
Diversity-driven Hopfield Neural

Network Ensembles for Face Detection

Dissertation

zur Erlangung des Doktorgrades

an der Fakultät für Mathematik, Informatik und Naturwissenschaften

Fachbereich Informatik

der Universität Hamburg

eingereicht beim Fach-Promotionsausschuss Informatik von

Dipl.-Inf. Nils Meins

Hamburg, 2019

mailto:meins@informatik.uni-hamburg.de

Submission of the thesis:

7 of January of 2019

Date of oral defense:

5 of June of 2019

Dissertation Committee:

Prof. Dr. Stefan Wermter (reviewer)

Dept. of Computer Science

Universität Hamburg, Germany

Prof. Dr. Leonie Dreschler-Fischer (reviewer)

Dept. of Computer Science

Universität Hamburg, Germany

Prof. Dr.-Ing. Wolfgang Menzel (chair)

Dept. of Computer Science

Universität Hamburg, Germany

II

c©2019 by Nils Meins

All the illustrations, except where explicitly stated, are work by Nils Meins and

are licensed under the Creative Commons Attribution-ShareAlike 4.0 International

(CC BY-SA 4.0).

To view a copy of this license, visit https://creativecommons.org/licenses/by-

sa/4.0/

III

Abstract

A key factor in creating ensemble classifiers, which combine several classifiers to

obtain a result, is diversity of the combined classifiers. If we combine many classi-

fiers that react in the same way, we do not achieve any benefit by combining them.

Thus, the application we built focuses on diversity. We use simple features and

simple base classifiers, but increase diversity to create a strong ensemble classifier.

Thus, the features, classifiers and hybrid architectures we create are designed to

increase diversity instead of sophisticating them to achieve greater accuracy.

This thesis arises out of the European research project KSERA which examines

a social assistance robot created to help the elderly. To communicate with a person,

a robot needs to know whether it has the attention of the person, which is given if

the person looks at the robot. Therefore, an essential first step is face detection,

which is why we use it to examine our application. Further, our application shall

be swift to train and execute because it has been able to run with (limited) robot

hardware.

As features, we use the pixel sum of several rectangles, arranged in different ge-

ometrical structures. The value of one feature is a vector using the pixel sum of one

rectangle as an element. We arrange the rectangles into different systematics, i.e.

different types of features with different appearances are grouped into sets based

on their similarity. We developed two classifier models that use these features.

One classifier uses template matching to compare a feature with a learned pattern.

The second classifier works the same way, but uses a Hopfield Neural Network

(HNN) to learn the feature. Together with the Viola/Jones threshold classifier, we

combine our classifiers to create a hybrid ensemble and cascade classifier.

The hybrid classifiers use a small but more diverse set of classifiers for training,

and we show that our new features and classifiers improve the single type ensemble

classifiers. Both classifier models that we introduced only differ in terms of whether

or not they use the HNN. We introduced the HNN to achieve a diversity benefit

from its dynamic and to use its recreation ability of patterns from a noisy input.

The HNN leads to different behavior among both classifier models. We analyze

the differences between both classifier types and show that the HNN increases

diversity.

In our second combination, the Forced Hybrid Architecture, we adapt the train-

ing to increase diversity by forcing it to select different features first, instead of

the best. Further, we introduce more different appearances of features, also with

the aim of increasing diversity. We show that most sets create also good results

on their own. However, through the Forced Hybrid Architecture and the extended

V

features, we can further improve our application. Combining a good set with an

inferior set can improve the resulting classifier compared to training both classifiers

with only one set. Although we are forced to use an inferior set, its influence is

often beneficial all the same. Thus, the Forced Hybrid Architecture improves our

classifiers.

Finally, we applied our features and classifier models to the multi-class problem

of head-pose estimation. There, we showed that our approach of features and the

HNN to learn multiple patterns is also able to solve multi-class problems.

VI

Zusammenfassung

Ein Schlüsselfaktor beim Erstellen von Ensemble-Klassifikatoren, die mehrere Klas-

sifikatoren kombinieren, um ein Ergebnis zu erhalten, ist die Diversität der kom-

binierten Klassifikatoren. Wenn wir viele Klassifikatoren kombinieren, die auf

dieselbe Weise reagieren, erzielen wir durch die Kombination keinen Vorteil. Da-

her konzentriert sich die von uns entwickelte Anwendung auf Diversität. Wir

verwenden einfache Merkmale und einfache Basisklassifikatoren, erhöhen jedoch

die Diversität, um einen starken Ensembleklassifizierer zu erstellen. Daher sind

die von uns erstellten Merkmale, Klassifikatoren und Hybridarchitekturen darauf

ausgelegt, die Diversität zu erhöhen anstatt diese zu verfeinern, um eine höhere

Genauigkeit zu erreichen.

Diese Dissertation endstand aus dem europäischen Forschungsprojekt KSERA,

das den Einsatz von Robotern zur sozialen Unterstützung von älteren Menschen

untersuchte. Um mit einer Person zu kommunizieren, muss ein Roboter wissen,

ob er die Aufmerksamkeit einer Person hat, was der Fall ist, wenn die Person

den Roboter ansieht. Ein wesentlicher erster Schritt ist daher die Gesichtserken-

nung, weshalb wir Gesichtserkennung gewählt haben, um unser Model zu unter-

suchen. Außerdem sollte unsere Anwendung schnell trainiert und ausgeführt wer-

den können, da sie mit (begrenzter) Roboterhardware ausgeführt werden können

soll.

Als Merkmale nutzen wir die Pixelsumme mehrerer Rechtecke, die in unter-

schiedlichen geometrischen Strukturen angeordnet sind. Der Wert eines Merk-

mals ist ein Vektor, der die Pixelsumme eines Rechtecks als Element verwendet.

Wir ordnen die Rechtecke in verschiedene Systematiken ein, d.h. verschiedene

Arten von Merkmalen mit unterschiedlichem Aussehen werden in Gruppen nach

ihrer Ähnlichkeit gruppiert. Wir entwickelten zwei Klassifikatoren, die diese Merk-

male verwenden. Ein Klassifikator nutzt Template Matching, um ein Merkmal

mit einem erlernten Muster zu vergleichen. Der zweite Klassifikator funktioniert

auf die gleiche Weise, verwendet jedoch ein Hopfield Neural Network (HNN), um

das Merkmalsmuster zu lernen. Wir kombinieren unsere Klassifikatoren mit dem

Viola/Jones Schwellwertklassifikator, um hybride Ensemble- und Kaskadenklassi-

fikatorem zu erstellen.

Die hybriden Klassifikatoren verwenden eine kleinere Menge von Klassifikatoren

mit erhöhter Diversität für das Training. Wir zeigen, dass unsere neuen Merkmale

und Klassifikatoren die homogenen Ensemble-Klassifikatoren verbessern. Beide

Klassifikationsmodelle, die wir eingeführt haben, unterscheiden sich nur darin, ob

sie das HNN verwenden oder nicht. Wir haben das HNN eingeführt, um durch sein

VII

Abstract

dynamisches Verhalten die Diversität zu erhöhen und um die Fähigkeit zu nutzen,

Muster aus unscharfen Eingangsdaten wieder herzustellen. Das HNN führt zu

unterschiedlichem Verhalten beider Klassifikationsmodelle. Wir analysieren die

Unterschiede zwischen den beiden Klassifikationstypen und zeigen, dass das HNN

die Diversität erhöht.

In unserer zweiten Kombination, der Forced Hybrid Architecture, passen wir

das Training an, um die Diversität zu erhöhen, indem wir dazu zwingen, erst

andere Merkmale auszuwählen, anstatt die besten. Außerdem führen wir weit-

ere unterschiedlich aussehende Merkmale ein, mit dem Ziel, die Diversität zu

erhöhen. Wir zeigen, dass die meisten Merkmale auch für sich alleine gute Ergeb-

nisse erzielen. Durch die Forced Hybrid Architektur und die erweiterten Merkmale

können wir unsere Anwendung weiter verbessern. Die Kombination guter Merk-

male mit schlechteren Merkmalen kann den resultierenden Klassifikator verbessern,

verglichen mit dem Training beider Klassifikatoren mit nur einem Merkmalstyp.

Obwohl wir dazu zwingen, schlechtere Merkmale zu verwenden, ist deren Einfluss

oft gleichwohl von Vorteil. Daher verbessert die Forced Hybrid Architecture unsere

Klassifikatoren.

Schließlich haben wir unsere Merkmale und Klassifikationsmodelle auf das Prob-

lem der nicht binären Abschätzung von Blickrichtungen angewendet. Dort haben

wir gezeigt, dass unser Ansatz von Merkmalen und das HNN zum Erlernen mehrerer

Muster zu verwenden, auch in der Lage ist, Probleme mit mehreren Klassen zu

lösen.

VIII

Contents

1 Introduction 1

1.1 Motivation . 1

1.2 Contribution and Research Question 2

1.3 Structure of this Thesis . 3

2 Related and Underlying Methods 5

2.1 Early Approaches of Face Detection 5

2.2 Detailed Viola and Jones Methods and Algorithm 6

2.2.1 Introduction and Overview 7

2.2.2 The Weak Classifier and its Components 7

2.2.3 Combining Weak Classifiers: Training Ensemble and Cas-

cade classifiers . 11

2.2.4 Localisation within an Image 17

2.3 Ensembles . 18

2.3.1 Ensembles Motivation . 18

2.3.2 Ensemble Output Combining Methods 19

2.3.3 Ensemble Creation Methods 22

2.4 Diversity . 23

2.5 Hopfield Neural Network . 26

2.6 Extensions of Features and Algorithms 30

2.7 Training and Test Sets . 33

3 The Haar-Feature-Like Patch and Hybrid Diversity Approach 37

3.1 Introduction . 37

3.2 Methods . 37

3.2.1 Introducing Haar-Feature-Like Patches 37

3.2.2 Classification using Haar-Feature-Like Patches 43

3.2.3 Combining the Hopfield Neural Network and Haar-Feature-

Like Patches . 45

IX

Contents

3.2.4 Training the Hybrid Ensemble and Cascade Classifier 53

3.3 Comparing Hybrid Architecture . 56

3.3.1 Introduction to Experiments 56

3.3.2 Findings . 58

3.3.3 Discussion and Conclusion 64

3.4 Overlap Detection Merge and Samples 69

3.5 Summary . 71

4 Diversity and Common Characteristics of our Classifier Models 73

4.1 Introduction . 73

4.2 Diversity and Difference of our Classifier Models 73

4.2.1 Introduction to Experiments 73

4.2.2 Results comparing HFP and HaarNN classifiers 75

4.2.3 Discussion and Conclusion 81

4.3 Increased Diversity by the Hopfield Neural Network 83

4.3.1 Introduction to Experiments 83

4.3.2 Methods - Parameters for Increasing Diversity 84

4.3.3 Results . 86

4.3.4 Discussion and Conclusion 91

4.4 Required Number of Features . 92

4.4.1 Introduction to Experiments 92

4.4.2 Results of Number of Features 92

4.4.3 Discussion and Conclusion 95

4.5 Summary . 95

5 Increasing Diversity by Features and Forced Architecture 97

5.1 Introduction . 97

5.2 Methods . 98

5.2.1 More Types of Haar-Feature-like patches (HFP) 98

5.2.2 Forced Hybrid Architecture 102

5.3 The Feasibility of HFP Sets . 105

5.3.1 Introduction to Experiments 105

5.3.2 Results for the Feasible Cascade Classifiers 105

5.3.3 Discussion and Conclusion 110

5.4 The HFP sets’ Diversity . 110

5.4.1 Introduction to Experiments 110

5.4.2 Results for the Diversity of the HFP Sets 110

5.4.3 Discussion and Conclusion 119

X

Contents

5.5 Forced Hybrid Architectures . 120

5.5.1 Introduction to Experiments 120

5.5.2 Results for the Alternating Feature Sets 121

5.5.3 Results for the Hybrid Alternating Classifiers 125

5.5.4 Discussion and Conclusion 129

5.6 Summary . 130

6 Multi-Class Ability 131

6.1 Experiments Introduction . 131

6.2 Methods . 135

6.3 Findings . 138

6.4 Discussion and Conclusion . 139

7 Thesis Summary and Conclusion 141

7.1 Thesis Summary . 141

7.2 Future Work . 142

7.3 Conclusion . 143

A Appendix 145

A.1 Glossary of Acronyms and Abbreviations 145

A.2 Classification Samples . 147

A.3 Publications . 153

Bibliography 154

XI

Contents

XII

List of Figures

2.1 Figures a) to d) are examples of Haar-like features. The value of the

Haar-like feature is the difference between the pixel sum of the gray

rectangles and the pixel sum of the white rectangles. Considering

Haar-like feature d) in more detail, the value is v = a2+a3−(a1+a4) 8

2.2 Calculation of the integral image according to Viola and Jones [69] 9

2.3 This figure describes the calculation for the pixel sum of an arbitrary

rectangle by using the integral image following Viola and Jones [69].

Any specific location value is the sum of the pixels left of and above

this location (the sum of the pixels of the rectangle from the top left

image position to the considered location). Writing A = 1 means

that the sum of the pixels in A is the value in location 1 of the

integral image. The sum of rectangle D will be D = (4+1−(2+3)),

which is the whole rectangle (the reference in 4) minus rectangles

A,B and C. A = 1, A+B = 2 and A+ C = 3. 10

2.4 Pseudo-code of the AdaBoost algorithm (see Viola and Jones [71]) . 15

2.5 Every node decides whether the examined frame contains a face or is

background. The complexity of the ensemble classifiers is increased

for every subsequent node to speed up the rejection of background

while maintaining a high level of accuracy. 16

2.6 Pseudo-code for training a cascade classifier (see Viola and Jones [71]) 17

2.7 Voting, perhaps the most natural way to combine different opinions.

In parliament, it will mostly be yes, no or abstention. The yes

and no votes will be counted and the one with the higher number

determines the decision. 20

2.8 Training one base classifier hi on subset i to create the ensemble H. 23

2.9 Pseudo-code of the bagging algorithm by Breimann [5, 6] 24

XIII

List of Figures

2.10 Every neuron is connected to every other neuron inside the Hopfield

Neural Network except itself. It works as an auto-associator and can

recall a learned pattern from a noisy input. 27

2.11 One neuron calculates the weighted sum of the input x. 28

2.12 CBCL Face Database Train Images Samples 34

2.13 CMU Test Set A by Rowley et al. [49] contains 42 Images 35

2.14 Test Set by Sung and Poggio [60] contains 23 Images 35

2.15 CMU Test Set C by Rowley et al. [49] - contains 65 Images 36

3.1 Modeling one Haar-feature-like patch (E) instead of four Haar-like

features (A-D). If we wanted to use a corner shape model, we would

have to create four Haar-like features to get a feature for every

possible corner. Using every value on its own, we can model all

corner shapes using one feature. 39

3.2 Figures A-1 and A-2 have no difference if we calculate the Haar-like

feature value, but they are very different used as Haar-feature-like

patch. The same applies to B-1, B-2 and C-1,C-2 39

3.3 Haar-like features used by Viola and Jones [69]. 40

3.4 These Tetris-like and Block shapes consist of either six or nine boxes

with a width and height of 2x3, 3x2, and 3x3 rectangles. 41

3.5 This figure shows the BlockN HFP set. We create these blocks by

systematically increasing the number of rectangles in a row and a

column. 41

3.6 Systematically, we create BlockN HFPs by increasing the number

of rows and columns of a source HFP. 42

3.7 We create different appearances of an HFP source shape by stretch-

ing it horizontally or vertically. As illustrated in this figure, we

create several HFPs by expanding one source HFP. We then in-

crementally increase the overall width and height, thereby creating

every possible incremental increase in height for each incremental

increase in width until a maximum height or width is reached. . . 43

3.8 Every HFP has a position within the corresponding frame. The

pixel sums within the Haar-Feature-like patch (HFP) constitute the

input for classification. First, we calculate the HFP values, which

are the pixel sums of the rectangles from which the HFP is built.

Second, we compare this vector with a previously learned pattern. 44

3.9 Pseudo-code for learning HFP classifiers for all Haar-Feature-like

patches and relative positions within the training images. 46

XIV

List of Figures

3.10 Summary and short description of the HFP classifier 46

3.11 The pixel sums within the Haar-Feature-like patch (HFP) are the

input for a Hopfield Neural Network (HNN). Executing the HNN

leads to a stable state, i.e. a vector that does not change anymore.

This final vector is the input for classification or the output of the

HaarNN if used as a learnable filter. 48

3.12 To balance the pattern and input between positive and negative

values, we shift the average of the maximum and minimum to zero. 50

3.13 Activation function using different parameters to adapt to different

feature value ranges. 51

3.14 After execution, the HNN will converge to a stable state (Si) which

is assigned to a set of face and none-face probability values. 52

3.15 Execution overview of an HaarNN 53

3.16 Training overview of an HaarNN . 54

3.17 Hybrid Alternating Ensemble Architectures, combining threshold

classifiers and HFP or HaarNN classifiers. Instead of choosing one

classifier from a homogeneous set, here, AdaBoost uses a hybrid set

of different classifier types. 55

3.18 Determining whether a found region F is similar to the expected

region E can be calculated by its overlapping E∩F
E∪F 57

3.19 All of the red rectangles are false positives, while the green rect-

angles represent correct detections and the blue rectangles are the

labeled faces. In general, no detection is likely to match the labeled

region exactly. Hence, a detection is deemed a correct detection

if the overlapping takes place within a proper range (see equation

3.11). However, there will mostly be more than one correct detec-

tion, all of which will be counted as one detection, whereas all of

the nearby false detections are counted individually. 57

3.20 This distribution shows the detection and false-positive rate of cas-

cade classifiers. All of the classifiers are trained using the same

parameters except for the HFP sets and the classifier models. The

single classifiers are trained using 200 features, i.e. 200 classifiers in

each iteration. The hybrid classifiers are all trained by uniting the

single classifiers. They are trained with 100 features each. Through

uniting, they were also 200 classifiers for each iteration as for the

single classifier training. 63

XV

List of Figures

3.21 Sample images of two hybrid cascade classifiers. The first image

is a detection result of a NCC-HaarNN/threshold hybrid cascade

classifier using the TLB69 and base features (table 3.5). The sec-

ond image is a detection result of an NCC-HFP/threshold hybrid

cascade classifier using the base features (table 3.6). 66

3.22 The image on the left shows the result without any merging, i.e.

just the detections as they are. The image in the middle shows the

results after merging the nearby detections, while the image on the

right shows the result after removing regions. This image sequence

is a perfect example. First, there are some false detections; after

merging this was reduced to only one, and in the final image there

were no false detections at all. 69

3.23 The above-left image is without merging, above-right is with merg-

ing, and the lower image with removing of regions. There, we see

an example of losing one correct detection due to merging. While in

the first image all of the faces are found, the second image lost one

correct detection. Finally, we can reduce a lot of the false detections. 72

4.1 Comparing HaarNN and HFP classifier models. The images describe

the classification process. It starts with the input, followed by ap-

plying the Haar-Feature-like patch (HFP). The HaarNN classifier

(top) uses a Hopfield Neural Network (HNN) to filter the Haar-

Feature-like patch values. In contrast, the HFP classifier (bottom)

uses these values directly. Finally, both classifiers compare the re-

sult with a learned patch to decide whether the input is a face or

not. 74

4.2 These sample images visualize the effect of the merge cascade. The

top left image belongs to the NCC-HaarNN classifier, while the top

right image belongs to the NCC-HFP classifier. The bottom image

is the result of the merge cascade classifier consisting of the above

HaarNN and HFP classifiers. We can see a reduction in false pos-

itives (red rectangles) because both classifiers react differently to

most inputs; hence, they are diverse. 80

4.3 The logistic activation function with different values for the param-

eters stretchFactor (β) and threshold (θ) 86

XVI

List of Figures

4.4 This figure shows the NCC-HaarNN cascade classifiers with their

detection and false-positive rates. All classifiers are trained using

the TLB69 HFP-set. The cascade classifiers are trained using 100,

500, 2000 and all features in each iteration with up to five node

classifiers. 94

5.1 Original Haar-like features (HF) and more complex Haar-feature-

like patches (HFP). The feature value of the original features is the

pixel sum difference of the gray and white rectangles. Instead of a

single value, the HFP uses the vector defined by the values of all

dedicated rectangle pixel sums. A) represents the features used by

Viola and Jones, while TL6 and TL9 describe the group of Tetris-

like features derived from Block6 and Block9. The final row consists

of a few examples of the Symmetrical HFP (Sym). 98

5.2 The Tetris-like Six (TL6) shapes are composed of six boxes with a

width and height of 2x3 and 3x2. 99

5.3 The Tetris-like Nine (TL9) shapes are composed of nine boxes with

a width and height of 3x3. 100

5.4 CB4x4 is the abbreviation of ”Cutting Blocks of 16” boxes with a

width and height of 4x4. 100

5.5 Here are four HFP sets. The three sets on the left are Block6,

Block9, and Block16. They consist of six (two rows and three

columns), nine (three rows and three columns), and sixteen rect-

angles (four rows and four columns). The three blocks on the right

belong to the BlockN set. We create these blocks by systematically

increasing the number of rectangles in a row and a column. 101

5.6 Sym2 is the abbreviation for Symmetrical Shape 2. It is created by

mirroring (horizontally and vertically) two rectangles with a differ-

ent width, height, and position. 101

5.7 All of the parameters that determine the Random-N HFP set are

randomly chosen with a different width, height and position of a

rectangle and also the number of rectangles. 102

5.8 Forced hybrid architecture is used to create an ensemble; combining

threshold classifiers and HaarNN classifiers. This figure describes

the forced hybrid AdaBoost which first chooses a threshold classifier,

followed by a HaarNN classifier (and so on). 103

XVII

List of Figures

5.9 Forced hybrid architecture is used to create a cascade; combining

ensembles of threshold classifiers and ensembles of HaarNN classi-

fiers. This figure describes the cascade classifier creation process.

One node of a threshold classifier ensemble is followed by a node of

a HaarNN classifier ensemble. 104

5.10 Samples of cascade classifiers trained with up to ten ensemble nodes.

The first four images belong to the NCC-HaarNN cascade trained

with the HFP set TL6. The upper six images belong to the NCC-

HFP cascade classifier trained with the HFP set CB4x4. 106

5.11 This figure shows the NCC-HFP cascade classifiers with their detec-

tion and false-positive rate. All of the classifiers are trained using

the same parameters. The cascade classifiers are trained using 100

features during each iteration with up to five node classifiers. We

trained ten classifiers for each described HFP set. 108

5.12 This figure shows the NCC-HaarNN cascade classifiers with their

detection and false-positive rates. All of the classifiers are trained

using the same parameters, except the HFP set. The cascade clas-

sifiers are trained using 100 features during each iteration with up

to five node classifiers. We trained ten classifiers for every HFP

set described. The classifiers using the HFP sets TL9 and CB4x4

are removed from the graphic for presentation purposes to show a

similar scale as for the HFP cascades. TL9 does not reach suitable

false-positive rates. The best false-positive rate for the five-node

HaarNN cascades and CB4x4 set is 0.02. 109

5.13 The left images of both rows are the results of the NCC-HaarNN

cascade classifier trained with the Block6 HFP set, while the images

in the middle were trained with the TL6 HFP set. The right images

show the results of the merge cascade classifier. The detection and

false-positive rates of the classifiers are depicted in tables 5.5 and

5.6. 113

5.14 The left image is the result of the NCC-HFP cascade classifier

trained using the Block6 HFP set, while the image in the middle

was trained using the BlockN HFP set whose diversity and perfor-

mance are shown in tables 5.8 and 5.6. The right image is the result

of the merge cascade classifier created from the other two classifiers

to illustrate their diversity. 116

XVIII

List of Figures

5.15 Comparing 550 cascade classifiers with their detection and false-

positive rate. The blue triangles are the single classifier results,

while the green squares represent the results of the hybrid classifiers

that alternate the classifier type within the ensemble creation, and

the red squares belong to the hybrid classifiers where the classifier

type is altered after creating an ensemble node. 126

5.16 We compared 50 cascade classifiers with their detection and false-

positive rate. They were chosen by taking the three best classifiers

for every detection rate out of 550 classifiers. The only difference in

parameters during training was whether they are single or hybrid

classifiers and the HFP set. 129

6.1 Samples of the training set. Three source images (left). Randomly

created additional images with different width, height, rotation and

gamma corrections (middle). Randomly cropped negative samples

of landscape, office and apartment images taken from the internet. . 134

6.2 Samples of the test set. Cropped images without any changes (left).

Randomly created additional images with different width, height,

rotation and gamma corrections (middle). Randomly cropped neg-

ative samples of landscape, offices and apartment images taken from

the internet. 134

6.3 Pseudo-code K-means algorithm to group objects in a cluster by

their similarity. 135

6.4 Instead of using a threshold to distinguish faces and background,

head-pose estimation involves the KM-HFP and KM-HaarNN clas-

sifiers which use probabilities to create the four different outcomes:

left, frontal, right, and background. 136

6.5 The execution process of the HaarNN for multi-class solutions is

basically the same as for the binary solution. However, instead of

one positive input, we use three different positive classes for training.137

XIX

List of Figures

XX

List of Tables

2.1 Possible results of two different classifiers. 25

3.1 Single and hybrid ensembles trained using the same training param-

eters and feature sets except for the classifier model. The ensemble

is trained using Adaboost. The second row shows the first features

of the first ensemble. The single type cascades used 200 features in

each iteration. The hybrid cascades also used 200 features, but the

set is split into 100 features for each classifier model. The test was

performed done with all three of the described test sets. 59

3.2 Single and Hybrid ensembles trained using the same training param-

eters and feature sets except for the classifier model. The ensemble

training is done using asym-Adaboost. The second row shows the

first features of the first ensemble. The single type cascades used 200

features in each iteration. The hybrid cascades also used 200 fea-

tures, but the set is parted in 100 features for each classifier model.

The test is done with all three described test sets. 60

3.3 This table shows the diversity measure of the trained classifiers, the

result of which are provided in table 3.1. 61

3.4 This table shows the diversity measure of the trained classifiers, the

results of which are presented in table 3.2. 62

3.5 The table shows the two best classifiers for a certain detection rate.

5 times the hybrid classifier wins and 3 times the single classifier.

The rows are grouped by detection rate and sorted by false-positive

rate; thus, the lower false-positive rate comes first. 64

3.6 The table shows the two best classifiers for a certain detection rate.

5 times the hybrid classifier wins and 2 times the single classifier.

The rows are grouped by detection rate and sorted by false-positive

rate; thus, the lower false-positive rate comes first. 65

XXI

List of Tables

3.7 Results of hybrid cascade classifiers to show the merging effect. The

first row shows the results if no merging is done, the second if nearby

regions are merged, and the third if every region not consisting of

at least two merged regions is removed. Merging nearby regions

reduced the false-positives by about half, while maintaining a de-

tection rate with a minor loss of one percent. Instead, removing

regions reduces the detection rate from 6 to 11 percent and the

false-positive rate, again, to about half. 70

3.8 Results of cascade classifiers to show the merging effect. The first

row shows the results if no merging is done, the second if nearby

regions are merged, and the third if every region not consisting of

at least two merged regions is removed. The effect is the same as

that of the hybrid classifiers in table 3.7. 71

4.1 Trained with Asym-AdaBoost, 500 random features per iteration, to

a size of 50 ensemble members using Normalized Cross-Correlation.

Thereby, DR is the detection rate, and FPR is the false-positive

rate. Every second row shows the first Haar-Feature-like patches

that are chosen through the training algorithms. The last picture in

each second row shows the Summed Picture (SP). It is developed by

putting the learned patterns on top of each other and normalizing

the result to create an image. Although they are equally trained,

they differ in their chosen features and performance. 75

4.2 Correlation diversity of the above classifiers (see table 4.1). Fewer

values mean greater independence and, therefore, higher diversity.

Both classifier models are trained using the same parameters. . . . 76

4.3 Classification results of the trained cascades. The HFP and HaarNN

classifiers are trained using the same configurations. 77

4.4 We can paint the learned pattern as a summed image which is an

aggregation of all chosen features. We show ten pictures for the ten

ensembles that make up the cascade classifiers. All of the summed

pictures look different, meaning that no ensemble consists of the

same set of features. 77

XXII

List of Tables

4.5 Here, we show the difference of the chosen features for both classifier

models. The only difference when training the NCC-HaarNN and

NCC-HFP models are the classification method used. The column

Node depicts the ensemble nodes of the cascade classifier in their se-

quential order. The painted features consist of the first ten features

chosen during training. 78

4.6 Diversity correlation measure of the classifiers shown in table 4.5. . 78

4.7 The second method to show diversity involves merging classifiers.

The merge cascade classifier is the union of both of the above clas-

sifiers. It classifies an input as a face if both classifiers classify this

input as a face. If both classifiers are independent, the resulting

detection rate is 0.9x0.9 = 0.81. 79

4.8 Cascades trained with up to five ensemble nodes using asym-AdaBoost

and BlockN as the HFP set. While all cascade classifiers have com-

parable results, the ED-HFP classifier has a very high false-positive

rate. 80

4.9 Cascades trained with up to five ensemble nodes using AdaBoost

and BlockN as the HFP set. The ED-HFP cascade classifier has a

very high false-positive rate, while all other cascades are feasible. . 81

4.10 NCC-HaarNN ensembles using BlockN features trained to 80 base

classifiers only differing in the scaling factor (normTo) and the

threshold (fixThr) of the activation function. We trained all clas-

sifiers using the binary activation function 3.9 (fixThr = true) and

one threshold for all neurons (usePT = false) as described in the

method section 4.3.2. 87

4.11 Diversity measure of classifiers from table 4.10. The final row con-

tains the average diversity value for each classifier. 88

4.12 NCC-HaarNN ensembles using the BlockN HFP set, trained to 50

members. These classifier ensembles use the logistic activation func-

tion 3.8 and a learned threshold for all neurons. 88

4.13 Diversity of the ensemble classifiers from table 4.12. 89

4.14 NCC-HaarNN cascade classifiers using the BlockN HFP set trained

with up to 10 nodes using several varied parameters. 89

4.15 Paired diversity of the three cascade classifiers, the results of which

are shown in table 4.14. 89

4.16 10er CC-HaarNN cascades trained with several varied parameters. 90

XXIII

List of Tables

4.17 Paired diversity of the three cascade classifiers, the results of which

are shown in table 4.16. 90

4.18 Results of the merging NCC-HaarNN cascade classifiers in tables

4.14 and 4.16. 91

4.19 HaarNN cascade classifiers trained with several different number of

features and the BlockN HFP set. 93

4.20 Median values of cascade classifiers in figure 5.12. These are not

trained classifiers, but a center-like median of the distribution. . . 94

5.1 This table shows the performance, first features, and the summed

pattern image of several cascade classifiers. All of the cascade clas-

sifiers were trained with up to ten ensemble classifiers. 107

5.2 HaarNN cascade classifiers trained with the HFP set TL9. The

number of base classifiers is very small because the ensemble creation

breaks if errors in the base classifiers are too high. 107

5.3 Here, the HaarNN cascade classifiers are trained with up to ten

node classifiers, each using the same parameters except for the HFP

set. They have different detection and false-positive rates, and the

different feature types cover different areas. Note the fact that the

summed pictures of all features are different. 111

5.4 Diversity correlation values of the HaarNN cascade classifiers used

in table 5.3. The cross-point depicts the correlation value of two

classifiers. The smaller the value, the higher the diversity. Here, we

compare HaarNN classifiers. The table key is the respective HFP

set with which the classifier is trained. 112

5.5 The results of several cascade classifiers and their merge cascade

classifiers so as to underline their diversity. Every merge cascade

is depicted by Merge within the model column and is the result

of both cascade classifiers above. Merge cascade means that both

classifiers have to return a positive result for the given input. . . . 113

5.6 This table shows the HFP cascade classifiers also used in table 5.3.

These results also show their difference in terms of performance and

feature appearance. 114

5.7 Diversity correlation values of the HFP cascade classifiers in table

5.6. The cross-point depicts the correlation value of two classifiers. 115

XXIV

List of Tables

5.8 The results of several cascade classifiers and their merge cascade

classifiers to prove their diversity. Every merge cascade is depicted

by Merge within the model column and is the result of both cascade

classifiers above. Merge cascade means that both classifiers have to

react with a positive result for the given input. 115

5.9 Cascade classifiers trained to five nodes, using 500 features. These

are the results of a subset of all described HFP sets and only involv-

ing HFP classifiers. 116

5.10 Correlation values for the cascade classifiers in table 5.9. 117

5.11 Several ensembles trained only with different HFP sets. They are

tested with the CBCL test set. The ensemble classifiers are trained

with up to 50 members. The last two ensembles use the same HFP

set type but different subsets. 117

5.12 Correlation diversity for the classifiers in table 5.11 118

5.13 Several ensembles trained only with different HFP sets. They are

tested with the CBCL test set. The ensemble classifiers are trained

with up to 50 members. The final two ensembles use the same HFP

set type but different subsets. 118

5.14 Correlation diversity for the classifiers in table 5.13 118

5.15 The classifiers are trained with a fixed (random) set of 100 for every

iteration. FH-AdaBoost means that we force alternation of the set

during ensemble creation. Accordingly, the first five features of the

FH-AdaBoost classifier consist of Block6 and 2Sym HFP features.

FH-Cascade means forcing alternation after creating an ensemble

node. Since we show the first five features of the first ensemble node

classifiers, and the ensembles are trained using the same random

sequence, the present features of the FH-Cascade classifiers are the

same as those for the single classifiers. 122

5.16 The forced hybrid cascade improves both single classifiers in terms

of false-positive rate by maintaining the detection rate of a single

classifier. 123

5.17 These results show that forcing the use of one set with a bad false-

positive rate also leads to a feasible combined classifier. Note the

reduction of the false-positive rate compared to the single CB4x4

classifier. 124

5.18 The forced hybrid cascade classifier improves the false-positive rate

of both single classifiers as well as the detection rate of one classifier. 124

XXV

List of Tables

5.19 This table shows the potential benefit of using two different HFP

sets. Comparing accuracy (Acc(w)), all of the combinations outper-

form the classifier trained with a single set. The correlation value

of both classifiers is 0.208. 125

5.20 This table shows the results of two ensembles trained with the HFP

sets BlockN and 2Sym as well as three ensembles trained with a

combination of the two sets. The correlation value of both ensembles

trained with a single HFP set is 0.237. 125

5.21 Both ensembles using the Block6 and BlockN HFP sets for training

have a correlation value of 0.629. The hybrid-trained ensembles

slightly improve upon the single-trained ensembles. 126

5.22 Direct comparison of single and hybrid classifiers. We chose two

classifiers for the NCC-HaarNN, and BlockN set, and the NCC-

HFP Block9 set, compared with four hybrid classifiers that use the

same classifier models and sets. The single and hybrid classifiers

are trained with asym-AdaBoost and 100 randomly chosen features

during each iteration. 127

5.23 We took some samples that show the tendency of the classifiers. . . 128

6.1 Results of the KM-HaarNN ensembles, trained with up to 50 base

classifiers. 139

6.2 Results of the BP-HaarNN ensembles, trained with up to 50 base

classifiers. 139

6.3 Results of the KM-HFP ensembles, trained with up to 50 base clas-

sifiers. The KM-HFM ensembles achieve high detection rates, but

incorrectly classify about half of all negative samples. 140

A.1 Single cascade classifier using as base classifier NCC-HFP, the HFP

set RandomN, trained with 100 features per iteration. 148

A.2 Forced Hybrid cascade classifier (FH-AdaBoost) using as base clas-

sifiers NCC-HaarNN and Threshold, the HFP sets Block6 and Base,

trained with 100 features per iteration. 149

A.3 Hybrid cascade classifier (Unite) using as base classifiers NCC-HFP

and Threshold, the HFP set Base, trained with 100 features per

iteration. 150

A.4 Forced Hybrid cascade classifier (FH-AdaBoost) using as base classi-

fiers NCC-HaarNN and NCC-HFP, the HFP sets 2Sym and Block6,

trained with 100 features per iteration. 151

XXVI

List of Tables

A.5 Forced Hybrid cascade classifier (FH-AdaBoost) using as base clas-

sifier NCC-HFP, the HFP sets BlockN and Base, trained with 100

features per iteration. 152

XXVII

List of Tables

XXVIII

Chapter 1

Introduction

1.1 Motivation

This work started as part of the European research project KSERA, which ex-

amines the role of robots in assisting elderly people. Face detection is an ability

robots need to interact with humans. Face detection is the first step for many sub-

sequent tasks, such as pose estimation, face tracking, emotion recognition or face

recognition, which are all relevant for robot-human interaction. Gaze direction,

for example, is needed to check whether a human pays attention to the robot and,

therefore, is ready for communication.

While cameras are the robot’s visual system, we have to find faces in images,

which is challenging. If we consider faces in images that are easy to recognize for a

human, it could be very difficult for robots. For example, even in passport images

where the pose does not vary a lot, there are differences like lighting conditions or

the effect of different camera sensors. In natural images, we have differences caused

by technical and environmental aspects. Image appearances depend on whether we

take the image inside a room or outside. When outside, it makes a difference if the

sun is shining or if it is cloudy. Also, shadow and reflections influence the image.

These aspects also play a role indoors and in the event of additional artificial light.

The relative camera position and orientation play a role, as is the case if parts of

the face are covered with other items in the given surroundings. Another challenge

in terms of differences are the faces themselves. They differ in structural elements,

e.g. men in the images wearing beards, mustaches or glasses. Also, emotional

reactions change facial appearance. However, all these different faces have to be

detected.

The idea of our classifier model presented in this thesis starts with reading

an article in a popular scientific journal which claims that the eyes “throw” a

1

Chapter 1. Introduction

lot of geometric figures to the brain. The brain, in turn, derives meaning from

these figures. This “throwing of geometric structures” was the initial impulse for

questioning whether it is possible to create a strong classifier that only uses sim-

ple geometric structures for object classification in images rather than using more

complex features. Haar-like features, used by a simple threshold classifier and com-

bined to create an ensemble (Viola and Jones [69]), are such simple features. This

method, which inspired our work, has the drawback that as the ensemble grows,

fewer accurate single classifiers will be added. However, we intend to overcome this

problem by using an increased set of shapes as features, more accurate patch-like

classifiers including a Hopfield Neural Network, and increasing diversity. Diversity

plays a key role for ensemble methods, especially the diversity of the features and

the classifiers which use these features and form the ensemble by way of combi-

nation. Another important aspect is the computational complexity. We want to

train our ensembles as quickly as possible. While training often is performed with

a large set of possible classifiers, it is crucial to have easy and fast models to train.

Therefore, our proposed models focus on simplicity, speed, and increased diversity.

Summarizing, we want to create a strong classifier for face detection that uses

simple features and classifiers by exceedingly increasing diversity. Therefore, we

create novel features, classifier models, and hybrid architectures.

1.2 Contribution and Research Question

In this work, we introduce and analyze novel features, classifier models and hybrid

architectures that focus on simplicity and increased diversity. We have created

some novel feature shapes, explored their combination with classifiers and the ag-

gregation of this combination to create a hybrid architecture. Our approach is

driven by increasing diversity but retaining simplicity and computational perfor-

mance, which examines an alternative way of developing classifiers by primarily

thinking of diversity instead of more complex and accurate classifiers.

The main question relating to our approach is: Is our model, using increased

diversity, able to create a well-performing classifier? Are our classifiers, which only

use the pixel sums of several geometric shapes, able to distinguish faces from non-

faces in arbitrary natural scenes? While we want to overcome this challenge mainly

through diversity, we have to question whether our method can increase and create

a feasible amount of diversity. Therefore, we explore the following questions:

• What is the role of our feature sets?

2

1.3. Structure of this Thesis

– Are the sets diverse to each other?

– Are all of them beneficial?

• The role of combination:

– Does the hybrid architecture create better results than the single clas-

sifiers?

– Can we create a benefit from the forced hybrid architecture and its

inherit diversity?

• What is the role of the Hopfield Neural Network?

– Does the HNN create further diversity within the classification model?

– Does the HNN really make a difference? Or do both classifier models

have an equal effect within a bigger ensemble and cascade classifier?

– Can we create a benefit out of the HNN?

• Finally

– Does our model have the ability to become a strong classifier?

1.3 Structure of this Thesis

Chapter 2: Related and Underlying Methods

We give an overview of state of the art and the methods which form the basis

of our approach in the related work chapter 2. There, we start by providing an

overview of methods used in the field of face detection, followed by an introduction

to the relevant methods that we use or extend in this thesis. Finally, we introduce

the train and test sets which we use in our experiments.

Chapter 3: The Haar-Feature-Like Patch and Hybrid Diversity Ap-

proach

In chapter 3, we introduce our approach and analyze the results of our models. The

method section introduces our Haar-Feature-like patches and diversity approach.

There, we explain our features, the Haar-Feature-like patches (HFP) and how they

are related to Haar-like features. Following that, we describe our classifier model

that uses the HFP sets and our extended classifier model, which includes a Hopfield

Neural Network. Finally, we show and analyze the results of the hybrid approach.

3

Chapter 1. Introduction

Chapter 4: Diversity and Common Characteristics of our Classifier

Models

In chapter 4, we explore the characteristics of both of our classifier models. First,

we compare the diversity and differences of both models; second, we examine the

role of the Hopfield Neural Network within the HaarNN classifier. Finally, we

justify the use of small random sets for training.

Chapter 5: Increasing Diversity by Features and Forced Architecture

In chapter 5, we introduce our Forced Hybrid Architecture approach and further

HFP sets for increasing diversity. In the first section, we analyze the results of

different HFP sets. We examine their ability to create good classifiers and their

diversity compared with one another. Finally, we examine the use of the extended

sets by the Forced Hybrid Architecture.

Chapter 6: Multi-Class Ability

In chapter 6, we present our findings and attend to the use of our HFP and HaarNN

classifiers as a multi-class solution. We explore this question by applying our

models to the head-pose estimation problem.

Chapter 7: Thesis Summary and Conclusion

In the final chapter, we summarize the findings of our thesis, discuss possible future

work, and offer a final conclusion.

4

Chapter 2

Related and Underlying Methods

In this chapter, we describe the underlying and related work of our model. We start

with an overview of early approaches in the field of face detection (section 2.1) and

follow up on this with a detailed description of AdaBoost (section 2.2) which is an

essential part of the work in this thesis. The model we suggest extends the features

Viola and Jones [71] used and other Ensemble Method concepts (section 2.3) to

increase diversity (section 2.4). Further, we use a Hopfield Neural Network for our

classifier model (section 2.5). We follow this with an overview of the features and

algorithms extending the underlying models and state-of-the-art methods (section

2.6). Finally, we present the training and test set we use (section 2.7).

2.1 Early Approaches of Face Detection

Face detection aims to find faces and their respective positions in images. In

their survey from 2002, Yang et al. [86] separated face detection techniques into

four groups: a) knowledge-based approaches, b) feature invariant approaches, c)

template matching methods, and d) appearance-based methods. Knowledge-based

methods use predefined rules to recognize faces based on the relative positions of

facial features like the eyes, nose, mouth and so on. Such methods search for

facial features first and then add the results to the researcher’s manually coded

rules. The problem here is the generality of the rules. If these rules are too

detailed, they fail to detect faces. If they are too general, they lead to many false

positives. Yan and Huang [85] built a hierarchical knowledge-based application to

address this problem. They use a three-rule layer where the rules were applied to

every location during a systematic scan of the considered image. The rules were

executed beginning with the highest, most general layer and progressing through

to the lowest detailed layer. The highest layer uses a general description of what

5

Chapter 2. Related and Underlying Methods

describes a face so as to select every possible face. The lowest layer represents low-

level detailed facial features. The idea is to select everything that could be a face

in the first step so they do not miss any faces while removing many non-faces. The

other two layers distinguish faces from non-faces based on these preconditioned

areas. With their application, the authors located faces correctly in 50 out of 60

test images and returned false positives in 28 test images.

The motivation for the feature-invariant method stems from the observation

that humans can easily detect faces in scenes with difficult lighting, pose, and so

forth. The idea is to find invariant features or properties that most faces have in

common, including in cluttered scenes. However, these variations of lighting, noise

or occlusion are also challenging when looking to recognize facial features. Sirohey

[56] reaches 80% accuracy in 48 test images involving cluttered scenes. The author

uses an edge map built using the Canny edge detector [9]. Through a heuristic of

grouping and removing edges, Sirohey [56] extracts face contours, places an ellipse

over the found region, and, finally, separates the faces from the background.

Template matching is performed by way of face patterns which are manually

specified or given by parameterized functions. Classification is achieved by corre-

lating all of the facial features and calculating and comparing a template. This

solution is easy to implement, but the drawback lies in classifying faces in different

poses or scalings. To handle this difficulty, some authors suggested multiscale sub-

templates and deformable templates. An early attempt was published by Sakai et

al. [51], who use line segments to model several sub-templates for the eyes, nose,

mouth, and face contour. In 1993 and 1994, Tsukamoto et al. [64], [63] introduced

a qualitative model where every input image is split into separate blocks. Then,

qualitative features are calculated for every block. A face was subsequently clas-

sified if the block values were higher than a predefined threshold. In 1999, Miao

et al. [42] proposed a hierarchical template matching approach. First, they rotate

the image from -20 to 20 degrees, then they create a multiresolution hierarchy and

extract edges through a Laplacian operator.

2.2 Detailed Viola and Jones Methods and Al-

gorithm

In this section we provide an overview of the Viola and Jones face detection frame-

work [69, 71, 72] which is essential for our work because we use it as a basis and

then extend upon their the ideas.

6

2.2. Detailed Viola and Jones Methods and Algorithm

2.2.1 Introduction and Overview

Another group of Ensemble Methods emerged in 2002 with the work of Viola and

Jones [69] and dominates the following work in this field as Zhang noted [90].

In 2001, Schapire [53] gave an overview of the boosting approach to machine

learning. In that overview, he stated that the first demonstrable polynomial time

boosting algorithm was published in 1989 in his work [52]. One year later, Freund

[14] presented an improved variation. In 1995, Freund and Schapire [15] jointly

proposed the AdaBoost algorithm. Building on that, in 2001 Viola and Jones

published “Rapid object detection using a boosted cascade of simple features”

[69] and later “Robust Realtime Object Detection” and “Robust Realtime Face

Detection” [71, 72]. Their model outperformed other state-of-the-art applications

in terms of accuracy. It distinguished itself with a high detection and very low false-

positive rate. Further, it had (and still has) a very high computational detection

speed which also outperformed the other methods that existed at that time.

2.2.2 The Weak Classifier and its Components

Haar-like features

Motivated by the work of Papageorgiou et al. [47], Viola and Jones did not use

pixel values directly, but worked with functions related to Haar basis functions.

Further, they mentioned two main reasons for using feature instead of pixel values.

On the one hand, this provides the benefit of ad-hoc domain knowledge inherent

to the feature, while on the other hand it enables a higher computational speed.

Haar-like features are the difference between several rectangle pixel sums. They

used four different shapes of Haar-like features with a different number of rectan-

gles, as depicted in figure 2.1. Their base features consist of between two and four

rectangles. Considering figure 2.1, we calculate the sum of the pixel values inside

the gray and the white rectangle and then normalize this sum to the underlying

area. Independent of the number of rectangles, at the end of this process we have

one sum value for the gray rectangles and another sum value for the white rectan-

gles. Afterwards, we calculate the difference between both these sum values, which

is then our Haar-like feature value. One Haar-like feature can be scaled to many

different widths and heights, leading to a huge number of possible features.

7

Chapter 2. Related and Underlying Methods

Figure 2.1: Figures a) to d) are examples of Haar-like features. The value of the

Haar-like feature is the difference between the pixel sum of the gray rectangles and

the pixel sum of the white rectangles. Considering Haar-like feature d) in more

detail, the value is v = a2 + a3− (a1 + a4)

Calculating Haar-like features: The Integral Image

Viola and Jones use AdaBoost to combine several weak classifiers into one strong

classifier. In the context of ensembles like AdaBoost, this involves combining a

number of features. In general, fast feature computation is beneficial, but it is

essential to features used by ensembles because a large number of them have to be

created.

To calculate the Haar-like feature, we have to compute the pixel sum of sev-

eral rectangles again and again, which is computationally very expensive. Conse-

quently, it is important to have a fast method to calculate the pixel sums. Viola

and Jones achieved this by using another image representation called “integral

image”, which is motivated by the work of Crow [10] and is similar to Crow’s

“summed area table (SAT)”. Because of this integral image, every arbitrary rect-

angle pixel sum can be calculated using just four arithmetic operations. As an

image contains pixels, the integral image contains the sum of the pixels up to the

considered location. The integral image can be created from the original image in

a single loop (see figure 2.2).

This image representation is key to achieving high performance in the resulting

system. At the beginning of the detection process, the integral image is calculated

once. Afterwards, every Haar-like feature is created in every required scaling using

just four accessions of the integral image (figure 2.3).

8

2.2. Detailed Viola and Jones Methods and Algorithm

The integral image values in every location (x, y) are the summed pixel values

up to and left of the considered location. For visualizing, we can draw a

rectangle, starting at the top left point of the image and ending at the bottom

right point, which is our considered location (x, y). Now, the value of the

integral image at location (x, y) is the sum of the pixels within the painted

rectangle, as expressed in equation 2.1.

ii(x, y) =
∑

x≤x′,y≤y′
i(x′, y′) (2.1)

where ii(x, y) represents the integral image and i(x, y) the original image. The

calculation, requiring just one loop, is performed using the following two re-

cursive equations.

s(x, y) = s(x, y − 1) + i(x, y) (2.2)

ii(x, y) = ii(x− 1, y) + s(x, y) (2.3)

Figure 2.2: Calculation of the integral image according to Viola and Jones [69]

Threshold Classifier using Haar-like features

The Haar-like feature values used as an input for the classification process are

the difference between several rectangle pixel value sums, as described in figure

2.1. Thereby, one classifier uses exactly one Haar-like feature value as an input.

Viola and Jones [69, 72] proposed a threshold classifier that distinguishes between

positive and negative samples, which are faces or no faces (background). The

threshold classifier is trained by calculating a threshold which provides the greatest

error reduction based on the training set. This is performed via the following steps:

For one given Haar-like feature and a given position in the image, they calculated

the values of the feature for all training images. Thereby, the training images

consist of positive samples that show faces, and negative samples that do not show

any faces. With all the values of one feature and one specific position for all training

images, we then choose one value within the range of all values as our threshold.

We therefore want to have a threshold that distinguishes perfectly between faces

and non-faces. Hence, the samples with a lower value than the threshold should all

be faces, while the samples with higher values are all non-faces. However, this is

not usually the case. Irrespective of which threshold we choose, there will be faces

9

Chapter 2. Related and Underlying Methods

Figure 2.3: This figure describes the calculation for the pixel sum of an arbitrary

rectangle by using the integral image following Viola and Jones [69]. Any specific

location value is the sum of the pixels left of and above this location (the sum of the

pixels of the rectangle from the top left image position to the considered location).

Writing A = 1 means that the sum of the pixels in A is the value in location 1 of

the integral image. The sum of rectangle D will be D = (4 + 1 − (2 + 3)), which

is the whole rectangle (the reference in 4) minus rectangles A,B and C. A = 1,

A+B = 2 and A+ C = 3.

and non-faces on both sides of the threshold. Therefore, the algorithm searches

for the threshold that reaches the lowest error, considering the training images.

Normally, every threshold classifier has errors; thus, Viola and Jones called them

“weak classifiers”. Nonetheless, the AdaBoost ensemble method achieved a high

level of accuracy by combining a set of weak classifiers.

hj(x) =

 1 pjfj(x) < pjθj

0 otherwise
(2.4)

Thereby, hj(x) in equation 2.4 is the result of the threshold classifier. It is given

by multiplying fj, which is the value of the used Haar-like feature and parity pj.

The mathematical construct pj indicates whether the inequation means less than

or greater than; hence, the value is greater or smaller than the threshold θj. With

threshold θj, parity pj will be learned during training.

As mentioned for Haar-like features, when it comes to ensembles and their high

number of possible weak classifiers, computational speed is important. Calculating

the output of the threshold classifier (see equation 2.4) is quite inexpensive. How-

ever, it is also not very expensive to search for the best threshold that minimized

10

2.2. Detailed Viola and Jones Methods and Algorithm

the error most, also considering different weighting of the training samples as used

by AdaBoost (see the next section 2.2.3). Therefore, we choose one Haar-like fea-

ture and calculate its values for a set of training samples. Then we sort this list by

its value, keeping the link to the corresponding training image. This link is needed

to determine whether it is a face or a non-face example. Now, we can go through

the sorted list to create a threshold between the current and the next value. By

knowing whether the samples are faces or non-faces, we can calculate the current

error. The only left to do now is to remember for which value the error has its

lowest value, which, ultimately, is the threshold we are looking for.

2.2.3 Combining Weak Classifiers: Training Ensemble and

Cascade classifiers

AdaBoost

Beside Haar-like features and the integral image, an additional important part of

the system from Viola and Jones [71] is AdaBoost.

Selecting and Weighting - ensemble core creation

To describe the AdaBoost [71] algorithm, we start with an informal summary of

the original and detailed formulation shown in figure 2.4. AdaBoost creates the

ensemble by repeating the following steps:

1. The weak classifier with the lowest error over the training set will be selected,

taking into account the current weights of the training images.

2. The selected classifier is added to the ensemble, and a classifier weight is

calculated according to its current error.

3. The training set will be re-weighted so that the weights of correctly classi-

fied samples will be decreased, meaning that misclassified samples are more

relevant in the next iteration.

Lowest error for given sample weights

AdaBoost calculates one classifier for all possible features and its error. Afterward,

it selects the classifier with the lowest error over a weighted training set. The

relevant part of the AdaBoost algorithm is the weighting of the training samples,

which we will describe in the next paragraph. The algorithm starts by setting

initial weights to 1/n, where n is the number of samples. If we take four training

11

Chapter 2. Related and Underlying Methods

images and a classifier that correctly classified three of them, we get an error of

1/4 respectively nic
n

, where nic is the number of incorrect classified samples and n

the number of all samples. Describing this process using the weight 1/n for every

sample, we get:

error =
nic
n

=

∑nic
1 1

n
=

nic∑
i=1

1

n
=

nic∑
i=1

wi (2.5)

which also leads to 1/4. Using this formulation, we have to normalize the weights

of our training set to ensure that
∑n

i=1wi = 1. We have already mentioned that

the classifier with the lowest error is chosen, but by repeating this, we want to

emphasize that this error is the lowest, given the current weighting of the samples,

while the unweighted error could be very different. To illustrate this, we change the

weight of one of our four samples to 0.7. Now we consider two classifiers, one that

misclassifies the 0.7 sample, and another that misclassifies all the other samples.

The second classifier misclassifies three samples, nevertheless this is the one with

the lowest error (
∑nic

i=1wi =
∑3

1 0.1 = 0.3 versus
∑1

1 0.7 = 0.7) and therefore will

be chosen.

To simplify the explanation of what the weighting means, we used an equal

weighting for all examples. The same weight means that every image is equally

important, irrespective of whether it is a positive or negative example. However,

this would lead to a misbalance if the negative examples were larger than the

positive ones (or vice versa). Especially when training a cascade of ensembles

(see the following section 2.2.3), the amounts of negative and positive examples

are often entirely different. If the weighting of the training set is equal for all

examples, we arrive at an implicit higher value of the part that has more members.

For example, we have fifty of one hundred correctly classified negative examples

and nine of ten correctly classified positive examples. With an equal weighting of

all samples, we get an overall error of about 0.46 (1+50
10+100

). If we consider the parts

on their own, we get an error of 1
10

= 0.1 for the positive part and 50
100

= 0.5 for

the negative part, leading to an averaged error of 0.1+0.5
2

= 0.3. This is not as bad

as 0.46.

Following this example, looking for the classifier with the lowest error would

only lead to classifiers with good results for the negatives, so we would primarily

end up with classifiers that have a low false positive rate. The implicit influence

of the negative examples in percent is higher than that for the positives. However,

this is not what we want, which is why we do not use equal weighting. The

initial weighting is set to 1/2nn and 1/2np, where nn are the number of negative

samples and np are the number of positive samples, thus leading to a balance of

12

2.2. Detailed Viola and Jones Methods and Algorithm

the negative and positive parts. While we consider two parts, we use the factor

1/2 for normalization.

Reweighting the training set

In the last paragraph, we discussed the vital role of sample weighting. Now, we

consider how AdaBoost uses this weighting to create a balanced ensemble. We

call it a balanced ensemble because, over a period of time, the ensemble will have

classifiers that fit every sample. Hence, the ensemble handles every aspect of the

different samples.

This important mechanism is the reweighting of the training examples. For

other ensemble methods such as bagging, it is crucial to use different training sam-

ple subsets. For AdaBoost, this involves reweighting. Reweighting is the second

step, performed after one weak classifier is selected. Then, the training set will be

re-weighted in such a way that a misclassified image becomes more valuable for the

classifier selection process, requiring an increase in the weights of the misclassified

sample as described in the following equation 2.6.

wt+1,i = wt,iβ
1−ei
t (2.6)

where ei = 0 if example xi is classified correctly, ei = 1 otherwise, and βt = εt
1−εt .

We achieve a revaluation of the misclassified samples by increasing their weights

compared to the correctly classified examples. It is similar to a voting system where

some images have more votes than others. If we have an equal weighting of 1/n

for training images n, every sample has the same “voting relevance”. Through

the reweighting step, an example becomes more relevant. The more a sample was

misclassified, the more its weight will be increased. Thus, this example becomes

more important to the selection process and a classifier that distinguishes this

example correctly has a better chance of having the lowest error.

During the creation process, the reweighting mechanism focuses selection of

the weak classifiers on different aspects of the considered objects. If we examine

training images with faces, we can imagine having n persons, but only one of them

has a beard. If we had an equal weighting of the training images, it would not

matter whether the bearded man was rightly classified or not. It would not make

any difference because the bearded man is only one sample of n. Moreover, it

is not unlikely that only classifiers are constantly chosen which ignore the beard.

This would not happen by reweighting the samples. If the bearded man is misclas-

sified again and again, after a while this bearded training sample will become so

important that only a classifier that recognizes this example as a face has a chance

13

Chapter 2. Related and Underlying Methods

of being the one with the lowest error and, thus, will be selected for addition to

the ensemble. Describing the reweighting in such detail emphasizes the fact that

reweighting of the images within the training process is a fundamental and very

relevant mechanism of AdaBoost. It is an essential part of the ensemble creation

process used to increase diversity.

Weighting the chosen classifier for the final ensemble

The ensemble creation process finishes by reaching a predefined number of weak

classifiers T or a given ensemble error. The classification of the ensemble is per-

formed by weighted voting of its members. The weighting is bound to every ded-

icated weak classifier and is calculated after its selection in respect to its classifi-

cation error of the current sample weighting.

Asym-AdaBoost

With cascade classifier learning, the focus is on a high detection rate. Therefore,

Viola and Jones introduced Asym-AdaBoost which prefers classifiers with a higher

detection rate. Asym-AdaBoost got its name because the choice of the “best”

classifier is asymmetric. As described, AdaBoost selects this classifier that has the

lowest error for adding to the ensemble. As a result, the error is calculated such

that the detection rate and the false-positive rate is equally weighted.

In their work, Viola and Jones [70] showed that they can improve the ensemble

by using an asymmetric weighting of the detection rate and the false-positive rate.

They increase the weights of the positive samples that make them more impor-

tant for choosing a classifier and, therefore, the classifier selecting process prefers

classifiers that have a good detection rate.

Early rejection of background - The Cascade Structure

Viola and Jones [71] used the exhaustive search over a whole image to find the

considered object. This is known as rare event detection meaning that most of the

examined frames do not contain the object we are looking for. Crawling through an

image largely means that our classifier has to examine a lot of background. Hence,

the goal is to quickly decide whether or not the considered frame is background.

However, ensembles often have many base classifiers. Every base classifier needs

some time to get its classification result and the more base classifiers an ensemble

consists of, the more execution time the ensemble needs. The cascade classifier

solved this by starting with simple classifiers to speed up the classification process

14

2.2. Detailed Viola and Jones Methods and Algorithm

Pseudo-code AdaBoost:

• Given example images (x1, y1)...(xn, yn), where yi = 0, 1 for negative and

positive examples respectively.

• Initialize weights w1,i = 1
2m
, 1
2l

for yi = 0, 1 respectively, where m and l

are the number of negatives and positives respectively.

• for t = 1, ..., T :

1. Normalize the weights, wt,i ← wt,i∑n
j=1 wt,j

so that wt is a probability

distribution.

2. For each feature, j, train a classifier hj which is restricted to using

a single feature. The error is evaluated with respect to:

wt, εj =
∑

i | hj(xi)− yi |.

3. Choose the classifier ht with the lowest error εj.

4. Update the weights: wt+1,i = wt,iβ
1−ei
t , where ei = 0 if example xi

is classified correctly, ei = 1 otherwise, and βt = εt
1−εt .

• The final strong classifier is: h(x) =

 1
∑T

t=1 αtht(x) ≥ 1
2

∑T
t=1 αt

0 otherwise

where αt = log 1
βt

.

Figure 2.4: Pseudo-code of the AdaBoost algorithm (see Viola and Jones [71])

at the beginning. Then, the complexity of the classifiers in the following nodes is

increased to also increase the accuracy. Increasing the complexity and accuracy

is achieved by decreasing the expected false-positive rate for the current ensemble

by keeping the high detection rate and increasing the number of negative samples.

On top of that, the correctly classified negative samples of the currently trained

ensemble will be replaced with new negative samples.

Every node in the cascade decides whether it is background or the object we

are looking for (faces in our application). Thus, a cascade classifier only needs

a few classifiers to remove most of the background. The cascade structure is a

so-called degenerated decision tree. It has only one path, and every node in this

path has to react with a positive result to get the final positive result. If any node

15

Chapter 2. Related and Underlying Methods

Figure 2.5: Every node decides whether the examined frame contains a face or

is background. The complexity of the ensemble classifiers is increased for every

subsequent node to speed up the rejection of background while maintaining a high

level of accuracy.

reacts with a negative result, the process finishes with a negative result, as shown

in figure 2.5.

The equations 2.7 and 2.8 describe the calculation of the final detection and

false-positive rate. The equations presume that the classifiers within each node

are statistically independent. Both the detection rate and the false-positive rate

will decrease, which is what we want for the false-positive rate but not for the

detection rate. Therefore, we must have classifiers with a high detection rate but

not necessarily a good false-positive rate. If we have different classifiers for every

node, it will be more unlikely with every step through the next node that the

cumulated result will be false, which is expressed in the following equations 2.7

and 2.8.

F =
K∏
i=1

fi (2.7)

The F in equation 2.7 is the overall false-positive rate and fi the false-positive rate

16

2.2. Detailed Viola and Jones Methods and Algorithm

Pseudo-code for training a cascade classifier:

• Select all positive samples and a subset of the negative samples

• Set the expected detection rate (dre) and false-positive rate fpre for the

ensemble nodes

• Set the final expected false-positive rate fprf or max number of nodes N

for the cascade classifier

• For t = 1, ..., N :

1. train an ensemble until it reaches dre and fpre

2. add the ensemble to the cascade

3. replace the correctly classified negative samples with new ones

4. add additional negative samples

5. decrease the false-positive rate fpre = fpre − δ

6. calculate the current false-positive rate of the cascade classifier fprc

7. if(fprc < fprf) break

Figure 2.6: Pseudo-code for training a cascade classifier (see Viola and Jones [71])

of the ith classifier.

D =
K∏
i=1

di (2.8)

The D in equation 2.8 is the overall detection rate and di the detection rate of the

ith classifier.

2.2.4 Localisation within an Image

Viola and Jones use a sliding window with different scalings to find a face. They

put a frame over part of the image and test whether or not there is a face. The test

window usually starts in one corner and then slides horizontally to the other side

of the image. After that, it slides one step vertically to the next line and repeats

this by sliding to the other side. After the test window reaches the corner opposite

the starting corner (hence, every possible frame is examined), the process starts

17

Chapter 2. Related and Underlying Methods

from the beginning using an upscaled test window. Then, the process of the sliding

window starts again, beginning at one corner and ending in the opposite corner.

Increasing the test window, sliding, and classifying all possible frames within the

image will be repeated as long as the upscaled window reaches a maximum width

and height. The process will stop at the latest once the test window has the same

size as the image to be tested.

2.3 Ensembles

In this chapter, we provide an overview of the field of ensemble classifiers. There

are different names for this field, such as multiple classifier systems or classifier

combiners.

2.3.1 Ensembles Motivation

The core of ensembles is a set of classifiers that work together. Kuncheva [31]

mentioned that combining suggestions to find a decision is quite natural. In daily

life, we often decide by asking several people for their opinion. “Get a second

opinion” is a familiar statement used to arrive at a solution by taking the view

of other people into account. Transferring this to the field of machine learning,

we do not just use a single classifier, but multiple classifiers to create a compound

result. The aim of using multiple classifiers together is to compensate errors for

single classifiers. The final ensemble classification result should be more accurate

than the sum of the single results.

Dietterich et al. [12] mentioned that there are three main reasons why classifier

ensembles work.

• The statistical reason:

This covers the fact that every trained classifier will have uncertainty because

we cannot describe a perfect model that comprises everything. If there is so

much data that we are not able to handle this amount of information, we will

only use a subset to train our classifiers. However, there will be facts that

are not known during training. Using more than one classifier can reduce

this uncertainty.

• The computational reason;

Data is not the only source of “noise”. The training algorithms themselves

have imperfections. Many algorithms reduce an error for a dedicated set of

18

2.3. Ensembles

properties, but therefore sometimes stick to a local minimum. Running an

algorithm with different properties and combining their abilities could help

to avoid this.

• The representational reason:

If an algorithm is searching for a function that describes a given problem,

it could be very complex, time-consuming or unfeasible to create a single

function that solves the problem. Instead, for example, we can train simple

linear classifiers and combine them to approximate a nonlinear function.

Kuncheva [31] underlines that it is important to make use of the variations

of the training sets, feature sets or other, so that the classifier creation becomes

unstable. If they were stable, they would produce similar results for similar training

sets, which is not what we want to achieve. They should react as differently as

possible to provide independent classifiers.

2.3.2 Ensemble Output Combining Methods

If we have one classifier, the output is the final classification result. However,

having several classifiers means that we have to interpret the single results and

combine them into one final result. Xu et al. [83] and Kuncheva [31] state four

classes of individual outputs.

• Class labels:

Every classifier predicts precisely one class label for one input. This predic-

tion comes without any further probabilities or other context information.

• Ranked class labels:

Each classifier returns a list of class labels in order of preference. While there

is no value for the likelihood of the output, this result at least confirms a

priority.

• Numerical support for classes:

The classifier result is a vector. Every value of this vector describes the

support for a dedicated class.

• Oracle:

The only knowledge of the outcome is whether the classifier’s result is wrong

or false. [31] described the Oracle method as artificial because it ignores

classes and only expresses whether an output is wrong or does not involve a

labeled data set.

19

Chapter 2. Related and Underlying Methods

Figure 2.7: Voting, perhaps the most natural way to combine different opinions.

In parliament, it will mostly be yes, no or abstention. The yes and no votes will

be counted and the one with the higher number determines the decision.

If we have a set of different classifier answers and want to create a benefit from

these multiple answers, we have to combine these results. Combining the outputs

of the used classifiers is an essential part of every ensemble. The methods, as

mentioned below, are based on the needs of this thesis and follow Zhou [92].

Voting

The perhaps most natural way of combining different predictions is voting. Using

democracy as a source of inspiration, we count the different “opinions” and finally

take a decision in favour of the person with the maximum votes (plurality voting).

Alternatively, we only accept a decision if a minimum number of counts is reached

and otherwise reject the decision (majority voting). Another option is soft voting,

which involves applying a list of weightings to every decision we make.

Majority and Plurality Voting

Majority voting, as described in equation 2.9 counts the outcomes of every single

classifier. By and large, it is necessary to reach at least a minimum number of votes

to claim a positive result. If this minimum is not reached, it leads to a rejection.

H(x) =

cj if
T∑
i

hji (x) > 1
2

l∑
k=1

T∑
i=1

hki (x)

rejection otherwise

(2.9)

Here, T is the number of classifiers, l is the number of class labels, and hji (x) is

the ith classifier that predicts an outcome for the jth class label cj receiving x as

an input. The outcome can be 1 (x belongs to the class label) or 0 (belongs not).

Another possibility is that the outcome is a value between 0 and 1, which can be

seen as the probability of the class label being right.

20

2.3. Ensembles

Xu et al. [83] adapt the equation 2.10 to a threshold majority vote. They

enlarge the classes through another class ωn, which will be returned if no class

reaches the threshold.ωk, if
T∑
i

hji (x) ≥ θ
l∑

k=1

T∑
i=1

hki (x)

ωn, otherwise

with 0 < θ ≤ 1 (2.10)

Plurality voting differs from majority voting in that it will return a result in

each case. As described in equation 2.11, the resulting class label will be the class

with the most counts. Thereby, the absolute number of counts does not matter as

long as a class has the most counts.

H(x) = cargmax
j

∑T
i=1 h

j
i (x)

(2.11)

Soft Voting

Above, we considered classifiers that create one class as an output. However, we

also regard multi-class classifiers, i.e. classifiers that return a vector of class labels.

Soft voting (see equation 2.12) is a method which handles such a vector and expects

a probability like value for every class label in the vector. Then, analogous to the

other methods, the soft voting method calculates the sum of the class labels of

every classifier within the ensemble.

Hj(x) =
1

T

T∑
i=1

hji (x) (2.12)

Weighted Voting

Sometimes we consider some classifiers to be more important than other classi-

fiers. Therefore, we use a weighting factor, a real value which is multiplied by

the counting of the class labels. If a classifier has a weighting of 2, then its class-

label weightiness is doubled. AdaBoost [69] produces an ensemble that creates a

weighted voting. During training, these weightings will be set in relation to the

error calculated for the training set.

According to the weighting, we have to adapt our equations. The outcome of

every single classifier hji (x) is multiplied by a weight w so that the final outcome

is oi(x) = wi h
j
i (x). The class with the highest value is the final result class as

described in equation 2.13. All of the voting methods discussed above also work

with weighted voting.

21

Chapter 2. Related and Underlying Methods

H(x) = cargmax
j

∑T
i wih

j
i (x)

(2.13)

2.3.3 Ensemble Creation Methods

We use the term ensemble methods to describe the methods that create an ensem-

ble. There are some tasks to consider here. A method that creates an ensemble

has to search for and select classifiers or features, train them where necessary, and

combine them. Further, it also has to introduce mechanisms to create diversity.

Bagging

The early ensemble method “bagging” was introduced by Leo Breimann in his

work “Bagging Predictors”, reported in 1994 and 1996 (see [5, 6]). The name is

an acronym for Bootstrap AGGregatING. It is difficult to create independent base

classifiers that are all trained using the same training set. Hence, the idea is to use

independent training sets to also arrive at independent classifiers through these

sets. A drawback here is the overall number of samples in a set. Often, there are

not as many samples available to arrive at independent sets that are also large

enough to create sufficient base learners. If these sets are too small, the resulting

ensemble leads to poor results. To overcome this problem, Efron and Tibshirani

[13] introduced bootstrapping as a means of creating a training set by subsampling.

There, they take for every learning iteration a (mostly random) subset of samples

with replacement. Of course, none of these subsets will be completely independent,

but none of them will be identical, either.

Bagging aggregates several classifiers, trained with different, but overlapping,

training samples to arrive at a final ensemble. Typically, a bagging ensemble uses

voting for classification tasks, as noted in figure 2.9. To create a most diverse

classifier of these sets, the instability of the multiple base classifiers is important.

Further, besides the benefit of using multiple subsets instead of one set, bagging

has computational advantages in that it can be trained as well as executed in paral-

lel. Performance is a major advantage, and with modern multi-core architectures,

you can make use of and increase this advantage by using algorithms that run in

parallel.

Boosting

While describing AdaBoost above, we pointed out how essential it is while empha-

sizing its difference to bagging. The general idea here and one major difference to

22

2.4. Diversity

Figure 2.8: Training one base classifier hi on subset i to create the ensemble H.

bagging is to introduce a weighting for every training sample. These weightings

will be changed in every training iteration for every training sample related to the

error of the last-added classifier. It is therefore a sequential algorithm, so one clas-

sifier will be added after another according to the former classifier. AdaBoost is

used only with reweighting or with an additional resampling step. The reweighting

variant uses the whole training set and only the weighting of the training samples

to generate diversity. Instead, the resampling variant additionally uses a subset of

the training samples in every iteration.

2.4 Diversity

Diversity means heterogeneity within a system or a group of individuals. Diversity

plays a vital role in creating an ensemble. The core idea is to combine classifiers

that have individual failures but high accuracy if their results are combined. If the

individual errors of the classifiers are the same, we do not arrive at an improved

ensemble from these classifiers. This is because several classifiers which produce

the same misclassifications for a given input also produce these misclassifications

as a combination for the same input. We will only succeed in creating an ensemble

23

Chapter 2. Related and Underlying Methods

Pseudo-code of the bagging algorithm:

• Given example images D = x1, x2...xi, where i is the number of samples.

• T is the number of sample subsets.

• H is the bagging ensemble and ht is a base classifier.

• for t = 1, ..., T :

1. Dt = createSubSetOf(D)

2. ht = trainClassifierOn(D)

3. add ht to H

• The final strong classifier is: H(x) =

 1
∑T

t=1 ht(x) ≥ θ

0 otherwise
, where, in

general, θ = 1
2
.

Figure 2.9: Pseudo-code of the bagging algorithm by Breimann [5, 6]

if the individual errors are different.

Tumer and Gosh [66] show the importance of diversity through the equation

2.14 for simple soft voting.

errssvadd(H) =
1 + θ(T − 1)

T
erradd(h) (2.14)

Thereby, θ describes the correlation of the different classifiers h, T is the number

of ensemble members, erradd(h) the individual error and errssvadd(H) the error that

is added to the ensemble by adding another classifier. If all classifiers have the

same individual error erradd(h), then the classifiers achieve maximum correlation

at θ = 1, and their errors are added in full to the ensemble error. However, if there

is no correlation (θ = 0), then all of the classifiers are independent and the final

ensemble error is the smallest.

As we would naturally assume, we need classifiers as independent as possible

with a minimum degree of accuracy. However, high diversity does not guarantee

a good ensemble. As Kuncheva [31] describes, we can have classifiers with a high

diversity, but a poor combined classification result.

24

2.4. Diversity

h(x) = +1 h(x) = −1

h(x) = +1 a c

h(x) = −1 b d

Table 2.1: Possible results of two different classifiers.

Diversity Measurement

Following Kuncheva [31] and Zhou [92], we consider diversity measurements for

binary classifiers. These measurements calculate the similarity of two classifiers.

A high diversity means that two classifiers create different outputs for the same

input. To compare these different outputs, it is necessary to have a set of labeled

examples as a basis for calculating the diversity. Table 2.1 describes relationships

of classifier outcomes. The variables (a, b, c, d) describe the number of occurrences

where the possible outcome of the two considered classifiers are equal.

• a is the number of examples where both classifiers have a positive outcome

• d is the number of examples where both classifiers have a negative outcome

• b, c are the number of examples where one classifier has a positive outcome

and the other a negative (and vice versa)

Here, a+ b+ c+ d = m and m is the total number of samples.

The Disagreement Measure [57, 24] of two classifiers (hi, hj) calculates the ratio

of the number of classification results where both classifiers differ from the whole

number of samples (see equation 2.15). There, dij can be at an interval of [0, 1] with

a maximum value of 1 where the classifiers estimate all of the samples differently,

therefore the two classifiers have the highest diversity. Accordingly, the lower d is,

the lower the diversity.

dij =
b+ c

m
(2.15)

In 1900, Yule [89] proposed the Q-Statistic defined by equation 2.16 where,

again, Qij describes the similarity of the two different classifiers hi and hj.

Qij =
ad− bc
ad+ bc

(2.16)

Also, a pairwise statistic is the Correlation Coefficient [58] of equation 2.17.

ρij =
ad− bc√

(a+ b)(a+ c)(c+ d)(b+ d)
(2.17)

25

Chapter 2. Related and Underlying Methods

Increase Diversity

As already mentioned, diversity is essential to creating an ensemble and, therefore,

increasing diversity is an important aspect. We can consider methods to increase

diversity as a “shaking of parameters” to produce randomness or subdivisions

within the ensemble-creation process.

• Sample Manipulation:

One way to increase diversity is to manipulate the training data. Bagging,

for example, creates different subsets of the training data and selects another

subset for every iteration. The idea is that the difference between these

subsets is transferred to the classifiers and, therefore, causes a difference

between the created classifiers which, ultimately, creates proper and diverse

classifiers. In contrast, AdaBoost also manipulates the training set. Despite

it changing the weighting of the training set, the set as a whole remains

unchanged.

• Feature Manipulation:

As with sample manipulation, we can create diversity by using different sub-

sets of the feature set. “The Random Subspace method” by Ho [24], for

example. With every iteration, this method uses a different randomly cho-

sen subset of the whole feature set for training the classifiers.

• Learning Parameter Manipulation:

The creation of base classifiers is determined by several parameters that can

have different values. While the parameters affect the base classifier creation

process, we can change these parameters which cause different classifiers,

therefore increasing diversity. For example, we can vary the momentum or

initial weights for creating a neural network.

2.5 Hopfield Neural Network

In 1982, John Hopfield introduced a Neural Network model in his paper [25] as an

auto-associative memory called Hopfield Neural Network (HNN) in honour of its

inventor. The Hopfield Neural Network (HNN) is a single layer, recurrent neural

network with perceptrons as neurons. Here, every neuron has a connection to every

other neuron except itself.

The HNN’s ability to rebuild a learned pattern from a noisy input makes it

an attractive tool, especially when reconstructing images from learned examples.

26

2.5. Hopfield Neural Network

Single layer means there are no hidden neurons between the input and the output

neurons. Every neuron acts as an input and also as an output unit as depicted in

figure 2.10. The relation between two neurons ni, nj is described by a numerical

weight ωi,j. This relation can be seen as the importance of one neuron for another.

The relation is symmetric, meaning there is only one link between two neurons,

hence only one weight. Therefore, considering the weighting, it does not matter

whether ni activates nj or vice versa.

Figure 2.10: Every neuron is connected to every other neuron inside the Hopfield

Neural Network except itself. It works as an auto-associator and can recall a

learned pattern from a noisy input.

Equation 2.18 depicts the essential structure of the perceptron as a calculation

unit. The neurons are composed of an input function s(x, j) and an activation func-

tion f(s) as described in figure 2.11. Thereby, input x is a vector x = (x1, x2, ..., xn)

oj = f(s(x, j)) (2.18)

Equation 2.19 describes the input function which calculates the weighted sum

of the input as an aggregated result for one neuron.

sj(x) =
N∑
i=1

wij xi, (2.19)

The N in equation 2.19 is the number of neurons and wij is the weight between

neuron i and neuron j The other part of equation 2.18 is the activation function f .

Thereby, we can distinguish between the binary and logistic activation function.

Initially, a binary activation function (equation 2.20) is used which returns 1 if

the sum is greater than a given threshold and −1 otherwise. The other often used

27

Chapter 2. Related and Underlying Methods

Figure 2.11: One neuron calculates the weighted sum of the input x.

activation function is the logistic activation function as shown in equation 2.21.

oj =

 1 sj > θ

−1 otherwise
, sj see equation 2.19 (2.20)

oj = tanh(sj) =
1

2 + e−2sj
− 1, sj see equation 2.19 (2.21)

After activating neuron ni, the result forms part of the next input xi, or,

collectively, all of the single neuron results become the new input vector x.

Execution of the HNN

The Hopfield Neural Network can be executed synchronously or asynchronously.

The calculation of the neuron outcome is the same in both directions. The scalar

multiplication of both vectors wj and x will be calculated for every neuron. Exe-

cuting the activation function creates the outcome which becomes the new input.

Thus, after executing the HNN, the input vector x1 results in output vector o1, and

therefore in the new input vector x2 = o1. This then provides us with x1, o1, o2, ...oT

as the input/output vector sequence in time where T is the number of steps.

First, we consider the asynchronous procedure. In biological systems, every

neuron acts on its own and sends its result immediately after the result is created.

Therefore, we have a sequence in time instead of the synchronous procedure where

we freeze the neuron’s states and let everything happen in one step. If we consider

when each neuron is firing, then the neuron that first arrives at an outcome changes

the input vector for neighboring neurons.

The asynchronous procedure respects this time commitment and takes an ar-

bitrary neuron. Then it calculates its outcome vector o, and immediately updates

the input vector x. Hence, the input vector x changes once an arbitrary neuron

28

2.5. Hopfield Neural Network

has finished its calculation. Afterward, we take the next neuron which now re-

ceives a different input vector to the previous neuron. As a consequence of the

asynchronous executing, every single neuron gets a different input vector. With a

view to the above equations 2.18, 2.19, 2.20, and 2.21, input vector x0 =


x1

x2

...

xn



becomes the new input vector x1 =


x1

o2

...

xn

 after executing neuron n2 and arriving

at output o2.

The synchronous execution procedure of the HNN ignores this sequence in time

for the calculation and assumes that the neurons are all activated at the same time.

Accordingly, the synchronous method calculates the current output of the whole

network by only considering one input vector and performing the calculation in a

single loop across all neurons. The junction of the single outputs of every neuron

together becomes the new input vector.

While both methods differ in terms of updating input vector x, calculating

the outcome of one neuron is the same for both methods and also the recursive

dynamic. The current vector is called state st. If we did not have criteria to stop

the procedure, it would continue endlessly. However, the calculation will stop if

the network becomes a stable state, meaning that the output does not change

anymore, in turn meaning that s1 = s2, respectively s1 =


o1

o2

...

on

=

 s2 =


o1

o2

...

on


and therefore o1i = o2i for every element of the vector st or shorter st = st+1 for

any t > Ts, where Ts is the time at which the HNN becomes stable. oi1 = oi2 This

stable state is the learned pattern.

Hebb-learning of the HNN

The HNN is trained using the Hebb-learning rule (equation 2.22) which has a

high computational performance. The learning performance only depends upon

the dimension of the input vector. Hopfield has shown in his work [25] that an

29

Chapter 2. Related and Underlying Methods

HNN with a symmetric weight matrix will converge to a final stable state which is

ensured by equation 2.22.

wij =
M∑
m=1

xmi · xmj if j 6= i, wij = 0 otherwise, (2.22)

where M is the number of patterns and xi, xj are the input pattern (x).

2.6 Extensions of Features and Algorithms

The original Haar-like features achieve good results in terms of finding near frontal

faces. However, not all faces in images are straightforward frontal faces like those

of passport photos, for example. Therefore, Lienhard and Mayedt [36] extended

the Haar-like features of Viola and Jones to include a 45-degree rotated variant.

Also, Viola and Jones [68] extend their features to diagonal shifted and overlap-

ping rectangles which they call diagonal features. Viola et al.[73] further extended

their features to use them for pedestrian detection in videos. Mita et al. [43]

extended the Haar-like feature by combining them with a new feature they called

a joint Haar-like feature. They measured the co-occurrence of a few Haar-like fea-

tures to train more accurate features. Another method to improve the features was

propounded by Wu et al. [77] who proposed a histogram of the Haar-like feature

values. Later, Huang et al. [26] followed their approach and used a tree cascade

structure for multi-view face detection. They equally bin the values and use the

extended feature as an input for the RealBoost [16] learning algorithm. While the

number of bins is important to the success of the classifiers, the system tends to

overfit if the number of bins is too high.

Beyond the Haar-like features, another way to improve accuracy is to use im-

proved base classifiers. Therefore, Brubaker et al. [8] proved that Classification

and Regression Trees (CART) [7] can be used as base classifiers to improve various

boosting ensemble methods. Also, Xiao et al. [81] proposed an improved weak

classifier which they call the Bayesian stump. This weak classifier is created by a

split and merge approach using three different feature sets, which are Haar-like fea-

tures, Gabor wavelet features, and EOH features. Levi and Weiss [33] introduced

the local edge orientation histograms (called EOH). When training an AdaBoost

ensemble, they also use three features. Besides EOH features, they also use Haar-

like features and the mean intensity in a given rectangle. The EOH feature is

created by the gradients given by convolving Sobel mask and dividing the edges

into bins. Xiao et al. [81] also introduced an altered cascade training algorithm

30

2.6. Extensions of Features and Algorithms

that they called “Dynamic Cascade”. They claim it improves the handling of large

datasets as well as learning from a few samples.

To overcome the lack of handling extreme lighting conditions of the original

Haar-like features, Fröba and Ernst [18] proposed a modified census transformation

to get illumination-intensity features which compare pixel values with an intensity

mean in the local neighborhood. The Local Binary Pattern (LBP) proposed by

Ojala et al. [45] for texture classification is a set of features unaffected by illumi-

nation changes. Amongst others, Jin et al. [29] used a Bayesian Framework and

Zhang et al. [91] applied a boosting approach to successfully use LBP for face

detection. Inspired by LBP, Yan et al. [84] introduced locally assembled binary

features, which provide good results for a wide range of face detection image sets.

Liu and Shum [38] proposed the “Kullback-Leibler boosting”, which uses the

Kullback-Leibler divergence of positive and negative histograms. Wang et al. [74]

used Fisher discriminant analysis to create a linear feature. Both approaches ([74],

[38]) create good features similar to face templates, but handle them with care

to avoid overfitting. Similar to EOH from Levi and Weiss [33], Dalal and Triggs

[11] proposed their “Histograms of oriented gradients” which became very popular

for pedestrian detection. A statistical approach, published by Tuzel et al. [67],

used region covariance which involves the fast creation of the integral image for

detection and classification. Huang et al. [27] obtained very good results with

their proposed sparse features.

Despite better features, the means of selecting these features (found the good

one) plays an important part, which was focused on by different authors. Yuan et

al. [88] addressed this and used the frequent item-set mining scheme that is often

applied in data mining. Han et al. [21] used the Swendsen-Wang Cut algorithm

[61] to create partitions with individual subsets of compositional features. This

procedure is repeated to train every base classifier, which is subsequently selected

and combined by AdaBoost. This approach provides very good results for per-

son detection. Opelt et al. [46] formed a boundary model as the base classifier.

Contour-based features are also used by Shotton et al. [55]. These features, built

on top of a dictionary of contour fragments, are trained to an object detector by

a boosting algorithm. Shapelet features proposed by Sabzmeydany et al. [50] use

low-level gradient information from local image regions.

Aside from different features and classifiers, there are many suggestions to im-

prove the original boosting methods of Freund and Schapire [15] and AdaBoost

by Viola and Jones [69]. Li et al. [34] proposed FloatBoost. which incorporates

the FloatingSearch approach by Pudil et al. [48]. Instead of the greedy sequential

31

Chapter 2. Related and Underlying Methods

search of AdaBoost, FloatBoost also takes already learned base classifiers or fea-

tures and removes the least valuable features. The outcome of this are ensembles

with fewer base classifier as the authors [34] argue. Jang and Kim [28] presented

an evolutionary algorithm to reduce the number of classifiers -by 40%- but keeping

the overall ensemble accuracy.

While Viola and Jones [69] trained every cascade node independently, some

authors suggest solutions that retain the knowledge of further trained nodes. For

example, Xiao et al. [82] created a chain structure that used the further trained

classifiers as a prefix and started training up to these. In addition, Wu et al. [77]

changed the independent node training by creating a nested structured cascade

which took the confidence of further trained classifiers and used them as a feature

for the first base classifier. Both claim to achieve better detection results compared

with the original Viola and Jones algorithm.

In 1999, Mason et al. [41] proposed a gradient descent boosting which they

called AnyBoost. In 2000, Friedmann et al. [17] published a statistical interpreta-

tion of boosting. Inspired by these two publications, Masnadi-Shirazi and Vascon-

celos [39] proposed another asymmetric boosting which especially minimizes the

exponential cost criterion of AnyBoost and achieves a very high detection rate [40].

Wu et al. [79] used the “Forward Feature Selection” method of [75] to obtain a set

of features and a linear asymmetric classifier (LAC) which creates the ensemble

results by voting among the selected features.

Configuring a cascade is a challenge. A threshold is set to distinguish objects

and background. Here, we have to balance the need for speed with the need for

accuracy. In fact, both depend upon one another. If the threshold is set to remove

more background, the speed will be increased, but this will also decrease accuracy.

Inversely, setting a high threshold will reduce speed while improving accuracy.

Lienhart et al. [35] addressed this by targeting their cascade creation process to

reject 50% background for every node and achieving 0.1% false negatives.

Sochman and Matas followed a different approach [59]. Instead of considering

the nodes of the cascade, they approximated the joint likelihood of all base clas-

sifiers. An automatic solution was offered by Brubaker et al. [8] by training the

node thresholds against validation data.

Bourdev and Brandt [4] proposed a scheme to sequentially increase the number

of negative samples for every cascade node. Also, they removed correctly classified

negatives and replaced them with new ones. The effect is that every ensemble

is trained with a different set of negative samples and a further increased set of

samples. Only the misclassified negatives are left over. Every ensemble of a cascade

32

2.7. Training and Test Sets

node is trained with a given maximum of the false-positive rate. By increasing of

the number of negative samples, it became more and more difficult to reach the

expected false-positive rate, and therefore the ensemble grew and became more

complex.

A very time-consuming process involves the selection of features to create an

ensemble because there is a need for a large feasible set of features, and base clas-

sifiers have to be calculated in every iteration of the (AdaBoost) ensemble creation

process for the whole set of features. Notably at an early stage, training a whole

cascade classifier of AdaBoost ensembles takes weeks and sometimes months. To

overcome this drawback, many authors published variants of the original algorithm

to reduce the amount of time needed to create an ensemble. For example, Brubaker

et al. [8] tested different ways to reduce the size of feature sets and showed that

random selection to create a subset of the original set provides ensembles with

comparably good results in terms of accuracy. Wu et al. [80] use “Forward Fea-

ture Selection” [75], and claimed that they are much faster than AdaBoost while

retaining comparable accuracy. Instead of training every weak classifier again dur-

ing each iteration, they train them once and add this weak classifier which most

improves the ensemble.

Another time-consuming aspect is the detector location test. Many windows

must be analyzed to determine whether there the sought object is present, or

whether there is just background. Many suggestions are made to improve detec-

tor speed. As an example, Schneiderman [54] proposed a feature-centric cascade.

There, a set of features is computed in advance so these features can be shared for

several window lookups.

Deep neural networks in tandem with face detection exhibit excellent perfor-

mance for many machine learning fields. Zhu et al. [93] called their method for

face detection Contextual Multi-Scale Region-based Convolution Neural Network

(CMS-RCNN). Yang et al. [87] trained CNN to find facial parts and scores parts

by spatial structure and arrangements. Both methods present impressive results.

2.7 Training and Test Sets

Training and test sets are essential to creating classifiers, and especially to revising

and reproducing experiments. Thus, we describe the sets we used to train and

analyze our models.

33

Chapter 2. Related and Underlying Methods

CBCL Face Database

The CBCL Face Database [3] is a set of already cropped training and test images.

The images are all gray-valued images with a size of 19x19 pixels. The training set

includes 2,429 face examples and 4,548 non-face examples initiated by Sung [60]

and Heisele et al. [23]. The test set, created for Heisele et al. [23], comprise 472

faces and 23,573 non-faces and is a subset of the CMU Test Set (see below).

Figure 2.12: CBCL Face Database Train Images Samples

CMU Test Set A

The CMU Test Set A, introduced by Rowley et al. [49], contains 42 images and

169 faces. The authors Rowley et al. [49] created the image set by scanning

photographs and newspapers and then adding images from the internet.

Test Set Sung and Poggio

Rowley et al. [49] also used the test set by Sung and Poggio [60], which they

referred to as CMU Test Set B. It contains 23 images with 157 faces, ranging from

high-quality camera pictures to low-quality scans as stated by Sung and Poggio

[60].

34

2.7. Training and Test Sets

Figure 2.13: CMU Test Set A by Rowley et al. [49] contains 42 Images

Figure 2.14: Test Set by Sung and Poggio [60] contains 23 Images

35

Chapter 2. Related and Underlying Methods

Figure 2.15: CMU Test Set C by Rowley et al. [49] - contains 65 Images

CMU Test Set C

CMU Test Set C, also introduced by Rowley et al. [49], contains 65 images com-

prising 183 faces. Test Set C is similar to Test Set A, but includes many images

with a more complex background while also comprising pictures that show no face

at all.

Overall test sets, we have 130 images containing 509 faces and about 3, 67 · 107

non-face frames that have to be tested.

36

Chapter 3

The Haar-Feature-Like Patch and

Hybrid Diversity Approach

3.1 Introduction

In this chapter, we introduce our approach for increasing the accuracy of ensem-

ble and cascade classifiers. We aim to improve these classifiers by increasing the

diversity of the underlying classifier and feature sets. Therefore, we create dif-

ferently shaped geometrical features and two classifier models to be introduced

in the methods section 3.2. In section 3.3, we combine our models and a simple

threshold classifier with a hybrid architecture and examine their benefits. In real

applications, nearby hits are merged into one region. However, we use the de-

tection results without merging because we want to compare our results without

the influence of the merging mechanism. Merging nearby regions reduces the false

positives, but also the detections shown in section 3.4 to gain an idea of how such

a method changes our results.

3.2 Methods

3.2.1 Introducing Haar-Feature-Like Patches

As is the case with Haar-like features, we do not use pixels directly, but the pixel

sum of a dedicated rectangle. Instead of Haar-like features, which use the subtrac-

tion of several rectangle pixel sums, we use the pixel sums of every single rectangle

directly as a feature. Our feature, which we call Haar-Feature-like patch (HFP),

can be described as a geometrical group of several rectangles or a template-like

structure. The rectangles that compose our feature can differ in terms of their

37

Chapter 3. The Haar-Feature-Like Patch and Hybrid Diversity Approach

width, height, and relative positions. We choose the name Haar-Feature-like patch

to correspond with Haar-like features, which are the source of inspiration for the

HFP.

However, we want to emphasize the main difference to Haar-like features. The

HFP does not return one value, but a vector of values. This leads to the following

consequences: First, the single rectangles of Haar-Feature-like patches do not have

any dependency on other rectangles in the way that Haar-like features do. The

rectangles within a Haar-like feature are marked as positive or negative. The value

of the Haar-like features is calculated by subtracting the pixel sums of the positive

and negative rectangles. As a consequence, different rectangle pixel sums lead to

the same subtraction result and, therefore, to the same feature value. To a certain

extent, this subtraction is a first interpretation of the source, which we avoid by

using Haar-Feature-like patches with the original pixel sums of all rectangles.

Pixel sums to handle noise and prevent overfitting

One reason for using Haar-Feature-like patches is to be able to consider the cir-

cumstances of real visual scenes as changes in lighting, scaling, and perspective.

Using pixel sums instead of the pixel values themselves will improve the handling

of noise and thus prevent overfitting. Overfitting occurs if features reproduce every

small detail that exists only in the training images. If a classifier uses this detail

to distinguish between the given classes, the classifier perhaps handles the training

image perfectly but has a poor generalization ability. Using the accumulated area

sums instead of single pixels, the dedicated single pixel within the considered rect-

angle becomes less important because we use a group of pixels in a greater area

of the image what is an average of pixels in the considered rectangle. Therefore,

every single pixel is just one part of creating this average. We may encounter

problems if one dedicated pixel is learned because images of natural scenes change

their appearance and it is unlikely that one dedicated pixel of an image has the

same value in the image that was taken a second later. By using an area of pixels,

the single pixel value will become fuzzier and less meaningful compared to the sum

of all the other pixels. Noise within this region can be balanced.

Patch for compact modeling complex realities

Our main motivation for introducing Haar-Feature-like patches is the ability to

perform modeling. The aim of creating these features is to obtain a more flexible

feature so as to be able to model more complex scenes using just one feature. The

38

3.2. Methods

Figure 3.1: Modeling one Haar-feature-like patch (E) instead of four Haar-like

features (A-D). If we wanted to use a corner shape model, we would have to create

four Haar-like features to get a feature for every possible corner. Using every value

on its own, we can model all corner shapes using one feature.

drawback of Haar-like features is that we have to create many features if we want

to model such scenes. Figure 3.1 shows a “corner model”. If we want to arrive

at a model for every possible corner, we have to create four Haar-like features as

depicted in figure 3.1. Instead, our feature uses the structure directly as a patch,

and this template-like view on Haar-like features is what we call the Haar-Feature-

like patch (HFP). Hence, our HFP is similar to Haar-like features, but we use the

vector of pixel sums instead of calculating a single feature value.

In the context of ensemble methods, we often have large feature sets and,

therefore, a long training time. Apart from having more freedom to adapt to a

given scene, it is beneficial to have a more compact set as well as fewer features

by retaining the ability to model natural scenes. However, interpreting Haar-like

features as a template patch leads to some differences.

Figure 3.2: Figures A-1 and A-2 have no difference if we calculate the Haar-like

feature value, but they are very different used as Haar-feature-like patch. The

same applies to B-1, B-2 and C-1,C-2

Some Haar-like features look different given the rectangles on which they are

built, but this does not make any difference when calculating their feature values.

We illustrate this in figure 3.2. If we calculate the difference between the light

gray and the dark gray rectangles, it does not matter how many rectangles there

39

Chapter 3. The Haar-Feature-Like Patch and Hybrid Diversity Approach

are; only the whole area matters. If a group of rectangles covers a rectangle area,

we can also use the overlaying rectangle to calculate the Haar-like feature value.

There is in fact a difference in computational speed, but the value will be the same.

While the two left features A-1 and A-2 in figure 3.2 do not make any difference

when calculating their Haar-like feature value, these two are very different Haar-

Feature-like patches. In comparison, features A-1 and C-1 are the same as HFP,

but we will end up with two different values as a Haar-like feature.

While we can create many Haar-Feature-like patches by simply removing or

adding rectangles, for the analog Haar-like features we have to decide which are

the positive parts and which are the negative parts for the subtraction as described

by the corner features in figure 3.1. Introducing many opportunities create a huge

number of Haar-like features, thus requiring a lot of computational resources. Haar-

Feature-like patches make it easier to handle these complex structures.

However, we have to be aware that the possibilities of modeling Haar-Feature-

like patches by adding various rectangles can also create a huge number of features,

perhaps more than we actually want to handle. At some point, we have to stop

modeling to avoid drowning in the ensuing flood of features. However, finally,

with fewer features, we can describe more dedicated scenes compared to Haar-like

features. We inherit high computational performance from Haar-like features by

using the Integral Image (see section 2.2.2) and achieve some degree of scaling

invariance.

Types of Haar-Feature-like patches

To examine our Haar-Feature-like patches, we use three different sets. The different

shapes shown below are prototypes. We can use them to derive the concrete Haar-

Feature-like patches which ultimately constitute the HFPs that we use for training

and classification.

Figure 3.3: Haar-like features used by Viola and Jones [69].

40

3.2. Methods

Haar-Like Features (Base) as HFP

The first group of HFPs are the feature shapes used by Viola and Jones [69] and

described in figure 3.3. While these Haar-like features are made to calculate the

difference between the two rectangles, we use the dedicated area values of the

features as a vector.

Tetris-like and Blocks 6 and 9 (TLB69) HFP

Figure 3.4: These Tetris-like and Block shapes consist of either six or nine boxes

with a width and height of 2x3, 3x2, and 3x3 rectangles.

Figure 3.4 shows HFP shapes that are similar to the shapes used in the well-

known game Tetris. The maximum dimensions of every shape are 2x3, 3x2, and 3x3

cells. While we also use this HFP set as Haar-like features for training threshold

classifiers, we mark the dark gray and light gray areas to calculate the difference.

As seen in figure 3.4, we start with the full block and then cut out cells from the

whole block to arrive at the final shape, some of which look like the shapes used

in Tetris.

Several blocks of various width and height (BlockN) HFP

Figure 3.5: This figure shows the BlockN HFP set. We create these blocks by

systematically increasing the number of rectangles in a row and a column.

41

Chapter 3. The Haar-Feature-Like Patch and Hybrid Diversity Approach

nr = startRows

nc = startColumns

until(width < maxWidth)

until(height < maxHeight)

createBlock(nc, nr, wc, wr)

nr = nr + 1

height = nrḣr;

nc = nc + 1

width = ncẇc;

nr = startRows

Here, wr, wc are the width of a row and column and hr, hc their height.

Figure 3.6: Systematically, we create BlockN HFPs by increasing the number of

rows and columns of a source HFP.

In figure 3.5, we show the HFP set BlockN. As the name suggests, the block

features are made up of rectangles which take up all of the places in the rows

and columns. The number N at the end of the name ”BlockN” stands for the

number of rectangles the feature consist of. The number of rectangles within one

row must not be the same as the number of rectangles in one column. These

widths and heights are chosen systematically, beginning with a size of 2x3, and

then increasing the number of rectangles in a row by rownext = row + 1 until a

given maximum width for the whole feature is reached. The same is done with the

columns colnext = col + 1 (see pseudo-code 3.6).

Expansion and Derivation of Haar-like-features patches

All of the described sets are prototypes where the concrete widths and heights

of the cells do not matter. From these prototypes, we derive the concrete Haar-

Feature-like patches by setting the width and height of the single cells. We create

a whole set by systematically creating the features with all possible widths and

heights. As a result, all of the cells in a row have the same height, while all of the

cells in a column have the same width. The number of derived HFPs is limited by

42

3.2. Methods

the maximum width and height of the single HFPs that we want to create. In most

cases, the maximum width and height are restricted by the width and height of

our training images because we cannot use an HFP that is bigger than the image

to which we want the HFP to apply.

Figure 3.7: We create different appearances of an HFP source shape by stretching

it horizontally or vertically. As illustrated in this figure, we create several HFPs

by expanding one source HFP. We then incrementally increase the overall width

and height, thereby creating every possible incremental increase in height for each

incremental increase in width until a maximum height or width is reached.

3.2.2 Classification using Haar-Feature-Like Patches

In the following section, we describe in detail how we use the Haar-Feature-like

patches as a classifier, and how we can train and execute them.

Haar-Feature-Like Patch as a Classification Model

Inspired by Viola and Jones [71] and their combination of threshold classifiers and

Haar-like features (see section 2.2.2), we also use one Haar-Feature-like patch as

the input for one classifier. We classify an input by calculating and comparing the

HFP vector with a learned pattern. Therefore, we first apply the HFP at a relative

position within the given input frame, thus resulting in a vector of pixel sums. Each

pixel sum will be normalized to their underlying area; hence, we have a vector of

values between 0 and 255 (see section 3.2.1). After calculating the distance d

between the HFP vector and the learned pattern, we can finally test whether this

distance is less than a given threshold that determines the classification result as

43

Chapter 3. The Haar-Feature-Like Patch and Hybrid Diversity Approach

Figure 3.8: Every HFP has a position within the corresponding frame. The pixel

sums within the Haar-Feature-like patch (HFP) constitute the input for classifica-

tion. First, we calculate the HFP values, which are the pixel sums of the rectangles

from which the HFP is built. Second, we compare this vector with a previously

learned pattern.

described in equation 3.1.

h(x) =

 1 if d(x, p) < θ

0 otherwise
(3.1)

Distance measure d is calculated using the Euclidean distance (equation 3.2)

and the Normalized Cross-correlation (equation 3.3).

Euclidean Distance

de(x, p) =

√√√√ N∑
i=1

(xi − pi)2 (3.2)

where N is the size of the pattern.

Normalized Cross-correlation

Another measurement of similarity often used in signal processing is the Normal-

ized Cross-correlation. Normalized Cross-correlation calculates the similarity of

two vectors by comparing their single values. The more values of a vector (or a

44

3.2. Methods

matrix) that are near each other (xi is similar to yi), the more vectors X and Y

correlate.

dncc(x, p) =

∑
j

∑
i(xij − xa) (yij − ya)√∑

j

∑
i(xij − xa)2 (yij − ya)2

(3.3)

where xij, yij are the pixel values of image X respectively Y at the position (i, j),

and xa, ya are the averages of all pixel values of image X respectively Y.

We add the abbreviation of the distance measurement method as a prefix to

the classifier name to show which method a classifier uses. Therefore, we use NCC-

HFP for Normalized Cross-correlation and ED-HFP for the Euclidean distance.

Training the HFP classifier

We train the HFP classifier by calculating the average of the HFP values for a

set of positive sample images as described in figure 3.9. Therefore, we calculate

the values of one Haar-Feature-like patch of a current training image in a fixed

position. We repeat this calculation and then sum all of the values. After iterating

all of the positive images, we divide the values by the number of images used,

thus arriving at the average values for the entire training set. Finally, we learn

the decision threshold of equation 3.1 by minimizing the error according to the

training set as per the threshold classifier from Viola and Jones (see section 2.2.2).

We repeat this procedure for every possible position by applying the HFP to every

step and scale where the HFP stays within the training image size.

3.2.3 Combining the Hopfield Neural Network and Haar-

Feature-Like Patches

The second classifier model which uses the Haar-Feature-like patches is the HaarNN

classifier that includes a Hopfield Neural Network. By introducing the Hopfield

Neural Network, we want to use its ability to recreate patterns of noisy input and its

dynamic to increase diversity. We have called the combination of a Haar-Feature-

like patch and a Hopfield Neural Network ”HaarNN”. ”Haar” of ”HaarNN” em-

phasizes the connection to the Haar-Feature-like patch and, considering the upper

cases of HaarNN, we have HNN (Hopfield Neural Network). As is the case with

the HFP classifier, we add the used distance measure method as a prefix, thus

leading to NCC-HaarNN or ED-HaarNN.

As for the HFP model, we also use one Haar-Feature-like patch for one HaarNN

classifier and apply the HFP to arrive at the feature vector described in section

45

Chapter 3. The Haar-Feature-Like Patch and Hybrid Diversity Approach

i = 0

forEachHFP

forEachposition

i+ +

forEachPositiveTrainingSample

hfpV aluer = calculateHFPV alue(sample, hfp, position)

hfpSum+ = hfpV alue

hfpAverage = calculateAverage(hfpSum)

hfpClassifieri = searchForBestThreshold(hfpAverage)

Finally, we get a set of HFP classifiers (hfpClassifier) with the amount N =

fnpm, where fn is the number of HFPs and pm the number of possible positions.

Figure 3.9: Pseudo-code for learning HFP classifiers for all Haar-Feature-like

patches and relative positions within the training images.

The HFP classifier is a compound of:

• Haar-Feature-like patch

• Relative position of the HFP

• Distance Measure Method

• Learned pattern

• Decision threshold

The HFP classifier first calculates the HFP values, followed by the distance to

a previously learned pattern. The learned pattern is thus the average of all

positive samples. If the distance is less than a given decision threshold, the

classification result is positive.

Figure 3.10: Summary and short description of the HFP classifier

46

3.2. Methods

3.2.2. Therefore, except for the HNN, both models are equal. However, while an

HFP classifier uses the feature vector directly for classification, the HaarNN clas-

sifier uses the feature vector to execute the Hopfield Neural Network. As depicted

in figure 3.11, one area of the HFP is connected to one input node of the HNN.

After executing the HNN, we obtain a new vector, the stable state of the HNN

which is our final result pattern used for classification. The HNN can be consid-

ered as a transformation towards a learned pattern. Without any classification, we

can consider the HaarNN to be a HNN filter which can be learned using the HFP

structure.

The Hopfield Neural Network has three characteristics which encourage us to

use it.

• Recall pattern of noisy input

• Good performance of the learning method

• High dynamic, non-linear method to increase diversity

Our first motivation for using Hopfield Neural Networks is their ability to re-

construct a learned pattern from a noisy or incomplete input. Restoring a pattern

from a noisy input is, besides using rectangle pixel sums, another potential means

of preventing overfitting.

The underlying Hebbian learning is a simple, straight-forward learning rule.

The HNN provides us with a fast method of training the HaarNN, which is our

second reason for using it. Together with the HFP, we can retain the simplicity of

the composition, which is an additional motivation for this model. We do not have

to learn the weights by employing a costly method such as backpropagation where

the weights have to be optimized for error. Instead, by using the HNN, every new

pattern is simply an addition to the weight matrix, and especially a fast training

method is key to training an ensemble within a reasonable period of time. The

HNN shares the same relative fast execution performance as is the case with other

neural network approaches.

The final, yet extremely important motivation, is the HNN’s nonlinear dynamic

which we can increase by slightly modifying the learning parameters. The non-

linear dynamic of base classifiers is used a basis for diversity and creating feasible

ensembles (see Kuncheva [31]).

47

Chapter 3. The Haar-Feature-Like Patch and Hybrid Diversity Approach

Figure 3.11: The pixel sums within the Haar-Feature-like patch (HFP) are the

input for a Hopfield Neural Network (HNN). Executing the HNN leads to a stable

state, i.e. a vector that does not change anymore. This final vector is the input

for classification or the output of the HaarNN if used as a learnable filter.

Classification using the HaarNN model

The classification is the same as for the HFP classifier model, except for the inter-

mediate executing of the HNN. We can consider the HaarNN as a learnable filter

for preprocessing the current input. This preprocessed input is used to calculate

the distance to a learned pattern. As for the HFP classifier model, we use the

Euclidean distance (ED-HaarNN) and the Normalized Cross-correlation (NCC-

HaarNN). A third classification metric which uses the stable state of the HNN

and, therefore, does not work for the HFP classifier, is the Bayes-like Probability

(BP-HaarNN).

Training the HaarNN model

Training the HaarNN model first involves training the weights of the Hopfield

Neural Network which is performed by way of equation 3.7. Iterating all of the

possible Haar-Feature-like patches and positions, and subsequently applying the

training steps to all of the training samples, is the same as for the HFP model

(see section 3.2.2). Since we only want the HNN to memorize positive patterns,

we only use the positive samples to learn the HNN weights. While the HFP model

only calculates the values of the Haar-Feature-like patch, executing the HaarNN

requires some additional preparations. In short, we have to do the following:

48

3.2. Methods

• Calculate the offset

shift the input values of x to equalize between positive and negative so that

max(xi) +min(xi) = 0

• Calculate the HNN weights

update the weights using equation 3.7

• Calculate the activation threshold

Calculating the offset

The first step in training and executing the HaarNN is to subtract an offset from

every value of the input vector. This shifting is done to balance the input between

the negative and the positive values because, otherwise, the execution process of the

Hopfield Neural Network as we use it would always result in the maximum positive

values. The execution process of the HNN calculates the product of the input

vector and the HNN’s weight matrix and then by applying the logistic (equation

2.21) or binary (equation 2.20) activation function. As an input we use the values

of the pixel sum normalized to the corresponding area, and therefore the values

are between 0 and 255.

Without shifting the values, there would only ever be positive values because

the HNN’s weights are trained by multiplying pattern values (equation 3.7 and

2.22) and execution is performed by multiplying the previously calculated weights

with the input vector (equation 2.19). Finally, these results will be summed (see

section 2.5), and always starting with positive values would increase all of the

values. Therefore, to obtain the HNN dynamic, we create opponents to balance

the input values between the positive and negative values by calculating and sub-

tracting the average of the minimum and maximum of the input vector values as

depicted in figure 3.12. We arrive at these opponents by calculating an offset φ

(see equation 3.4) and adjusting the current input vector x by applying xsi = xi−φ
(see equation 3.5) to obtain the final vector xs, where xsi are the values of the final

input vector.

φ =
max(x) +min(x)

2
, (3.4)

where x of equation 3.4 is the input vector given by the Haar-Feature-like patch.

xs = forEach(xi− > xi − φ) (3.5)

xs is the shifted vector of x.

49

Chapter 3. The Haar-Feature-Like Patch and Hybrid Diversity Approach

For example, if the input contains values in the interval of [0, 255], so min = 0

and max = 255, the offset is 122 and the new interval becomes [−122, 123].

Figure 3.12: To balance the pattern and input between positive and negative

values, we shift the average of the maximum and minimum to zero.

φa = ave(φm) (3.6)

Throughout the training process, we calculate and apply the offset for every

training example. The final offset used to execute HaarNN classifier is the average

of these offsets as described in equation 3.6.

Calculating the HNN weights

After calculating the Haar-Feature-like patch and subtracting the offset, we arrive

at the feature vector used to calculate the weight matrix of the HNN by applying

the Hebbian learning rule. To calculate the weights, we use equation 3.7 (see also

equation 2.22 in section 2.5).

wij =
M∑
m=1

xmi · xmj if j 6= i, wij = 0 otherwise, (3.7)

Originally, M is the number of different patterns and x the feature vector. However,

as we train the HaarNN, M is the number of positive training samples. If we train

a multi-class classifier, the patterns M will be orthogonal to one another [1] to

recreate the several different patterns best. However, our patterns are very similar,

and we consider this a binary classification task. Nonetheless, we use this equation

and feed our HaarNN with many similar patterns. In contrast, we could use the

average pattern as the only input for the HNN to learn exactly one clear pattern.

Finally, the weights will be normalized by the number of samples.

50

3.2. Methods

Calculating the activation threshold

While both equations 2.20 and 2.21 use values in the range of [−1, 1], our values

vary in terms of their ranges. Therefore, we adapt the equations 2.21 and 2.20 as

follows:

oj =
2θ

1 + e−sjβ
− θ (3.8)

where θ = max(|xsi |) of the learned vector xs. The parameter θ is the activation

threshold or just the threshold that will be learned by calculating the average of

the thresholds of all training samples, as is the case when calculating the offset.

oj =


θ if sj > θ

−θ if sj < −θ

sj otherwise

(3.9)

Here, sj is the result of applying the weights for the neuron j as described in

equation 2.19.

−6 −4 −2 2 4 6

−4

−2

2

4

x

oj = 2θ

1+e−sjβ
− θ

logistic Activationfunction 3.8

θ = 2, β = 1
θ = 1, β = 2

Figure 3.13: Activation function using different parameters to adapt to different

feature value ranges.

51

Chapter 3. The Haar-Feature-Like Patch and Hybrid Diversity Approach

Classification using Bayes-like Probability

The Bayes-like method measures the probability of a stable state belonging to

a face or background by counting how often a stable state occurs for a positive

or negative training sample. The final result is determined by calculating the

difference between the face and the none-face probability (see equation 3.10).

h(x) =

 1 if P (Si, face) > P (Si, none− face)

0 otherwise
(3.10)

where Si is the current stable state of the HNN and P (Si, face) is the probability

that Si belongs to be a face.

Figure 3.14: After execution, the HNN will converge to a stable state (Si) which

is assigned to a set of face and none-face probability values.

Training the Bayes-like Probability

If the HNN learns exactly one pattern, we can compare whether or not the stable

state of the HNN after execution is equal to this pattern. However, the pattern

we use for comparison is an average of all training images. Further, we train the

HNN with many slightly different patterns, and therefore it cannot be precisely the

average pattern which the HNN recreates. There are generally several stable states

that the HNN adopts. The idea behind the Bayes-like classification method is to

use the stable pattern,but instead of calculating a distance, we use the number of

positive and negative samples, thus resulting in the specific stable pattern (compare

figure 3.14).

Training is performed in two iterations: The first unsupervised iteration in-

volves learning the weights of the HNN by only using the positive samples. In

the second iteration, we execute the trained HNN for all positive and negative

samples. For every sample, the HNN creates a stable state. We use this stable

52

3.2. Methods

state as a label and measure of how often a face or a non-face produces this state.

Hence, we remember the number of occurrences of the specific class. After both

iterations, the result is a vector for each stable state of the HaarNN that comprises

probability values for every class as described in figure 3.14. Finally, we perform

the classification as described above.

Executing and Training at a Glance

The execution process of the HaarNN is, at its core, a result of the learned offset,

the weights, and the threshold used. First, we shift the input vector by subtracting

the offset which balances the input between the negative and positive values. Then,

the input is repeatedly applied to the weights and the logistic activation function

(see equation 3.8), using the learned threshold until it becomes a stable state.

Bird’s eye view of executing an HaarNN classifier:

• shift the input values of x according to a learned offset

• normalisation to the learned or configured scalingFactor

• execute the HNN using equation 3.9 or 3.8

• return the stable state

Figure 3.15: Execution overview of an HaarNN

In short, training the HaarNN is performed by adding the outcome of a Haar-

Feature-like patch to the HNN weights for all positive training images. The average

of this outcome, the later pattern for classification, and the average offset will be

calculated during the same iteration.

3.2.4 Training the Hybrid Ensemble and Cascade Classifier

Training the Ensemble

To learn the ensemble, we use AdaBoost as described in section 2.2.3. In our

implementation, we can configure the feature sets and base classifiers we want to

use. Instead of the original work, we use different sets of features and classifiers as

one whole set.

53

Chapter 3. The Haar-Feature-Like Patch and Hybrid Diversity Approach

Bird’s eye view of training an HaarNN classifier:

i = 0

forEach(HFP, position)

i+ +

forEachtrainingSample

hfpV alues = calculateHFPV alues(sample, (HFP, position))

offset = max(xi)+min(xi)
2

shiftedV alues = forEach(x− > x− offset)
normalizedV alues = normalize(shiftedV alues)

w = updateWeights(normalizedV alues)

avePattern = calculateAverage(normalizedV alues)

haarNN = createModel((HFP, position), avePattern, w, offset)

Figure 3.16: Training overview of an HaarNN

Further, to reduce the training time of our classifiers, we use reduced subsets

of all of the possible features. According to the bagging idea (see section 2.3.3), we

create a new random subset for every boosting iteration. Thus, we use two methods

to increase diversity, namely the re-weighting of AdaBoost and the (bagging-like)

creation of different subsets.

Training the Cascade

The training of the cascade classifier is done according to section 2.2.3. As a

reminder, the aim of the cascade structure is to reject as much background as

possible using fewer base classifiers by keeping most of the objects to find. For

training purposes, we want to achieve a 100% detection rate, but only need a

moderate false-positive rate for the first nodes. This false-positive rate can be

configured and will be reduced during every iteration when training one ensemble

classifier for the current cascade node.

For example, we start with a false-positive rate of 0.5 and reduce it for ev-

ery next node classifier that was trained by AdaBoost. The later trained node

ensembles will (mostly) contain more base learners and will therefore become in-

54

3.2. Methods

Figure 3.17: Hybrid Alternating Ensemble Architectures, combining threshold

classifiers and HFP or HaarNN classifiers. Instead of choosing one classifier from

a homogeneous set, here, AdaBoost uses a hybrid set of different classifier types.

creasingly accurate. As described in section 2.2.3, an ensemble classifier classifies

an object as positive if more base classifiers than a given threshold classify the

object as positive. Hence, we can decrease this threshold to achieve a 100% detec-

tion rate with the drawback of an increased false-positive rate. However, due to

the cascade architecture, this is precisely what we want. We shift the threshold of

the currently trained node ensemble until we reach the aspired high detection rate.

Then, if the false-positive rate is less than the current aspired rate, training for the

node classifier is completed. Otherwise, training will continue. Besides decreasing

the expected false-positive rate, we use two additional mechanisms to increase the

number of negative samples during training. One mechanism increases the number

of negative samples, while the other replaces the already correct classified negative

samples. The final mechanism does not increase the number of negative samples

used to train one node classifier, but it does increase the overall number of negative

samples used.

55

Chapter 3. The Haar-Feature-Like Patch and Hybrid Diversity Approach

3.3 Comparing Hybrid Architecture

3.3.1 Introduction to Experiments

With these experiments, we examine whether our new models and their hybrid

architecture can improve other ensemble classifiers. As a second base classifier for

the hybrid architecture, we use the threshold classifier from Viola and Jones [69,

71, 72]. We train single ensembles and hybrid ensembles using the same training

parameters. Hence, the compared ensembles have the same training preconditions,

and therefore only differ in terms of their classifiers and features.

First, we compare single and hybrid classifiers which use the same features

and the same random sequence of features to analyze the different behavior of the

classifier types. The same random sequence means that we use a so-called “seed”,

i.e. a number which determines the sequence of random variables and therefore

the sequence of features. Thus, using the same seed guarantees that the feature

subsets for the training process are the same for all classifiers. We use the CBCL

set to train our classifiers and test the resulting classifiers against all of the test

sets (CMU A, Sung Poggio, and CMU C) described in section 2.7.

Detection Measurement

It is not very likely that a found detection will fit exactly within the labeled region;

hence, we have to measure how similar this detection is to the expected region.

Therefore, we measure a rate to compare the found region and the expected region.

We arrive at this rate by calculating the intersection of the expected and found

region to the union of both areas. If this rate is greater than 0.5, we consider the

found region to be a hit (see equation 3.11 and the illustration of the equation

provided in figure 3.18).

r =
E ∩ F
E ∪ F

(3.11)

Here, E is the expected and F the found region and thus considered a hit if r > 0.5

with r of equation 3.11.

The test sets are labeled with the correct regions marked as blue rectangles

(see figure 3.19). The red rectangles are the misclassified detections, i.e. the

false positives. The green rectangles indicate a correct detection. The sample

figure 3.19 shows multiple nearby false detections (red) and correct detections

(green). All of correct detections belonging to one expected area (blue) will be

counted as one detection. However, the nearby false detections will be counted

56

3.3. Comparing Hybrid Architecture

Figure 3.18: Determining whether a found region F is similar to the expected

region E can be calculated by its overlapping E∩F
E∪F

Figure 3.19: All of the red rectangles are false positives, while the green rectangles

represent correct detections and the blue rectangles are the labeled faces. In gen-

eral, no detection is likely to match the labeled region exactly. Hence, a detection

is deemed a correct detection if the overlapping takes place within a proper range

(see equation 3.11). However, there will mostly be more than one correct detec-

tion, all of which will be counted as one detection, whereas all of the nearby false

detections are counted individually.

individually, including those that are very near to each other. Alternatively, we

can merge the nearby regions into a single region which changes the detections and

the number of false positives. In most of the experiments within the scope of this

thesis, we do not merge because we do not want to have an influence owing to the

merging mechanism. Further, when we compare our own trained classifiers, the

measurement is the same for all, meaning that the comparison is fair. However, we

will also compare the results with and without merging nearby regions to illustrate

the difference.

57

Chapter 3. The Haar-Feature-Like Patch and Hybrid Diversity Approach

3.3.2 Findings

These experiments aim to emphasize the influence of the hybrid architecture where

both single and hybrid cascades were trained using the same parameters. In par-

ticular, we used the same HFP feature sets and the same fixed (random) feature

sequence. Therefore, the only difference was the use of the hybrid architecture.

The results of the hybrid and single cascade classifiers are shown in tables 3.1 and

3.2.

The first table 3.1 shows the result of the hybrid ensembles that are trained

using the same training parameters and the same sequence of features. All of the

cascade classifiers are trained using up to ten ensemble nodes. The single type

classifiers are the homogenous cascade classifiers, which are trained using only

one type of base classifier. The single cascades are trained with 200 (random)

features in every iteration and the hybrid ensembles with 100 each; hence, the set

of classifiers is also 200 for the hybrid ensembles. While we train the classifiers

for the hybrid ensembles with 100 features each, the set to choose from is not the

same as for the single type ensembles. However, the feature set used by the hybrid

classifiers is a subset of the set used to train the single classifiers.

The meaning of the columns in tables 3.1 and 3.2 are as follows: The Type

column describes whether it is a single or hybrid cascade classifier. Model and

Model2 show which base classifiers are used for training the ensembles. These can

be our HFP or HaarNN classifiers or the threshold classifier. The columns HFPSet

and HFPSet2 denote the feature set used. The ’Sum-BC’ row is the number of

base classifiers within an entire cascade classifier. Every second line shows the first

chosen features of the classifier above. The features that belong to a threshold

classifier have light and dark gray rectangles. Features that only consist of light

gray rectangles belong to HFP or HaarNN classifiers.

The first three rows of table 3.1 show the results of the single type cascade clas-

sifiers. First, we see the result of the cascade classifier which has simple threshold

classifiers as base classifiers. The following two single type classifiers are trained

using NCC-HFP and NCC-HaarNN as base classifiers. After the single classifiers,

the next two rows show the performance and features of the hybrid classifiers. The

final row shows a single cascade classifier that is trained using only 100 features.

This is added for comparison because it is trained using exactly the same feature

set used to train the hybrid classifiers.

We can see the different detection and false-positive rate of the classifiers. The

single threshold cascade classifier has a lower false-positive rate, but the single

NCC-HFP cascade has a higher detection rate. The hybrid cascade classifier of

58

3.3. Comparing Hybrid Architecture

Type Model HFPset Model2 HFPset2 Sum-BC DR FPR

Single Thres Base 462.0 0.69 1.05E-4

Single NCC-HFP Base 610.0 0.75 2.03E-4

Single NCC-HaarNN Base 652.0 0.72 3.74E-4

Hybrid NCC-HFP Base Thres Base 365.0 0.75 1.09E-4

Hybrid NCC-HaarNN Base Thres Base 485.0 0.7 9.6E-5

Single Thres Base 525.0 0.68 6.74E-5

Table 3.1: Single and hybrid ensembles trained using the same training parameters

and feature sets except for the classifier model. The ensemble is trained using

Adaboost. The second row shows the first features of the first ensemble. The

single type cascades used 200 features in each iteration. The hybrid cascades also

used 200 features, but the set is split into 100 features for each classifier model.

The test was performed done with all three of the described test sets.

the HFP and threshold base classifiers (fourth row) retains the higher detection

rate of the HFP cascade and has a similar small false-positive rate to that of the

threshold cascade classifier. The HFP cascade needs fewer base classifiers than

both single cascades. The hybrid HaarNN cascade (fives row) achieves a lower

false-positive rate and a higher detection rate than the single threshold cascade

classifier. The last row shows a single threshold cascade that is trained using 100

features instead of 200. Therefore, the set of base classifiers only has half of the

59

Chapter 3. The Haar-Feature-Like Patch and Hybrid Diversity Approach

Type Model HFPset Model2 HFPset2 Sum-BC DR FPR

Single Thres Base 415.0 0.7 1.44E-4

Single NCC-HFP Base 546.0 0.78 4.08E-4

Single NCC-HaarNN Base 649.0 0.79 6.27E-4

Hybrid NCC-HFP Base Thres Base 373.0 0.79 2.28E-4

Hybrid NCC-HaarNN Base Thres Base 406.0 0.74 1.67E-4

Single Thres Base 479.0 0.71 1.14E-4

Table 3.2: Single and Hybrid ensembles trained using the same training parameters

and feature sets except for the classifier model. The ensemble training is done using

asym-Adaboost. The second row shows the first features of the first ensemble. The

single type cascades used 200 features in each iteration. The hybrid cascades also

used 200 features, but the set is parted in 100 features for each classifier model.

The test is done with all three described test sets.

set used for the hybrid classifiers, but the set is exactly the same as that used to

create the hybrid cascade because the hybrid cascade is trained using 100 threshold

and 100 HaarNN or HFP base classifiers. This single threshold cascade classifier

chooses the same first three features like the hybrid HaarNN classifier and achieves

a lower false-positive rate, but also a lower detection rate.

Table 3.2 is much the same as table 3.1, but this time, the cascade classifiers are

trained using asym-AdaBoost. First, we show the three single cascades, followed by

60

3.3. Comparing Hybrid Architecture

the hybrid cascades. The results are similar. The HFP/threshold hybrid cascade

improves the detection rate for both single cascades and the false-positive rate for

the single NCC-HFP cascade classifier. Again, this hybrid cascade needs fewer

base classifiers. The same holds for the NCC-HaarNN/threshold hybrid cascade.

However, this hybrid cascade increases the detection rate of the threshold cascade

and the false-positive rate of the NCC-HaarNN cascade. The single classifier in the

final row has seven out of the eight displayed features in common with its hybrid

pendant.

key Single

Thres

Single

HFP

Single

HaarNN

Hybrid

HFP

Hybrid

HaarNN

Single

Thres

Single

Thres

1.0 0.532 0.543 0.601 0.619 0.636

Single HFP 0.532 1.0 0.605 0.606 0.57 0.562

Single

HaarNN

0.543 0.605 1.0 0.556 0.579 0.571

Hybrid

HFP

0.601 0.606 0.556 1.0 0.62 0.6

Hybrid

HaarNN

0.619 0.57 0.579 0.62 1.0 0.654

Single

Thres

0.636 0.562 0.571 0.6 0.654 1.0

Table 3.3: This table shows the diversity measure of the trained classifiers, the

result of which are provided in table 3.1.

Table 3.3 shows the diversity measure of the classifiers, the results of which

are provided in table 3.1. The diversity measurement is performed using a subset

of the CMU test set as positive samples and 9, 000 negative samples. The table

shows the diversity value of every classifier combination. A value of 1.0 means the

two classifiers are equal, while 0.0 means they are independent. We use the paired

correlation coefficient measure of equation 2.17 as described in section 2.4.

Regarding the first row of table 3.3, the highest diversity (lowest values) occurs

between the single threshold classifier and the single HFP and HaarNN classifiers,

followed by the hybrid classifiers and the other single threshold classifier. The sin-

gle threshold classifier, which is trained using only 100 features (last row), shows

a similar relation. The hybrid cascades are most diverse to the single HFP and

61

Chapter 3. The Haar-Feature-Like Patch and Hybrid Diversity Approach

HaarNN classifiers which are not themselves part of the hybrid classifier. In prin-

ciple, the same holds for the classifiers trained with asym-AdaBoost, although the

single values tend to be higher.

key Single

Thres

Single

HFP

Single

HaarNN

Hybrid

HFP

Hybrid

HaarNN

Single

Thres

Single

Thres

1.0 0.54 0.56 0.635 0.609 0.662

Single

HFP

0.54 1.0 0.595 0.609 0.541 0.565

Single

HaarNN

0.56 0.595 1.0 0.592 0.606 0.597

Hybrid

HFP

0.635 0.609 0.592 1.0 0.645 0.654

Hybrid

HaarNN

0.609 0.541 0.606 0.645 1.0 0.622

Single

Thres

0.662 0.565 0.597 0.654 0.622 1.0

Table 3.4: This table shows the diversity measure of the trained classifiers, the

results of which are presented in table 3.2.

Comparing best cascade classifiers

In the previous section, we compared our classifier models within a hybrid archi-

tecture. There, we used the same features to train all of the classifiers so that

they only differ in terms of their classifier models. However, although the random

sequence of features was the same for all classifiers, this remains a random choice.

Therefore, the current feature subset may by the only reason for the improvement.

Further, we want to test whether our new models work better with the other HFP

sets. Hence, we show results for both hybrid and single classifiers that use different

sets.

We also use different random subsets, which causes a huge number of different

parameters to train different classifiers. Therefore, we use a subset of classifiers

to analyze and compare them. We choose this subset by grouping all of trained

classifiers by detection rate and sort them with equal detection rate by their false-

positive rates. Then, we take the first N classifiers with the lowest false-positive

62

3.3. Comparing Hybrid Architecture

0 1 2 3 4 5 6 7

·10−4

0

0.2

0.4

0.6

0.8

1

FPR

D
R

Best three Hybrid and Single Cascade Classifier

Single Thres
Hybrid NCC-HFP
Hybrid NCC-HaarNN
Single NCC-HFP
Single NCC-HaarNN

Figure 3.20: This distribution shows the detection and false-positive rate of cascade

classifiers. All of the classifiers are trained using the same parameters except for

the HFP sets and the classifier models. The single classifiers are trained using 200

features, i.e. 200 classifiers in each iteration. The hybrid classifiers are all trained

by uniting the single classifiers. They are trained with 100 features each. Through

uniting, they were also 200 classifiers for each iteration as for the single classifier

training.

rate independent of the used HFP set and classifier model. If most of the best

classifiers are single classifiers, we can question whether it is worth training the

hybrid classifiers. The distribution of this process can be seen in figure 3.20.

While 3.20 provides us with an idea of the distribution of the different classifier

types, tables 3.5 and 3.6 compare the best single and hybrid classifier for every

detection rate. Again, we group all classifiers by detection rate, but then select one

hybrid and one single classifier with the lowest false-positive rate in each case. We

only take one classifier per type; thus, the second shown classifier is not necessarily

the second best because there could be some more classifiers in the classifier type

with a lower false-positive rate. To summarize, for every detection rate we take

the hybrid winner classifier and the single winner classifier, where the winner has

63

Chapter 3. The Haar-Feature-Like Patch and Hybrid Diversity Approach

Type Model HFPset Model2 HFPset2 Sum-BC DR FPR

Hybrid NCC-HaarNN TLB69 Thres Base 544.0 0.63 4.51E-5

Single Thres TLB69 561.0 0.63 6.28E-5

Hybrid NCC-HaarNN TLB69 Thres Base 519.0 0.64 4.71E-5

Single Thres TLB69 567.0 0.64 8.53E-5

Single Thres Base 472.0 0.66 5.01E-5

Hybrid NCC-HaarNN TLB69 Thres Base 508.0 0.66 5.59E-5

Hybrid NCC-HaarNN BlockN Thres Base 520.0 0.67 5.69E-5

Single Thres TLB69 552.0 0.67 5.98E-5

Hybrid NCC-HaarNN TLB69 Thres Base 496.0 0.68 6.02E-5

Single NCC-HFP BlockN 891.0 0.68 1.77E-4

Hybrid NCC-HaarNN Base Thres Base 436.0 0.69 9.34E-5

Single Thres Base 462.0 0.69 1.05E-4

Single Thres Base 447.0 0.7 8.98E-5

Hybrid NCC-HaarNN Base Thres Base 452.0 0.7 9.39E-5

Single Thres Base 449.0 0.71 1.0E-4

Hybrid NCC-HaarNN TLB69 Thres Base 478.0 0.71 1.41E-4

Table 3.5: The table shows the two best classifiers for a certain detection rate.

5 times the hybrid classifier wins and 3 times the single classifier. The rows are

grouped by detection rate and sorted by false-positive rate; thus, the lower false-

positive rate comes first.

the lower false-positive rate. Considering both tables, 10 out of 15 of these winner

classifiers are hybrid classifiers that consist of NCC-HFP and the threshold base

classifiers or NCC-HaarNN and the threshold base classifiers.

3.3.3 Discussion and Conclusion

We use the detection rate and false-positive rate to evaluate the performance of

our classifiers. A problem in using accuracy or error is that an image largely con-

sists of a background. The number of negatives is much higher than the number

of positives, meaning that the negatives would dominate the result of the accuracy

64

3.3. Comparing Hybrid Architecture

Type Model HFPset Model2 HFPset2 Sum-BC DR FPR

Hybrid NCC-HaarNN TLB69 Thres Base 499.0 0.72 1.01E-4

Single Thres TLB69 487.0 0.72 1.6E-4

Hybrid NCC-HaarNN Base Thres Base 468.0 0.73 9.88E-5

Single NCC-HaarNN Base 680.0 0.73 3.87E-4

Single Thres Base 447.0 0.74 1.18E-4

Hybrid NCC-HaarNN TLB69 Thres Base 458.0 0.74 1.22E-4

Hybrid NCC-HFP Base Thres Base 404.0 0.75 9.33E-5

Single Thres Base 423.0 0.75 1.351E-4

Hybrid NCC-HFP BlockN Thres Base 358.0 0.76 1.39E-4

Single Thres Base 436.0 0.76 1.404E-4

Single Thres Base 420.0 0.77 1.74E-4

Hybrid NCC-HaarNN Base Thres Base 445.0 0.77 1.8E-4

Hybrid NCC-HFP Base Thres Base 367.0 0.78 1.98E-4

Single NCC-HFP BlockN 910.0 0.78 4.66E-4

Table 3.6: The table shows the two best classifiers for a certain detection rate.

5 times the hybrid classifier wins and 2 times the single classifier. The rows are

grouped by detection rate and sorted by false-positive rate; thus, the lower false-

positive rate comes first.

value (see equation 3.12). To overcome this problem, we can use a weighted accu-

racy acc(w) (equation 3.13), which takes the detection and false-positive rate into

account in equal measure.

acc =
tp+ tn

np+ nn
(3.12)

As a result, tp is the number of true positives, np the number of positive samples,

tn the number of true negatives, and nn the number of negatives samples.

acc(w) =

tp
np

+ tn
nn

2
(3.13)

The relation to the detection and false-positive rate is fpr = 1− tn
nn

and dr = tp
np

.

There are also other accuracy measurements (f-score for example) that would

also overcome the problem of the high number of negatives through their weighted

65

Chapter 3. The Haar-Feature-Like Patch and Hybrid Diversity Approach

Figure 3.21: Sample images of two hybrid cascade classifiers. The first image is

a detection result of a NCC-HaarNN/threshold hybrid cascade classifier using the

TLB69 and base features (table 3.5). The second image is a detection result of an

NCC-HFP/threshold hybrid cascade classifier using the base features (table 3.6).

variations. However, using accuracy or error will just shift the problem because

these are also only combinations of detection rate and false-positive rate, thus

failing to answer the question of whether a high detection rate is more important

than a low false-positive rate. If one classifier has a higher detection rate and

a lower false-positive rate than another classifier, then one is clearly better. If a

classifier has a higher detection rate, but a higher false-positive rate, then the given

application will determine what is more important and which is better. Therefore,

we use detection and false-positive rate in our results discussion and group our

classifiers by their detection rate. Then, we have the same detection rate, and only

the false-positive rate determines which classifier is better.

66

3.3. Comparing Hybrid Architecture

Same Feature Sets

Tables 3.1 and 3.2 in our findings section show single and hybrid cascade classifiers

that are trained using the same parameters and, especially, with the same features

and (random) feature sequences. The sets are not exactly the same because the

single classifiers are trained with a set of 200 features and the hybrid classifiers

with a set of 100 features each, but the features for training the hybrid classifier

are a subset of the features used for training the single cascades. Therefore, the

hybrid cascades have fewer different features. However, the last row shows a single

threshold cascade trained with only 100 features, but those are the same features

used to train both base classifiers of the hybrid classifiers.

The results of the tables emphasize the difference between the models. Every

second row shows the first eight chosen features. While the first chosen features

are similar for the hybrid and single cascades, they are subsequently more diverse.

However, we expect the hybrid architecture to influence both classifier models

during training. The HFP and HaarNN models within a hybrid architecture altered

the features that are chosen by the threshold classifiers. As a result, the HFP base

classifiers influence the hybrid cascade more than the HaarNN base classifiers. If

we compare the features of the hybrid and the single threshold cascade that was

trained using 100 features, they are equal for the hybrid HaarNN/threshold cascade

and the single threshold cascade except for one feature (see table 3.1). Instead,

the HFP base classifiers are used more often within the hybrid cascade classifier

and also reduce the number of base classifiers to the greatest extent. Further, the

diversity tables 3.3 and 3.4 also underline this observation. The single threshold

cascade trained with 200 features are most similar (highest value) to the other

single threshold cascade, which is trained with 100 features. To summarize, all of

the cascade classifiers are different from one another, which illustrates the various

chosen features they consist of (see tables 3.1 and 3.2) and their diversity values

in tables 3.3 and 3.4.

However, what is more important is the comparison between the detection and

false-positive rate of the cascade classifiers. If there is no benefit in using the hybrid

architecture, we expect the accuracy of the single classifiers results to be average or

worse. The HFP and HaarNN single cascade classifiers have a higher detection rate

but also a higher false-positive rate than the threshold cascade classifier. However,

compared to the single classifiers, the hybrid classifiers are better in at least one

parameter (detection rate or false-positive rate) by keeping the other parameter

similar. Thus, the hybrid classifiers improve the single classifiers, although we do

not use the full opportunity for our new HFP and HaarNN models, which may use

67

Chapter 3. The Haar-Feature-Like Patch and Hybrid Diversity Approach

more diverse feature sets.

Another value that benefits from the hybrid cascade classifiers is the number of

base classifiers (Sum-BC). Both hybrid classifiers need fewer base classifiers than

the single classifiers, except for the HaarNN/Threshold hybrid cascade shown in

table 3.1. From a practical perspective, requiring fewer base classifiers needs less

computational speed. From a training point of view, this means there are better

base classifiers (regarding the training set). Hence, the configured expectation of

detection and false-positive rate is reached earlier during the training process. Re-

garding the hybrid classifiers, these better base classifiers not only perform better

within the training set, but also within the test set. However, we cannot generalize

that fewer base classifiers lead to better accuracy, as can be seen if we compare

both single threshold cascades. The single threshold cascades in the last row (in

both tables) have more base classifiers, but a better detection and false-positive

rate in one instance (see table 3.2) and a slightly similar detection and better

false-positive rate in another situation (see table 3.1).

After comparing classifiers trained with the same features, we want to compare

the hybrid architecture and our new models using different feature sets. To exam-

ine whether it is worth training hybrid cascades using the new classifier models and

features, we trained several cascade classifiers for every HFP set by using different

random subsets. Figure 3.20 shows a distribution of hybrid and single cascade

classifiers. We create this distribution by taking these classifiers for every detec-

tion rate with the lowest false-positive rate. There, the hybrid classifiers mostly

perform best. Tables 3.5 and 3.6 show two cascade classifiers for every detection

rate. Here, we take the best (lowest false-positive rate) single and best hybrid

cascade classifier for every detection rate. Overall, ten of the fifteen classifiers are

hybrid classifiers. The HFP set TLB69 is also useful as a Haar-like feature for

the threshold classifier, as can be seen in tables 3.5 and 3.6. There are several

threshold classifiers within the list of the best classifiers which are trained using

the set TLB69 and not only using the original set base. While all this does not

prove that the hybrid architecture is better in every case, it does show that it is

likely that the hybrid cascade classifier will improve the single cascade classifier,

thus rendering it worthwhile to use the hybrid architecture and the HFP/HaarNN

base classifiers and HFP features.

68

3.4. Overlap Detection Merge and Samples

3.4 Overlap Detection Merge and Samples

For the results shown previously, we compared results that count every false detec-

tion. Mostly, correct detections have more than one nearby detection. Therefore,

it is common to merge the nearby regions into one region in a first step. According

to Viola and Jones [69], we can proceed with a second step to remove these merged

regions consisting of just a few regions. Both steps reduce the false-positive rate,

but also the detection rate. However, optimizing the merging method of multiple

detections is beyond the scope of this thesis. Nevertheless, we want to show how

the results of our classifiers would change their outcome.

Table 3.7 shows the results of several hybrid cascade classifiers without merging,

with merging, and when merging and removing regions. The first row of one

classifier shows the result without any merging as we used the results stated in the

findings section above. The second row shows the result if we simply merge the

nearby regions. There, we can reduce the false positives to about half, while the

detection rate stays the same or is only slightly reduced. The third row shows the

result if we first merge and then remove all these regions consisting of fewer than

three regions. Again, we can reduce the false positives by about half compared

to merging-only results, but the detection rate is also reduced by six to eleven

percent. This observation is the same for single threshold cascade classifiers as

shown in table 3.8.

Figure 3.22: The image on the left shows the result without any merging, i.e.

just the detections as they are. The image in the middle shows the results after

merging the nearby detections, while the image on the right shows the result after

removing regions. This image sequence is a perfect example. First, there are some

false detections; after merging this was reduced to only one, and in the final image

there were no false detections at all.

The images in figure 3.22 are a perfect example. In the image on the left, the

classifier has detected all of the faces without any merging. There, the person’s face

in the middle of the image is perfectly covered by one detection, but the region is

too big to count it as a hit because the overlap for the expected region is too small.

69

Chapter 3. The Haar-Feature-Like Patch and Hybrid Diversity Approach

Model HFPset Model2 HFPset2 DR FPR

NCC-HFP Base Thres Base 0.74 1.283E-4

NCC-HFP Base Thres Base 0.74 6.26E-5

NCC-HFP Base Thres Base 0.65 2.83E-5

NCC-HaarNN BlockN Thres Base 0.75 1.642E-4

NCC-HaarNN BlockN Thres Base 0.74 7.4E-5

NCC-HaarNN BlockN Thres Base 0.66 3.44E-5

NCC-HaarNN TLB69 Thres Base 0.75 1.715E-4

NCC-HaarNN TLB69 Thres Base 0.75 8.19E-5

NCC-HaarNN TLB69 Thres Base 0.69 3.67E-5

NCC-HFP Base Thres Base 0.77 2.014E-4

NCC-HFP Base Thres Base 0.77 9.71E-5

NCC-HFP Base Thres Base 0.7 4.45E-5

NCC-HaarNN TLB69 Thres Base 0.68 6.02E-5

NCC-HaarNN TLB69 Thres Base 0.68 2.88E-5

NCC-HaarNN TLB69 Thres Base 0.59 1.15E-5

Table 3.7: Results of hybrid cascade classifiers to show the merging effect. The

first row shows the results if no merging is done, the second if nearby regions are

merged, and the third if every region not consisting of at least two merged regions

is removed. Merging nearby regions reduced the false-positives by about half, while

maintaining a detection rate with a minor loss of one percent. Instead, removing

regions reduces the detection rate from 6 to 11 percent and the false-positive rate,

again, to about half.

Manually, we would probably count it as a hit. The image in the middle shows

the detections after merging the nearby regions into one region. Merging changes

the detection of the person in the middle. After merging, the one false detection

and the other nearby detections create an average region that meets the overlap

criteria 3.11 and, hence, is counted as a correct detection. Lastly, we remove the

detections consisting of fewer than two merged regions and have no false detection

left, as can be seen in the right-hand image of figure 3.22.

The next image group in figure 3.23 is an example of losing a correct detection

through merging. Before merging, we detected all of the faces. In the next image,

70

3.5. Summary

Model HFPset DR FPR

Thres Base 0.78 1.641E-4

Thres Base 0.77 8.22E-5

Thres Base 0.7 3.78E-5

Thres TLB69 0.77 3.223E-4

Thres TLB69 0.76 1.544E-4

Thres TLB69 0.69 7.54E-5

Table 3.8: Results of cascade classifiers to show the merging effect. The first row

shows the results if no merging is done, the second if nearby regions are merged, and

the third if every region not consisting of at least two merged regions is removed.

The effect is the same as that of the hybrid classifiers in table 3.7.

among others, the top-right regions are merged into one region. While one of

these regions is within the correct area before merging, the average of the nearby

regions falls outside this area, meaning that we lose one hit. However, the final

image shows that we can reduce many of the false detections. With these samples,

we want to emphasize that at least via the merging process, we can reduce the

false-positive rate by about half while mostly maintaining the detection rate.

3.5 Summary

In this chapter, we presented the benefit of our new models within a hybrid archi-

tecture. Although there is no guarantee of creating better hybrid classifiers using

a small random feature set, there is an increased opportunity for improvement.

If we consider the first best cascade classifiers, the majority are hybrid cascade

classifiers.

In the overlap and samples section 3.4, we showed that by merging the nearby

regions, we decrease the false-positive rate by about half. The drawback here

is that for some classifiers, the detection rate is also decreased but mostly by less

than one percent. However, in the following sections we will compare the classifiers

without any merging and removing so as to compare them without any influence

from other methods.

71

Chapter 3. The Haar-Feature-Like Patch and Hybrid Diversity Approach

Figure 3.23: The above-left image is without merging, above-right is with merging,

and the lower image with removing of regions. There, we see an example of losing

one correct detection due to merging. While in the first image all of the faces are

found, the second image lost one correct detection. Finally, we can reduce a lot of

the false detections.

72

Chapter 4

Diversity and Common

Characteristics of our Classifier

Models

4.1 Introduction

In the previous chapter, we presented our models used as part of a hybrid archi-

tecture. In this chapter, we show and analyze the essential characteristics and

differences of our HFP and HaarNN classifier models used in homogeneous ensem-

ble and cascade classifiers. We start by examining the diversity and differences

of both models in section 4.2. In section 4.3, we analyze the extent to which the

HaarNN model is beneficial and provides higher diversity through the included

Hopfield Neural Network. Finally, we show that it is justifiable to use a small

random subset to train our classifiers in section 4.4.

4.2 Diversity and Difference of our Classifier Mod-

els

4.2.1 Introduction to Experiments

The Hopfield Neural Network as part of the HaarNN classifier learns the pattern

of a Haar-Feature-like patch. The classification of the HaarNN model is done after

the HNN is executed. The output of the HNN is the input for the classification

method which is the only difference to the HFP classifier. The HFP classifier uses

the Haar-Feature-like patch directly as an input for classification (see figure 4.1).

73

Chapter 4. Diversity and Common Characteristics of our Classifier Models

Figure 4.1: Comparing HaarNN and HFP classifier models. The images describe

the classification process. It starts with the input, followed by applying the Haar-

Feature-like patch (HFP). The HaarNN classifier (top) uses a Hopfield Neural

Network (HNN) to filter the Haar-Feature-like patch values. In contrast, the HFP

classifier (bottom) uses these values directly. Finally, both classifiers compare the

result with a learned patch to decide whether the input is a face or not.

However, if the features, the pattern, and the classification metric are the same

for both models, we have to question whether they create significantly different

results. If the HNN does not matter, we would expect the same or at least quite

similar classification results. To compare both models, we use the same training

parameters. Two classifiers can consist of different features, but do not have to be

different in their classification ability. If we have two classifiers that differ in terms

of the features used, but react to every input with the same result, we would not

see any relevant difference in their classification ability. In contrast, having two

classifiers showing the same detection and false-positive rates does not necessarily

mean they are equal either. We can analyze the single results of dedicated image

frames of two classifiers with the same performance to examine whether they act

differently for the single input and, therefore, still exhibit diversity and create a

benefit as a combined solution.

We have used the CBCL image set for training purposes (see section 2.7).

Testing all possible parameter variations would cost so much training time that it

would be hard to explore. Therefore, we focus on the following parameters that

74

4.2. Diversity and Difference of our Classifier Models

determine the classifier training:

• Asym-AdaBoost [true, false]

• The maximum number of cascade nodes; typically five or ten

• The HFP set used

• The number of HFP features used in one iteration

4.2.2 Results comparing HFP and HaarNN classifiers

In this section, we compare the HaarNN and the HFP classifier models and analyze

their differences. First, we examine their differences in terms of creating ensembles

and when it comes to creating cascade classifiers.

Comparing HFP and HaarNN ensembles

Model HFPset DR FPR

NCC-HaarNN BlockN 75.2119 0.1959

NCC-HFP BlockN 55.2966 0.0819

Table 4.1: Trained with Asym-AdaBoost, 500 random features per iteration, to a

size of 50 ensemble members using Normalized Cross-Correlation. Thereby, DR

is the detection rate, and FPR is the false-positive rate. Every second row shows

the first Haar-Feature-like patches that are chosen through the training algorithms.

The last picture in each second row shows the Summed Picture (SP). It is developed

by putting the learned patterns on top of each other and normalizing the result

to create an image. Although they are equally trained, they differ in their chosen

features and performance.

To compare the HFP and the HaarNN ensemble classifier, we use the same

sequence of random features to train them. Therefore, the sets from which the

Haar-Feature-like patches are chosen, are equal for both models. Hence, we can

analyze how both classifier models differ through the HNN within the HaarNN

75

Chapter 4. Diversity and Common Characteristics of our Classifier Models

classifier. If the classifier models are similar, the chosen features should also be

very similar.

The table 4.1 shows the performance of several ensemble classifiers. Each group

of two classifiers consists of one HFP and one HaarNN classifier which is trained

using the same context; hence, all influencing training parameters are the same.

Every second row shows the first ten Haar-Feature-like patches chosen during train-

ing. The table shows that the performance and the chosen features are different.

Feature Models Correlation value

BlockN NCC-HaarNN / NCC-HFP 0.441

Table 4.2: Correlation diversity of the above classifiers (see table 4.1). Fewer values

mean greater independence and, therefore, higher diversity. Both classifier models

are trained using the same parameters.

The table 4.2 shows the diversity of both classifier models whose performance

and features are depicted in table 4.1. All of the other training parameters, in-

cluding the feature sets used to build the classifiers, are the same throughout the

fixed random sequence. The fixed random sequence guarantees that a chosen set

of features consists of the same features. Therefore, the diversity between both

classifiers in table 4.2 is a result of the different behavior of the classifier models

whose only difference is the HNN.

Comparing HFP and HaarNN cascades

Cascade classifiers are not diverse simply because their ensembles are. While the

cascade classifiers consist of several ensembles, it is possible for all of the single

ensembles to be different, while they are equal in their aggregation. Therefore,

we analyze whether two cascade classifiers trained using the same sets of Haar-

Feature-like patches as above, also show diversity.

The classifiers, whose results are shown in table 4.3, are cascade classifiers con-

taining 10 nodes of ensemble classifiers. The ensembles are trained using asymmet-

ric AdaBoost, with asym-factor k = 1.4, HFP set BlockN (see section 3.2.1) and

distance metrics Normalized Cross-Correlation (NCC). A cascade classifier consists

of hundreds of features which makes it difficult to compare them as a whole. To

get an idea of the differences of the entire learned set, we use the summed picture

which we create by painting all feature patterns to one image. The summed pic-

tures can be seen as a compact representation of all chosen features and learned

patterns. We present the summed pictures in table 4.4 to show that every ensemble

76

4.2. Diversity and Difference of our Classifier Models

Model HFPset DR FPR

NCC-HaarNN BlockN 0.9 0.0052

NCC-HFP BlockN 0.9 0.0034

Table 4.3: Classification results of the trained cascades. The HFP and HaarNN

classifiers are trained using the same configurations.

Model SP Cascade

NCC-

HaarNN

NCC-

HFP

Table 4.4: We can paint the learned pattern as a summed image which is an

aggregation of all chosen features. We show ten pictures for the ten ensembles

that make up the cascade classifiers. All of the summed pictures look different,

meaning that no ensemble consists of the same set of features.

within the cascade classifier learned different features. Thereby, each image shows

the summed picture of one ensemble where the images are in sequence as they are

within the cascade classifiers. Hence, the first image belongs to the ensemble of

the first cascade node.

The table 4.5 shows the features of the NCC-HFP and NCC-HaarNN cascade

classifiers. We show the features of the first up to ten base classifiers within

the first three ensemble nodes of the cascade classifiers. The number of base

classifiers chosen during training is determined by the achieved detection and false-

positive rate. If the ensemble reaches the demanded detection and false-positive

rate, training for that particular ensemble node stops and training of the next

ensemble node starts (see section 2.2.3). Therefore, the first nodes in particular

may have fewer base classifiers which can be seen in table 4.5. The column Node

describes the node of the cascade classifier, whereas the sequence of the pictures

represents the feature sequence of ensemble members.

Another model used to analyze the diversity of several classifiers involves merg-

ing them. Therefore, we create a classifier called “merge cascade”. A cascade

classifier consists of nodes of ensemble classifiers. We create the merge cascade by

77

Chapter 4. Diversity and Common Characteristics of our Classifier Models

Model

Node

First HFPs

HaarNN

Node 1

HFP

Node 1

HaarNN

Node 2

HFP

Node 2

HaarNN

Node 3

HFP

Node 3

Table 4.5: Here, we show the difference of the chosen features for both classi-

fier models. The only difference when training the NCC-HaarNN and NCC-HFP

models are the classification method used. The column Node depicts the ensem-

ble nodes of the cascade classifier in their sequential order. The painted features

consist of the first ten features chosen during training.

Models HFPset Correlation value

NCC-HaarNN / NCC-HFP BlockN 0.61

Table 4.6: Diversity correlation measure of the classifiers shown in table 4.5.

adding these nodes one by one to a new cascade classifier. If we have two cascade

classifiers c1, c2 with their nodes c1n1 , .., c
1
n5 and c2n1 , .., c

2
n5 we arrive at the merge

cascade mc with nodes c1n1 , c
2
n1 , .., c

1
n5 , c

2
n5 . The effect of using this merged cas-

cade is that we have a logical conjunction of the classification results. The cascade

78

4.2. Diversity and Difference of our Classifier Models

classifier returns a positive result if every ensemble node does the same. Hence, for

the merged cascade classifier, every node classifier of the joined cascade classifiers

has to agree in order to achieve a positive result. If we execute the cascade classi-

fiers sequentially instead of merging the nodes to a new classifier, the result is the

same, but by merging them, we retain the cascade structure starting with the sim-

pler and moving through to the complex ensembles and, in turn, the performance

issue. Recapitulating the equations 4.1 and 4.2 (compare section 2.2.3) we get a

second measure of their diversity. If the classifiers are completely independent, we

can calculate the final detection and false-positive rate using equations 4.1 and 4.2.

F =
K∏
i=1

fi (4.1)

D =
K∏
i=1

di (4.2)

This conjunction of classifiers confirms and visualizes the diversity because we

can easily apply the merge cascade to every test set. While table 4.6 shows the

diversity of both classifiers measured using a cropped subset, in table 4.7 we show

the results for the merging cascade of both classifiers.

Model HFPset DR FPR

Merge of HaarNN + HFP BlockN 0.83 0.0015

Theoretical Independent 0.81 0.000018

Theoretical Dependent 0.9 0.0034

Table 4.7: The second method to show diversity involves merging classifiers. The

merge cascade classifier is the union of both of the above classifiers. It classifies

an input as a face if both classifiers classify this input as a face. If both classifiers

are independent, the resulting detection rate is 0.9x0.9 = 0.81.

The images in figure 4.2 are the results of the NCC-HaarNN, the NCC-HFP

classifier, and their merge cascade classifier. To arrive at the results seen in the

merge image, both classifiers have to commit. This requires a reduction in the

number of false positives.

All distance measures work, except ED-HFP

Here, we show examples that emphasize the difference between both models due

to the distance measure used. Therefore, we consider the cascade results in tables

79

Chapter 4. Diversity and Common Characteristics of our Classifier Models

Figure 4.2: These sample images visualize the effect of the merge cascade. The

top left image belongs to the NCC-HaarNN classifier, while the top right image

belongs to the NCC-HFP classifier. The bottom image is the result of the merge

cascade classifier consisting of the above HaarNN and HFP classifiers. We can

see a reduction in false positives (red rectangles) because both classifiers react

differently to most inputs; hence, they are diverse.

4.8 and 4.9. The cascade classifiers are trained with up to five ensemble nodes and

using the same training configurations.

Model HFPset DR FPR

ED-HaarNN BlockN 87.037 0.0041

NCC-HaarNN BlockN 87.037 0.0025

ED-HFP BlockN 96.2963 0.779

NCC-HFP BlockN 85.1852 0.0019

Table 4.8: Cascades trained with up to five ensemble nodes using asym-AdaBoost

and BlockN as the HFP set. While all cascade classifiers have comparable results,

the ED-HFP classifier has a very high false-positive rate.

Table 4.8 compares HFP and HaarNN cascade classifiers trained with asym-

AdaBoost and BlockN as the HFP set. All results are feasible, except the results

for the ED-HFP classifier.

80

4.2. Diversity and Difference of our Classifier Models

Model HFPset DR FPR

ED-HaarNN BlockN 72.2222 0.0017

NCC-HaarNN BlockN 75.9259 0.002

ED-HFP BlockN 94.4444 0.4822

NCC-HFP BlockN 81.4815 7.0E-4

Table 4.9: Cascades trained with up to five ensemble nodes using AdaBoost and

BlockN as the HFP set. The ED-HFP cascade classifier has a very high false-

positive rate, while all other cascades are feasible.

While asym-AdaBoost focuses on base classifiers with a higher detection-rate,

the false-positive rate is also increased. However, it is not only because of asym-

AdaBoost. The cascade classifiers in table 4.9 are trained with AdaBoost, and the

ED-HFP classifier also has an unsatisfying false-positive rate.

4.2.3 Discussion and Conclusion

Comparing HFP and HaarNN ensembles

Table 4.1 shows the results and the features used for several ensembles. The

accuracy is different, as are the chosen HFPs and the sum pictures, which are the

aggregation of all features and therefore an indication for all of the chosen HFP

set. However, a difference in detection and false-positive rates does not necessarily

imply a high diversity. The dedicated results for a given input frame could be

quite similar if all detections are made for the same objects except for a few. If

both classifiers mostly make the same mistakes for the single test frames, it causes

a low diversity. Hence, the classifiers could still be very similar in terms of their

diversity. Therefore, we consider table 4.2 which shows the correlation of the

classifier results. If two classifiers have the same classification answers for every

dedicated input frame, the correlation is 1. However, all of the correlation values

for two different classifiers in table 4.2 are less than 1.

Comparing HFP and HaarNN cascades

If the ensembles are not diverse, the cascades consisting of ensembles should there-

fore also not be diverse. However, cascade classifiers consist of several ensembles

and, therefore, of more base classifiers that could grow to more equality. Two

perfect classifiers with no errors would not differ in their results, i.e. there would

81

Chapter 4. Diversity and Common Characteristics of our Classifier Models

be no diversity. However, imperfect classifiers can also lead to a low diversity if

they classify most of the regions’ equality. Therefore, we consider the cascades in

table 4.3 in more detail.

Table 4.3 shows a different performance for the cascade classifiers. While both

were trained using the same context with the only difference being the use of

the HNN, they achieve different results for the detection and false-positive rate.

Therefore, the HFP classifier and HaarNN classifier cannot be exactly the same.

However, the difference in accuracy is not as vast. Thus, the classifiers may use

mostly the same features and just start to differ towards the end of the training

process.

Where the HFP and HaarNN classifiers differ most considerably is in the dif-

ferent features they choose during training, as shown in table 4.5. There, we show

the first ten chosen features of the first three cascade nodes of both classifiers.

There, none of the feature sequences for the ensemble nodes are equal, despite

using the same set of Haar-Feature-like patches for training, which shows more

clearly how different they are in their feature-selection behavior. However, this

table only depicts the first features of the first ensemble nodes and we want to

compare all features to be sure that whole sets do not become equal if we take all

features into account. Therefore, we paint the whole chosen set of features as a

sum picture as presented in table 4.4. There, all sum pictures are different.

Finally, table 4.6 shows that the HFP model and the HaarNN model are not

equal or similar to any large extent. Hence, their correlation value is roughly

in the middle of the value range. As double proof, we can consider the merge-

models result in table 4.3 as already mentioned, and the figure 4.2 that paints the

differences of both classifiers and their merge cascade. If there were no diversity,

one classifier would be only a subset of the other classifiers. Given their results

and the results of the merge model, this would lead to the minimum HFP and

HaarNN classifiers result. This is not the case. The merge classifier reduces the

false-positive and detection rate, which is the expected result given equations 4.2

and 4.1. The performance of the merge cascades, which reduces the detection and

false-positive rate, verifies the conclusion that the HFP and HaarNN classifiers are

in fact different.

How the HFP and HaarNN classifiers differ

In this final passage, we want to analyze how both models differ. One observation

is that the HFP models often tend to produce a lower false-positive rate, but

also a lower detection rate. This tendency lines up with various different training

82

4.3. Increased Diversity by the Hopfield Neural Network

parameters, as can be seen, for example, in 4.1.

The more interesting observation is that using the Haar-Feature-like patches

and the Euclidean distance for classification, i.e. the ED-HFP model, does not

work. This problem arises when using asym-AdaBoost and AdaBoost. While

asym-AdaBoost shifted the selection process towards classifiers that favor a good

detection rate over a small false-positive rate, we also depicted the results using

AdaBoost. Using AdaBoost or the asym variation does not change this observa-

tion. We show both results to zoom in on the behavior of the HFP model and to

emphasize that it is an inherent problem of the ED-HFP model. Moreover, this is

specific to the HFP model. Hence, the ED-HaarNN model has no outlier like this.

We interpret this through the geometry of the different methods. Points that

are similar to each other in terms of cross-correlation can be far away when it

comes to Euclidian distance. Lighting changes, for example, could lead to similar

correlation values, but the Euclidean distance between the new and the changed

point could be huge. Therefore, it seems there are many points that belong to

the negative samples in the Euclidean range of the positive samples. In contrast,

the HaarNN model did not use this value directly, but shifted it to a learned fix

point, with the negative points far enough away for the Euclidean distance to work.

While we have not currently clarified the research question of whether the HNN is

a benefit, we can clarify that it is different using the HNN within the model.

4.3 Increased Diversity by the Hopfield Neural

Network

In this section, we discover the diversity of the HaarNN model.

4.3.1 Introduction to Experiments

Here, we examine the diversity that comes through the Hopfield Neural Network

within the HaarNN classifier. In the previous section, we saw that the HaarNN

classifier is different from the HFP classifier and, therefore, already increases di-

versity. However, the Hopfield Neural Network is a dynamic model which changes

its behavior along with changing training parameters, and we want to use this dy-

namic to increase diversity. Since these parameters only affect the HaarNN, we call

them “inner” HaarNN parameters. We explore which parameter creates different

classifiers and increases diversity, and whether we can create a benefit out of this.

Therefore, we train our HaarNN model by fixing all parameters except for the one

83

Chapter 4. Diversity and Common Characteristics of our Classifier Models

we want to analyze. Then, we train several HaarNN cascade classifiers by system-

atically varying the observed parameters. Summarizing, we question which inner

HaarNN parameters can increase diversity and achieve a benefit for the ensembles

classification ability.

4.3.2 Methods - Parameters for Increasing Diversity

To carve out the parameters that influence the behavior of the HaarNN classifiers

and to examine their role in creating diversity, we look deeper at the execution and

training process. We explain the parameters in the sequence they are used during

execution (see figure 3.15) and the learning process (see 3.16).

As a brief overview, the execution process of the HNN is influenced by the

parameters offset, scalingFactor, useJustThres, threshold, stretchFactor and

maxCount. During execution, we first subtract the offset from the input pattern.

Afterwards, the scalingFactor is applied, which drags or compresses the pattern.

Thereafter, the HNN is executed until it becomes a stable state or until a configured

maximum of iterations (parameter maxCount) is reached. When executing the

HNN, the activation function is applied in every iteration. Thereby, the logistic

activation function (equation 3.8) uses the threshold and the stretchFactor. The

binary activation function (equation 3.9) uses the threshold and is activated if

useJustThres is true.

Offset

After the input is generated applying an HFP (see section 3.2.3), the first step

involves subtracting the offset. We calculate the offset using equation 3.4 for every

training sample, and we use the average of all these offsets (equation 3.6) as the

threshold for the HaarNN classifier. However, to increase diversity, we can use the

offset differently:

• Learned offset

As described in equation 3.6, we use the average offset.

• None offset

While the weights are calculated using an offset, we can leave the offset for

classification. Then, the input “starting point” is different but also converges

to a stable state.

• Final pattern offset

We can use the final pattern to calculate the offset by applying equation 3.4.

84

4.3. Increased Diversity by the Hopfield Neural Network

Scaling Factor

After applying the offset, all input values will be normalized to a given range.

The value that performs this normalization is scalingFactor. The scalingFactor

is a result of normalizing (normalizeTo) of the input after subtracting the offset.

Therefore the normalizeTo parameter determines the scalingFactor. Before scal-

ing is performed, the max range of the input is between−127 and 128. For example,

normalizing the input to a range of [−1, 1] will lead to a scalingFacotor s = 1
128

.

Threshold, Stretch Factor and Activation Function

The threshold for the activation function is the max of the final learned pattern as

described in section 3.2.3. If the parameter fixThres has a value, this is used as

the threshold. The parameter stretchFactor (β) is part of the logistic activation

function that scales the function in the x-direction; thus, the gradient will be

smaller.

oj =
2θ

1 + e−sjβ
− θ, (equation 3.8)

stretchFactor has a relation to the threshold θ. With stretchFactor 1, the gra-

dient of the function will be higher with a higher θ. To repeat, sj is the product

of the weights and the input as described in equation 2.19.

oj =


θ if sj > θ

−θ if sj < −θ

sj otherwise

, (equation 3.9)

Two more parameters that affect the activation function in a broader sense are

useJustThres and usePatternThres, which are both Boolean values. If param-

eter useJustThres is set to true, the binary activation function 3.9 will be used,

otherwise the logistic activation function 3.8. The parameter usePatternThres

changes the usage of the threshold for the activation function. While the threshold

as described above and in section 3.2.3 is one threshold for the whole net, a pos-

itive usePatternThres changes such that every single neuron has its individual

threshold corresponding to the learned pattern p. Hence, if we have a pattern of

p = (−5, 3,−1, 5), we have an HaarNN with four neurons with individual thresh-

olds of (−5, 3,−1, 5). Instead, if usePatternThres is false, the max of p is 5, and

therefore the threshold is 5 for every neuron.

85

Chapter 4. Diversity and Common Characteristics of our Classifier Models

−12 −10 −8 −6 −4 −2 2 4 6 8 10 12

−10

−5

5

10

x

oj = 2θ

1+e−sjβ
− θ

Activation function 3.8 with different θ and β

θ = 8, β = 1
θ = 5, β = 1
θ = 5, β = 2
θ = 5, β = 0.5

Figure 4.3: The logistic activation function with different values for the parameters

stretchFactor (β) and threshold (θ)

4.3.3 Results

First, we compare ensembles and their parameters, which we call “inner” parame-

ters because they influence only how the HNN within the HaarNN works. Hence,

the differences in chosen features and diversity only arise from parameters which

have no counterpart for the HFP classifier. In this section, we show results of en-

sembles that are trained varying several parameters as described in sections 3.2.3

and 4.3.2.

Table 4.10 shows the results of ensembles whose training only differs in two

parameters. This is the fixThres and the normalizeTo (short normTo) as de-

scribed in section 4.3.2. As a reminder, the normTo is the range the values will be

scaled to [−normTo, normTo]. If normTo is marked with −1, then no normal-

ization is done and we have values in the range of pixels [0.255]. If fixed threshold

(fixThr) has a value, the threshold of the activation function 3.9 or 3.8 becomes

the value designated in fixThr; otherwise, the value will be calculated as described

in section 3.2.3.

Table 4.11 shows the diversity between all classifiers, the results of which are

shown in table 4.10. The diversity value describes the similarity between two

86

4.3. Increased Diversity by the Hopfield Neural Network

Model HFPset DR FPR fixThr normTo

NCC-HaarNN BlockN 58.0508 0.1077 1 1

NCC-HaarNN BlockN 61.6525 0.1082 1 2

NCC-HaarNN BlockN 59.9576 0.1124 2 1

NCC-HaarNN BlockN 62.2881 0.1124 2 2

NCC-HaarNN BlockN 65.2542 0.1611 2 5

NCC-HaarNN BlockN 60.8051 0.1198 5 1

NCC-HaarNN BlockN 61.8644 0.101 5 2

NCC-HaarNN BlockN 59.9576 0.108 10 1

NCC-HaarNN BlockN 61.0169 0.1148 10 2

Table 4.10: NCC-HaarNN ensembles using BlockN features trained to 80 base

classifiers only differing in the scaling factor (normTo) and the threshold (fixThr)

of the activation function. We trained all classifiers using the binary activation

function 3.9 (fixThr = true) and one threshold for all neurons (usePT = false)

as described in the method section 4.3.2.

classifiers. Despite the fact that only two parameters (fixThr, normTo) are varied

when creating these ensembles, no two ensembles are the same. The minimal

diversity value is 0.55 and the maximum is 0.849.

The ensembles in table 4.12 use the BlockN set and are trained with up to 50

members. The other training configuration is the same as for the classifiers above,

except for the fixThr parameter which is −1, meaning that the threshold will be

learned. This configuration also creates diversity.

The average diversity is 0.505 and diversity values are between 0.475 and 0.561

as depicted in table 4.13. Worthy of note are the chosen features shown in every

second row in table 4.12. They are all different, and the aggregated pictures of

the features are also different, despite having used a fixed (random) sequence of

features, i.e. the same feature sets, for training.

Several Cascade Classifiers trained with Different Parameters

In this section, we present the results of six HaarNN cascade classifiers, for which

we permutate several parameters. According to the ensemble results above, we also

only change “inner parameters”, hence, only parameters that affect the dynamic

of the “inner” Hopfield Neural Net.

87

Chapter 4. Diversity and Common Characteristics of our Classifier Models

fixThr,

normTo

1, 1 1, 2 2, 1 2, 2 2, 5 5, 1 5, 2 10, 1 10, 2

1, 1 1.0 0.655 0.743 0.649 0.55 0.72 0.643 0.748 0.657

1, 2 0.655 1.0 0.641 0.849 0.605 0.64 0.839 0.636 0.775

2, 1 0.743 0.641 1.0 0.647 0.552 0.713 0.638 0.746 0.649

2, 2 0.649 0.849 0.647 1.0 0.603 0.632 0.808 0.636 0.769

2, 5 0.55 0.605 0.552 0.603 1.0 0.582 0.586 0.566 0.595

5, 1 0.72 0.64 0.713 0.632 0.582 1.0 0.633 0.768 0.645

5, 2 0.643 0.839 0.638 0.808 0.586 0.633 1.0 0.634 0.775

10, 1 0.748 0.636 0.746 0.636 0.566 0.768 0.634 1.0 0.648

10, 2 0.657 0.775 0.649 0.769 0.595 0.645 0.775 0.648 1.0

0.672 0.671 0.705 0.666 0.699 0.58 0.667 0.695 0.673 0.689

Table 4.11: Diversity measure of classifiers from table 4.10. The final row contains

the average diversity value for each classifier.

Model HFPset DR FPR fixThr normTo

NCC-HaarNN BlockN 0.59 0.11 -1 2

NCC-HaarNN BlockN 0.56 0.11 -1 -1

NCC-HaarNN BlockN 0.56 0.12 -1 5

Table 4.12: NCC-HaarNN ensembles using the BlockN HFP set, trained to 50

members. These classifier ensembles use the logistic activation function 3.8 and a

learned threshold for all neurons.

88

4.3. Increased Diversity by the Hopfield Neural Network

normTo 2 -1 5

2 1.0 0.475 0.561

-1 0.475 1.0 0.478

5 0.561 0.478 1.0

0.505 0.518 0.476 0.52

Table 4.13: Diversity of the ensemble classifiers from table 4.12.

Model HFPset DR FPR fixThr normTo jT usePT

NCC-HaarNN BlockN 74.07 0.0093 10 1.0 false false

NCC-HaarNN BlockN 85.19 0.0048 5 1.0 true true

NCC-HaarNN BlockN 87.04 0.0061 5 1.0 true false

Table 4.14: NCC-HaarNN cascade classifiers using the BlockN HFP set trained

with up to 10 nodes using several varied parameters.

classifier 1 2 3

1 1.0 0.449 0.45

2 0.449 1.0 0.633

3 0.45 0.633 1.0

0.511 0.45 0.541 0.542

Table 4.15: Paired diversity of the three cascade classifiers, the results of which

are shown in table 4.14.

89

Chapter 4. Diversity and Common Characteristics of our Classifier Models

Model HFPset DR FPR fixThr normTo jT usePT

NCC-HaarNN BlockN 79.63 0.0052 5 1.0 false true

NCC-HaarNN BlockN 85.19 0.0053 10 1.0 false true

NCC-HaarNN BlockN 81.48 0.008 10 1.0 true false

Table 4.16: 10er CC-HaarNN cascades trained with several varied parameters.

classifier 1 2 3

1 1.0 0.648 0.572

2 0.648 1.0 0.629

3 0.572 0.629 1.0

0.616 0.61 0.639 0.6

Table 4.17: Paired diversity of the three cascade classifiers, the results of which

are shown in table 4.16.

The NCC-HaarNN cascade classifiers, the results of which are shown in tables

4.14 and 4.16, use the BlockN HFP set and are all trained with up to ten cascade

nodes. We use jT as abbreviation for justThres and usePT for usePatternThres.

We vary both parameters fixThr and normTo and the usage of the activation

function, i.e. the binary (jT = true) or logistic activation function (jT = false)

(see equations 3.9 and 3.8). Further, we vary whether we use one threshold for all

neurons (usePT = false) or an individual threshold for every neuron (usePT =

true).

Corresponding to the cascade classifiers in tables 4.14 and 4.16, we depict

diversity in tables 4.15 and 4.17. The diversity of the first three classifiers is higher

than the diversity of the other three classifiers. However, all of the classifiers create

significant diversity.

Table 4.18 shows the result of the merge cascade classifiers which confirmed the

diversity of the classifiers using a different test set. The final row merges all six

90

4.3. Increased Diversity by the Hopfield Neural Network

Model DR FPR

Merge 4.14 64.81 9.4E-4

Merge 4.16 68.518 0.001

Merge all six 59.2593 5.0E-4

Table 4.18: Results of the merging NCC-HaarNN cascade classifiers in tables 4.14

and 4.16.

classifiers, which further reduces the detection and false-positive rate, while also

underlining the diversity of all classifiers.

4.3.4 Discussion and Conclusion

Inner Parameters create Diversity

Varying several parameters creates diversity, as we showed in table 4.10. There, we

created NCC-HaarNN ensembles of up to 80 members using BlockN as the HFP

set and by just varying two parameters. Table 4.11 shows the diversity values

for each pair of classifiers. No classifier is equal or near equal to another classifier,

despite all of the classifiers using exactly the same features (fixed random sequence)

for training. These two parameters create different classifiers, hence they increase

diversity.

The ensembles in table 4.12 are trained with up to 50 base classifiers and use

a learned threshold instead of a fixed threshold as before. Also, these ensembles

create diversity as depicted in table 4.13. There, we vary the normTo parameter.

The threshold is learned during training. Every second row of table 4.12 shows

the first five chosen features. Here, we can observe that all chosen features are

different, although the feature set to choose from is the same in every training

iteration. Only varying these HNN parameters creates these differences and, thus,

the diversity.

However, we questioned whether a cascade classifier would retain this diversity.

A cascade classifier contains several ensembles. It uses far more features, meaning

there is a greater chance of the features being repeated. Thus, it may be the

case that two cascade classifiers will have the same features as a whole, i.e. these

features are in different sequences and have different weightings. Hence, we have

trained a cascade classifier that only changes the inner HaarNN parameter. In

addition, we varied two more inner parameters. The results of this are shown in

tables 4.14 and 4.16.

91

Chapter 4. Diversity and Common Characteristics of our Classifier Models

As seen in diversity measure tables 4.15 and 4.17, the cascade classifiers also

create diversity. Again, every second row shows the first five chosen features,

and again, the chosen features are all different. However, the second method for

analyzing diversity creates the merge cascade classifiers, the results of which are

shown in table 4.18. There, the detection rate and the false-positive rate are

decreased, which would not happen if they were very similar. Also, the other

parameters create diversity, but we choose these as examples. Finally, we can

create diversity by varying parameters which determine how the Hopfield Neural

Network works within the HaarNN.

4.4 Required Number of Features

4.4.1 Introduction to Experiments

The training time is a key factor, and it corresponds to the number of features used.

Therefore, it is beneficial to have small feature sets, or to use feasible small subsets.

During training, we want to use as few features as possible which, nonetheless,

create useful ensembles. For many applications, it is not feasible to have a very

long training time. Analyzing many different parameters is difficult and, in fact,

unfeasible for online learning. Hence, it is an advantage to train with as few

features as possible. Brubaker et al. [8] showed that the random selection of

subsets creates ensembles with comparable accuracy. However, we have different

sets and classifiers, so we can prove whether this observation is also valid for our

approach. Mostly in this thesis, we have trained cascade classifiers with a low

number of features. In this section, we examine whether this is a useful method or

whether a higher number of features provides better cascades.

4.4.2 Results of Number of Features

In table 4.19 we consider a differing number of features in the sequence: 50, 100,

250, 500, 1000, 2500, 5000. The features chosen during training are different.

The detection rate varies between 0.92 and 0.88. With increasing features, the

false-positive rate decreases at first, but then increases for 2500 and 5000 features.

The number of base classifiers decreases constantly, while the number of features

increases.

Figure 5.12 shows several trained NCC-HaarNN cascades trained with up to 5

nodes using 100, 500, 2000, as well as all of the features with their detection and

false-positive rate.

92

4.4. Required Number of Features

Model HFPset DR FPR NF Sum-BC

NCC-HaarNN BlockN 0.92 0.0060073 50 474.0

NCC-HaarNN BlockN 0.9 0.0041099 100 433.0

NCC-HaarNN BlockN 0.88 0.0032505 250 402.0

NCC-HaarNN BlockN 0.88 0.0029399 500 364.0

NCC-HaarNN BlockN 0.88 0.0025103 1000 323.0

NCC-HaarNN BlockN 0.91 0.004103 2500 275.0

NCC-HaarNN BlockN 0.89 0.0034924 5000 223.0

Table 4.19: HaarNN cascade classifiers trained with several different number of

features and the BlockN HFP set.

Table 4.20 shows the median values of the distribution in figure 5.12. The

results are similar to the previous table 4.19. Using a higher number of features

reduces the false-positive rate, but also the detection rate. We also see a clear

reduction in the number of base classifiers.

93

Chapter 4. Diversity and Common Characteristics of our Classifier Models

2 2.5 3 3.5 4 4.5 5 5.5 6 6.5 7 7.5

·10−3

0

0.2

0.4

0.6

0.8

1

FPR

D
R

Best three Hybrid and Single Cascade Classifiers

100
500
2000
all

Figure 4.4: This figure shows the NCC-HaarNN cascade classifiers with their detec-

tion and false-positive rates. All classifiers are trained using the TLB69 HFP-set.

The cascade classifiers are trained using 100, 500, 2000 and all features in each

iteration with up to five node classifiers.

Model HFPset DR FPR NF Sum-BC

Median NCC-HaarNN TLB69 0.92 0.0055654 100 585.0

Median NCC-HaarNN TLB69 0.9 0.0035625 500 464.0

Median NCC-HaarNN TLB69 0.89 0.0030893 2000 384.0

Median NCC-HaarNN TLB69 0.91 0.0038037 all 311.0

Table 4.20: Median values of cascade classifiers in figure 5.12. These are not

trained classifiers, but a center-like median of the distribution.

94

4.5. Summary

4.4.3 Discussion and Conclusion

The results of table 4.19 show that the cascades trained with more features achieve

a lower false-positive rate, but also a lower detection rate. The same can be seen

in figure 5.12 and their median values provided in table 4.20. However, irrespec-

tive of how we evaluate the different detection rates and false-positive rates, the

improvement is not as high, so we can conclude that training with a small num-

ber of features is worse than with a larger number of features. Further, there is

no guarantee of achieving a better classifier using more features, yet it leads to a

pronounced increase in training time. A cascade classifier with five nodes consists

of a few hundred base classifiers. For every base classifier, the number of features

is proven during training which is a few hundred times. Therefore, we have a few

hundred iterations for 100 features or 500 or 2000, which leads to a huge increase

in training time. By using more features, we create cascades with fewer base clas-

sifiers, and training will stop earlier. However, this advantage in training time also

does not change the fact that training with smaller sets is faster because, given

our results, the number of iterations is lower for training with 100 features in a set

(100 features ·585 classifiers < 500 features ·464 classifiers). These cascades are

only trained with up to five nodes, and a longer training time will decrease, but

not remove, the difference.

Considering all the classifiers we have trained, there are many good results only

using 100 features. Finally, training the cascade classifier with this bagging-like

feature selection is a correct way of decreasing training time while maintaining

a similar level of accuracy but getting classifiers with a higher number of base

classifiers.

4.5 Summary

In this chapter, we examined in more detail the difference of our classifier models.

The only difference between the HFP and the HaarNN classifier is the Hopfield

Neural Network that learns the pattern instead of using an average. Both classi-

fier models provide different results and behavior, therefore making both models

diverse.

In the following section, we analyzed whether the HNN within the HaarNN clas-

sifier increases diversity. We show that the HaarNN creates diversity by changing

several parameters that only affect how the HNN works.

Finally, we examined whether we can use our models with a small feature set

to maintain a fast training process. We showed that we can create good results

95

Chapter 4. Diversity and Common Characteristics of our Classifier Models

with significantly smaller feature sets and only slightly inferior accuracy.

96

Chapter 5

Increasing Diversity by Features

and Forced Architecture

5.1 Introduction

In this chapter, we introduce more different HFP sets and another hybrid archi-

tecture to increase diversity further. Our aim in developing all the different HFP

sets is to increase diversity. However, the overall question is whether all of these

sets are useful? Is there one set that outperforms all the others? Or will the most

diverse set be best? Is there a set that includes the other sets? Do they only differ

in terms of geometry but not with a view to their classification ability? Simply

being diverse is not a guarantee that we can create feasible classifiers out of those

sets. Hence, analyzing which sets we can use to create feasible classifiers is the

first question in this section, followed by an analysis of how diverse the different

HFP sets are.

Finally, we analyze our forced hybrid architecture. The training process for

our hybrid architecture described earlier chooses from a single set of heterogenous

classifiers. Having a hybrid set of classifiers to choose from does not guarantee

a hybrid ensemble in the end. Some features or classifiers might be better than

the others, thus offering better results on the training set and leading to them

being chosen more often. However, a training set is only a fraction of reality, and

adapting to this set does not mean describing all appearances, but providing the

option of overfitting. Having more diversity could create more suitable classifiers.

The notion of forcing the training process to choose classifiers alternately from

different sets achieves greater diversity by choosing the more diverse classifiers

instead of focusing on the best, therefore creating better classification results.

97

Chapter 5. Increasing Diversity by Features and Forced Architecture

5.2 Methods

In the following section, we describe the extended Haar-Feature-like patches. The

aim of introducing more sets is to increase diversity further.

Figure 5.1: Original Haar-like features (HF) and more complex Haar-feature-like

patches (HFP). The feature value of the original features is the pixel sum difference

of the gray and white rectangles. Instead of a single value, the HFP uses the

vector defined by the values of all dedicated rectangle pixel sums. A) represents

the features used by Viola and Jones, while TL6 and TL9 describe the group of

Tetris-like features derived from Block6 and Block9. The final row consists of a

few examples of the Symmetrical HFP (Sym).

5.2.1 More Types of Haar-Feature-like patches (HFP)

In our experiments, we used different shaped HFP sets because we need a high

diversity for our classifiers and our features. We have developed different HFP

shapes as summarized in figure 5.1. Below, we will describe these several types in

detail. The different shapes shown below are prototypes. We used these prototypes

to derive several concrete Haar-Feature-like patches which form the HFPs we use

for training and classification, as described in section 3.2.1.

98

5.2. Methods

Haar-like features as HFP

The first group of HFP sets is the Haar-like features used by Viola and Jones.

As described in section 3.2.1, we use the dedicated area values as a vector of the

features depicted in the first row of figure 5.1,

The next HFP sets are similar to the previously introduced TLB69 set (see

section 3.2.1). Here, we create systematically different options for one dimension

and separate the features in different sets by their shape; two TL and two block

sets.

Tetris-like 6 (TL6)

Figure 5.2: The Tetris-like Six (TL6) shapes are composed of six boxes with a

width and height of 2x3 and 3x2.

Figure 5.2 shows the shapes of HFP sets, which we have called Tetris-like Six

(TL6). The six in the name describes the number of boxes. The width and height

of the whole figure are two rows and three columns (2x3) and, vice versa, three

rows and two columns (3x2). As seen in figure 5.2, we start with the full block,

and then we cut out boxes from the whole block to arrive at the final shapes, which

become our resulting prototypes and look like Tetris blocks.

Tetris-like 9 (TL9)

The features in figure 5.3 look similar to the TL6 set in figure 5.2 above, but in

contrast to the TL6 set, they are cut out from a 3x3 block. We called this set

Tetris-like Nine (TL9) because it also has similarities to Tetris blocks. Based on

nine blocks, TL9 has more variations than TL6.

99

Chapter 5. Increasing Diversity by Features and Forced Architecture

Figure 5.3: The Tetris-like Nine (TL9) shapes are composed of nine boxes with a

width and height of 3x3.

Figure 5.4: CB4x4 is the abbreviation of ”Cutting Blocks of 16” boxes with a

width and height of 4x4.

Cutting Blocks 4x4 (CB4x4)

The HFP set “Cutting Blocks 4x4 (CB4x4)”, shown in figure 5.4, is created in the

same way as TL6 and TL9. We have a rectangle of 16 blocks with a width and

height of four blocks. Again, we cut out several blocks to create the final shape.

Block6, Block9, Block16

Figure 5.5 presents four HFP sets. The first is the Block6 set, second Block9,

third Block16 set, and fourth the BlockRN set. As the name suggests, they are

all block features, made of rectangles which fill all of the places in the rows and

columns. Instead of the Tetris-like sets, where we cut out some rectangles in various

positions, the Block features have no removed cells. The number N at the end of

the names ”BlockN” is the number of rectangles that determines the dimension

(width · height) of the feature prototype.

Next are the Block9 sets, which consist of three rectangles in one column and

three in one row. i.e. each block contains nine rectangles. The final block set with

a fixed width and height is Block16. It consists of four blocks in one column and

four blocks in one row, in the same pattern as the other block sets.

100

5.2. Methods

Figure 5.5: Here are four HFP sets. The three sets on the left are Block6, Block9,

and Block16. They consist of six (two rows and three columns), nine (three rows

and three columns), and sixteen rectangles (four rows and four columns). The

three blocks on the right belong to the BlockN set. We create these blocks by

systematically increasing the number of rectangles in a row and a column.

The BlockN set differs somewhat from the three previously described block sets

in that the number of rectangles is not fixed. The dimension of the BlockN set

is created systematically, beginning with three rectangles in a row and three in a

column, then increasing the number of rectangles in a row by rownext = row + 1

(and equally in a column) until a given max width (height) for the whole block is

reached (see figure 3.6).

Symmetrical Shape 2 (Sym2)

Figure 5.6: Sym2 is the abbreviation for Symmetrical Shape 2. It is created by

mirroring (horizontally and vertically) two rectangles with a different width, height,

and position.

Another set of features is the Symmetrical Shape 2 (Sym2) set which can be seen

in figure 5.6. We create them by randomly creating two rectangles and mirroring

them to the other side vertically and horizontally. The two source rectangles are

of a different width, height, and position, and they can overlap each other. The

101

Chapter 5. Increasing Diversity by Features and Forced Architecture

set is created systematically, as with the other sets, by creating and increasing all

possible rectangles.

Random-N

Figure 5.7: All of the parameters that determine the Random-N HFP set are

randomly chosen with a different width, height and position of a rectangle and

also the number of rectangles.

We also created an HFP set that contains randomly chosen rectangles as de-

picted in figure 5.7. The width, height, and position of every single rectangle is

randomly chosen, and also the number of rectangles for one feature is a random

decision.

5.2.2 Forced Hybrid Architecture

As mentioned in 2.4, diversity plays a prominent role in the success of ensembles.

One way of increasing diversity is to use different base classifiers. In previous

experiments, we used different classifier types and combined them into a single set.

In the following experiments, we do not combine the sets but force the algorithm

to alternate the sets. If we use one entire set with all different types, one classifier

type can dominate the selection process. By forcing the algorithm to alternate,

every classifier type will form an equal part of the final ensemble.

We apply the forced hybrid architecture to the cascade creation and the en-

semble creation. The underlying idea is the same for both. We use two different

classifiers and alternate their selections, but when creating an ensemble, we al-

ternate the base classifiers, whereas when creating a cascade, we alternate the

ensemble classifiers.

102

5.2. Methods

Forced Hybrid AdaBoost (FH-AdaBoost)

We apply the forced hybrid architecture to AdaBoost. AdaBoost chooses the best

classifier for a given set of classifiers. There, the best classifier is the one with

the lowest error on a set of training images. Every training image has a weight

and, once AdaBoost has chosen a classifier, the training images will be re-weighted

according to the error of the chosen classifier. As a result of re-weighting, the

misclassified training images become more important to the next iteration (see

section 2.2.3).

Figure 5.8: Forced hybrid architecture is used to create an ensemble; combining

threshold classifiers and HaarNN classifiers. This figure describes the forced hybrid

AdaBoost which first chooses a threshold classifier, followed by a HaarNN classifier

(and so on).

While AdaBoost uses one set of base classifiers, the forced hybrid architec-

ture uses two (or more) sets of base classifiers and forces the selection process to

alternate between these sets, which also differs from the previously discussed hy-

brid architecture that also uses several sets, but aggregates them. Afterwards, for

example, a threshold classifier is chosen and AdaBoost re-weighted the training

images, while the forced hybrid architecture then chooses a HaarNN classifier as

depicted in figure 5.8. Both classifier types were trained using the same training

103

Chapter 5. Increasing Diversity by Features and Forced Architecture

images and their weightings. If we aggregated both sets, AdaBoost would choose

the best classifier, irrespective of whether it is an HaarNN classifier or a threshold

classifier. With aggregation of both sets, it would be possible to create an ensemble

that only contains one type of classifier. Forcing the algorithm to alternate the

sets leads to a higher diversity, but it also has the drawback of not using the “best”

classifier and, therefore (perhaps), creates an ensemble that is less accurate.

Forced Hybrid Cascade (FH Cascade)

Figure 5.9: Forced hybrid architecture is used to create a cascade; combining

ensembles of threshold classifiers and ensembles of HaarNN classifiers. This figure

describes the cascade classifier creation process. One node of a threshold classifier

ensemble is followed by a node of a HaarNN classifier ensemble.

Here, we apply the forced hybrid approach to create a cascade classifier. To

increase computational speed, Viola and Jones wrapped several ensembles inside

a degenerative decision tree, the so-called cascade, which contains one ensemble in

every node. The cascade nodes are ordered from ensembles with low complexity

(few members) to high complexity (many members) as suggested in figure 5.9. If

the current node classifier classifies the considered sub-window as a face, it will be

104

5.3. The Feasibility of HFP Sets

passed on to the successive node. Only if the sub-window reaches the last node

is it finally classified as “face”; otherwise, it will be rejected as ”background” (see

section 2.2.3).

To train the cascade, we also force the algorithm to alternate the two classifier

types. Hence, instead of alternating base classifiers, we alternate ensemble classi-

fiers. During cascade creation, this means we train one ensemble consisting of one

classifier type (for example NCC-HFP), while the next ensemble consists of the

other classifier type (for example ED-HaarNN). Here, the ensembles only contain

one type of base classifier. Figure 5.9 illustrates alternating ensembles of threshold

classifiers and ensembles of HaarNN classifiers.

5.3 The Feasibility of HFP Sets

5.3.1 Introduction to Experiments

In this first section, we examine whether the newly introduced sets are feasible for

creating good cascade classifiers. Thus, we trained several cascade classifiers for

every HFP set. Since we do not compare the sets, but only show that the sets are

in fact feasible, it does not matter which training parameters we use. Further, we

cannot create good cascade classifiers from bad ensemble classifiers, which is why

we did not explicitly analyze the feasibility of single ensembles using the new sets.

Finally, we compare the performance of the different sets. Here, we use the same

training and test sets as for the other experiments.

5.3.2 Results for the Feasible Cascade Classifiers

Table 5.1 shows the results of the trained cascade classifiers for every new HFP

set. The first three rows show sample cascade classifiers trained with the present

sets, i.e. Base, TLB69, and BlockN.

The classifiers in table 5.1 show comparable results to the cascade classifiers

which are trained using the sets Base, BlockN and TLB69. The range of detection

rate and false-positive rate is similar, as is the case with the number of base

classifiers used (Sum-BC). Figure 5.10 shows sample images of the above classifiers.

TL9 does not work for HaarNN

While most sets provide similarly good results, TL9 does not. Irrespective of the

parameters used, the HaarNN cascade classifier did not achieve a good perfor-

105

Chapter 5. Increasing Diversity by Features and Forced Architecture

Figure 5.10: Samples of cascade classifiers trained with up to ten ensemble nodes.

The first four images belong to the NCC-HaarNN cascade trained with the HFP

set TL6. The upper six images belong to the NCC-HFP cascade classifier trained

with the HFP set CB4x4.

106

5.3. The Feasibility of HFP Sets

Model HFPset DR FPR NF Sum-BC

NCC-HFP Base 0.74 2.125E-4 200 620.0

NCC-HaarNN TL6B9 0.66 2.931E-4 200 1205.0

NCC-HFP BlockN 0.78 4.657E-4 200 910.0

NCC-HaarNN TL6 0.65 3.825E-4 100 586.0

NCC-HFP TL9 0.73 9.638E-4 100 1160.0

NCC-HFP CB4x4 0.69 6.615E-4 100 1175.0

NCC-HaarNN Block6 0.76 5.606E-4 100 929.0

NCC-HaarNN Block9 0.72 6.949E-4 100 1195.0

NCC-HFP 2Sym 0.69 9.065E-4 100 1203.0

NCC-HaarNN RandomN 0.79 5.417E-4 100 696.0

Table 5.1: This table shows the performance, first features, and the summed pat-

tern image of several cascade classifiers. All of the cascade classifiers were trained

with up to ten ensemble classifiers.

Model HFPset DR FPR NF Sum-BC Number BC per Node

NCC-

HaarNN

TL9 0.84 0.042 100 27.0 [3, 2, 3, 2, 3, 2, 2, 4, 2, 4]

NCC-

HaarNN

TL9 0.5 0.004 1500 35.0 [5, 4, 8, 2, 2, 2, 5, 3, 2, 2]

ED-

HaarNN

TL9 0.74 0.009 1500 36.0 [2, 3, 3, 2, 6, 4, 5, 2, 5, 4]

Table 5.2: HaarNN cascade classifiers trained with the HFP set TL9. The number

of base classifiers is very small because the ensemble creation breaks if errors in

the base classifiers are too high.

mance. If a base classifier’s performance is too low, the creation process breaks.

The results in table 5.2 show what happens in this case. The ’Number BC per

node’ column shows the number of base classifiers for every ensemble node. None

of the ensembles reaches a higher number. The result remains the same if we use

all of the features.

107

Chapter 5. Increasing Diversity by Features and Forced Architecture

0.2 0.4 0.6 0.8 1 1.2

·10−2

0

0.2

0.4

0.6

0.8

1

FPR

D
R

Best three Hybrid and Single Cascade Classifier

Base
TL6
TL9

CB4x4
Block6
Block9
BlockN
2Sym

Figure 5.11: This figure shows the NCC-HFP cascade classifiers with their de-

tection and false-positive rate. All of the classifiers are trained using the same

parameters. The cascade classifiers are trained using 100 features during each iter-

ation with up to five node classifiers. We trained ten classifiers for each described

HFP set.

Differences of HFP sets

While we considered whether the sets are feasible for creating a good classifier, we

now consider how the accuracy of the sets differs. Figure 5.11 shows the distribu-

tion of the cascade classifiers in terms of their detection and false-positive rate. We

use asymmetric AdaBoost to train the cascade classifiers with up to five nodes and

100 randomly chosen features per iteration. The classifiers are all trained using the

same parameters except for the HFP sets randomly chosen during every iteration.

Figure 5.11 shows that the different sets form clusters. Here, the Base, TL6, and

the Block sets provide the best results compared to the other sets.

The distributions of the classifiers using the different sets are shown in figure

5.12. The HaarNN cascade classifiers, which also show clustered results, are trained

with the same parameters as the HFP cascade classifiers. However, we removed

the classifiers trained with the TL9 and CB4x4 sets from the figure because of

108

5.3. The Feasibility of HFP Sets

0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·10−2

0

0.2

0.4

0.6

0.8

1

FPR

D
R

Best three Hybrid and Single Cascade Classifier

Base
TL6

Block6
Block9
BlockN
2Sym

Figure 5.12: This figure shows the NCC-HaarNN cascade classifiers with their

detection and false-positive rates. All of the classifiers are trained using the same

parameters, except the HFP set. The cascade classifiers are trained using 100

features during each iteration with up to five node classifiers. We trained ten

classifiers for every HFP set described. The classifiers using the HFP sets TL9 and

CB4x4 are removed from the graphic for presentation purposes to show a similar

scale as for the HFP cascades. TL9 does not reach suitable false-positive rates.

The best false-positive rate for the five-node HaarNN cascades and CB4x4 set is

0.02.

their high false-positive rate. As mentioned above, the TL9 set does not reach

acceptable false-positive rates, and the best false-positive rate for the HaarNN

cascade classifier using CB4x4 is 0.02. Using AdaBoost (instead of asymmetric

AdaBoost) also achieves the intended results with the CB4x4 HFP set. CB4x4

was removed for presentation purposes; otherwise the scale of the graphic would

have been too large to demonstrate the distribution of the other sets. Without the

CB4x4 HFP set, the graphic has the same scale as for the HFP classifier.

109

Chapter 5. Increasing Diversity by Features and Forced Architecture

5.3.3 Discussion and Conclusion

A good cascade classifier consists of good ensemble classifiers. We therefore opted

not to analyze the performance of single ensemble classifiers. Creating a feasible

cascade classifier using the individual sets is possible as can be seen in the results

provided in table 5.1. The cascade classifiers in table 5.1 provide results comparable

with those for the classifiers we trained in the section 3. They are similar in

their range of detection and false-positive rates as well as in their number of base

classifiers. The HFP sets Base, Block6, and BlockN provide the best results for

both classifier types. Block9 and TL6 create better HFP classifiers, while the other

sets are feasible but not as good as the former sets. However, the HFP set TL9

used by a HaarNN classifier is an exception. While the cascade classifiers trained

with the other sets reach a total number of about 600 to 1200 base classifiers, the

HaarNN cascade classifiers trained with the TL9 set reach a number of 27 to 36

base classifiers because the training algorithm stops early if the error for the base

classifiers is too high. The TL9 set does not create feasible base classifiers.

We can conclude that all of the created HFP sets are feasible for further usage.

However, it makes no sense to train HaarNN cascade classifiers using only the HFP

set TL9.

5.4 The HFP sets’ Diversity

5.4.1 Introduction to Experiments

In this section, we explore the diversity of the individual sets. Thus, we train

several cascade classifiers with different parameters for each of the sets we want to

compare. To ensure that only the HFP sets influence diversity, we set all of the

other parameters involved in the experiments, while also repeating the experiments

with other parameters to be sure that the results are not only produced due to one

specific parameter configuration.

5.4.2 Results for the Diversity of the HFP Sets

Table 5.3 lists the results of the HaarNN cascade classifiers. Every second row

contains the five first chosen features as an example. At the end of each second

row, we show the face-like aggregation image which combines all of the features.

These features are all different because the underlying sets are different, yet the

aggregation image could be the same. However, without measuring the distance

110

5.4. The HFP sets’ Diversity

Model HFPset DR FPR NF Testset

NCC-HaarNN Base 0.71 3.745E-4 100 CMU-AC, SP

NCC-HaarNN TL6 0.67 4.291E-4 100 CMU-AC, SP

NCC-HaarNN CB4x4 0.66 0.0013 100 CMU-AC, SP

NCC-HaarNN Block6 0.77 5.185E-4 100 CMU-AC, SP

NCC-HaarNN Block9 0.73 8.267E-4 100 CMU-AC, SP

NCC-HaarNN BlockN 0.73 6.54E-4 100 CMU-AC, SP

NCC-HaarNN 2Sym 0.73 0.0016 100 CMU-AC, SP

Table 5.3: Here, the HaarNN cascade classifiers are trained with up to ten node

classifiers, each using the same parameters except for the HFP set. They have

different detection and false-positive rates, and the different feature types cover

different areas. Note the fact that the summed pictures of all features are different.

111

Chapter 5. Increasing Diversity by Features and Forced Architecture

of the images, it can be seen that they are all different. Aside from the different

accuracy, the different aggregation images provide a further indication that the

sets create diverse classifiers.

However, table 5.4 shows the diversity measure of the classifiers which are

trained with the different sets. There, we added the HFP sets which are used to

create the classifiers. A diversity value of 1.0 means that both classifiers are equal

in their dedicated results. Hence, the crossing cell value for equal HFP sets (which

have the same classifier) is 1.0. All of the other values vary between 0.31 and 0.53.

This means that none of the classifier pairs is independent (value of 0.0), which we

did not really expect, but none of them are equal or near equal either. The final

row depicts the average of the correlation values for the corresponding classifier.

HFP set Base TL6 CB4x4 Block6 Block9 BlockN 2Sym

Base 1.0 0.401 0.31 0.513 0.418 0.477 0.331

TL6 0.401 1.0 0.319 0.432 0.407 0.41 0.32

CB4x4 0.31 0.319 1.0 0.327 0.433 0.337 0.341

Block6 0.513 0.432 0.327 1.0 0.481 0.529 0.38

Block9 0.418 0.407 0.433 0.481 1.0 0.455 0.365

BlockN 0.477 0.41 0.337 0.529 0.455 1.0 0.391

2Sym 0.331 0.32 0.341 0.38 0.365 0.391 1.0

Ave 0.399 0.408 0.381 0.344 0.443 0.426 0.433 0.355

Table 5.4: Diversity correlation values of the HaarNN cascade classifiers used in

table 5.3. The cross-point depicts the correlation value of two classifiers. The

smaller the value, the higher the diversity. Here, we compare HaarNN classifiers.

The table key is the respective HFP set with which the classifier is trained.

The HFP cascade classifiers in table 5.6 are all created using the same training

parameters as the ones used to create the HaarNN cascade classifiers in table 5.3.

Table 5.7 depicts the paired diversity of the HFP cascade classifiers.

The correlation values in tables 5.4 and 5.7 show the paired diversity calculated

using the CBCL test set. Another way to prove whether two classifiers are diverse

is to create their merge cascade classifier, which is a conjunction of classifiers such

that both cascade classifiers have to produce a positive result to create an overall

positive result. If the two classifiers are independent, the resulting detection and

false-positive rate of their merge cascade classifier are the product of the single

values. The results of the two classifiers and their merge cascade are provided in

112

5.4. The HFP sets’ Diversity

Model HFPset DR FPR NF

NCC-HaarNN Block6 0.77 5.185E-4 100

NCC-HaarNN BlockN 0.73 6.543E-4 100

Merge 0.62 1.801E-4

NCC-HaarNN Block6 0.77 5.185E-4 100

NCC-HaarNN TL6 0.67 4.291E-4 100

Merge 0.53 8.38E-5

Table 5.5: The results of several cascade classifiers and their merge cascade classi-

fiers so as to underline their diversity. Every merge cascade is depicted by Merge

within the model column and is the result of both cascade classifiers above. Merge

cascade means that both classifiers have to return a positive result for the given

input.

Figure 5.13: The left images of both rows are the results of the NCC-HaarNN

cascade classifier trained with the Block6 HFP set, while the images in the middle

were trained with the TL6 HFP set. The right images show the results of the

merge cascade classifier. The detection and false-positive rates of the classifiers

are depicted in tables 5.5 and 5.6.

table 5.8. Both merge cascade classifiers have higher values than the product in

terms of detection and false-positive rates. These values are therefore not inde-

pendent, but lower than the single values, which illustrates the diversity of the

different classifiers and, therefore, the diversity of the sets.

113

Chapter 5. Increasing Diversity by Features and Forced Architecture

Model HFPset DR FPR NF Testset

NCC-HFP Base 0.69 2.0E-4 100 CMU-AC, SP

NCC-HFP TL6 0.76 6.0E-4 100 CMU-AC, SP

NCC-HFP CB4x4 0.66 8.0E-4 100 CMU-AC, SP

NCC-HFP Block6 0.74 3.0E-4 100 CMU-AC, SP

NCC-HFP Block9 0.63 4.0E-4 100 CMU-AC, SP

NCC-HFP BlockN 0.66 2.0E-4 100 CMU-AC, SP

NCC-HFP 2Sym 0.6 0.001 100 CMU-AC, SP

Table 5.6: This table shows the HFP cascade classifiers also used in table 5.3. These

results also show their difference in terms of performance and feature appearance.

Figure 5.14 shows an example of two classifiers and their resulting merge cas-

cade. The images accurately convey the diversity between the two classifiers.

The number of base classifiers differs with the number of cascade nodes. How-

ever, if the HFP set causes the diversity, we also expect to see a different correlation

for cascade classifiers with a lower number of nodes. Therefore, we list the results

of cascade classifiers trained to five nodes and their correlation values in tables 5.9

and 5.10. For this, we only use a subset of HFP sets and compare them to the

114

5.4. The HFP sets’ Diversity

HFP set Base TL6 CB4x4 Block6 Block9 BlockN 2Sym

Base 1.0 0.463 0.404 0.604 0.53 0.59 0.419

TL6 0.463 1.0 0.677 0.546 0.598 0.535 0.452

CB4x4 0.404 0.677 1.0 0.491 0.587 0.507 0.482

Block6 0.604 0.546 0.491 1.0 0.631 0.658 0.468

Block9 0.53 0.598 0.587 0.631 1.0 0.645 0.533

BlockN 0.59 0.535 0.507 0.658 0.645 1.0 0.512

2Sym 0.419 0.452 0.482 0.468 0.533 0.512 1.0

Ave 0.54 0.502 0.545 0.525 0.566 0.587 0.574 0.478

Table 5.7: Diversity correlation values of the HFP cascade classifiers in table 5.6.

The cross-point depicts the correlation value of two classifiers.

Model HFPset DR FPR NF

NCC-HFP Block6 0.74 3.0E-4 100

NCC-HFP BlockN 0.66 2.0E-4 100

Merge 0.61 1.0E-4

NCC-HFP Block6 0.74 3.0E-4 100

NCC-HFP TL6 0.76 6.0E-4 100

Merge 0.65 1.0E-4

Table 5.8: The results of several cascade classifiers and their merge cascade classi-

fiers to prove their diversity. Every merge cascade is depicted by Merge within the

model column and is the result of both cascade classifiers above. Merge cascade

means that both classifiers have to react with a positive result for the given input.

classifiers shown before and also to the HFP classifier.

A configured detection rate and false positive rate, among others, control the

training ensemble node classifiers of a cascade classifier, which causes a different

number of base classifiers for most of the ensemble node classifiers. By comparing

cascade classifiers, we compare classifiers mostly of different sizes. However, we

want to prove that diversity does not depend on size, but on the HFP sets. There-

fore, we also compare ensemble classifiers trained with different HFP sets and with

a fixed size.

115

Chapter 5. Increasing Diversity by Features and Forced Architecture

Figure 5.14: The left image is the result of the NCC-HFP cascade classifier trained

using the Block6 HFP set, while the image in the middle was trained using the

BlockN HFP set whose diversity and performance are shown in tables 5.8 and 5.6.

The right image is the result of the merge cascade classifier created from the other

two classifiers to illustrate their diversity.

Model HFPset DR FPR NF Testset

NCC-HFP Base 0.87 0.0018 500 CMU-AC, SP

NCC-HFP CB4x4 0.83 0.0086 500 CMU-AC, SP

NCC-HFP Block6 0.83 0.0016 500 CMU-AC, SP

NCC-HFP Block9 0.8 0.0019 500 CMU-AC, SP

NCC-HFP BlockN 0.81 0.0016 500 CMU-AC, SP

Table 5.9: Cascade classifiers trained to five nodes, using 500 features. These are

the results of a subset of all described HFP sets and only involving HFP classifiers.

Results for the HFP Ensemble Diversity

In the following section, we analyze whether the diversity of the different cascade

classifiers is caused by the cascade training process with different ensemble sizes

or by the bootstrapping mechanism. When training an ensemble, we can control

these parameters. Therefore, we calculate and compare the diversity of ensemble

classifiers trained with several HFP sets. We collated our results into three groups.

In each group, we consider both HaarNN classifiers and HFP classifiers.

In table 5.11 we show the performance results for several HaarNN ensembles.

116

5.4. The HFP sets’ Diversity

HFPset Base CB4x4 Block6 Block9 BlockN

Base 1.0 0.397 0.585 0.493 0.561

CB4x4 0.397 1.0 0.446 0.519 0.465

Block6 0.585 0.446 1.0 0.612 0.663

Block9 0.493 0.519 0.612 1.0 0.608

BlockN 0.561 0.465 0.663 0.608 1.0

Ave 0.535 0.509 0.457 0.576 0.558 0.574

Table 5.10: Correlation values for the cascade classifiers in table 5.9.

Model HFPset DR FPR

NCC-HaarNN 2Sym-9 0.68 0.3

NCC-HaarNN CB4x4 0.86 0.36

NCC-HaarNN BlockN 0.75 0.2

NCC-HaarNN Block9-2th 0.77 0.22

NCC-HaarNN Block9 0.77 0.23

Table 5.11: Several ensembles trained only with different HFP sets. They are

tested with the CBCL test set. The ensemble classifiers are trained with up to 50

members. The last two ensembles use the same HFP set type but different subsets.

They are trained using identical configuration parameters except for the HFP set.

All of the ensembles are trained to have 50 base classifiers. We also listed the

results of two classifiers that are trained with the same HFP set type (Block9),

but a different subset. The Block9 sets used differ in terms of the number of

features. Block9-2 is about half the amount of Block9.

Table 5.12 shows the diversity of the classifiers in table 5.11. The final row of

table 5.12 highlights the average correlation values. The classifier, which is trained

with the 2Sym HFP set, has the lowest correlation value and therefore results in

the highest diversity, followed by the ensemble using the CB4x4 set. A similar

average correlation involving the other sets shows both ensembles trained with the

HFP set Block9. However, the correlation of these two ensembles is also smaller

than 1.0.

Table 5.11 shows the results for HaarNN ensemble classifiers, while table 5.13

depicts similar results for the HFP model ensembles, and, accordingly, table 5.14

117

Chapter 5. Increasing Diversity by Features and Forced Architecture

HFPset 2Sym CB4x4 BlockA Block9-2 Block9

2Sym 1.0 0.434 0.429 0.449 0.433

CB4x4 0.434 1.0 0.507 0.56 0.593

BlockA 0.429 0.507 1.0 0.612 0.603

Block9-2 0.449 0.56 0.612 1.0 0.658

Block9 0.433 0.593 0.603 0.658 1.0

0.528 0.436 0.523 0.538 0.57 0.572

Table 5.12: Correlation diversity for the classifiers in table 5.11

Model HFPset DR FPR

NCC-HFP 2Sym-9 0.6 0.18

NCC-HFP CB4x4 0.7 0.16

NCC-HFP BlockN 0.55 0.08

NCC-HFP Block9 0.65 0.12

NCC-HFP Block9-2 0.73 0.11

Table 5.13: Several ensembles trained only with different HFP sets. They are

tested with the CBCL test set. The ensemble classifiers are trained with up to

50 members. The final two ensembles use the same HFP set type but different

subsets.

HFPset 2Sym CB4x4 BlockA Block Block9-2

2Sym 1.0 0.408 0.466 0.535 0.477

CB4x4 0.408 1.0 0.503 0.523 0.481

BlockA 0.466 0.503 1.0 0.587 0.578

Block9 0.535 0.523 0.587 1.0 0.643

Block9-2 0.477 0.481 0.578 0.643 1.0

0.52 0.472 0.479 0.533 0.572 0.545

Table 5.14: Correlation diversity for the classifiers in table 5.13

118

5.4. The HFP sets’ Diversity

lists their correlation values. Again, the HFP ensemble trained with the 2Sym

HFP set shows the highest diversity, followed by the CB4x4 HFP ensemble, much

like the HaarNN ensembles in tables 5.11 and 5.12.

5.4.3 Discussion and Conclusion

It is obvious from the different shapes that the HFP sets themselves are not equal,

but it is not obvious that these differences also lead to different classification results.

Table 5.4 shows the diversity of the trained HaarNN cascade classifiers from

table 5.3. No correlation value is 1.0 (except for the cross-points of the classifiers).

Therefore, none of the classifiers are identical. As all of the other training param-

eters are equal, we can conclude that the HFP sets are the reason for the diversity

of the trained cascade classifiers. The same is true for the HFP cascade classifiers

in table 5.6 whose diversity is shown in table 5.7. There, the average diversity

of the HaarNN classifiers is higher than that of the HFP classifiers, although not

much.

To verify that the diversity is not only caused by the smaller CBCL test set, we

confirm the correlation of the classifiers, also by creating the merge cascade. We

tested the resulting cascade classifiers with all three test sets (CMU-A, CMU-C and

Sung and Poggio as described in section 2.7). Let us consider the first two HaarNN

classifiers from table 5.5. By multiplying the detection rate, we achieve a value of

0.77 · 0.67 = 0.52, which would be the detection rate of the merge cascade if both

classifiers were independent of each other. Otherwise, the detection rate would

be 0.67 if one classifier were a subset of the other. Our merge classifier reaches a

detection rate of 0.62 for the CMU-A test set, which represents a low correlation.

The merge classifier shows similar results, which underlines our conclusion that

the HFP sets cause the diversity. Regarding the HFP cascade classifiers in table

5.8, we have different values but arrive at the same observation, namely that all

cascade classifiers are diverse.

To double-check whether this is not attributable to randomness due to the

ten cascade node, we compared cascade classifiers using a subset of HFP sets and

trained them to five nodes instead of ten and 500 features instead of 100. While

their performance results (see table 5.9) differ as expected (higher DR and FPR

because of fewer ensemble nodes), the correlation values are similar (see 5.10).

They are all slightly lower, but show similar characteristics. For example, both

tables show the highest correlation between BlockN and Block6, and the lowest

correlation between Base and CB4x4.

Looking at the diversity of the HFP sets, we started with tables 5.12 and 5.14,

119

Chapter 5. Increasing Diversity by Features and Forced Architecture

which show exemplary results for HaarNN and the HFP model. As examples,

we used HFP sets that are quite different in their appearance, as well as 2Sym,

CB4x4 sets and three very similar sets which are BlockN and two Block9 sets.

Here, Block9-2 is a subset of the Block9 HFP set. Tables 5.12 and 5.14 show the

correlation values between all of the single classifiers.

The average correlation is about 0.53, and none is 1.0, meaning that all the sets

are diverse. Hence, not only is their appearance different, they also create different

results for same input. The classifiers with the highest similarity are those that

trained using the HFP sets Block9, Block9-2, and BlockN. However, although the

appearance is very similar or even the same for Block9 and its subset, they create

diversity. Their correlation is higher than that of the other sets, but not much

higher. By using the HFP sets Block9 and Block9-2, we can conclude that the

difference in appearance does not have to be large to create diversity.

In section 4.2 we show that both models, trained using the same parameters

and, in particular, the same HFP set, create diverse classifiers. However, despite

being different in terms of their classification behavior, we can observe that the

diversity is similar in that a larger difference in the appearance of the HFP set leads

to a higher diversity for the classifier that used the HFP set. Hence, we conclude

that there is a correlation between the geometrical similarity and the resulting

diversity of the classifiers. We reached this conclusion without considering or

searching for an exact description of the relation between HFP set appearance

and the diversity of the classifier. This correlation is beyond the scope of this

dissertation. However, we note that creating different geometrical sets causes what

we have in mind: diversity.

Taking everything into account, we conclude that diversity is caused by the

different HFP sets.

5.5 Forced Hybrid Architectures

5.5.1 Introduction to Experiments

In the previous chapters, we showed that we could increase diversity using our

HFP sets and classifier models. In this section, we examine whether we can create

a further benefit through our forced hybrid architecture which forces the training

algorithms to choose classifiers out of different sets, therefore forcing diversity.

In the first chapter, we also used a hybrid architecture which draws on different

classifier types for training, but the different types are together in one set and the

120

5.5. Forced Hybrid Architectures

decision as to which classifier type is chosen is left up to the AdaBoost selection

process to choose the best. Our forced hybrid architecture changes this selection

process by forcing it to alternate between the different classifier types or feature

sets. The hybrid architecture, which uses a single set, offers a passive option

to achieve greater diversity, while the forced architecture actively fosters more

diversity.

Here, we pursue two methods. One involves alternating during ensemble train-

ing. If we force alternation within the ensemble creation process, it leads to en-

semble classifiers consisting of different base classifiers or HFP feature types. The

combined hybrid architecture also leads to ensembles of different classifier types,

but the number of classifiers belonging to the different types is up to the selection

process and can be any fraction. Also, only one classifier type is possible. Instead,

ensembles that are forced to alternate will be of equal size for every classifier type.

The second method entails alternating during cascade training. There, we change

the classifier type for every ensemble subsequently added to the cascade classifier

and consisting of only one classifier type. Thus, every ensemble node of the cascade

classifier is trained with a different HFP set or classifier type, but the ensemble

classifiers themselves are homogenous.

To examine whether the forced architecture creates a benefit, we trained several

cascade classifiers using different parameters and then analyzed the results. In the

results section below, we first examine the effect of altering only the HFP sets.

Afterwards, we only alter the classifier types. Finally, we compare the distribution

without restrictions.

5.5.2 Results for the Alternating Feature Sets

Below we present the results of our forced hybrid architecture where we only al-

ternated the HFP sets.

Cascade Classifier Results

The following table 5.15 shows the advantage of the forced hybrid architecture,

but also indicates that the results are ambiguous. The classifiers in table 5.15 are

trained with a fixed random feature sequence where all of the classifiers are trained

using the same subset of features with the aim of analyzing the effect of alternating

the HFP sets.

FH-AdaBoost in the type column shows that we forced alternation of the sets

when training an ensemble classifier. Instead, FH-Cascade means forcing alterna-

121

Chapter 5. Increasing Diversity by Features and Forced Architecture

Type Model HFPset Set2 DR FPR Testset

Single NCC-HFP Block6 0.75 0.0014 CMU-AC, SP

Single NCC-HFP 2Sym 0.66 0.003 CMU-AC, SP

H-Unite NCC-HFP 2Sym Block6 0.75 0.0016 CMU-AC, SP

FH-AdaBoost NCC-HFP Block6 2Sym 0.77 0.0017 CMU-AC, SP

FH-AdaBoost NCC-HFP 2Sym Block6 0.76 0.002 CMU-AC, SP

FH-Cascade NCC-HFP 2Sym Block6 0.7 0.0027 CMU-AC, SP

FH-Cascade NCC-HFP Block6 2Sym 0.65 0.001 CMU-AC, SP

Table 5.15: The classifiers are trained with a fixed (random) set of 100 for every

iteration. FH-AdaBoost means that we force alternation of the set during ensemble

creation. Accordingly, the first five features of the FH-AdaBoost classifier consist

of Block6 and 2Sym HFP features. FH-Cascade means forcing alternation after

creating an ensemble node. Since we show the first five features of the first ensemble

node classifiers, and the ensembles are trained using the same random sequence,

the present features of the FH-Cascade classifiers are the same as those for the

single classifiers.

122

5.5. Forced Hybrid Architectures

Type Model HFPset Set2 DR FPR

Single NCC-HaarNN BlockN 0.89 0.0036

Single NCC-HaarNN Block9 0.91 0.0056

FH-AdaBoost NCC-HaarNN Block9 BlockN 0.89 0.0032

Table 5.16: The forced hybrid cascade improves both single classifiers in terms of

false-positive rate by maintaining the detection rate of a single classifier.

tion after creating an ensemble node, as described in section 5.2. The first two

rows show the single classifiers, trained with the Block6 and 2Sym HFP sets, fol-

lowed by several alternating variations. The classifier, trained with the Block6 set,

provides a better detection and false-positive rate than the one trained with the

2Sym HFP set. However, all of the hybrid classifiers offer better performance than

the 2Sym classifier. The FH-AdaBoost classifiers have the best detection rate and

outperform the Block6 classifier, although half of the base classifiers are trained

with the 2Sym set. The final two rows with the FH-Cascade type show the results

of forcing alternation of the HFP set after every cascade node. There, the diversity

of the different sets causes its clearest impact in reducing the false-positive rate,

but also the detection rate.

Comparing Best Results

The previous classifiers, the results of which we have shown previously, use the same

random sequence of features for training. However, there are too many potential

random sequences to compare them all. Hence, we have trained several single and

forced hybrid cascade classifiers to analyze the distribution of the detection and

false-positive rates of the different classifiers. All of the classifiers are tested using

all three test sets (CMU-A, CMU-C, SP).

We trained several cascade classifiers using the same training parameters. In

table 5.16, we compare the single and alternating classifiers with the highest de-

tection rates. The alternating cascade classifier improves both single classifiers in

terms of false-positive rate, while offering a poorer detection rate than the Block9

classifier and the same detection rate as the BlockN classifier.

The following table shows an alternating classifier which uses the CB4x4 HFP

set and the BlockN set. Although, the false-positive rate of the single CB4x4

cascade classifier is worse than the other classifiers, forcing it to use the CB4x4

HFP set improves the alternating cascade classifier when it comes to detection

123

Chapter 5. Increasing Diversity by Features and Forced Architecture

Type Model HFPset Set2 DR FPR

Single NCC-HaarNN BlockN 0.89 0.0036

Single NCC-HaarNN CB4x4 0.93 0.026

FH-AdaBoost NCC-HaarNN CB4x4 BlockN 0.91 0.0055

Table 5.17: These results show that forcing the use of one set with a bad false-

positive rate also leads to a feasible combined classifier. Note the reduction of the

false-positive rate compared to the single CB4x4 classifier.

Type Model HFPset Set2 DR FPR

Single NCC-HaarNN Block9 0.91 0.0056

Single NCC-HaarNN Base 0.88 0.0017

FH-Cascade NCC-HaarNN Base Block9 0.89 0.0017

Table 5.18: The forced hybrid cascade classifier improves the false-positive rate

of both single classifiers as well as the detection rate of one classifier.

rate. However, the false-positive rate of the combined classifier does not improve

the false-positive rate for both single classifiers, but it does provide a comparable

value.

Comparing Forced Hybrid Ensemble Classifiers

To verify that the effect of forcing alternation is not a result of the cascade classifier

training process with its different sizes and negative samples, we also train some

ensemble classifiers with a fixed number of base classifiers. We chose two classifiers

with high diversity, and as a third result, two classifiers with low diversity.

Table 5.19 shows the result of ensembles, trained with the HFP sets 2Sym and

Block6. Their correlation value is 0.208. The first two classifiers are trained using

only one HFP set, whereas the others are trained using the combined sets or are

forced to alternate the sets. The classifier that uses the 2Sym and Block6 HFP

sets as a combined set, and the classifiers that are trained to force to alternate

both HFP sets, show greater accuracy (Acc(w)).

The ensembles in table 5.19 are trained up to 80 base classifiers.

Table 5.20 also uses ensembles with the low correlation value of 0.237. To

show that the former results are no exception, we provide results using the same

configuration except for Block6. There, we use BlockN and combine it with the

124

5.5. Forced Hybrid Architectures

Type Model HFPset Set2 DR FPR Acc(w)

Single NCC-HFP Block6 0.54 0.0543 0.74

Single NCC-HFP 2Sym 0.77 0.4517 0.66

H-Unite NCC-HFP Block6 2Sym 0.61 0.0549 0.78

FH-AdaBoost NCC-HFP Block6 2Sym 0.66 0.0638 0.8

FH-AdaBoost NCC-HFP 2Sym Block6 0.64 0.0693 0.79

Table 5.19: This table shows the potential benefit of using two different HFP sets.

Comparing accuracy (Acc(w)), all of the combinations outperform the classifier

trained with a single set. The correlation value of both classifiers is 0.208.

Type Model HFPset Set2 DR FPR Acc(w)

Single NCC-HFP BlockN 0.57 0.0667 0.75

Single NCC-HFP 2Sym 0.77 0.4517 0.66

Unite NCC-HFP 2Sym BlockN 0.63 0.0722 0.78

FH-AdaBoost NCC-HFP BlockN 2Sym 0.62 0.0816 0.77

FH-AdaBoost NCC-HFP 2Sym BlockN 0.6 0.0903 0.75

Table 5.20: This table shows the results of two ensembles trained with the HFP

sets BlockN and 2Sym as well as three ensembles trained with a combination of

the two sets. The correlation value of both ensembles trained with a single HFP

set is 0.237.

HFP set 2Sym.

With a correlation value of 0.629, the ensembles in table 5.21 do not differ

as much in their results compared to the previous combinations. Moreover, only

the combined training of both sets slightly increases the accuracy compared to

the single training results. However, the forced hybrid ensembles achieve the best

false-positive rate.

5.5.3 Results for the Hybrid Alternating Classifiers

Samples of Improvement

In this section, we examine the forced hybrid classifiers that alternate different

classifier types and not just HFP sets as was the case in the previous section. Figure

5.15 shows the detection and false-positive rate of single and hybrid classifiers,

125

Chapter 5. Increasing Diversity by Features and Forced Architecture

Type Model HFPset Set2 DR FPR Acc(w)

Single NCC-HFP Block6 0.54 0.0543 0.74

Single NCC-HFP BlockN 0.57 0.0667 0.75

Unite NCC-HFP Block6 BlockN 0.57 0.0567 0.76

FH-AdaBoost NCC-HFP Block6 BlockN 0.54 0.0438 0.75

FH-AdaBoost NCC-HFP BlockN Block6 0.53 0.0523 0.74

Table 5.21: Both ensembles using the Block6 and BlockN HFP sets for training

have a correlation value of 0.629. The hybrid-trained ensembles slightly improve

upon the single-trained ensembles.

0 0.5 1 1.5 2 2.5 3

·10−2

0

0.2

0.4

0.6

0.8

1

false-positive rate

d
et

ec
ti

on
ra

te

Hybrid and Single Cascade Classifier

Single
FH-Cascade
FH-AdaBoost

Figure 5.15: Comparing 550 cascade classifiers with their detection and false-

positive rate. The blue triangles are the single classifier results, while the green

squares represent the results of the hybrid classifiers that alternate the classifier

type within the ensemble creation, and the red squares belong to the hybrid clas-

sifiers where the classifier type is altered after creating an ensemble node.

126

5.5. Forced Hybrid Architectures

Type Model HFPset Model2 HFPset2 DR FPR

Single NCC-

HaarNN

BlockN 0.89 0.0038

FH-Cascade NCC-

HaarNN

BlockN NCC-

HFP

Block9 0.88 0.0017

Single NCC-

HaarNN

BlockN 0.86 0.0031

FH-AdaBoost NCC-

HFP

Block9 NCC-

HaarNN

BlockN 0.86 0.0023

Single NCC-

HFP

Block9 0.85 0.0023

FH-Cascade NCC-

HFP

Block9 NCC-

HaarNN

BlockN 0.85 0.0018

Single NCC-

HFP

Block9 0.82 0.0021

FH-AdaBoost NCC-

HaarNN

BlockN NCC-

HFP

Block9 0.85 0.0013

Table 5.22: Direct comparison of single and hybrid classifiers. We chose two clas-

sifiers for the NCC-HaarNN, and BlockN set, and the NCC-HFP Block9 set, com-

pared with four hybrid classifiers that use the same classifier models and sets. The

single and hybrid classifiers are trained with asym-AdaBoost and 100 randomly

chosen features during each iteration.

which gives us an idea of their performance distribution.

The classifiers in the tables 5.22 and 5.23 are trained using the same training

parameters, but with different random sequences of the HFP sets. To compare

the cascade classifiers, we take the best classifiers and not an average of results

because if we use a classifier within a productive system, we would be using a

dedicated classifier and not an average. Therefore, we took two single classifiers

and their hybrid counterparts. The results are shown in the tables 5.22 and 5.23

are sorted by detection rate. First, the single classifier, followed by the hybrid

classifier. In the first row, the single classifier has the better detection rate, but

a poorer false-positive rate. Both of the middle rows show the same detection

rate for both classifiers, but a better false-positive rate for the hybrid classifier.

127

Chapter 5. Increasing Diversity by Features and Forced Architecture

Type Model HFPset Model2 HFPset2 DR FPR

Single NCC-

HFP

Block6 0.78 7.0E-4

FH-AdaBoost NCC-

HFP

BlockN NCC-

HFP

Base 0.78 5.0E-4

Single NCC-

HFP

Block6 0.86 0.0013

FH-AdaBoost NCC-

HaarNN

CB4x4 NCC-

HFP

Base 0.86 0.0012

Single NCC-

HFP

Base 0.92 0.0019

FH-AdaBoost NCC-

HFP

Base NCC-

HaarNN

TL6-2 0.92 0.0056

Table 5.23: We took some samples that show the tendency of the classifiers.

The final row shows a better performance for the hybrid classifier in terms of both

detection and false-positive rate.

The average number of base classifiers is 462 per single classifier, 425 per hybrid

FH−Cascade, and 336 per hybrid FH−AdaBoost classifier. The hybrid classifiers

need fewer base classifiers to achieve their results.

Comparing Best Classifiers Forced to Alternate

In the previous section, we considered samples of improvement. In the following

figure 5.16, we show the distribution of the single and hybrid classifiers with a

view to their detection and false-positive rates. To figure out how often the single

and hybrid classifiers each achieve better results, we count the winner for every

detection rate. To compare the single and hybrid classifiers, we sorted them by

their detection rate and chose the three best classifiers, i.e. those with the lowest

false-positive rate.

The single classifiers clearly have the higher detection rate, while the hybrid

offers better results. However, there is no classifier better than all the others in

terms of detection and false-positive rate.

128

5.5. Forced Hybrid Architectures

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

·10−2

0

0.2

0.4

0.6

0.8

1

FPR

D
R

Best three Hybrid and Single Cascade Classifier

Single
Hybrid

Figure 5.16: We compared 50 cascade classifiers with their detection and false-

positive rate. They were chosen by taking the three best classifiers for every

detection rate out of 550 classifiers. The only difference in parameters during

training was whether they are single or hybrid classifiers and the HFP set.

5.5.4 Discussion and Conclusion

While we finally do not use an average classifier, but the best one to suit our pur-

pose when it comes to detection or false-positive rate, we consider the performance

distribution of all classifiers.

Instead of creating an entire set where AdaBoost can freely select one classifier,

we have used different sets and have forced AdaBoost to choose from a certain

set. We have discovered two different methods to force the algorithm to combine

classifier and HFP sets. One method forces alternation during ensemble creation,

while the other forces the alternate addition of an ensemble to the cascade classifier.

In the first tables, we compare the single and the forced hybrid classifiers where

only the HFP set was alternated. The clearest result would be if any of the hybrid

classifiers were to increase the detection rate and decrease the false-positive rate.

On the other hand, if the hybrid result is just an average of the single classifiers,

there is no benefit to be gained from the forced hybrid architecture. However, the

129

Chapter 5. Increasing Diversity by Features and Forced Architecture

forced hybrid classifier generally improves the detection or false-positive rate by

keeping the other value mostly at a similar level.

However, we have to handle randomness. When visualizing all of the results,

we mapped all of the created classifiers as a scatter plot (see figure 5.16). There,

we can see the pattern that we confirm in the following tables where we have more

single classifiers with a higher detection rate, but also a higher false-positive rate.

While we have more hybrid classifiers with a comparatively lower detection rate,

they also have a lower false-positive rate.

In the end, the hybrid and alternating architecture is a benefit because we can

create better classifiers. Not every hybrid will be better than a single classifier;

however, if we train classifiers, it is of more value to train hybrid classifiers, hence

there will be more and better classifiers. Therefore, it is more suitable to train

hybrid classifiers.

5.6 Summary

In this chapter, we increased diversity by introducing more HFP sets and the forced

hybrid architecture. Most sets achieve good results as the only set for training HFP

or HaarNN classifiers. As a result, the HFP classifier model creates good classifiers

for all sets, while there are some exceptions for the HaarNN classifier model. All

classifiers trained with different sets are diverse, i.e. different from one another.

Hence, we can increase diversity by separating and introducing more sets.

Further, we introduced the forced hybrid architecture, which forces the train-

ing algorithm to alternate the features or classifiers used. Instead of opting for

the current best classifier for a single set, the best classifier for separate sets is

chosen. The forced hybrid architecture increases the performance of the cascade

and ensemble classifiers. In addition, if we combine a good set with a less good

set, the final cascade classifier can improve the resulting classifier.

130

Chapter 6

Multi-Class Ability

6.1 Experiments Introduction

In this chapter, we examine whether our Haar-Feature-like patches, HFP and

HaarNN classifier models can also be used as a multi-class solution. We con-

sider it a prototype-like test. Thus, we do not train cascade classifiers and test

them for whole images; instead we take ensemble classifiers and test them using

images which already show cropped faces like those used in the training set. We

use head-pose estimation to test the multi-class ability of our models because it is

related to face detection and the needs of a social robot.

Hopfield Neural Networks can be used for learning multiple patterns as de-

scribed in equation 2.22 in section 2.5. The best way to learn different patterns is

to provide vectors that are orthogonal to each other (see Amit et al. [1]). There,

Amit et al. [1] show that the number of different learned patterns is 0.13 multiplied

by the number of the HNN’s neurons (P = 0.13 ∗Nn).

However, we disregard these constraints and use our HNN for small and fuzzy

patterns. The number of neurons of our HNN corresponds to the number of rect-

angles of the HFP used. Therefore, we mostly have a small number of neurons,

which leads, mathematically, to learnable patterns smaller than 1. However, we

do not use the HNN as one strong classifier, but as a weak classifier within an

ensemble.

Head-Pose Estimation

Head-pose estimation can be defined as the ability to recognize the orientation of a

face gaze relative to the orientation of a camera. Therefore, head-pose estimation

faces similar problems to other computer vision fields in maintaining invariance to

131

Chapter 6. Multi-Class Ability

physical image changing factors such as camera distortion, projective geometry or

multisource lighting.

In computer science, we can distinguish head-pose estimation at a coarse level

and at a finer level. Coarse means only considering the left, frontal, and right gaze

directions, disregarding the extent of the gaze point to the right or left side. At a

finer level, we want to determine the (precise) angle of the gaze point. Psychological

research by Langton et al. [32] defines that the final estimation of gaze direction

is a combination of head pose and eyes. As a link to visual gaze estimation, head-

pose estimation can be stated as a rough gaze estimation, especially if the eyes are

not visible. Murphy-Chutorian and Trivedi [44] note that every gaze estimation

that uses an eye tracker should have an underlying head-pose estimator. In human

conversation, a head movement is often a gesture, which transports information as

pointing to a target, for example. People also look at each other while talking to

affirm awareness.

Some approaches solve head-pose estimation with a cascade classifier similar to

face detection using a divide and conquer strategy. Wu et al. [77] create a parallel

cascade where every cascade contains classifiers that are trained for only one view.

Therefore, the whole cascade classifier detects precisely one view or background,

while one cascade classifier classifies the input for every view in parallel. Every

cascade classifier collects scores for its view, and the highest score determines the

result.

A different approach is used by Li et al. [34]. They create a pyramid with three

levels of classifiers. The first level is trained to detect every face in all poses. If

the test window passes this level, the second level assigns the face to one of three

directions: faces that look to the left (-90 to 30 degrees), front (-30 to 30 degrees)

or right (30 to 90 degrees). If the test window also passes this level, the third level

divides it into even finer angles.

Jones and Viola [30] proposed a detector in two steps. First, a classifier provides

a forecast for the face view, followed by an expert cascade for the predicted pose

which makes a final estimate. In 2005, Huang et al. [26] and Lin and Lui [37]

proposed vector boosting respectively Bhattacharyya boosting (MBHBoost), which

are based on similar ideas. Every trained weak classifier produces a vector of results

for several categories. With this result vector, the classification task can be passed

to different classifiers which then consider every category. Finally, by aggregating

the vector outputs, the overall result is achieved.

Torralba et al. [62] proposed the idea of reducing complexity by sharing features

and jointly training multiple classifiers. Tu [65] trained a probabilistic boosting

132

6.1. Experiments Introduction

tree. For this, they trained an AdaBoost classifier for each tree node. Every node

assigns a probability to split the data into two clusters. For a faster training, Wu

et al. [78] first selected features for clustering. In their paper published in 2009,

Murphy-Chutorian and Trivedi [44] discuss the pros and cons of different head-

pose estimation approaches. They [44] note that using a pixel-based image as the

source, there are a series of processes which have to be applied to describe the

orientation of a face on a high level.

Similar to face detection, appearance template-based methods are also used for

head-pose estimation. These methods calculate matching measurements from the

input image to an existing template image with a known head direction. Beymer

[2] proposed such a system that chooses the direction to the input value that is

closest to the example template. Beymer [2] applies normalized cross-correlation

to the template and the input images for a better comparison. The advantage of

such methods is that they are easy to implement and do not need negative samples

and do not involve searching for other dependencies like facial features. However,

there are disadvantages, e.g. they mostly presume that the area of interest is

already located and such methods are only capable of calculating discrete pose

locations. Murphy and Trivedy [44] consider the most significant disadvantage to

be the similarity assumption for different people with the same poses. They argue

that the dissimilarity between different people is high, and it is difficult to arrive at

a link between poses of different individuals. To overcome this disadvantage, the

images can be preprocessed, for example with Laplacian-of-Gaussian filters [19].

Datasets Used

To train and test the head-pose estimation ensembles, we use the database provided

by Gourier et al. [20].

We use three images for training purposes; one for every pose by one person,

as illustrated in figure 6.1. These images were cropped to only include the face

area with random changes of width, height, and rotation. Then, we created some

additional images by applying gamma correction which leads to 35 images per

pose and 105 positive samples overall. We call this training set “Three View One

Person” (3VOP). As negative images, we created an own set of samples from the

internet, containing 30,000 randomly cropped images of landscapes, offices, and

apartments. We divided these images into 9,000 images for testing and 21,000

images for training. As a second set of negative training images, we selected 500

of the 21,000. We converted all of the images to gray images and fixed them to a

square of 24x24 pixels.

133

Chapter 6. Multi-Class Ability

Figure 6.1: Samples of the training set. Three source images (left). Randomly

created additional images with different width, height, rotation and gamma cor-

rections (middle). Randomly cropped negative samples of landscape, office and

apartment images taken from the internet.

Figure 6.2: Samples of the test set. Cropped images without any changes (left).

Randomly created additional images with different width, height, rotation and

gamma corrections (middle). Randomly cropped negative samples of landscape,

offices and apartment images taken from the internet.

We created the test set analogously. The tests were performed using two test

sets. The basis for the sets were 208 images of 14 people including 64 frontal views,

79 left views, and 65 right views (figure 6.2). The first test set consists of these

images transformed to a fixed width and height (test set 1). To simulate different

lighting conditions, the second set contains additional images created by random

rotation (5◦) and gamma correction (test set 2). Then, the second test set contains

12,480 positive (over three classes) and 9,000 negative samples.

134

6.2. Methods

K-means algorithm:

1. Initialize cluster k and calculate its center

2. For every object oi repeat

(a) Calculate distance dij(oi) to every cluster cj

(b) Choose the cluster cm with the lowest distance

(c) Add object oi to the chosen cluster cm

3. Calculate the new center for the updated cluster

4. Repeat steps 2. and 3. until the final result is achieved

Figure 6.3: Pseudo-code K-means algorithm to group objects in a cluster by their

similarity.

6.2 Methods

The HFP and HaarNN classifiers used so far distinguish between faces and back-

ground. To classify a head pose, we want to distinguish between the classes left,

frontal, right, and background. As one approach, we use the Bayes-like method

for multi-class recognition, which we introduced in section 3.2.3. The Bayes-like

method uses the stable state of the HaarNN, but we also want to examine if we

can use the HFP classifier as a multi-class solution. Therefore, we also introduce

a K-means-based classifier which can use the HFP and the HaarNN classifier as a

base classifier.

K-Means

K-means is a clustering algorithm that aims to sort objects into groups which have

the highest similarity. There are several clustering methods as surveyed by Ka-

Chun in [76]. However, while we are not looking to optimize clustering, we use the

basic method by Hartigan [22].

Hartigan’s [22] K-means algorithm divides objects by minimizing the Euclidean

distance between these objects as described in 6.3. Thereby, one object is assigned

to a given cluster if the distance is less than a given threshold. Otherwise, if the

distance is greater than this threshold for every cluster, a new cluster is created.

135

Chapter 6. Multi-Class Ability

Here, mostly, the object to be grouped is a vector of numbers, and the center

of the cluster is the average of all objects inside this cluster. The final result is

achieved if the process does no longer change the assignments of the objects to the

groups. However, there are also some weaker goals for finishing the process. We

can, for instance, limit repeating the algorithm to a set number of iterations or use

a threshold for objects that move between groups.

K-Means as Base Classifier

We use both models, the HFP classifier and the HaarNN classifier, combined with

K-means as base classifiers, and call them KM-HFP and KM-HaarNN. Basically,

we measure the probability of the different classes by counting occurrences within

the training set and assigning the result to a vector which belongs to a K-means

group as depicted in figure 6.4. The vector that we use to calculate the group

distance is the pattern of the HFP values directly and the stable state of the

HaarNN (see figure 6.5).

Figure 6.4: Instead of using a threshold to distinguish faces and background,

head-pose estimation involves the KM-HFP and KM-HaarNN classifiers which use

probabilities to create the four different outcomes: left, frontal, right, and back-

ground.

We train the KM-HFP and KM-HaarNN classifiers in two steps: First, we

iterate over the training set and calculate the average of the HFP values, and learn

136

6.2. Methods

the HNN weights by Hebb-learning for the HFP classifier and the HaarNN classifier

respectively, which is the same as learning the binary HFP and HaarNN classifiers.

In a second iteration, we execute the K-means algorithm to establish the groups

and count how often the given classes are allocated to the specified groups (as is

the case with the Bayes-like method in section 3.2.3).

Figure 6.5: The execution process of the HaarNN for multi-class solutions is basi-

cally the same as for the binary solution. However, instead of one positive input,

we use three different positive classes for training.

Training the Ensemble

To train the ensembles, we also use AdaBoost, but with changes proposed by

Zhu et al. [94]. Two concepts differ from the original algorithm. In contrast to

binary classification, where we have one positive or negative result, multi-class

classification returns a result vector. Originally, classification result is calculated

as follows:

h(x) =

 1
∑T

t=1 αtht(x) ≥ 1
2

∑T
t=1 αt

0 otherwise
(6.1)

There, αt is the weight of classifier t and ht(x) its output for input image x. The

first change is to calculate the sum of vectors, containing the probabilities of all

classes (equation 6.2).

v(x) =
T∑
t=1

αtht(x) (6.2)

137

Chapter 6. Multi-Class Ability

Here, v(x) is the vector with the sum of all probabilities for all classes. The final

result is the class with the highest value (equation 6.3).

h(x) = max(v(x)) (6.3)

The second change is to the training process. In the original work by Viola

and Jones [71], the weight of a single weak classifier (α) is calculated as follows

(equation 6.4):

α = log(
1− ε
ε

) (6.4)

We adapt this calculation according to Zhu et. al. [94]:

α = log(
1− ε
ε

) + log(nc − 1) (6.5)

Parameter nc is the number of different classes excluding the negative class. Zhu

et al. [94] re-weight the training set by increasing the weights of the misclassified

samples using equation 6.6.

wi+1 = wi exp(α) (6.6)

We calculate the error of a base classifier by selecting the class with the highest

value within the probability vector.

6.3 Findings

Tables 6.1, 6.2 and 6.3 show the results of the trained ensemble classifiers. The

classifiers of the first two tables are HaarNN ensembles, while the ensembles of the

third table are HFP ensembles. All of the ensembles are trained with up to 50

base classifiers, using 100 features for each training iteration. Further, they use

the training set 3VOP, but only 500 negative samples. To test the ensembles, we

use test set 1 which contains 208 positive and 9,000 negative samples, as described

in section 6.1, and also use test set 2 which contains 12,480 positive samples. We

tested several HFP sets and parameters.

Table 6.1 shows the results of the KM-HaarNN ensembles. The KM-HaarNN

ensembles have at least a 75% detection rate and a false-positive rate of about 8%

to 22%. In table 6.2 we show similar BP-HaarNN ensembles. They have detection

rates ranging from 75% to 98% for test set 1. There, we also show the results of

test set 2 which contains 12,480 positive samples. Both HaarNN models correctly

classify about 80% to 95% of the negative samples along with most of the three

different classes.

138

6.4. Discussion and Conclusion

Model HFPset DR FPR

KM-HaarNN Base 0.81 0.146

KM-HaarNN BlockN 0.94 0.127

KM-HaarNN BlockN 0.92 0.086

KM-HaarNN Block9 0.93 0.185

KM-HaarNN Block9 0.78 0.106

KM-HaarNN 2Sym 0.88 0.225

KM-HaarNN 2Sym 0.75 0.152

KM-HaarNN TL6Sym 0.87 0.105

KM-HaarNN Block6 0.81 0.148

Table 6.1: Results of the KM-HaarNN ensembles, trained with up to 50 base

classifiers.

Model HFPset DR DR (set 2) FPR

BP-HaarNN BlockN 0.98 0.93 0.107

BP-HaarNN BlockN 0.9 0.84 0.067

BP-HaarNN Block9 0.91 0.83 0.114

BP-HaarNN Block9 0.84 0.78 0.071

BP-HaarNN 2Sym 0.78 0.71 0.125

BP-HaarNN CB4x4 0.75 0.64 0.104

Table 6.2: Results of the BP-HaarNN ensembles, trained with up to 50 base clas-

sifiers.

We show the results of the KM-HFP ensembles in table 6.3. The KM-HFP

ensembles all have an almost 100% detection rate but incorrectly classify about

half of the negatives. We repeated the training for KM-HFP ensembles using

different parameters. The result was the same and similar to the results in table

6.3. We did not obtain results with an acceptable false-positive rate.

6.4 Discussion and Conclusion

The question of this chapter is whether our model is able to solve multi-class prob-

lems. Considering the results in tables 6.1 and 6.2, we conclude that our HaarNN

139

Chapter 6. Multi-Class Ability

Model HFPset DR FPR

KM-HFP BlockN 0.99 0.458

KM-HFP Block9 0.99 0.506

KM-HFP 2Sym 1.0 0.529

Table 6.3: Results of the KM-HFP ensembles, trained with up to 50 base classi-

fiers. The KM-HFM ensembles achieve high detection rates, but incorrectly classify

about half of all negative samples.

model can be used as a multi-class approach. Although the results can be improved

upon, the ensembles are trained in a straightforward way and tested without any

special optimizations. The multi-class ensembles achieve comparable results to

the binary ensembles from other sections, although they have to distinguish three

classes on top of the negatives. As for the binary classification, we can use all

different HFP sets.

The results of the KM-HFP model in table 6.3 are very different to results for

the HaarNN model. Although we trained several KM-HFP ensemble classifiers

using different parameters, none of the KM-HFP ensembles create a feasible false-

positive rate. They clearly distinguish the three different classes. Compared to the

KM-HFP ensembles, we can see the advantage of the HNN within the HaarNN en-

semble. Learning the pattern and executing the HNN helps the K-means algorithm

to distinguish between the various groups.

However, this is a proof of concept as to whether we can use our features and

models as a multi-class approach. Based on our results, we argue that our HaarNN

classifier model is able to solve multi-class problems. The HFP classifier model,

however, did not show promising results.

140

Chapter 7

Thesis Summary and Conclusion

7.1 Thesis Summary

We presented a novel approach using simple features and classifiers for hybrid

ensemble and cascade learning. The classifier models, features and hybrid archi-

tectures aimed to increase diversity to become a strong classifier. We built two

classifier models, the HFP classifier and the HaarNN classifier, which use simple

rectangle pixel sums as features. The HaarNN classifier works much in the same

way as the HFP classifier, except that the HaarNN classifier uses a Hopfield Neural

Network for pattern learning and as an input filter. We combined our classifiers

and simple threshold classifiers to create a hybrid architecture. There, we combine

the different classifiers into a single set of base classifiers, which form the source of

the training algorithm. Although both classifier models are only distinguished by

the additional HNN, they deliver different results and therefore increase diversity.

Further, we increase diversity through the forced hybrid architecture which forces

the learning algorithm to choose from different sets of base classifiers. Finally,

we test our approach as a multi-class classifier, which works well using HaarNN

ensembles.

Hybrid Approach

In chapter 3, we introduced our Haar-Feature-like patch and diversity approach.

We described the features used along with the classifiers. In the results section, we

showed that our methods could increase the accuracy of a (Viola/Jones) threshold

cascade classifier within a hybrid architecture.

141

Chapter 7. Thesis Summary and Conclusion

Model Characteristics

In chapter 4, we examined the basic characteristics of both classifier models and

their differences. While the HFP and HaarNN classifiers are very similar in terms of

their methods, they choose different features during training, which causes different

classification results. The HaarNN classifier in particular can increase diversity

through its inner HNN parameters.

Increasing Diversity

In chapter 5, we further increased diversity by separating features into different sets

based on their geometric appearance and by creating new HFP sets. In general, all

of the sets can be used to create proper cascade classifiers. However, every set is

different from the next one. We use this diversity in the forced hybrid architecture

where we change the ensemble and cascade creation algorithm by forcing it to

alternate between different sets and base model types instead of choosing the best

of a bigger set that contains everything.

Multi-class Ability

In chapter 6, we extended our experiments to the field of head-pose estimation and

examined whether we can use our classifier models for multi-class classification. We

trained our models to distinguish between left, front, right face gaze direction, and

background. There, we showed that the HaarNN classifier also works for multi-

class problems.

7.2 Future Work

The focus of this work was to increase diversity using our models. There are other

ways to create diversity which we have not used. We could introduce diversity

within the training images so as to use different sets of training sample images,

e.g. the bagging approach. Another option is to change the width and height of

the training samples. Training images with a higher resolution draws different ap-

pearances. The same features are most likely to be different if they are applied to

the same image but in a different dimension, which can further increase the diver-

sity and, hopefully, the accuracy of the resulting ensemble classifier. We can use

all these variations in training images by applying the forced hybrid architecture

to further increase diversity.

142

7.3. Conclusion

Our features have the drawback that they are not very flexible. To overcome

this drawback, we can train our classifiers with facial features like the mouth, nose

and eyes, and then use a flexible template on top of them.

While we achieved promising results with almost every kind of set and with

purely random features, it could be an interesting approach to use a genetic algo-

rithm to shape the features by mutation instead of creating them randomly. Also,

it could be seen as an opportunity to combine our none-trained hybrid solutions

with learning. We have shown that we can create a benefit by merging two cascade

classifiers, and we could train independent cascade classifiers and merge them in

between as an additional creation step.

The aggregated image creates an image out of the learned Haar-Feature-like

patches learned from faces. Indeed, the appearances of most of the aggregated

images clearly look like faces. Instead of training every single classifier to use a

value to determine a hit, we can use the aggregated image as an ensemble. Then,

every HaarNN used as learnable filter draws part of this image and, finally, this

image will be compared to the overall aggregated image. There, we would use

the ability of the HNN. If the Haar-Feature-like patch of a frame to be classified

is not similar to the learned HFP, the HNN converges to a different stable state,

thus changing the aggregated image. Then, it is an ensemble, but a very different

ensemble compared to those we have shown in this thesis because it is not a vote

of the single classifiers, but a painting.

7.3 Conclusion

We recapitulate and focus on the three main questions in order to arrive at a

conclusion. Could we create a strong classifier using our approach by focusing on

increased diversity instead of more accurate and sophisticated features or classi-

fiers?

• Could we increase diversity using our approach?

• Could we create a benefit out of the diversity?

– Are all of the sets useful?

– Are the additional HNN (HaarNN classifiers) useful?

• Could we create a strong classifier?

143

Chapter 7. Thesis Summary and Conclusion

Diversity and its Benefit

Our approach provides several opportunities for increased diversity. The different

HFP sets increase diversity, as does the HaarNN classifier with a Hopfield Neural

Net.

Both classifier models provide good results with almost all of the HFP sets.

Some sets produce better results than others. Creating a raw ranking, we count

the Base, Block6, and BlockN for the HaarNN classifier as well as Block9 and TL6

for the HFP classifier. Considering only single classifiers, we can conclude that we

do not use the other sets. However, using the single classifiers in a hybrid approach,

all the other sets become useful because they can increase the results of the single

classifiers. Overall, the HFP classifiers mostly provide better results, and achieve

them with fewer base classifiers. However, the HaarNN classifiers create higher

diversity on their own and provide a benefit for the hybrid classifiers. Further, it

is the HaarNN classifier that is also useful for multi-class problems.

Could we create a strong classifier?

The leading question of this work is can we arrive at a strong classifier by developing

features, classifiers, and architectures which focus on diversity? The results of our

models show that we have developed feasible models which benefit diversity and

also achieve feasible results. However, our models do not reach state of the art in

terms of accuracy. Nevertheless, we think that with additional research, we could

further improve upon our results.

Final Summary

Finally, we built a novel classifier approach which creates a high diversity zoo

of features and classifiers. It increases diversity and offers promising results, but

requires further optimization to achieve state of the art results.

144

Appendix A

Appendix

A.1 Glossary of Acronyms and Abbreviations

HNN Hopfield Neural Network

HFP Haar-Feature-like Patch

ED-HFP Classifier which uses an HFP and the Euclidean distance

NCC-HFP Classifier which uses an HFP and Normalized Cross-correlation

KM-HFP Classifier which uses an HFP and K-means

ED-HaarNN Classifier including HNN which uses an HFP and the Euclidean

distance

NCC-HaarNN Classifier including HNN which uses an HFP and Normalized

Cross-correlation

BP-HaarNN Classifier including HNN which uses an HFP and Bayes-like

probability

KM-HaarNN Classifier including HNN which uses an HFP and K-means

FH-AdaBoost Forced Hybrid Architecture applied to the ensemble classifier

creation

FH-Cascade Forced Hybrid Architecture applied to the cascade classifier

creation

145

Appendix

146

Appendix

A.2 Classification Samples

Here, we show some sample images of classification results of several different

classifier models, features and architectures.

147

Appendix

Model HFPset DR FPR NF Sum-BC

NCC-HFP RandomN 0.7 5.73E-5 100 607.0

Table A.1: Single cascade classifier using as base classifier NCC-HFP, the HFP set

RandomN, trained with 100 features per iteration.

148

Appendix

Model HFPset Model2 HFPset2 DR FPR Sum-BC

NCC-HaarNN Block6 Threshold Base 0.62 2.31E-5 608.0

Table A.2: Forced Hybrid cascade classifier (FH-AdaBoost) using as base classifiers

NCC-HaarNN and Threshold, the HFP sets Block6 and Base, trained with 100

features per iteration.

149

Appendix

Model HFPset Model2 HFPset2 DR FPR Sum-BC

NCC-HFP Base Threshold Base 0.68 2.03E-5 404.0

Table A.3: Hybrid cascade classifier (Unite) using as base classifiers NCC-HFP

and Threshold, the HFP set Base, trained with 100 features per iteration.

150

Appendix

Model HFPset Model2 HFPset2 DR FPR Sum-BC

NCC-HaarNN 2Sym NCC-HFP Block6 0.68 5.98E-5 663.0

Table A.4: Forced Hybrid cascade classifier (FH-AdaBoost) using as base classifiers

NCC-HaarNN and NCC-HFP, the HFP sets 2Sym and Block6, trained with 100

features per iteration.

151

Appendix

Model HFPset Model2 HFPset2 DR FPR Sum-BC

NCC-HFP BlockN NCC-HFP Base 0.74 8.67E-5 373.0

Table A.5: Forced Hybrid cascade classifier (FH-AdaBoost) using as base classifier

NCC-HFP, the HFP sets BlockN and Base, trained with 100 features per iteration.152

Appendix B

A.3 Publications

The following publications formed part of this research:

• Nils Meins, Sven Magg, and Stefan Wermter. Neural Hopfield-ensemble for

multi-class head pose detection. In Neural Networks (IJCNN), The 2013

International Joint Conference on, pages 1–8. IEEE, 2013.

• Nils Meins, Doreen Jirak, Cornelius Weber, and Stefan Wermter. Adaboost

and Hopfield neural networks on different image representations for robust

face detection. In Hybrid Intelligent Systems (HIS), 12th International Con-

ference on, pages 531–536. IEEE, 2012.

• Nils Meins, Stefan Wermter, and Cornelius Weber. Hybrid ensembles using

Hopfield neural networks and haar-like features for face detection. In Inter-

national Conference on Artificial Neural Networks, pages 403–410. Springer,

2012.

• Johnson D. O., Cuijpers R. H., Juola J. F., Torta E., Simonov M., Frisiello

A., Bazzani M., Yan W., Weber C., Wermter S., Meins N., Oberzaucher J.,

Panek P., Edelmayer G., Mayer P., and Beck C. Socially Assistive Robots:

A Comprehensive Approach to Extending Independent Living. International

Journal of Social Robotics, November, pages 1–17, 2013.

• Yan W., Torta E., van der Pol D., Meins N., Weber C., Cuijpers R. H.,

and Wermter S. Robotic Vision: Technologies for Machine Learning and Vi-

sion Applications, chapter Learning Robot Vision for Assisted Living, pages

257–280. IGI Global, 2012a. doi: 10.4018/978-1-4666-2672-0.ch015.

153

Bibliography

[1] Shun-Ichi Amari and Kenjiro Maginu. Statistical neurodynamics of associative

memory. Neural Networks, 1(1):63–73, 1988.

[2] David James Beymer. Face recognition under varying pose. In Computer

Vision and Pattern Recognition, 1994. Proceedings CVPR’94., 1994 IEEE

Computer Society Conference on, pages 756–761. IEEE, 1994.

[3] MIT Center For Biological and Computation Learning. Cbcl face database

#1.

[4] Lubomir Bourdev and Jonathan Brandt. Robust object detection via soft

cascade. In 2005 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’05), volume 2, pages 236–243. IEEE, 2005.

[5] L Breiman. “bagging predictors”technical report. UC Berkeley, 1994.

[6] Leo Breiman. Bagging predictors. Machine Learning, 24(2):123–140, August

1996.

[7] Leo Breiman, Jerome Friedman, Charles J Stone, and Richard A Olshen.

Classification and regression trees. CRC press, 1984.

[8] S Charles Brubaker, Jianxin Wu, Jie Sun, Matthew D Mullin, and James M

Rehg. On the design of cascades of boosted ensembles for face detection.

International Journal of Computer Vision, 77(1-3):65–86, 2008.

[9] J Canny. A computational approach to edge detection. IEEE Trans. Pattern

Anal. Mach. Intell., 8(6):679–698, June 1986.

[10] Franklin C. Crow. Summed-area tables for texture mapping. In Proceedings

of the 11th Annual Conference on Computer Graphics and Interactive Tech-

niques, SIGGRAPH ’84, pages 207–212, New York, NY, USA, 1984. ACM.

154

Bibliography

[11] Navneet Dalal and Bill Triggs. Histograms of oriented gradients for human

detection. In 2005 IEEE Computer Society Conference on Computer Vision

and Pattern Recognition (CVPR’05), volume 1, pages 886–893. IEEE, 2005.

[12] Thomas G Dietterich et al. Ensemble methods in machine learning. Multiple

classifier systems, 1857:1–15, 2000.

[13] Bradley Efron and Robert J Tibshirani. An introduction to the bootstrap.

CRC press, 1994.

[14] Yoav Freund. Boosting a weak learning algorithm by majority. In COLT,

volume 90, pages 202–216, 1990.

[15] Yoav Freund and Robert E Schapire. A desicion-theoretic generalization of

on-line learning and an application to boosting. In European conference on

computational learning theory, pages 23–37. Springer, 1995.

[16] Yoav Freund, Robert E Schapire, et al. Experiments with a new boosting

algorithm. In Icml, volume 96, pages 148–156. Bari, Italy, 1996.

[17] Jerome Friedman, Trevor Hastie, Robert Tibshirani, et al. Additive logistic

regression: a statistical view of boosting (with discussion and a rejoinder by

the authors). The annals of statistics, 28(2):337–407, 2000.

[18] Bernhard Froba and Andreas Ernst. Face detection with the modified census

transform. In Automatic Face and Gesture Recognition, 2004. Proceedings.

Sixth IEEE International Conference on, pages 91–96. IEEE, 2004.

[19] Rafael C Gonzalez and E Richard. Woods, digital image processing, third

edition. ed: Prentice Hall Press, ISBN 0-201-18075-8, 2007.

[20] Nicolas Gourier, Daniela Hall, and James L Crowley. Estimating face orien-

tation from robust detection of salient facial structures. In FG Net Workshop

on Visual Observation of Deictic Gestures, volume 6, 2004.

[21] Feng Han, Ying Shan, Harpreet S Sawhney, and Rakesh Kumar. Discover-

ing class specific composite features through discriminative sampling with

swendsen-wang cut. In Computer Vision and Pattern Recognition, 2008.

CVPR 2008. IEEE Conference on, pages 1–8. IEEE, 2008.

[22] J. A. Hartigan and M. A. Wong. A K-means clustering algorithm. Applied

Statistics, 28:100–108, 1979.

155

Bibliography

[23] B. Heisele, T. Poggio, and M. Pontil. Face detection in still gray images.

A.I. memo 1687, Center for Biological and Computational Learning, MIT,

Cambridge, MA, 2000.

[24] Tin Kam Ho. The random subspace method for constructing decision forests.

IEEE transactions on pattern analysis and machine intelligence, 20(8):832–

844, 1998.

[25] J.J. Hopfield. Neural networks and physical systems with emergent collective

computational abilities. 1982.

[26] Chang Huang, Haizhou Ai, Yuan Li, and Shihong Lao. Vector boosting for

rotation invariant multi-view face detection. In Tenth IEEE International

Conference on Computer Vision (ICCV’05) Volume 1, volume 1, pages 446–

453. IEEE, 2005.

[27] Chang Huang, Haizhou Ai, Yuan Li, and Shihong Lao. Learning sparse fea-

tures in granular space for multi-view face detection. In 7th International Con-

ference on Automatic Face and Gesture Recognition (FGR06), pages 401–406.

IEEE, 2006.

[28] Jun-Su Jang and Jong-Hwan Kim. Fast and robust face detection using

evolutionary pruning. IEEE Transactions on Evolutionary Computation,

12(5):562–571, 2008.

[29] Hongliang Jin, Qingshan Liu, Hanqing Lu, and Xiaofeng Tong. Face detec-

tion using improved lbp under bayesian framework. In Image and Graphics

(ICIG’04), Third International Conference on, pages 306–309. IEEE, 2004.

[30] Michael Jones and Paul Viola. Fast multi-view face detection. Mitsubishi

Electric Research Lab TR-20003-96, 3:14, 2003.

[31] Ludmila I. Kuncheva. Combining Pattern Classifiers. John Wiley and Sons,

Inc., Hoboken, New Jersey, 2014.

[32] Stephen RH Langton, Helen Honeyman, and Emma Tessler. The influence of

head contour and nose angle on the perception of eye-gaze direction. Percep-

tion & psychophysics, 66(5):752–771, 2004.

[33] Kobi Levi and Yair Weiss. Learning object detection from a small number

of examples: the importance of good features. In Computer Vision and Pat-

tern Recognition, 2004. CVPR 2004. Proceedings of the 2004 IEEE Computer

Society Conference on, volume 2, pages II–53. IEEE, 2004.

156

Bibliography

[34] Stan Z Li, Long Zhu, ZhenQiu Zhang, Andrew Blake, HongJiang Zhang, and

Harry Shum. Statistical learning of multi-view face detection. In European

Conference on Computer Vision, pages 67–81. Springer, 2002.

[35] Rainer Lienhart, Alexander Kuranov, and Vadim Pisarevsky. Empirical anal-

ysis of detection cascades of boosted classifiers for rapid object detection. In

Joint Pattern Recognition Symposium, pages 297–304. Springer, 2003.

[36] Rainer Lienhart and Jochen Maydt. An extended set of haar-like features for

rapid object detection. In Image Processing. 2002. Proceedings. 2002 Inter-

national Conference on, volume 1, pages I–900. IEEE, 2002.

[37] Yen-Yu Lin and Tyng-Luh Liu. Robust face detection with multi-class boost-

ing. In 2005 IEEE Computer Society Conference on Computer Vision and

Pattern Recognition (CVPR’05), volume 1, pages 680–687. IEEE, 2005.

[38] Ce Liu and Hueng-Yeung Shum. Kullback-leibler boosting. In Computer

Vision and Pattern Recognition, 2003. Proceedings. 2003 IEEE Computer So-

ciety Conference on, volume 1, pages I–587. IEEE, 2003.

[39] Hamed Masnadi-Shirazi and Nuno Vasconcelos. Asymmetric boosting. In

Proceedings of the 24th international conference on Machine learning, pages

609–619. ACM, 2007.

[40] Hamed Masnadi-Shirazi and Nuno Vasconcelos. High detection-rate cascades

for real-time object detection. In 2007 IEEE 11th International Conference

on Computer Vision, pages 1–6. IEEE, 2007.

[41] Llew Mason, Jonathan Baxter, Peter Bartlett, and Marcus Frean. Boosting

algorithms as gradient descent in function space. NIPS, 1999.

[42] Jun Miao, Baocai Yin, Kongqiao Wang, Lansun Shen, and Xuecun Chen.

A hierarchical multiscale and multiangle system for human face detection in

a complex background using gravity-center template. Pattern Recognition,

32(7):1237–1248, 1999.

[43] Takeshi Mita, Toshimitsu Kaneko, and Osamu Hori. Joint haar-like features

for face detection. In Tenth IEEE International Conference on Computer

Vision (ICCV’05) Volume 1, volume 2, pages 1619–1626. IEEE, 2005.

[44] Erik Murphy-Chutorian and Mohan Manubhai Trivedi. Head pose estimation

in computer vision: A survey. IEEE transactions on pattern analysis and

machine intelligence, 31(4):607–626, 2009.

157

Bibliography

[45] Timo Ojala, Matti Pietikainen, and Topi Maenpaa. Multiresolution gray-

scale and rotation invariant texture classification with local binary patterns.

IEEE Transactions on pattern analysis and machine intelligence, 24(7):971–

987, 2002.

[46] Andreas Opelt, Axel Pinz, and Andrew Zisserman. A boundary-fragment-

model for object detection. In European conference on computer vision, pages

575–588. Springer, 2006.

[47] Constantine P Papageorgiou, Michael Oren, and Tomaso Poggio. A general

framework for object detection. In Computer vision, 1998. sixth international

conference on, pages 555–562. IEEE, 1998.

[48] Pavel Pudil, Jana Novovičová, and Josef Kittler. Floating search methods in

feature selection. Pattern recognition letters, 15(11):1119–1125, 1994.

[49] H. A. Rowley, S. Baluja, and T. Kanade. Neural network-based face detection.

IEEE Transactions on Pattern Analysis and Machine Intelligence, 20(1):23–

38, 1998.

[50] Payam Sabzmeydani and Greg Mori. Detecting pedestrians by learning

shapelet features. In 2007 IEEE Conference on Computer Vision and Pattern

Recognition, pages 1–8. IEEE, 2007.

[51] Toshiyuki Sakai, Makoto Nagao, and Shinya Fujibayashi. Line extraction and

pattern detection in a photograph. Pattern recognition, 1(3):233–248, 1969.

[52] Robert E Schapire. The strength of weak learnability. Machine learning,

5(2):197–227, 1990.

[53] Robert E Schapire. The boosting approach to machine learning: An overview.

In Nonlinear estimation and classification, pages 149–171. Springer, 2001.

[54] Henry Schneiderman. Feature-centric evaluation for efficient cascaded object

detection. In Computer Vision and Pattern Recognition, 2004. CVPR 2004.

Proceedings of the 2004 IEEE Computer Society Conference on, volume 2,

pages II–29. IEEE, 2004.

[55] Jamie Shotton, Andrew Blake, and Roberto Cipolla. Contour-based learning

for object detection. In Tenth IEEE International Conference on Computer

Vision (ICCV’05) Volume 1, volume 1, pages 503–510. IEEE, 2005.

158

Bibliography

[56] S.A. Sirohey. Human Face Segmentation and Identification. Technical report

(University of Maryland at College Park. Center for Automation Research.

Computer Vision Laboratory). University of Maryland, Center for Automa-

tion Research, Computer Vision Laboratory, 1993.

[57] David B Skalak et al. The sources of increased accuracy for two proposed

boosting algorithms. In Proc. American Association for Artificial Intelligence,

AAAI-96, Integrating Multiple Learned Models Workshop, volume 1129, page

1133, 1996.

[58] Peter HA Sneath, Robert R Sokal, et al. Numerical taxonomy. The principles

and practice of numerical classification. 1973.

[59] Jan Sochman and Jiri Matas. Waldboost-learning for time constrained se-

quential detection. In 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’05), volume 2, pages 150–156. IEEE,

2005.

[60] K.-K. Sung. Learning and Example Selection for Object and Pattern Recog-

nition. PhD thesis, MIT, Artificial Intelligence Laboratory and Center for

Biological and Computational Learning, Cambridge, MA, 1996.

[61] Robert H Swendsen and Jian-Sheng Wang. Nonuniversal critical dynamics in

monte carlo simulations. Physical review letters, 58(2):86, 1987.

[62] Antonio Torralba, Kevin P Murphy, and William T Freeman. Sharing features:

efficient boosting procedures for multiclass object detection. In Computer

Vision and Pattern Recognition, 2004. CVPR 2004. Proceedings of the 2004

IEEE Computer Society Conference on, volume 2, pages II–762. IEEE, 2004.

[63] Akitoshi Tsukamoto, Chil-Woo Lee, and Saburo Tsuji. Detection and track-

ing of human face with synthesized templates. In Proc. First Asian Conf.

Computer Vision, pages 183–186, 1993.

[64] Akitoshl Tsukamoto, Chil-Woo Lee, and Saburo Tsuji. Detection and pose

estimation of human face with synthesized image models. In Pattern Recogni-

tion, 1994. Vol. 1-Conference A: Computer Vision & Image Processing.,

Proceedings of the 12th IAPR International Conference on, volume 1, pages

754–757. IEEE, 1994.

159

Bibliography

[65] Zhuowen Tu. Probabilistic boosting-tree: Learning discriminative models for

classification, recognition, and clustering. In Tenth IEEE International Con-

ference on Computer Vision (ICCV’05) Volume 1, volume 2, pages 1589–1596.

IEEE, 2005.

[66] Kagan Tumer and Joydeep Ghosh. Theoretical foundations of linear and

order statistics combiners for neural pattern classifiers. IEEE Trans. Neural

Networks, 1995.

[67] Oncel Tuzel, Fatih Porikli, and Peter Meer. Region covariance: A fast de-

scriptor for detection and classification. In European conference on computer

vision, pages 589–600. Springer, 2006.

[68] M Viola, Michael J Jones, and Paul Viola. Fast multi-view face detection. In

Proc. of Computer Vision and Pattern Recognition. Citeseer, 2003.

[69] P. Viola and M. Jones. Rapid object detection using a boosted cascade of

simple features. In Computer Vision and Pattern Recognition, 2001. CVPR

2001. Proceedings of the 2001 IEEE Computer Society Conference on, vol-

ume 1, pages I–511–I–518 vol.1, 2001.

[70] Paul Viola and Michael Jones. Fast and robust classification using asymmetric

adaboost and a detector cascade. Advances in Neural Information Processing

System, 14, 2001.

[71] Paul Viola and Michael Jones. Robust real-time object detection. Interna-

tional Journal of Computer Vision, 57(2):137–154, 2001.

[72] Paul Viola and Michael J. Jones. Robust real-time face detection. Int. J.

Comput. Vision, 57(2):137–154, May 2004.

[73] Paul Viola, Michael J Jones, and Daniel Snow. Detecting pedestrians us-

ing patterns of motion and appearance. International Journal of Computer

Vision, 63(2):153–161, 2005.

[74] Peng Wang and Qiang Ji. Learning discriminant features for multi-view face

and eye detection. In 2005 IEEE Computer Society Conference on Computer

Vision and Pattern Recognition (CVPR’05), volume 1, pages 373–379. IEEE,

2005.

[75] Andrew R. Webb and Keith D. Copsey. Statistical pattern recognition, Third

Edition. John Wiley & Sons, 2011.

160

Bibliography

[76] Ka-Chun Wong. A short survey on data clustering algorithms. In 2015 Sec-

ond International Conference on Soft Computing and Machine Intelligence

(ISCMI), pages 64–68. IEEE, 2015.

[77] Bo Wu, Haizhou Ai, Chang Huang, and Shihong Lao. Fast rotation invariant

multi-view face detection based on real adaboost. In Automatic Face and

Gesture Recognition, 2004. Proceedings. Sixth IEEE International Conference

on, pages 79–84. IEEE, 2004.

[78] Bo Wu and Ram Nevatia. Cluster boosted tree classifier for multi-view, multi-

pose object detection. In 2007 IEEE 11th International Conference on Com-

puter Vision, pages 1–8. IEEE, 2007.

[79] Jianxin Wu, S Charles Brubaker, Matthew D Mullin, and James M Rehg.

Fast asymmetric learning for cascade face detection. IEEE Transactions on

Pattern Analysis and Machine Intelligence, 30(3):369–382, 2008.

[80] Jianxin Wu, James Matthew Rehg, and Matthew D Mullin. Learning a rare

event detection cascade by direct feature selection. 2003.

[81] Rong Xiao, Huaiyi Zhu, He Sun, and Xiaoou Tang. Dynamic cascades for face

detection. In 2007 IEEE 11th International Conference on Computer Vision,

pages 1–8. IEEE, 2007.

[82] Rong Xiao, Long Zhu, and Hong-Jiang Zhang. Boosting chain learning for

object detection. In Computer Vision, 2003. Proceedings. Ninth IEEE Inter-

national Conference on, pages 709–715. IEEE, 2003.

[83] Lei Xu, Adam Krzyzak, and Ching Y Suen. Methods of combining multiple

classifiers and their applications to handwriting recognition. IEEE transac-

tions on systems, man, and cybernetics, 22(3):418–435, 1992.

[84] Shengye Yan, Shiguang Shan, Xilin Chen, and Wen Gao. Locally assembled

binary (lab) feature with feature-centric cascade for fast and accurate face

detection. In Computer Vision and Pattern Recognition, 2008. CVPR 2008.

IEEE Conference on, pages 1–7. IEEE, 2008.

[85] Guangzheng Yang and Thomas S Huang. Human face detection in a complex

background. Pattern Recognition, 27(1):53 – 63, 1994.

[86] Ming-Hsuan Yang, David J Kriegman, and Narendra Ahuja. Detecting faces

in images: A survey. IEEE Transactions on pattern analysis and machine

intelligence, 24(1):34–58, 2002.

161

Bibliography

[87] Shuo Yang, Ping Luo, Chen Change Loy, and Xiaoou Tang. Faceness-

net: Face detection through deep facial part responses. arXiv preprint

arXiv:1701.08393, 2017.

[88] Junsong Yuan, Jiebo Luo, and Ying Wu. Mining compositional features for

boosting. In Computer Vision and Pattern Recognition, 2008. CVPR 2008.

IEEE Conference on, pages 1–8. IEEE, 2008.

[89] G Udny Yule. On the association of attributes in statistics: with illustrations

from the material of the childhood society, &c. Philosophical Transactions of

the Royal Society of London. Series A, Containing Papers of a Mathematical

or Physical Character, 194:257–319, 1900.

[90] Cha Zhang and Zhengyou Zhang. A survey of recent advances in face detec-

tion, 2010.

[91] Lun Zhang, Rufeng Chu, Shiming Xiang, Shengcai Liao, and Stan Z Li. Face

detection based on multi-block lbp representation. In International Conference

on Biometrics, pages 11–18. Springer, 2007.

[92] Zhi-Hua Zhou. Ensemble methods: foundations and algorithms. CRC press,

2012.

[93] Chenchen Zhu, Yutong Zheng, Khoa Luu, and Marios Savvides. Cms-rcnn:

contextual multi-scale region-based cnn for unconstrained face detection. In

Deep Learning for Biometrics, pages 57–79. Springer, 2017.

[94] Ji Zhu, Saharon Rosset, Hui Zou, and Trevor Hastie. Multi-class adaboost.

Ann Arbor, 1001(48109):1612, 2006.

162

Declaration of Oath

Eidesstattliche Versicherung

I hereby declare, on oath, that I have written the present dissertation by my own

and have not used other than the acknowledged resources and aids.

Hiermit erkläre ich an Eides statt, dass ich die vorliegende Dissertationsschrift

selbst verfasst und keine anderen als die angegebenen Quellen und Hilfsmittel be-

nutzt habe.

Hamburg, Date 7th Januar 2019 Nils Meins

City and Date Signature

Ort und Datum Unterschrift

163

	1 Introduction
	1.1 Motivation
	1.2 Contribution and Research Question
	1.3 Structure of this Thesis

	2 Related and Underlying Methods
	2.1 Early Approaches of Face Detection
	2.2 Detailed Viola and Jones Methods and Algorithm
	2.2.1 Introduction and Overview
	2.2.2 The Weak Classifier and its Components
	2.2.3 Combining Weak Classifiers: Training Ensemble and Cascade classifiers
	2.2.4 Localisation within an Image

	2.3 Ensembles
	2.3.1 Ensembles Motivation
	2.3.2 Ensemble Output Combining Methods
	2.3.3 Ensemble Creation Methods

	2.4 Diversity
	2.5 Hopfield Neural Network
	2.6 Extensions of Features and Algorithms
	2.7 Training and Test Sets

	3 The Haar-Feature-Like Patch and Hybrid Diversity Approach
	3.1 Introduction
	3.2 Methods
	3.2.1 Introducing Haar-Feature-Like Patches
	3.2.2 Classification using Haar-Feature-Like Patches
	3.2.3 Combining the Hopfield Neural Network and Haar-Feature-Like Patches
	3.2.4 Training the Hybrid Ensemble and Cascade Classifier

	3.3 Comparing Hybrid Architecture
	3.3.1 Introduction to Experiments
	3.3.2 Findings
	3.3.3 Discussion and Conclusion

	3.4 Overlap Detection Merge and Samples
	3.5 Summary

	4 Diversity and Common Characteristics of our Classifier Models
	4.1 Introduction
	4.2 Diversity and Difference of our Classifier Models
	4.2.1 Introduction to Experiments
	4.2.2 Results comparing HFP and HaarNN classifiers
	4.2.3 Discussion and Conclusion

	4.3 Increased Diversity by the Hopfield Neural Network
	4.3.1 Introduction to Experiments
	4.3.2 Methods - Parameters for Increasing Diversity
	4.3.3 Results
	4.3.4 Discussion and Conclusion

	4.4 Required Number of Features
	4.4.1 Introduction to Experiments
	4.4.2 Results of Number of Features
	4.4.3 Discussion and Conclusion

	4.5 Summary

	5 Increasing Diversity by Features and Forced Architecture
	5.1 Introduction
	5.2 Methods
	5.2.1 More Types of Haar-Feature-like patches (HFP)
	5.2.2 Forced Hybrid Architecture

	5.3 The Feasibility of HFP Sets
	5.3.1 Introduction to Experiments
	5.3.2 Results for the Feasible Cascade Classifiers
	5.3.3 Discussion and Conclusion

	5.4 The HFP sets' Diversity
	5.4.1 Introduction to Experiments
	5.4.2 Results for the Diversity of the HFP Sets
	5.4.3 Discussion and Conclusion

	5.5 Forced Hybrid Architectures
	5.5.1 Introduction to Experiments
	5.5.2 Results for the Alternating Feature Sets
	5.5.3 Results for the Hybrid Alternating Classifiers
	5.5.4 Discussion and Conclusion

	5.6 Summary

	6 Multi-Class Ability
	6.1 Experiments Introduction
	6.2 Methods
	6.3 Findings
	6.4 Discussion and Conclusion

	7 Thesis Summary and Conclusion
	7.1 Thesis Summary
	7.2 Future Work
	7.3 Conclusion

	A Appendix
	A.1 Glossary of Acronyms and Abbreviations
	A.2 Classification Samples
	A.3 Publications

	Bibliography

