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Abstract. Mapping, localization and navigation are major topics and
challenges for mobile robotics. To perform tasks and to interact efficiently
in the environment, a robot needs knowledge about its surroundings.
Many robots today are capable of performing simultaneous mapping and
localization to generate own world representations. Most assume an ar-
ray of highly sophisticated artificial sensors to track landmarks placed in
the environment. Recently, there has been significant interest in research
approaches inspired by nature and RatSLAM is one of them. It has been
introduced and tested on wheeled robots with good results. To examine
how RatSLAM behaves on humanoid robots, we adapt this model for
the first time to this platform by adjusting the given constraints. Fur-
thermore, we introduce a multiple hypotheses mapping technique which
improves mapping robustness in open spaces with features visible from
several distant locations.

Keywords: SLAM, visual SLAM, RatSLAM, Humanoid robot, Map-
ping, Localization

1 Introduction

For successful and efficient interaction with the environment, world knowledge
is needed. The challenge to gain this information can be addressed by the tasks
of mapping, localization and navigation. Basic world interaction approaches rely
on a-priori generated maps of static environments and perform localization with
(noisy) odometric data and pre-defined landmarks. The main disadvantage of
these approaches is the inability to deal with changes in dynamic environments,
since geometry is not reliable to determine landmarks with single sensors [11] or
arrays of different sensors [4].

During the last decades, many approaches tried to overcome this problem by
creating an internal world representation for the robots themselves. The most
successful ones form an entire group of methods that can perform Simultaneous
Localization and Mapping (SLAM). Many combine multiple sensors, resulting
in a multiplicity of sensor data that needs to be processed. Recently, SLAM has
been used more frequently with humanoid robots to form probabilistic robot pose
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estimates in complex 3D environments (SE3) supported by laser rangefinders and
idiothetic on-board sensors [6] or to create accurate grid maps in SE2 [13].

An alternative to these approaches with high demand on processing power
can be found in nature itself: Most animals do not have precise sensors like
laser rangefinders to measure distances with an accuracy of millimeters for large
ranges. Nevertheless, they perform successful mapping, localization and naviga-
tion tasks. Plenty of approaches try to adapt biological mechanisms and sensor
usage to computational models. Most research in this area is focused on un-
derstanding the function of the brain and to develop exact biological models,
tested only regarding their biological plausibility [1, 5]. Only few models, like
from Arleo et al. [2] or Weiller et al. [14], have been tested regarding practical
mapping, localization and performance on real robots. However, they have only
been shown to work under many constraints in relatively small worlds.

In 2004, Milford et al. developed RatSLAM [10], a biological SLAM approach
based on mapping and localization mechanisms in the rodent’s hippocampus. In
contrast to other models, biological validity and correctness was not as important
as to create a reliable SLAM system with low computational complexity, usable
on robots with low computing power. RatSLAM had been developed with and
for wheeled robots. However, the physical characteristics and constraints of this
type of robot differ from those of humanoids. Hence, applied to a humanoid, we
encountered several problems related to robot instability, sensors and movement
characteristics during evaluation. These issues led to false localizations and false
positive loop closures in the topological map. To address these challenges, we
developed an improved extended approach, called Multi-hypotheses Experience
Maps (multi-EMs). This approach tracks multiple spatial robot position hy-
potheses at the same time and weights their plausibility, achieving more robust,
less fault-prone mapping.

1.1 RatSLAM - A Bio-Inspired SLAM Solution

RatSLAM is a vision-based, biologically inspired model, able to achieve com-
petitive SLAM results in real-world environments with a camera sensor and
optionally sensors that gather odometric data [8, 9, 12]. Commonly used sensors
like laser, ultrasonic or depth sensors are not used. It is a rough computational
model of the part of the rodent’s hippocampus that maintains its believed loca-
tion in the world. RatSLAM uses techniques of landmark sensing in combination
with odometric information to form a Competitive Attractor Network (CAN).
This CAN forms a topological representation of adjacent world locations, which
mostly includes Cartesian properties. RatSLAM consists of several processing
units which are introduced here in short in the order they perform sensor data
processing (fig. 1).

Local View (LV): The local view (LV) is a collection of simple neural units
that store image templates. Templates are generated from a down-sampled 8bit-
greyscale part (Region of Interest, ROI) of the current raw camera image. Tem-
plates are used to determine the robot location in space via scanline intensity
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profile matching. Whenever a new camera image is received, the ROI is processed
to a template and compared to all previously stored templates. If the new tem-
plate sufficiently matches a stored one, the robot is deemed at a familiar location
and the new template is not added to the network. Otherwise, if no sufficient
match was found, the actual template is added to the LV cells for recognition.

Visual Odometry (VO): Odometric data is necessary to maintain an ap-
proximate robot location hypothesis if no visual cue is available. Usually, it is
measured with sensors like rotary encoders [8, 9, 12]. Apart from that, RatSLAM
is able to use visual methods to determine translational and rotational robot
movement. In addition to the ROI for the LV, other ROIs are defined in the
image: Forward movement and orientation changes are determined based on the
rate of filtered average absolute intensity difference between consecutive scanline
intensity profiles.

Pose Cell (PC) Network: The Pose Cell network is the core of RatSLAM and
it forms three-dimensional localization and orientation hypotheses (x′, y′, θ′) for
the robot’s pose within the real environment (x, y, θ). This network consists of a
three-dimensional CAN of inter-connected neural units (PCs) with wrap-around
connections. Each PC represents a location and orientation in the environment
and is linked to LV cells by Hebbian learning links. The robot’s current pose
belief is represented by an activity level of the PCs. Cell activity can change due
to injected energy whenever a familiar visual template is recognized. Multiple
LV templates can match the same template and lead to a conformity level that is
larger than a given threshold for multiple LV cells. All these LV cells inject energy
into the PC network via the weighted Hebbian links. This can result in multiple
activity packets being active at the same time. The total amount of energy,
however, is kept constant by internal CAN attractor dynamics. The packet with
the highest amount of energy is the strongest believed robot position. Another
factor influencing the activity of PCs is path integration: The activity is shifted
relative to odometry to nearby PCs while the robot moves in order to maintain
consistency between real world and the internal map. Over time, the energy of
packets can increase or decrease, new packets can appear, existing disappear or
they can unite. For this reason, the robot’s position cannot be determined for
sure, and pose estimation is threated probabilistically.

Experience Map (EM): Experiments on the PC map showed that, especially
in large environments, the PC representation is not topologically correct and only
partially Cartesian [9, 12]. Reasons for this are path integration, from increas-
ing odometric drift and particularly ever increasing numbers of re-localization
(“loop closure”) based on LV cells, linked to multiple world locations (“(hash)
collision”) and vice versa (“discontinuity”). Therefore, Milford et al. extended
RatSLAM with a topological Cartesian world representation called Experience
Map (EM) [8]. This map represents each world location by a unique experience
ei = (Pi, Li,pi) at an independent spatial position pi = (x, y). The experience
is linked to an individual PC Pi(x

′, y′, θ′) and exactly one LV cell Li and gets
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activated whenever the linked PC and the corresponding LV cell are active. Con-
secutive experiences are connected relative to each other by transitions which
span a traversable graph that, in combination with information about the rel-
ative pose of involved experiences, movement behavior and movement duration
for inter-experience traveling, can be used for path planning and navigation. A
map correction algorithm inside the EM maintains Cartesian consistency at all
time by relative location correction of experiences to each other to eliminate
inconsistencies, which becomes obvious in loop closure events.
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Fig. 1. The complete system consists of several processing units which in the end form
a topological world representation inside the experience map.

2 Approach: RatSLAM on Humanoids

RatSLAM is available in an open source implementation called OpenRatSLAM
[3] which has been used as basis for this adaption to humanoid robots. In the
following, we will describe how RatSLAM is adapted to this type of robot. There-
after, an extension is introduced to enhance the EM’s overall accuracy.

2.1 Adapting RatSLAM to a Humanoid

RatSLAM was developed for wheeled robots. Hence, constraints have been made
regarding the possible actions the robot can perform. Humanoid robots, how-
ever, have a different physical structure and come along with other constraints.
These have to be integrated into the RatSLAM model while old constraints can
be dismissed. To enable functionalities not implemented for wheeled robots, like
forward, backward and sideways walking or turning on a spot, sensor data pro-
cessing has been adapted: For our approach, the algorithm uses camera images
for template generation and rotation detection only. Translational movements
are obtained by a translational motion controller.

Humanoids in comparison to wheeled robots, move quite slowly while most of
the image movement comes from the shaking of the robot during walking. Hence,
exploration with humanoids takes much more time. To enhance exploration and
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the overall map quality, we integrated an autonomous exploration approach,
based on touch-and-turn techniques to create a spatial and comprehensive map.
Over time, this exploration behavior spans a graph of trajectories over the com-
plete environment that can be used for later navigation tasks. From time to
time, the robot pauses and looks around on the spot, to create anchor-points
which represent locations in the environment with independent view templates
for plenty of different orientations. These locations extend the robot’s narrow
field of view (FOV) and improve re-localization capabilities immensely. We did
not extend RatSLAM to account for the fact that humanoids can climb stairs
and thereby may have access to 3D Euclidean space (SE3).

2.2 Multi-Hypotheses Experience Maps

One major issue while using RatSLAM is the affection to false positive loop
closures during exploration (“perceptual aliasing”). False positive matches and
snaps introduce inconsistency and irremediable failures to the map and have to
be avoided. Generally, false positives are more serious than false negatives, as
false negatives only reduce the overall recall rate but in the end have negligible
impact on the total map precision [7]. This difficulty is caused by two reasons:

1. Robot instability during movement: A relatively high center of mass in com-
bination with a comparatively high-mounted camera on the robot’s forehead
results in swaying movements whenever the robot moves. VO based on image
differences does not work under these conditions;

2. Image quality: Due to the low image resolution, the LV algorithm is unable
to distinguish locations with almost identical orientations but different dis-
tances to the same environmental feature and assumes an identical position.

Although multiple pose hypotheses in the PC network and threshold adaption
for image classification introduce stability, false positive loop closures appear
frequently. Further increased thresholds would lead to many missing (false neg-
ative) loop closures.

In our approach, we introduce multiple EMs with multiple robot pose hy-
potheses at once to increase the overall accuracy and to repair hastily loop clo-
sures (fig. 1). Independent loop closures for each EM create different hypotheses
for traveled paths and the current robot pose. All EMs get ranked in comparison
to an artificial map of arithmetic means em for all experiences ei in all EMs k
(with k ≥ 2) linked to the same PC pci:

x̄i =
1

n

n∑
k=1

xik ȳi =
1

n

n∑
k=1

yik (1)

The rating is done for the last n experiences. Regarding figure 2, the distance di
of two experiences emi and ei is calculated by

di(ēi, ei) =
√

(x̄i − ei,x)2 + (ȳi − ei,y)2 =
√

(∆x+∆y)2. (2)
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Experiences existing for some time have already adjusted their pose by the path
integration algorithm. Their position is more reliable than recently created ex-
periences. Hence, to strengthen already modified positions, each distance di is
weighted dependent on the time the experience exists.
The overall aberration ∆(em, emk) of EMs emk and em considering the last n
experiences with n ≤ |emk| is computed by

∆(em, emk) =
1

n

|emk|∑
i=|emk|−n

(|emk| − i)
√

(∆xi +∆yi)2 (3)

Periodically, based on ∆(em, emk), the EM with the highest accumulated x- and
y-distance values is rated worst. If one map was rated worst for four times, it is
replaced by a copy of the best ranked EM. The more frequent this replacement
is performed, the more the system does rely on its odometry in place of re-
localizations.

emj
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ei3

ej1
ej2

ej3

em1 em2 em3

x1

y1

x3

y3y2
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d2

d1

d
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Fig. 2. The distance di for an experience to a calculated experience emi is based on
the x, y-offset. Adjusted weights for di refer to the age of the experience.

3 Experiments

The modified RatSLAM system has been tested on a NAO1 robot. This 58cm tall
humanoid is equipped with cameras with narrow Field-of-Views (FOVs, HOR:
60.9◦, VER: 47.6◦) located in its head. 14 joint motors offer 25 DOFs for flexible
movements. RatSLAM and the NAO were linked through a Robot Operating
System2 (ROS) wrapper3 to make the robot’s API accessible with ROS.

SLAM was performed in a domestic environment with daylight from a win-
dow. RatSLAM was confronted with ambiguous situations that, normally, lead
to false re-localizations and loop closures. Anchor-points (yellow spots in fig. 3),
created during exploration, represent locations with visual templates for differ-
ent orientations. All paths were planned in a way that locations near these points
are traversed more than once and map ranking was triggered every two seconds.

1 http://www.aldebaran-robotics.com/
2 http://www.ros.org/
3 http://wiki.ros.org/Robots/Nao
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Fig. 3. The robot walked the red path of 2m×4m with yellow anchor-points twice. The
internal map for one EM is drawn in thin blue (a defect resulting from false snapping
is marked by “a”), the mean-map based on 4 EMs in bold lime-green color.

4 Results and Discussion

We evaluated the mapping and localization abilities of RatSLAM on the NAO
robot, especially for the crucial task of loop closure. The integration of anchor-
points enhances the recognition rate of familiar locations. Although it cannot
achieve the accuracy of a bi-directional path exploration, it is a benefit for map-
ping tasks on humanoids with slow movement speeds and limited horizontal
FOV. The focus of this work is on the enhancement of the system to Multi-
Experience-Maps to reduce false positive loop closures and to strengthen the
map’s accuracy. To generate comparable results, we tested the system’s original
implementation as well as the modified version with multiple EMs on identical
data sets. Fig. 3 displays the walked trajectory (red) as automatically recorded
by a ceiling camera with anchor-points (yellow), the internal map based on the
original RatSLAM approach (blue) and based on a map of means em (green).

Results show that this extension reduces technical drawbacks of the hu-
manoid architecture. As can be seen in figure 3, it interpolates the jagged trajec-
tory by correcting the location of experiences. Together with the replacement of
the worst rated EM, em prevents the whole system from hasty false loop closures
in ambivalent situations (like at “a”) and, over time, leads to a more accurate
world representation without false connections between distant experiences.

5 Conclusion

So far, RatSLAM has only been used in combination with wheeled and aerial
robots. Our approach adapted RatSLAM to humanoids. The different physi-
cal architecture of this type of robot led to different robot characteristics and
constraints and, hence, did not allow using the model without adjustments and
new constraints. This led to problems that differ a lot from the ones on previ-
ous implementations. Therefore, the used NAO robot responded with swaying
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movements and blurred camera images with lost details and washed-out features.
Independent of the internal parameters of RatSLAM this led to multiple false
positive loop closures. Our new approach creates multiple pose estimates in sev-
eral EMs and deals with false loop closures. This improves the overall topological
map structure and therefore increases the accuracy of the map representation
which can be used for navigation and many further tasks that include naviga-
tion. Hence, the extension of RatSLAM with multi-EMs is now a model usable
on humanoid robots as well.
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