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Abstract

This paper focuses on symbolic transducers and recurrent neural preference machines

to support the task of mining and classifying textual information. These encoding

symbolic transducers and learning neural preference machines can be seen as inde-

pendent agents, each one tackling the same task in a different manner. Systems com-

bining such machines can potentially be more robust as the strengths and weaknesses of

the different approaches yield complementary knowledge, wherein each machine models

the same information content via different paradigms. An experimental analysis of the

performance of these symbolic transducer and neural preference machines is presented.

It is demonstrated that each approach can be successfully used for information mining

and news classification using the Reuters news corpus. Symbolic transducer machines

can be used to manually encode relevant knowledge quickly in a data-driven approach

with no training, while trained neural preference machines can give better performance

based on additional training.
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1. Introduction

1.1. General background and motivation

The quantity of information on the Internet has motivated a need to design

more sophisticated learning systems that are capable of classifying the mas-

sively heterogeneous, faulty, incomplete and ever-changing amount of textual

information. This need is particularly apparent for classifying news, for ex-

ample from the Reuters newswire and the World Wide Web. Much initial work

in the field of text mining and classification has used manual encoding tech-
niques or techniques from information retrieval [31]. However, a great many of

these approaches do not have appropriate, robust properties that will enable

them to handle the variety of unconstrained real-world data. The need for

information extraction and classification approaches to have automatic ad-

aptation capabilities, built-in learning algorithms such as those from artificial

neural networks, the ability to deal with incomplete text information, and just

the sheer scale of available text data are more important constraints now [43].

Hence, there has been a greater focus on machine learning techniques that are
able to handle natural language processing [8,23,25].

Various learning agent systems [3,22] have been designed to perform a

number of tasks, whether they be classification [14,29], information retrieval

and extraction [8,11], routing of information [40,42] or automated web

browsing [2,7,27]. In general, robust learning architectures have been identified

as important current areas for natural language processing [4,9]. One class of

techniques which have been widely used are statistical techniques. Such ap-

proaches have been shown to perform successfully in the classification and
parsing of text data [5]. However, these statistical methods also require as-

sumptions about the distribution, and are less effective when the classification

task has to be achieved with no a priori knowledge.

Hence, some types of artificial neural networks, with their adaptive, dis-

tributed and robust learning capabilities have been applied to the task of

textual classification. For example, self-organizing maps (SOMs) [17] have

been used to create contextual mappings of newsgroup corpora; a SOM forms

a non-linear projection from a high-dimensional space onto low-dimensional
space and has been used in the WEBSOM project [16,18] to create contextual

mappings of word-vector representations. The SOM algorithm computes a

collection of models that approximate the data by applying a specified error

criterion; this allows an ordering of the reduced dimensionality onto a map.

The SOM is acting as a similarity graph of the data and is useful for structure

visualization, data mining, knowledge discovery and retrieval [1,13].

Learning web agents using neural networks such as [18,34,40] hold a lot of

promise as they support robustness and learning, are relatively autonomous in
their learning behaviour and offer the potential of on-line adaptivity. Recurrent
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neural systems not only are able to embody some sort of contextual infor-

mation, but they have the inherent ability to simulate any finite-state machine
[19], essentially allowing an abstraction of the information within a recurrent

neural network [6,32] into discrete representations such as in symbolic trans-

ducers. This relationship between recurrent networks and symbolic transducers

is addressed in this paper. The experiments with recurrent neural networks and

transducers presented in this paper have been tested on noisy, real-world data

and benchmarked on the Reuters news corpus [40,41].

One main motivation for using different modular components is that they

can lead to greater robustness, can generalize better, and classification tasks
and target functions may be reached more readily [33]. Failure of one com-

ponent does not necessarily mean an overall failure of the task, and indeed

benefits can arise from a subsequent combination of the various modular

components. Another benefit is that such systems, for instance for modular

classification, could form their own representations for a specific subtask. For

example, mixture of experts approaches show that performance can be im-

proved. Furthermore, though recurrent networks are able to encode sequen-

tiality, finite state machines can encode rules directly, and combinations of
them could give better generalization.

1.2. Preference Moore Machines

There has been previous work on introducing Preference Moore Machines

[38] as a method of interpreting symbolic and neural machines. Here this
framework is applied to a real-world test of learning news classification.

A Preference Moore Machine is formally defined as a synchronous se-

quential machine that codes a sequential preference mapping, using current

state S and the input preferences I, to assign an output preference O and a new

state S. A Moore Machine is able to transduce knowledge from an input to

output whilst maintaining context [38,39].

Preference Moore Machines can be seen as neural networks (Neural Pref-

erence Moore Machines) or as symbolic transducers (Symbolic Preference
Moore Machines) as shown in Fig. 1. For a Neural Preference Moore Ma-

chine, the internal state of the system and the context are represented as a n-

dimensional vector. Using the Euclidean distance metric, different mappings

can be made between this vector representation and its symbolic interpretation

and vice versa [39]. Symbolic transducers are considered to be symbolic Pref-

erence Moore Machines. Rather than extracting the rules from the training

material, it is possible to encode the relationships and generate a transducer

from regular expressions.
Symbolically encoded transducers and neurally learned versions of Prefer-

ence Moore Machines potentially represent very different forms of knowledge,

and can potentially be combined [38]. This leads to systems using different
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agents with different representations. It has been shown that recurrent neural

networks can indeed act as robust and scalable classifying agents for sequential
tasks such as the classification of a stream of textual information of arbitrary

lengths [42]. This work on neural agents [40–43] has been demonstrated for the

task of textual classification. In this current work, a multiple agent system is

developed which compares the concepts and performance of symbolic trans-

ducers with the neural preference machines.

1.3. Classification corpus used

In order to test the concepts of preference machines, a news classification

task is used, in this case, the Reuters-21578 text classification test collection

[21]. This corpus contains documents from the Reuters newswire service. All

Fig. 1. Relationship between different types of Preference Moore Machines.
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news titles in the Reuters corpus belong to one or more of eight main cate-

gories: Money/Foreign Exchange (MoneyFx/Foreign Exchange, MF), Ship-

ping (SHipping, SH), Interest Rates (INterest, IN), Economic Indicators
(EConomic, EC), Currency (CuRrency, CR), Corporate (COrporate, CO),

Commodity (CoMmodity, CM), Energy (ENergy, EN). This corpus allows a

comparison between different approaches for the task of text classification.

Table 1 describes some examples. The corpus used consists of approximately

10 733 titles, the documents of which have a single title and at least one as-

sociated topic category. For the training set used for the neural preference

machine, 1040 news titles were used, the first 130 of each of the eight categories.

All the other 9693 news titles were used for testing the generalization to new
and unseen examples. For manually deriving the symbolic transducer ma-

chines, a smaller subset of 400 titles was used, randomly selecting subsets of 50

titles from each category.

2. Symbolic transducers

2.1. Definition of Moore Machine as symbolic transducer

A transducer is a synchronous sequential machine with output; it is defined

as follows: a synchronous sequential machine M is a 5-tuple, with M ¼
ðI ;O; S; fs; foÞ, where
• I ;O are finite non-empty input and output sets,

• S is a non-empty set of states,

• the function fs : I � S ! S is a state transition mapping function which de-

scribes the transitions from state to state on given inputs,
• the function fo : S ! O is an output function.

Table 1

Example titles from the Reuters-21578 corpus showing the different categories and the structure of

the sentences

Semantic category Examples

COrporate ‘‘Nationale Nederlanden Profits, Sales Steady’’

SHipping ‘‘Japanese Shipyards To Form Cartel, Cut Output’’

ENergy ‘‘US Energy Futures Called Unchanged To Lower’’

INterest ‘‘Fed Adds Reserves Via Customer Repurchases’’

MoneyFx ‘‘UK Money Market Deficit Forecast Revised Upwards’’

EConomic ‘‘German Industrial Output Rises 3.2 PCT In February’’

CuRrency ‘‘Japan Business Leaders Say G-7 Accord Is Worrying’’

CoMmodity ‘‘Shanghai Tyre Factory To Raise 30 MLN US Dollars’’

SHipping and ENergy ‘‘Soviet Tankers Set To Carry Kuwaiti Oil’’

MoneyFx and EConomic ‘‘Taiwan Dollar And Reserves Seen Rising More Slowly’’

G. Arevian et al. / Internat. J. Approx. Reason. 32 (2003) 237–258 241



While a finite state automaton is a system that either accepts or rejects a

specific sequence, a transducer on the other hand transforms or ‘‘transduces’’
the sequence into a different output representation. This process generates new

output sequences. Therefore word representations can be mapped to class

representations, and thereby support classification.

2.2. Introductory example

A regular expression is an effective way of defining a pattern for classifica-

tion. Firstly, regular expressions are specified which are then transformed into

finite-state transducers using a transducer manipulator [35]. The example
shown in Fig. 2 is a transducer that encodes the regular expression

ð0� enþÞ ! energy, where the asterisk ‘‘�’’ (Kleene star) indicates that the

symbol can occur zero or more times in a sequence, and where the plus ‘‘þ’’

(iteration; one or more concatenations of symbol) indicates that the symbol

must occur at least once or more than once in a sequence.

The ‘‘en’’ is a symbol for a semantic word representation, the ‘‘0’’ is any

single symbol for any tag, ‘‘energy’’ is the semantic class representation which

is assigned to the sequence if transduced successfully. The symbol ‘‘:’’ separates
input and output for a particular transition from one state to another, ‘‘[ ]’’

indicates no output. Thus, the transducer is able to read the input stream and

produce sequences that are essentially tagged representations of the inputs,

where the tags represent semantic classes.

Some examples of the transducer’s behaviour are illustrated next which

should give an insight into the behaviour of such systems; the transducer will

0

1

2

0:energy

en:energy

0:[]

en:[]

en:[]

Fig. 2. A simple example of a regular expression shown as a finite-state automaton acting as a

transducer. The node ‘‘0’’ is the start state, the node ‘‘1’’ an intermediate state and node ‘‘2’’ is the

final or end state of the transducer.
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output to the interest class according to the rules of the regular expression. The

0 is the initial state indicated by the arrow, 1 is the intermediate state indicated
by a single circle, and 2 is the end or final state indicated by a double circle.

• ð0� enþÞ ! energy,
• Input stream: ð0Þ ! reject (remains in state 1, hence fail),

• Input stream: ðenÞ ! accept ! energy (directly jumps to end state 2),

• Input stream: ð0 enÞ ! accept ! energy (ends in end state 2),

• Input stream: ð0 0 en 0 ! reject (last ‘‘0’’ symbol cannot be processed at end

state 2, hence reject),

• Input stream: ð0 en 0 0 0 0 0 0 enÞ ! reject (goes from state 0 to state 1, then
reaches end state 2; however, the subsequent ‘‘0’’ symbols cannot be pro-

cessed at the end state, hence reject),

• Input stream: ð0 en en en en enÞ ! accept ! energy (the transducer reaches

the end state 2 when ‘‘0 en’’ are input, and since the successive ‘‘en’’ symbols

cause no further change in the end state 2 that is reached, the sequence is

accepted and transduced).

2.3. More examples from Reuters corpus

Fig. 3 shows the regular expression denoted as ðð0� enþ mf þ 0�ÞþÞ ! energy.
Therefore, the transducer would be able accept the sequence ð0 en mf 0
en mf 0Þ but not ð0 mf en mf 0Þ as it explicitly expects (en) at the start of a

sequence followed by (mf) ultimately at the end of the sequence.

Fig. 4 is a transducer able to handle sequences that are encoded by

the regular expression ðco�mf �inþin�mf þÞþÞ ! interest – this only accepts

0

1

2

3

4

0:energy

en:energy

0:[]

en:[]

en:[]

mf:[]

en:[]

mf:[]

0:[]

en:[]

0:[]

Fig. 3. A transducer encoding the regular expression ðð0� enþ mf þ 0�ÞþÞ ! energy for classifying a

specific sequence of tags ‘‘en’’ followed by ‘‘mf’’ into the ENergy category. The tags ‘‘en’’ and ‘‘mf’’

must appear at least once in a stream of symbols interspersed with an arbitrary number of other

tags – this transducer is more robust for sparser representations (e.g., the body of a newswire article

or longer sequences from longer titles).
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sequences that are explicitly in the INterest category and have one instance of

the symbol (in), followed by an arbitrary number of other (in) symbols, and one

instance of the symbol (mf) must be present for correct transduction to the

appropriate category. As before, 0 is the start state, 1, 2 and 3 are the inter-

mediate states, and 4 is the final end state.

2.4. Construction of transducers from regular expression

A set of eight Preference Moore Transducers were constructed that encoded

the regular expressions that would be able to classify correctly a discrete
symbolic sequential input of word representations, and produce either an ap-

propriate transduction to a semantic class or true/false value signifying ac-

ceptance/rejection.

Four of the actual regular expressions are shown in Table 2, derived to

represent the possible semantic word representations within each class. During

the coding stage, the derivation of transducer representations was achieved

with ease, and improved performance was quickly observed by adjusting ele-

ments of the regular expression; this suggested that the generative rules for the
classification task are relatively simple, though non-trivial. This also indicates

that the derivation of the rules via a top-down approach is achievable in

principle.

0

1

23

4

co:interest

in:interest
mf:interest

co:[]

in:[]
mf:[]

in:[]

mf:[]

in:[]
mf:[]

co:[]

in:[]

mf:[]

Fig. 4. A transducer encoding the regular expression ððco� mf � inþ in� mf þÞþÞ ! interest for de-

tecting a specific semantic sequence of tags ‘‘in’’ followed explicitly by ‘‘mf’’ that must appear at

least once in a stream of tags interspersed with an arbitrary number of other tags, in this example,

‘‘co’’ and ‘‘mf’’, to give a transduction to the INterest category – this transducer is able to handle a

denser representation of semantic sequences with more specific rules, and also shorter sequences

that have a very specific pattern of tags.
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2.5. Experimental description and examples

The titles are symbolically tagged according to the most frequent occurrence

of the tag for a particular word. This results in a sequence of tags, e.g., of the

form ðen cm cm co coÞ, which represent a semantic tag sequence for one specific

title from the corpus. Issues such as the exclusion of stop-words [42], stemming

and rounding have been considered previously; for example, in the case of the

removal of stop-words (i.e., insignificant words such as ‘‘the’’, ‘‘a’’, ‘‘and’’, etc.,
that may have an average distribution and are domain-independent across all

categories), it was shown that there is only a little improvement in terms of

classification accuracy. However, it can also be argued that in a semantic se-

quence, stop-words may indeed have an important influence since they may be

an indication of a unique sequence; for example, the ‘‘of’’ in the phrase ‘‘Bank

of England’’, could bias the sequence towards ‘‘England’’ and the EConomy

category if there are enough examples of the phrase itself in the set of all titles.

One basic heuristic in the construction of the regular expressions for the
semantic sequences was to encode the presence of the specific category tag itself

somewhere within the sequence – i.e., it was assumed that in general, sequences

would be weighted towards having a greater number of the semantic tags be-

longing to that category itself, as shown in Table 2; for example, it can be seen

that in the regular expression for coding the CoMmodity transducer, there are

four occurrences of the symbols ‘‘cm’’. This approach in designing the trans-

ducers can be seen as a top-down heuristic integration of a priori knowledge to

aid classification.
Table 3 demonstrates the specific case of the derivation of the MoneyFx

transducer (Fig. 5); sequences of regular expressions were systematically built-

up from a basic example (e.g., stage 1), to give a final version that encoded a

very complex expression (stage 11). The classification/recall figures of the re-

sulting transducer at each stage were used as a guide to change the component

expressions of the system to improve classification/recall performance. It can

be seen, for example, that the introduction of the symbol ‘‘mf’’ in the pen-

ultimate position of the expression at stage 8 causes the expression at the
next stage to improve classification performance by 16%. The introduction of

Table 2

The actual regular expressions used to generate the appropriate category transducers as shown by

Figs. 5–8

Semantic category Regular expression encoding semantic rules for category

MoneyFx ðin�cr�ec�mf �cr�en�ec�cr�mf �ec�ec�en�Þ
EConomy ððcr�mf �cm�in�ec�ecþin�en�ec�ec�cr�ÞþÞ
CuRrency ððin�ec�cr�crþmf �cr�sh�cr�ec�in�ec�ÞþÞ
CoMmodity ðcm�sh�cm�cr�cm�ec�cm�sh�cr�Þ
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further terms in stages 10 and 11 do not further improve classification per-

formance, and it is assumed that a good solution has been reached, at least by

using the top-down heuristic coding scheme.

Table 3

Table showing the heuristic approach adopted for deriving the MoneyFx transducer (Fig. 5), using

regular expressions that are systematically built-up to generate the appropriate sequential rules for

that category

Stage Regular expression Classification/recall

1 ðmf �Þ 28%

2 ðmf �cr�Þ 28%

3 ðcr�mf �in�cr�ec�Þ 32%

4 ðin�cr�mf �in�cr�ec�Þ 36%

5 ðin�cr�ec�mf �in�cr�ec�Þ 48%

6 ðin�cr�ec�mf �cr�cr�ec�en�Þ 48%

7 ðin�cr�ec�mf �cr�en�ec�en�Þ 48%

8 ðin�cr�ec�mf �cr�en�ec�cr�en�Þ 56%

9 ðin�cr�ec�mf �cr�en�ec�cr�mf �en�Þ 72%

10 ðin�cr�ec�mf �cr�en�ec�cr�ec�ec�en�Þ 72%

11 ðin�cr�ec�mf �cr�en�ec�cr�mf �ec�ec�en�Þ 72%

0

1

2

3

4

5

6

7

8

9

10

11

c:money r:money

e:money

f:money m:money

[]:money i:money n:money

c:[] r:[]

e:[]

f:[] m:[]

n:[]

c:[] e:[]

f:[] m:[]

n:[]

r:[]

f:[] m:[]

e:[] n:[]

c:[] r:[]

c:[] r:[]

e:[]

f:[] m:[]

i:[] n:[]

e:[] n:[]

c:[]

f:[] m:[]

r:[]

c:[] e:[]

f:[] m:[]

r:[]

n:[]

f:[] m:[]

n:[]

c:[] e:[]

f:[] m:[]

c:[] r:[]

n:[]

e:[]

e:[] n:[]

n:[]

c:[] e:[]

e:[] n:[]

f:[] m:[]

c:[] r:[]

Fig. 5. MoneyFx Transducer.
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2.6. Recall and precision

The two main parameters which are generally used to determine the effec-

tiveness of how well a classification task has been achieved are recall and

precision [30]. Recall is defined as the ratio of the number of relevant titles of a

specific category that are correctly classified over the total number of relevant

titles for that category (the total being a sum of the relevant titles classified plus

relevant titles not classified correctly). That is, recall equals classified and rel-

evant, divided by relevant titles. Precision is defined as the ratio of the number

of relevant titles correctly classified over the number of relevant titles correctly

classified plus the non-relevant titles that are classified. That is, precision equals

classified and relevant divided by classified titles. By obtaining this value for

performance, the effectiveness of the transducers can be compared and con-

trasted with other approaches. There is an inverse relationship between recall

and precision values, and usually the performance of a system is a trade-off

between the two. For example, high recall values indicate that a system may be

generalizing too much, at a cost to precision; high precision but low recall

indicates that a system may not be able to handle more ambiguous classes.

2.7. Results and discussion

Table 4 shows the recall values; for example, it can be seen on the first line

that passing the CO data set sequences through the specifically designed

COrporate transducer, the recall value is 66%; however, passing the SH data

set sequences through the same transducer gives a value of 34%, showing that

the transducer is fairly specific to the COrporate category. For the IN data set

Table 4

A breakdown of the recall values for the eight transducers of the eight categories – the bold figures

show the actual recall value specific to that category. However, the breakdown allows a more

detailed analysis of the recall behaviour of the transducers across all the eight category data subsets

Category of

sequences

CO SH EN IN MF EC CR CM

COrporate 66% 34% 16% 12% 16% 48% 42% 64%

Shipping 10% 84% 10% 6% 4% 10% 2% 16%

ENergy 16% 28% 70% 16% 12% 62% 24% 14%

INterest 12% 2% 50% 76% 16% 24% 12% 0%

MoneyFx 0% 0% 24% 16% 72% 64% 68% 40%

EConomy 0% 0% 40% 38% 26% 70% 68% 24%

CuRrency 0% 32% 10% 40% 36% 62% 76% 62%

CoMmodity 0% 40% 0% 0% 32% 32% 24% 72%

The eight transducers are represented respectively as follows by their symbol notation: COrporate,

SHipping, ENergy, INterest, MoneyFx, EConomy, CuRrency, CoMmodity.
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sequences, the value is 12%, suggesting that the INterest and COrporate cat-

egories are very different. The CR data set sequences passing through the
MoneyFx and EConomy transducers give high values of 68% each, and 76%

for the specific CuRrency transducer itself; this obviously suggests that there is

a close relationship between these three classes. In general, these symbolic

machines perform reasonably well, given the simple representation.

This breakdown of the experimental results for the recall behaviour gives

relevant information and highlights the differences between the categories and

how closely or not they may be related to one another. Semantic sequences

from a particular category may wrongly be classified for several reasons – for
example, the category allocations may depend on human-level interaction that

does not take into consideration strict semantic representation but rather a

more heuristic allocation to a particular category that may be arbitrary; there

will also be ambiguities with specific words that form the title sequences which

may belong to more than one or more categories.

Table 5 shows the recall and precision performance for each of the trans-

ducers; the percentage values for the irrelevant titles classified for each trans-

ducer are also shown as they form part of the function for deriving the
precision value of the transducer; they can also be interpreted to be a measure

of the classification ‘‘accuracy’’, the lower the percentage of non-relevant titles

classified, the higher the recall and precision values. By cross-testing the re-

spective data set collections with the transducers for the other categories as in

the breakdown in Table 4, it was shown that the heuristic rules derived from

the semantic sequences had poor overall precision, but gave relatively good

recall values.

Figs. 5–8 show the four examples of the actual transducers constructed that
performed the classification task; it can be seen that even relatively simple rules

can generate automata that can be very complex in structure. Finally, the

overall average recall and precision values for the symbolic Preference Moore

Machines are shown in Table 6.

Table 5

Recall and precision performances for the transducers with various input sequences of semantic

categories

Category of sequences Percentage irrelevant Recall Precision

COrporate 29% 66% 22%

SHipping 7% 84% 59%

ENergy 22% 70% 29%

INterest 15% 76% 40%

MoneyFx 17% 72% 35%

EConomy 24% 70% 27%

CuRrency 31% 76% 24%

CoMmodity 7% 72% 58%
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0

1

2

3

4

5

c:economy e:economy

f:economy m:economy

i:economy n:economy

r:economy

c:[] e:[] i:[] n:[]

f:[] m:[]

r:[]

c:[] e:[]

f:[] m:[]
c:[] e:[]

f:[] m:[]

i:[] n:[]

c:[] e:[]

f:[] m:[]

i:[] n:[]

r:[]

c:[] e:[]

f:[] m:[]

i:[] n:[]

r:[]

Fig. 6. EConomy Transducer.
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5

6 7

c:currency r:currency

e:currency

i:currency n:currency

c:[] f:[] m:[] r:[]

e:[]

h:[] s:[]

i:[] n:[]

c:[] r:[]

e:[]

c:[] r:[]

e:[]

i:[] n:[]

c:[] r:[]

e:[]

i:[] n:[]c:[] r:[]

e:[]

h:[] s:[]

i:[] n:[]

c:[] r:[]

i:[] n:[]

e:[]

c:[] r:[]

i:[] n:[]

e:[]

Fig. 7. CuRrency Transducer.
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3. Neural Preference Machines

In recent years, there has been an increase in the application of neural

networks to the task of textual classification; recurrent neural networks, which

have feedback from the output to the hidden or input layers, are able to use

information from a previous incremental step during training to give a se-

quential and gradual representation that is dependent on previous time steps.

This allows sequential knowledge to be built up.
While a symbolic Preference Moore Machine is encoding top-down

knowledge, a neural Preference Moore Machine is learning bottom-up. The

0
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4
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6

7

8

9

[]:commodity c:commodity m:commodity

e:commodity

h:commodity s:commodity

r:commodity

c:[] m:[]

e:[]

h:[] s:[]

r:[]

c:[] e:[]

h:[] s:[]

m:[]

r:[]

e:[]

h:[] s:[]
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Fig. 8. CoMmodity Transducer.

Table 6

Average recall and precision values for the eight transducers used for the classification experiments

Recall Precision

Symbolic transducer performance 73% 37%
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various forms of neural Preference Moore Machine used in this paper are a

neural network with one context layer and a neural network with two hidden

layers (Fig. 9) which are trained using semantic vector representations at the

input layer [42].

3.1. Recurrent networks

The specific neural network explored here is a more developed version of the

simple recurrent network, namely a Recurrent Plausibility Network [37,42].

Recurrent neural networks are able to map both previous internal states and

input to a desired output. This makes the input/output mappings of the system

dynamic.

Fully recurrent networks process all information and feed it back into a
single layer, but for the purposes of maintaining contextual memory for pro-

cessing arbitrary lengths of input, they are limited. For example, partially re-

current Elman networks have recurrent connections between the hidden and

Hidden
Layer

Input Layer

Output
Layer

Feedforward Propagation

Recurrent Connections

Context Layer

Hidden
Layer

OOnn(t)

HH
nn
(t)

CC
n-1

(t- 1)

HH
n-1

(t)

II00(t) CC
n-2

(t- 1)

Context Layer

Fig. 9. Neural Preference Moore Machine with two hidden layers.
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context layer [10] or Jordan networks have connections between the output and

context layer [15]; these recurrent connections allow previous states to be kept
within the network structure and temporal information is thus represented in

the internal states which arise, and is in effect ‘‘memory’’. The temporal un-

folding of this recurrent processing results in discrete states being represented

over incremental time steps, resulting in the representation of the sequential

context of information. A finite state transducer can also analogously represent

this sequence of discrete states [6,12,24,32].

However, simple recurrent networks have a rapid rate of decay of infor-

mation about states. For many classification tasks in general, recent events are
more important but some information can also be gained from information

that is more longer-term. With sequential textual processing, context within a

specific processing time-frame is important and two kinds of short-term

memory can be useful – one that is more dynamic and varying over time which

keeps more recent information, and a more stable memory which is allowed to

decay more slowly to keep information about previous events over a longer

time-period.

3.2. Network architecture and learning

Fig. 9 shows the general structure of the recurrent network. Different decay

memories were introduced by using distributed recurrent delays over the sep-

arate context layers representing the contexts at different time steps [37]. At a

given time step, the network with n hidden layers processes the current input as

well as the incremental contexts from the n� 1 previous time steps.
The input to a hidden layer Hn is constrained by the underlying layer Hn�1 as

well as the incremental context layer Cn�1. The activation of a unit HniðtÞ at

time t is computed on the basis of the weighted activation of the units in the

previous layer Hðn�1ÞiðtÞ and the units in the current context of this layer

Cðn�1ÞiðtÞ. In particular, the following is used:

HniðtÞ ¼ f
X
k

wkiHðn�1ÞiðtÞ
 

þ
X
l

wliCðn�1ÞiðtÞ
!
:

The units in the two context layers with one time step are computed as follows:

CniðtÞ ¼ ð1� unÞHðnþ1Þiðt � 1Þ þ unCniðt � 1Þ;

where CniðtÞ is the activation of a unit in the context layer at time t. The self-

recurrency time span of the context is controlled by the hysteresis value un. The

hysteresis value of the context layer Cn�1 is lower than the hysteresis value of
the next context layer Cn. This ensures that the context layers closer to the

input layer will perform as memory that represents a more dynamic context for

small time periods.
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Essentially the learning algorithm for the network uses the backpropagation

through time (BPTT) rule [20,26,28,36], but with such a recurrent architecture,
the gradients of each state are computed using information from a combination

of previous states.One forwardpass of the data ismade through the network, and

the synaptic weight states and desired responses recorded; this is followed by a

single backwardpass of the record,where local gradients are computed.Once this

back-propagation has been done, the synaptic weights are adjusted. By taking as

input the weighted sumof incoming activations at a time t, plus the weighted sum

of incoming activations from time t � 1, this second incoming activation allows

the previous internal states of the network to be used.

3.3. Experimental description

From the Reuters-21578 described earlier, 10 733 titles of the so-called

ModApte split were used, the documents of which have a single title and at

least one associated topic category. For the training set, 1040 news titles were

used, the first 130 of each of the eight categories. All the other 9693 news titles

were used for testing the generalization to new and unseen examples.

The input representations obtained encoded the preference for a specific

word to occur in a particular semantic category. The main advantage is that
they are independent of the number of examples present in each category:

vðw; xiÞ ¼
Norm: freq: of w in xiP
j Norm: freq: for w in xj

; j 2 f1; . . . ng;

where

Norm: freq: of w in xi ¼
Freq: of w in xi

Number of titles in xi
:

The normalized frequency of the number of times a word w appears in a se-
mantic category xi (i.e., the normalized category frequency) was computed as a

value vðw; xiÞ for each element of the semantic vector, divided by normalizing

the frequency of the number of times a word w appears in the corpus (i.e., the

normalized corpus frequency).

3.4. Results

Fig. 10 shows the plots of the sum-squared error of the output preferences

against the number of training epochs and each word of the specific title. The

network learns correctly the category to which this sentence belongs (in this

case, ENergy) when the sum-squared error value is at a minimum at the end of
the title. So initially, the word ‘‘China’’ is not correctly classified as it can in-

deed belong to many categories, but the words ‘‘Closes Second Round Of’’

reduce the error and the words ‘‘Offshore’’ followed by ‘‘Oil Bids’’ cause the
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network to switch to the correct category; this shows that the output prefer-

ences can be quickly reached from the appropriate input representations. The

sentence is initially ambiguous but the final three words are very strongly as-

sociated with ENergy.

The network in Fig. 11 shows greater activity in its behaviour. The title

belongs to the EConomy category, but the individual words of the title are
ambiguous; all the words like ‘‘Money’’, ‘‘Supply’’ and ‘‘Falls’’ can also belong
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Fig. 10. Error-surface plot for sentence ‘‘China Closes Second Round Of Offshore Oil Bids’’.
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Fig. 11. Error-surface plot for sentence ‘‘Canada Money Supply Falls In Week’’.
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to other categories, and indeed this uncertainty is reflected by the network

which does not confidently classify to the appropriate category as shown by the
higher value of the error at the end of the title. The performance of the best

trained neural Preference Moore Machines is shown in Table 7.

For both examples of neural Preference machines, it can be seen that the

recall and precision values for the test sets were higher than those for the

training sets, showing that the network was not overfitting the training set data;

this again is reflected in the generalization performance and robustness of the

network architecture, in that the less common categories would have occurred

more frequently in the larger training set as compared to the test set, poten-
tially causing the network to overlearn and hence overfit.

4. Discussion

Two types of different Preference Moore Machine agents were described –

firstly, symbolic Preference Moore Machines based on finite-state automata

theory which make use of transducers, and secondly, Neural Preference Moore

Machines based on the distributed learning of neural networks. It is demon-

strated that both approaches, though very different in their computational

paradigm, can indeed produce two related modular agents that operate from a

heuristically coded top-down mode in the case of the Preference Moore
Transducer, and from a bottom-up supervised mode for the Neural Preference

Machine. Using the formalism that introduced Preference Moore Machine

integration [38], the potential for integrating the different computational ap-

proaches on a standard, real-world benchmarking corpus for the task of tex-

tual classification and information-mining has been demonstrated.

The symbolic agent is better able to handle exceptions by manually coded

expressions, while neural classification agents are able to handle the more

difficult and ambiguous semantic sequences, and can be trained using much
larger amounts of data. Symbolic transducers are useful to very quickly encode

the most relevant knowledge without training but are limited due to the

manual coding that is done using a smaller amount of data. However, by using

Table 7

Recall and precision for classifying newswire titles using the various neural Preference Moore

Machines

Evaluation Recall Precision

Neural Preference Machine 1 layer training 85.15 86.99

Neural Preference Machine 1 layer test 91.23 90.73

Neural Preference Machine 2 layers training 89.05 90.24

Neural Preference Machine 2 layers test 93.05 92.29

G. Arevian et al. / Internat. J. Approx. Reason. 32 (2003) 237–258 255



such a data-driven approach and neural preference machines, a much better

performance can be reached – 93% versus 73% for the recall, and 92% versus
37% for the precision, for the neural and symbolic preference machines re-

spectively. Transducers are more easily constructed and analyzed, and they are

much faster for classification tasks. Neural preference machines have proper-

ties such as being adaptable and dynamic; their fault tolerant and robust nature

allows them to handle noisy and incomplete data due to the distributed nature

of the information contained in their architecture; in contrast, the preference

transducer would not necessarily be able to handle new or faulty sequences,

thus performance and precision would drop.
However, neural preference machines have learning times that are long, and

can learn representations that may be difficult to interpret. By contrast, sym-

bolic transducers have a well understood formalism that describes them, and

this allows those systems to be better understood. Nevertheless, it has been

demonstrated that the neural preference machines show much better perfor-

mance than the symbolic transducers.
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