
Real-world reinforcement learning for autonomous

humanoid robot dockingI

Nicol�as Navarro-Guerrero�, Cornelius Weber, Pascal Schroeter, Stefan
Wermter

Knowledge Technology Group, University of Hamburg, Department of Informatics,
Vogt-Koelln-Str. 30, 22527 Hamburg, Germany

Abstract

Reinforcement learning (RL) is a biologically supported learning paradigm,
which allows an agent to learn through experience acquired by interaction
with its environment. Its potential to learn complex action sequences has
been proven for a variety of problems, such as navigation tasks. However,
the interactive randomized exploration of the state space, common in rein-
forcement learning, makes it di�cult to be used in real-world scenarios. In
this work we describe a novel real-world reinforcement learning method. It
uses a supervised reinforcement learning approach combined with Gaussian
distributed state activation. We successfully tested this method in two real
scenarios of humanoid robot navigation: �rst, backward movements for dock-
ing at a charging station and second, forward movements to prepare grasping.
Our approach reduces the required learning steps by more than an order of
magnitude, and it is robust and easy to be integrated into conventional RL
techniques.

Keywords:
Reinforcement learning, SARSA, Humanoid robots, Autonomous docking,
Real-world

IPortions of this work were presented at the Annual Conference Towards Autonomous
Robotic Systems (TAROS), Aug. 31 - Sep. 2, 2011.

�Corresponding author Tel.: +49 40 428 83 2530
Email address: navarro@informatik.uni-hamburg.de (Nicol�as Navarro-Guerrero)

Preprint submitted to Robotics and Autonomous Systems June 25, 2012



1. Introduction

Reinforcement learning (RL) [1, 2] is a biologically inspired learning
paradigm consistent with the trial-and-error learning process related to the
dopaminergic system [3]. RL models are able to learn through experience
acquired by an agent interacting with its environment that tries to maximize
rewards and minimize punishments. Given a certain initial condition, RL
algorithms are particularly suitable for solving action sequences by building
a value function that encodes the e�ect of di�erent decisions.

For tasks with delayed reward, methods based on temporal-di�erence
(TD) learning have been broadly accepted because of their simplicity requir-
ing minimal computational power, as indicated by Sutton and Barto [1] and
supported by a vast body of research [4, 5, 6, 7, 8, 9]. TD based methods
do not require detailed models of the environment and are fully incremental,
i.e. are capable of learning based on previous knowledge [1].

Reinforcement learning usually consists of many trials that begin with
the agent’s random initialization followed by many executed actions until the
agent eventually reaches the goal. Following a few successful trials the agent
learns bene�cial state-action pairs based on its acquired knowledge. Learning
is carried out using positive and negative feedback during the interaction with
the environment in a trial and error fashion. In contrast with supervised
and unsupervised learning, reinforcement learning may not use feedback for
intermediate steps, but a reward (or punishment) may be given only after
a learning trial has been �nished. The reward is a scalar and indicates
whether the result was right or wrong (binary) or how right or wrong it
was (real value). This limited feedback characteristic makes it a relatively
slow learning mechanism, but attractive due to its potential to learn action
sequences that are not known by a teacher.

Researchers use RL broadly within simulated environments or for abstract
problems [10, 4, 5, 6]. Here, a model of the agent-environment dynamics is
available, which is not always available or easy to infer in real-world problems.
Moreover, a number of assumptions, which are not always realistic, are made,
e.g. on the state-action transition model, the design of the reward criterion,
and the magnitude and kind of noise if any, etc.

On the other hand, real-world RL approaches are scarce [7, 8, 9], mostly
because RL is expensive in data or learning steps, the state space tends
to be large and the turnaround times for results are long. Moreover, real-
world problems present additional challenges, such as safety considerations,

2



real-time action execution, changing sensor characteristics, actuators and
environmental conditions, among many others.

Several techniques exist to improve real-world learning capabilities of RL
algorithms. Dense reward functions [7] provide performance information for
intermediate steps, thereby shaping the policy and restricting the emergence
of novel unforeseen policies. State space reduction [7] is dependent on the
particular problem and can be a very time-consuming designing task. An-
other approach proposes modi�cation of the agent’s properties to �t the
given problem [8], which relies on a smart de�nition of the state space that
accounts for a reduction of dimensionality. Batch reinforcement learning [9]
uses information from past state transitions, instead of only the last transi-
tion, to calculate the prediction error function based on storage and reuse of
state-action pairs. Supervised reinforcement learning [7, 6] is based on batch
RL, but di�ers in the generation of training examples. In batch RL the state-
action pairs are generated autonomously through random exploration while
supervised RL uses human-guided action sequences during initial learning
stages avoiding the costly random exploration.

The proven value of RL techniques for navigation tasks [11, 7] motivates
us to develop a real-world RL approach for a humanoid robot to navigate au-
tonomously into a docking station. This approach makes use of a supervised
RL algorithm and Gaussian distributed state activation. We successfully
tested this method in a simulated 2-dimensional grid-world and two real sce-
narios. The latter are a backward con�guration for an experimental docking
station for recharging and a forward docking con�guration for grasping tasks.
Our approach works with a reduced number of training examples, has few
model assumptions, and it is robust and easy to incorporate into conventional
RL techniques based on TD learning.

The paper is organized as follows. Section 2 presents the motivation and
design criterion of the model. Section 3 presents the neural architecture, algo-
rithm and training procedure. Section 4 demonstrates the proposed method
in a simulated scenario. Section 5 presents the results of applying the method
to two real-world applications. Section 6 analyzes comparatively both real-
world scenarios. Section 7 presents conclusions.

2. Motivation and system design

Despite advances in humanoid robot control there are still di�culties in
accurate maneuvering tasks, which we consider a key building block for do-

3



mestic applications of robots. In particular, humanoid robots, like the NAO
[12], are used in a growing number of social, service and entertainment robot
scenarios [13, 14]. One of the NAO’s major limitations for domestic applica-
tions is the di�culty of precise localization, due to slippage and accumulated
localization errors, which increases the di�culty to perform other tasks such
as object grasping and delivering. Our interest of studying domestic robot
applications motivates us to tackle the issue of precise localization and posi-
tioning. Here, we describe the successful docking of a NAO robot based on
RL techniques, described in detail in Section 3. The two scenarios are both
easy to build and \non-invasive", i.e. do not require major interventions on
the robot’s hardware and do not a�ect the robot’s mobility or sensor capa-
bilities.

2.1. Backward docking station for autonomous recharging

One of the NAO’s limitations is its energetic autonomy, which typically
does not surpass 45 minutes. This motivates the development of strategies
to increase the robot’s operational time minimizing human intervention [15].
Despite the challenge to maneuver the robot backwards, we chose to test a
partial backward docking [15]. This o�ers advantages such as easy mounting
on the NAO. It does not limit the robot’s mobility, does not obstruct any
sensor, nor does it require cables going to the robot’s extremities, and allows
a quick deployment after the recharging has �nished or if the robot is asked
to do some urgent tasks.

The prototype built for the proposed autonomous recharging is shown
in Fig. 1(a). The large landmark (naomark1) is used for a hard-coded ap-
proaching behavior when the robot is more than 40 cm away from the docking
station2, while the two smaller landmarks are used for an accurate docking
behavior for which we use the RL algorithm described in Section 3.

The overall autonomous recharging was split into four phases. During
the �rst phase a coarse approach behavior takes place. This behavior is
temporarily a hard-coded algorithm that searches for the charging station via
a scanning head rotation followed by a robot rotation. The robot estimates
the charging station’s relative position based on geometrical properties of the
large landmark and moves towards the charging station. We are currently

12-dimensional landmark provided by Aldebaran-Robotics
2Distance measured from the landmark to the robot’s camera

4



(a) (b)

Figure 1: Backward docking station for NAO. (a) White arrows indicate the electrical
contacts placed on the docking station and gray arrows indicate the landmarks’ position.
(b) Robot’s electrical connections.

developing a more sophisticated approach in the KSERA project framework
[14, 16] where we use a ceiling camera to locate the robot anywhere within
an indoor room and to navigate the robot to a distance of approximately 40
cm away from the landmarks; see Fig. 2(a). In the second phase the robot
re-estimates its position and places itself so that its left shoulder as well as its
face are oriented towards the landmark, as shown in Fig. 2(b). In the third
phase the RL algorithm is applied to navigate the robot backwards very close
to the electric contacts as presented in Fig. 2(c).3 After reaching the �nal
rewarded position, in the fourth and �nal phase, a hard-coded algorithm
moves the robot to a crouch pose; see Fig. 2(d). Then, the motors are
deactivated and the recharging process starts.

2.2. Forward docking station for grasping

The second scenario aims at robot docking to allow autonomous grasping.
We developed a similar docking structure, i.e. one big landmark and two small
landmarks. A conceptual schema of the setup for grasping is depicted in Fig.
3. The forward docking consists of two phases. The �rst phase contains
all the features of the coarse approach described for the backward docking.

3In this docking phase, NAO’s gaze direction is oriented towards the landmark.

5



(a) Approach (b) Alignment (c) Docking (d) Crouch pose

Figure 2: Top view of the autonomous robot behavior in its four di�erent phases: (a)
Approaching, (b) Alignment, (c) Docking and (d) Recharging in crouch pose.

Since the coarse approach behavior places the robot facing the landmarks at
approx. 40 cm away, the transition from coarse docking to precise docking
does not require an alignment phase. The second phase corresponds to the
precise docking behavior implemented using the RL algorithm described in
Section 3, which navigates the robot forward to the docking station and
places it in 15 cm proximity of the landmark. Once the robot is in this
position the grasping task is going to take place.

2.3. Choice of the learning system

In order to make reinforcement learning feasible in real-world scenarios
several techniques had been developed, as presented in Section 1. From these
techniques, supervised reinforcement learning [7, 6] o�ers the possibility of
reducing the number of learning steps by avoiding the initial exploration of
the state space. This is achieved by providing the agent with a few correct
training examples and using them for o�-line training.

We create the training examples by tele-operating the robot from several
random positions to the goal position, while saving state, action and reward
information. The o�-line training consists of the presentation of the saved
action and state vectors (or action sequences) to the agent. Thus, the agent
can learn the given action sequences without additional real-world execution
of actions. Since the training examples represent only a reduced subset of
possible solutions, we use additional reinforcement learning to safely operate
the robot around the near-optimal solutions provided by the operator. Par-
ticularly, we use SARSA learning, which is a classical on-policy algorithm

6



(a) (b)

Figure 3: Scenario for grasping a cup from a shelf. (a) Shelf with landmarks for accurate
docking behavior and a graspable object. (b) NAO robot is in grasping position (the inset
shows robot’s view).

for TD-Learning. SARSA does not have major restrictions of convergence,
and it can easily be combined with eligibility trace, opposed to Q-learning
[1]. The mathematical implementation is detailed in Section 3.

In order to limit even more random exploration and to achieve e�cient
real-world reinforcement learning, we introduce an additional modi�cation
that boosts the learning speed. Instead of using a single active state at a
given time, as conventionally used in reinforcement learning techniques, we
use a Gaussian activation of state units [17]: a Gaussian is centered around
the current robot state; see Fig. 4.

One motivation for a Gaussian state activation is that states close to the
current state should often generate the same action. Using this concept, we
can extend and spread what we know about a state to neighboring regions of
the state space. This di�ers from eligibility traces that allow faster on-line
learning by strengthening states recently visited. Repetitive o�-line training,
though, incorporates the e�ect of eligibility traces.

3. Model architecture and learning

The model has an input layer, which represents the agent’s current state,
and an output layer, which represents the chosen action. Both layers are
fully connected (see Fig. 5). The number of states, actions and the size of the

7






























