implausible prepositional
relationship and frem the desired outcome 1 for a plausible prepositional relationship
and still be considered correct. The.error rate is the percentage of incorrectly classified
prepositicnal relationships in the training set or in the test set. The total error is the
total sum squared error on the complete training set as defined in Rumelhart ez al.
(1986, p. 323).

For the training set, the three networks of the three runs showed an error rate
between 6.5% and 6.9% using an error tolerance of 0.49, and between 7.3% and 7.7%
using an error tolerance of 0.3 (see Table III). A network which was not trained at all
was tested with the training set and showed an error rate of 54.0% for the error
tolerance 0.49, and an errer rate of 73.4% for the error tolerance 0.3. These tests with
the training examples demonstrate that an effective representation for prepositional
relationships can be learned.

Table III. Test results for the training set for the prepositional
relationships of ‘in’

Run 1 2 3 No learning
Total error at the start of the training 77.8 62.5 70.1 —
Total error at the end of the training 6.6 7.1 8.1 —
Error rate for the training set for

error tolerance 0.49 6.9 6.5 69 54.0
Error rate for the training set for

error tolerance 0.30 7.7 7.3 7.7 734

After the networks had been tested with the 248 training examples, we tested the
networks with 30 new test examples which were not part of the training set. For the
test set we chose 15 plausible and 15 implausible prepositional relationships from our
corpus with the only constraint that the prepositional relationships in the test set were
not part of the training set. Examples from the test set are shown in Table IV.

Table IV. Examples of the test set for the prepositional felationships

for ‘in’
Plausible prepositional relationships Implausible prepositional relationships
Effect in ferromagnetics Japan in investigation

Distortion in amplifier Power-supply in diode
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The test results with 30 new prepositional relationships showed an error rate
between 16.7% and 26.7% for the error tolerance 0.49 and between 20% and 30% for
the error tolerance 0.3 (see Table V). The performance of the trained network on the
new test examples can be demonstrated by comparing the described error rates with an
untrained network. Training for 1600 epochs reduces the error rate for test examples
which were not in the training set from 53.3% to 16.7% for an error tolerance of 0.49,
and from 70.0% to 20.0% for an error tolerance of 0.3.

Table V. Test results for the test set for the prepositional relationships of ‘in’

Run 1 2 3 No learning
Ercror rate for the test set for error tolerance 0.49 16.7 26.7 16.7 53.3
Error rate for the test set for error tolerance 0.30 20.0 30.0 20.0 700

To sum up the results for training the backpropagation networks with prepositional
relationships for ‘in’y we have shown that for an error tolerance 0.49 trained networks
can provide the plausibility value of a prepositional relationship correctly in about 93%
of the prepositional relationships in the training set and in about 83% of the
prepositional relationships in the test set.

3.3, Learned Internal Representations for the Prepositional Relationships for ‘in’

After training had been completed we examined the internal representation in the
backpropagation network. Figure 2 illustrates the activation values of the hidden units
for 10 training examples. The first five rows show the hidden units for training
examples with a plausible prepositional relationship, the last five rows show the hidden
units for training examples with an implausible relationship.

B S (WAVE IN PLASHA)

IS (USE IN VEHICLE)

Il (PROPAGATION IN I10ONDSPHERE)
I E (LIFE [N SATELLITE)

S (EQUILIBRIUM IN AIR)

ol ESE

i (F-REGION IN NOTE)
(IONOSPHERE [N SYMPOSIUM)
(ATMOSPHERE IN WIMD)
(SOLID IN WORK)

2 (E-LAYER IN REMRRK)

Figure 2, The hidden units for prepositional relationships from the training set.

Each row contains the 12 hidden units for one training instance. The hidden units
have activation values between 0 (white) and 1 (black). Comparing the internal
representations of the plausible prepositional relationships and the implausible prepo-
sitional relationships we found that plausible relationships correlate with a low value
for hidden unit 2 and a high value for hidden unit 12. Implausible relationships
correlate with a high value for hidden unit 2 and a low value for hidden unit 12. We do
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not claim that these two units are exclusively responsible for the distinction between
plausible and implausible prepositional relationships. However, there is a strong
tendency for these two units at least to play an important role in the internal
representation of this distinction.

After looking at the hidden units with respect to the plausibility of a prepositional
relationship we asked if the hidden units represent different word senses for plausible
prepositional relationships. We used a simple clustering algorithm to cluster the
vectors of 12 hidden units of the plausible prepositional relationships. This clustering
algorithm takes a set of prototype vectors as its input and classifies all instances
according to the minimal distance to the given prototype vectors. An instance is
assigned to the class with the smallest distance-to the prototype vector. This distance is
computed as the sum of the squared differences between the feature vector of the
current instance and the feature vector of the prototype. Although this simple
clustering method relies on knowing ‘good’ prototype vectors, this method serves as a
first approximation for a classification of the hidden units.

In Figure 3 we show examples of the internal representation for three clusters. The
prototypes for the three clusters are the prepositional relationships ‘effect in rectifier’,
‘radiation in atmosphere’, and ‘effect in beam’. These prototypes were chosen because
they illustrate different interpretations of ‘in’: ‘in a physical/electrical object’, ‘in a
spatial location/gas’, and ‘in energy’, respectively. In comparing the hidden units of
these clusters, we found that units 6 and 9 essentially contain the information for
differentiating these interpretations. In the first cluster, unit 6 has a low activation value
and unit 9 has a high activation value; in the second cluster, unit 6 has a high activation
value and unit 9 has a low activation value; and in the last cluster, both units 6 and 9
have low activation values. Although we found a few instances in the training set which
use different units to distinguish between these clusters, most prepositional relationships
in the three clusters can be differentiated solely based on the units 6 and 9.

N (EFFECT I[N RECTIFIER)
B8 Bl (DEPENDENCE IN TRANSISTOR)
N # (FORCE IN RESONATOR)

NN (BIFURCATION IN E-LAYER)
‘B NX Il (INTERACTION IN [ONOSPHERE)
“: [ (RADIATION IN ATMOSPHERE)

% I (EFFECT IN BEAM)
S (INTERACTION IN PLASMA)
BN (EFFECT IN FIELD)

Figure 3. The hidden units for plausible prepositional relationships from three
clusters.

To sum up, we have shown that specific hidden units in the distributed internal
representation of the learned prepositional relationships are involved in encoding the
plausibility of a relationship and in encoding specific interpretations for the preposi-
tional relationship ‘in’. Backpropagation networks which are trained for 1600 epochs
can learn effective distributed representations of prepositional relationships. We
demonstrated that these network representations currently reach a performance of
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about 93% (error rate about 7%) on the training set of prepositional relationships and
about 83% (error rate about 17%) on the test set of prepositional relationships.
Although we describe in detail only the training results for the prepositional relation-
ships for ‘in’, we showed elsewhere (Wermter, 1989b) that other prepositional
relationships behave very similarly. Experiments with semantic relationships for seven
prepositions (by, for, from, in, of, on, with) demonstrate that the results for the

prepositional relationships of ‘in’ hold for other prepositional relationships as well.

4, Integration of Semantic Relationships with Syntactic Constraints in
Localist Connectionist Networks

While the previous section focused on learning semantic prepositional relationships
with backpropagation networks, we now turn to a description of the localist network
level. First, we briefly describe some syntactic constraints in noun phrases. Then, we
show how simple syntactic constraints and learned semantic constraints can be
integrated in a localist connectionist network for disambiguating noun phrases.

4.1. Syntactic Constraints

The two syntactic constraints we consider are the locality constraint and the no-
crossing constraint. The locality constraint says that a prepositional phrase is more
likely to attach to a close preceding noun than to a distant preceding noun. For
instance, in the noun phrase “Techniques for measurements in discharges’ the preposi-
tional phrase ‘in discharges’ might attach to ‘measurements’ or to ‘techniques’. The
locality constraint suggests that ‘in discharges’ attaches to ‘measurements’ because
‘measurements’ is closer than ‘techniques’.

The no-crossing constrant (Tait, 1983) for noun phrases means that branches for
attachment do not cross. The following (constructed) example shows a violated no-
crossing constraint:

Influence of the temperature on the electrons in Fahrenheit

~ S~

4.2. Localist Connectionist Networks for the Integration of Multiple Constraints

Localist networks have been used for a number of tasks to integrate multiple
constraints in natural language processing, for instance for sentence understanding
(Waltz & Pollack, 1985; Lehnert, 1987, 1988), for word sense disambiguation (Book-
man, 1987), and for lexical access (Cottrell, 1988). It has been demonstrated elsewhere
that localist networks are useful for integrating semantic and syntactic constraints for
noun phrase disambiguation (Wermter, 1989a). In this section we describe the most
important properties of an efficient localist network that performs noun phrase
disambiguation with fewer nodes (see Figure 4).

Our localist network comnsists of three types of nodes; noun nodes represent the
nouns in a noun phrase, semantic nodes represent the plausibility of prepositional
relationships between nouns, and locality nodes represent the distance between two
nouns in a noun phrase. Each node has an activation potential between @ and 10. A
semantic node in the localist network is initialized with the plausibility value of the
output unit of the appropriate backpropagation network (multiplied by a factor of 10
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Unidirectional Inhibition

Noun Nede
Semantic Node

E Locality Node

Bidirectional Inhibition

Unidjreetional Excitation

[+ T

Bidirectional Excditation

Figure 4, Localist network for the integration of multiple constraints.

to get values between 0 and 10). The higher the plausibility value of a prepositional
relationship, the higher the initialization value for the semantic node. The initialization
of the locality nodes is based on the relative distance between the nouns. The closer
two nouns are in a noun phrase, the higher the initialization value for the locality node
between these nouns. It is important to point out that the initialization of the locality
nodes is fairly independent of specific values (e.g. 6, 4, and 2 in Figure 4). Other
initialization values (e.g. 3, 2, 1 or 8, 4, 2) work as well as long as there is a decreasing
relationship for the distance between the nouns, and as long as all the values are not
too close to the upper and lower bounds of the nodes. Noun nodes are initialized with
0 activation since they serve only as the framework to which semantic nodes and
locality nodes connect. The semantic constraints are encoded as the semantic nodes,
the locality constraints as the locality nodes, and the no-crossing constraints as specific
inhibitory connections between semantic nodes in crossing attachment links (see
Figure 4).

All nodes are connected via inhibitory and excitatory connections, as Figure 4
shows for a network with three prepositions. Each noun node has excitatory attach-
ment links to each noun node of preceding nouns. The semantic nodes in competing
attachment links are inhibitorily connected. The locality nodes provide excitation to
semantic nodes depending on the distance of the attachment. The inhibitory connec-
tion from a semantic node to a locality node prevents the locality node from sending
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too much excitation to the semantic node. Networks for noun phrases with a different
number of prepositions are built in exactly the same systematic manner. The input
nodes are initialized and activation spreads through the network according to a
standard relaxation algorithm (Feldman & Ballard, 1982). After about 20 to 30 cycles
the localist network settles in a global interpretation, and the semantic nodes with the
highest activation values determine the preferred structural interpretation. Examples
of this process and for the interaction of the localist network with the symbolic
structures are given in the following sections.

5. Symbolic Level

The previous two sections explained the connectionist networks for learning semantic
relationships and for integrating semantic and syntactic constraints. In this section we
describe the symbolic level of our model for noun phrase understanding.

In the last two sections we have assumed that the noun phrases for the con-
nectionist networks only consist of nouns and prepositions. However, as our examples
in Section 2 showed, noun phrases often contain other parts of speech as well,
including adjectives, adverbs, and determiners. Although these parts of speech might
contain significant information they are usually less important for the representation of
the essemtial concept of a noun phrase and the structural disambiguation of the noun
phrase. Therefore, the purpose of the symbolic level is to extract the essential sequence
of nouns and prepositions from the complete noun phrase. Then, this essential reduced
noun phrase has the canonical form of nouns and prepositions required for our
connectionist levels.

The first mechanism is an analysis of the noun phrase with respect to its syntactic
constituents. This restricted syntactic analysis is provided by a subsystem of CIRCUS
(Lehnert, 1988), which uses a stack-based architecture to recognize simple syntactic
constituents. Since we want to extract the essential reduced noun phrase from the
complete noun phrase and since we do not need complete parse trees for this
extraction, the restricted syntactic analysis in CIRCUS is sufficient for our purpose.

This subsystem uses a syntactic dictionary and syntactic predictions for identifying
constituents. The syntactic predictions are encoded as requests and the request packet
mechanism of MCELI {Schank & Riesbeck, 1981) is used to process the predicted next
constituents. Before we begin to analyze a noun phrase, an initial syntactic prediction
for the head noun will be on top of the stack. This prediction allows us to skip possible
intervening constituents like adjectives, adverbs, and determiners and stores the head
noun in a global buffer. At this point the current request is removed from the stack. If
a preposition follows, then a new request is pushed on the stack for the following
prepositional phrase. As soon as the next noun is identified it is stored in another
global buffer for this prepositional phrase. This process of adding syntactic predic-
tions, removing the predictions, finding the desired constituents (prepositions and
nouns), and storing them in global buffers is continued until the noun phrase is
completely processed.

Although it might seem that a simple pattern matching algorithm which identifies
nouns and prepositions using a syntactic dictionary might be sufficient, such a simple
appreach does not account for more complicated noun phrases with associated
subclauses or participle constructions. For instance, for the noun phrase ‘the man in
the satellite which blinked in the sun’ we only want to extract ‘man in satellite’ and not
‘man in satellite in sun’, which would be constructed in a simple pattern matching
approach based solely on parts of speech. Using a syntactic prediction for a new
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subclause associated with the relative pronoun ‘which’, it is possible to detect and skip
this subclause so that only syntactically desired constituents are extracted.

While the restricted syntactic analysis transforms a noun phrase into a reduced
noun phrase based on syntactic predictions, a second mechanism can extract the
essential part of this reduced noun phrase based on semantic predictions. The semantic
predictions are associated with words in the semantic dictionary. Semantic predictions
are fulfilled if the current part of speech in the noun phrase is considered essential.
The question of what is considered essential depends on the application and the
domain. For instance, in an information retrieval context we might have queries like:

o Information on papers about turbulences in gas.

In this domain it is not wise to include the nouns ‘information’ and ‘papers’ in a
concept representation since they do not contribute any important distinguishing
information. For this information retrieval task only the nouns that are important for
the domain can fulfill the semantic predictions. In our example these nouns are
‘turbulence’ and ‘gas’, but not ‘information’ and ‘papers’. Therefore ‘turbulence in gas’
is extracted as the essential part of the noun phrase in this application. In general,
these semantic predictions are fulfilled if the current constituent is an essential part of
the noun phrase or if a preceding constituent was identified as an essential part. Both
semanti¢ and syntactic predictions allow us to extract the essential part of a noun
phrase. Specific examples of this level are given in the next section.

6. Operation of the System

In this section we describe the operation of our whole system and show some examples
of its performance. First, we focus on how a typical noun phrase is processed in detail:

e Note on a new cause of increasing ionization in the F-region.

The symbolic level extracts the sequence of nouns and prepositions from this noun
phrase and provides the following noun phrase:

o Note on cause of ionization in F-region

This symbolic level could also skip relative clauses as in ‘ionization in the F-region
which is close to the Antarctic’ or participle constructions as in ‘ionization in the F-
region surrounding the Antarctic’. Then all possible prepositional relationships for the
reduced noun phrase are computed:

e Note on cause

o Cause of ionization

e Note of ionization

o Ionization in F-region
o Cause in F-region

e Note in F-region

The feature representation of each noun in the prepositional relationships is looked up
in the lexicon. Based on these features, backpropagation networks at the distributed
level are initialized for each prepositional relationship. The output of the backpropaga-
tion networks are the plausibility values in the network at the localist level. Locality
nodes and noun nodes are initialized as well. Then the localist network starts
processing, integrates the syntactic and semantic constraints, and stabilizes in a global
interpretation of the noun phrase. The activation of the semantic nodes in the localist
network determines the preferred structural interpretation of the noun phrase. In our
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example there are three semantic nodes that have high activation values after the
relaxation. These nodes correspond to the following interpretation:

Note on cause of ionization in F-region

A S

In the following we show more examples of noun phrases and their structural
interpretation:

(1) Effect of field on turbulence in gas hair —
CONCEPT: effect
OF-REL: field
ON-REL: turbulence
IN-REL: gas
(2) Dependence of amplification in phosphor on intensity —
CONCEPT: dependence
OF-REL: amplification
IN-REL: phosphor
ON-REL: intensity

(3) Distortion in amplifier on satellite in Van-Allen-belt —
CONCEPT: distortion
IN-REL: amplifier
ON-REL: satellite
IN-REL: Van-Allen-belt

(4) Experiment on diffraction of ray in layer —
CONCEPT: experiment
ON-REL: diffraction
ON-REL: ray
IN-REL: layer

The last example (4) shows that not all attachments are necessarily wrong for an
interpretation to be considered incorrect. The first two attachments are correct but ‘in
layer’ should attach to ‘diffraction’ rather than to ‘ray’. Nevertheless, we consider
structural interpretations with at least one wrong attachment to be incorrect. Using
this strict and conservative evaluation we tested our system with 80 noun phrases
containing up to three prepositions. A correct structural interpretationr was assigned for
88% of 50 noun phrases that contained prepositional relationships from the training set
and for 77% of 30 noun phrases that contained prepositional relationships which were
not in the training set. Prepositional phrases can attach to several nouns if only
semantic constraints are considered. The overall strategy is to prefer semantic
constraints over syntactic constraints (locality and no-crossing of branches) and to use
syntactic constraints to favor one of several possible semantic interpretations.

7. Discussion

In this section we first compare our hybrid model with other symbolic models for
structural noun phrase disambiguation. Then we focus on the single levels of our
model and explain why we chose a hybrid three-level model.

Recently there has been a lot of interest in attacking the problem of structural
ambiguity, especially in prepositional phrase attachment (Wilks ez al., 1985; Schubert,
1986; Dahlgren & McDowell, 1986; Jensen & Binot, 1987; St John & McClelland,
1988). All these approaches focus on attaching a single prepositional phrase within a
sentence of the form (NP) (VP) (NP) (PP). Our approach focuses on attaching multiple
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prepositional phrases within noun phrases. Attaching multiple prepositional phrases in
noun phrases is a much harder problem since we cannot rely on predictive verbal
knowledge alone.

Most previous work on prepositional phrase attachment relies on an intuitive
development of symbolic heuristic rules (Wilks et al., 1985; Schubert, 1986; Dahlgren
& McDowell, 1986; Hirst, 1987). Since prepositicnal phrase attachment cannot
reasonably be attacked without semantic knowledge, these rules have to encode the
semantic knowledge and have to be redesigned for new domains. Qur model tackles
this problem by learning and generalizing over semantic constraints and eliminating
knowledge which has to be handcoded.

Another approach for reducing the amount of knowledge engineering can be found
in Jensen & Binot (1987). This approach attacks the problem of acquiring semantic
knowledge for attachments by using definitions in an on-line dictionary. Although this
symbolic approach was shown to attach correctly a single prepositional phrase in some
sentences, this method depends on suitable definitions in the lexicon. While using on-
line dictionaries is a very reasonable attempt, it appears that much more work is
required in standardizing semantic knowledge in on-line dictionaries before we can use
them to support disambiguation in a general manner.

Recent work on symbolic prepositional phrase attachment (Dahlgren, 1988) re-
ports a success rate above 93% for the attachment of single prepositional phrases.
These results were obtained by hand-testing intuitively developed rules on several
small corpora. Qur approach reaches 88% on the training set and 77% on the test set of
new noun phrases. Although our results might be even better with further training we
believe that our current results already demonstrate the effectiveness of our approach
for two reasons. First, multiple prepositional phrase attachment is a much harder
problem than Dahlgren’s single prepositional phrase attachment. In our experiments
we considered noun phrases with up to three prepositional phrases. Second, our model
did not rely on intuitively developed rules but learned part of its knowledge. In
general, we believe that our hybrid model has a lot of potential compared with
traditional, purely symbolic methods since our hybrid model attacks a much harder
problem, acquires part of its knowledge by learning, and already comes close to the
best performance of purely symbolic appreaches that attack a significantly simpler
problem.

We now turn to the discussion of the three levels in our hybrid model and give
reasons for the design of each individual level. The symbolic level performs a restricted
syntactic analysis and extracts the essential concept (the sequence of nouns and
prepositions) of a noun phrase for the attachment decision. A symbolic approach is
more suitable for this level since the extraction of the essential concept based on
syntactic and semantic predictions is a sequential control problem—it has to be
decided which constituents to process. In a symbolic mechanism, syntactic and
semantic predictions for this extraction can be formulated easily. In contrast, in a
connectionist framework localist networks would have to be designed or distributed
networks trained to perform the extraction. Although there has been some success
using recurrent networks for processing restricted sequential structures (Elman, 1988;
Pollack, 1988; St John & McClelland, 1988), these recurrent networks do not seem to
be powerful enough for this complex sequential control problem. Since symbolic
techniques are particularly suitable for dealing with sequentiality and control, they are
more useful for dealing with the variety of constituents as they occur in noun phrases
in real-world examples.

The localist level performs the integration of syntactic and semantic constraints.
The links in the localist network implement the possible attachments and their mutual
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competition. The localist model considered here is more efficient in the number of
nodes than the localist model for attachment in Wermter (1989a). That model used
one structure node for each possible structural interpretation of a noun phrase. While
that architecture was useful for short noun phrases, the number of structure nodes
increased exponentially with the length of the noun phrase. In our present model the
total number of nodes in the network increases only quadratically with the length of
the noun phrases.

A similar localist network for prepositional phrase attachment in noun phrases can
be found in Touretzky (1989). While Touretzky uses a similar attachment architec-
ture, he implements locality constraints only in a restricted way by reducing the
specific threshold for the unit representing the ‘nearest neighbor’ noun. In our model
we implemented locality constraints explicitly in a more general way with locality
nodes for the relationship to every preceding noun. For the locality nodes, we found
empirically that initialization values should decrease with the length of the attachment
and they should be well under the upper threshold for the nodes.?

The initialization of the semantic nodes is based on the distributed level. The
distributed backpropagation networks learn and generalize the semantic prepositional
relationships and provide a semantic memory model for the initialization of the localist
network. Other work on learning relationships between constituents (Hinton, 1986;
Cosic & Mungo, 1988) cannot be directly used to provide this memory model. Hinton
attacks a completion task that finds a specific relative given a person and a family
relationship. Cosic & Munro tackle a completion task which determines the meaning of
a preposition based on the lexical item of the preposition and two nouns. Although this
work deals with learning relationships, these architectures cannot be directly used to
support the initialization of single nodes in localist networks.

Furthermore, both architectures {(Hinton, 1986; Cosic & Munro, 1988) have all
constituents and all relationships encoded in one backpropagation network. While this
might be sufficient for small applications, one huge network cannot be expected to be
efficient in terms of training time and generalization behavior for scaling up to bigger
applications, Therefore, we have one backpropagation network for each preposition.
Apart from less training time and better generalization, this modular architecture also
allows us the modification and addition of individual prepositions without retraining
the whole network.

Another interesting design issue is the number of units in the backpropagation
networks. The number of input units was determined by our choice of 16 features for
representing each noun. There is one output unit for the plausibility value. More
interesting is our choice of 12 for the number of hidden units. Increasing the number
of 12 hidden units led to better performance on the training set, but worse perform-
ance on the test set. Decreasing the number of hidden units decreased the performance
on the training set and test set. Apparently, there is a tradeoff between memorization
and generalization and we found our best results with a hidden layer that had slightly
less than half the number of input units.

8. Conclusion

We have described a hybrid symbolic/connectionist system for noun phrase dis-
ambiguation. The symbolic level supplies input for the connectionist networks by
extracting the sequence of nouns and prepositions from a noun phrase. The localist
connectionist network integrates semantic and syntactic constraints for noun phrase
disambiguation and computes a preferred structural interpretation. Distributed con-
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nectionist networks learn semantic relationships between nouns, allow for generaliza-
tions of the learned relationships, and provide a semantic memory model for initializ-
ing nodes in the localist connectionist networks. This hybrid three-level model of
distributed connectionist networks, localist connectionist networks, and symbolic
concepts allows for the combination of learning and generalization, the integration of
competing constraints, and the symbolic extraction of concepts and makes this hybrid
model potentially stronger than models relying on techniques from only one of the
three processing paradigms.

Notes

1. Implausible prepositional relationships like ‘symposium in ionosphere’ in the noun phrase *symposium on
hydrodynamics in ionosphere’ occur less frequently in existing noun phrases than plausible prepositional
relationships.

2. For example, for a noun phrase with three prepositions initialization values of 3, 2, | for the different
attachments implement a small syntactic locality effect. The values 6, 4, 2 implement a moderate
syntactic influence. If the values are too high, e.g. 10, 9, 8, the network is overloaded with excitation from
the locality nodes. ’
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