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“Biology gives you a brain. Life turns it into a mind.”

Jeffrey Eugenides



Abstract

The brain comprises hierarchical modules on various physiological levels. Neural

feedback signals (including lateral and top-down connections) modulate the neural

activities via inhibitory or excitatory connections within/between these levels.

They have predictive and filtering functions influencing the neuronal population

coding of the bottom-up sensory-driven signals in the perception-action system.

In this thesis, we propose that the predictive role of the feedback pathways at most

levels of action and perception can be modelled by the recurrent connections in

different artificial cognitive platforms (simulation and humanoid robots). This will

be examined by three recurrent neural network models. Furthermore, the three

models and experiments with them show that the recurrent neural networks are

able to model feedback pathways and to exhibit the feedback-related sensorimotor

predictive functions.

In the first model, inspired by the study of neurobiology, we emphasize that the

feedback connections facilitate a predictive mechanism to compensate for the neu-

ral delay in the two streams (ventral and dorsal) of the visual system. We model

this with a novel recurrent network with a horizontal product. In the simula-

tion, the recurrent connections give rise to the fast- and slow-changing neural

activations in the dorsal- and ventral-like hidden layer. Particularly the recur-

rent connections build a feedback channel to predict the upcoming neural activity

in the dorsal-like hidden layer, while another feedback channel maintains stable

neural encoding in the ventral-like hidden layer.

In the second part of the thesis, a sensorimotor integration model with visual

prediction is implemented, whose visual perception part is considered to be the

dorsal stream representation of the first model. This further augments the visual

prediction with its role of guiding motor action. Together with the action module

which adopts a continuous reinforcement learning algorithm, this model allows a

smooth and faster docking behaviour for a humanoid robot.

In the third experiment, we propose that the source of the feedback pathway could

be the high-level cognitive processes, such as pre-symbolic representations. Fur-

thermore, the emergence of these cognitive processes and feedback-related sensori-

motor functions are not independent processes but they integrate and assist each

other in a hierarchical way. Therefore, we augment the first horizontal product



model with additional units, called parametric bias (PB) units, as a pre-symbolic

representation. In the robot experiments, we show that during the learning pro-

cess of observing sensorimotor primitives, the pre-symbolic representation is self-

organized in the parametric units; during prediction, these representational units

act as a prior expectation which guides the robot to recognize and to expect

various pre-learned sensorimotor primitives.

These three experiments demonstrate that implementation of the feedback path-

ways with recurrent connections can realize predictive sensorimotor functions. The

emergence of these feedback pathways also accounts for the pre-symbolic represen-

tation in cognitive systems. Furthermore, we claim that the recurrent connections

can be one of possible neural structures to build up the feedback pathways on the

sensorimotor integration in artificial cognitive systems.



Zusammenfassung

Das Gehirn besteht aus hierarchisch angeordneten Modulen auf verschiedenen

physiologischen Ebenen. Neuronale Rückkopplungen (einschließlich lateraler und

hierarchischer Verbindungen) modulieren die neuronalen Aktivitäten über hem-

mende oder anregende Verbindungen innerhalb sowie zwischen diesen Ebenen.

Die Rückkopplungen haben Prädiktions- und Filterfunktionen bezogen auf die

neuronale Codierung der sensorisch getriebenen Signale im Wahrnehmungs-

Aktionssystem.

In dieser Arbeit stellen wir die Hypothese auf, dass die prädiktive Rolle der

Rückkopplungen auf den meisten Ebenen von Wahrnehmung und Handlung durch

die rekurrente Verbindungen in verschiedenen künstlichen kognitiven Plattformen

(Simulation und humanoide Roboter) modelliert werden kann. Dies wird anhand

von drei rekurrenten neuronalen Netzwerkmodellen untersucht. Darüber hinaus

zeigen unsere Experimente mit den drei Modellen, dass die rekurrenten neurona-

len Netze Rückkopplungen modellieren und rückkopplungsbezogene sensomoto-

risch prädiktive Funktionen aufweisen.

Im ersten Modell, inspiriert durch das Studium der Neurobiologie, betonen wir,

dass die rekurrenten Verbindungen einen prädiktiven Mechanismus ermöglichen,

der neuronale Verzögerung in den beiden Strömen (ventral und dorsal) des vi-

suellen Systems kompensiert. Wir modellieren dies mit einem neuartigen rekur-

renten neuronalen Netzwerk als horizontales Produkt. In der Simulation führen

die rekurrenten Verbindungen zu sich schnell und langsam ändernden neurona-

len Aktivierungen in der verborgenen ventralen und dorsalen Schicht. Dabei bil-

den die rekurrenten Verbindungen einen Rückkopplungskanal, um die kommende

neuronale Aktivität in der dorsalen Schicht vorherzusagen, während ein anderer

Rückkopplungskanal eine stabile neuronale Codierung in der ventralen Schicht

aufrechterhält.

Im zweiten Teil der Arbeit wird ein sensomotorisches Integrationsmodell mit vi-

sueller Vorhersage implementiert, dessen visueller Teil als weitergehende Imple-

mentierung des dorsalen Pfads des ersten Modells verstanden werden kann. Diese

erweitert die visuelle Vorhersage durch die Funktion, motorische Aktionen aus-

zuführen. Zusammen mit dem Aktionsmodul, das einen Algorithmus zum konti-

nuierlichen Verstärkungslernen einsetzt, erlaubt dieses Modell ein reibungsloses

und schnelleres Dockingverhalten für einen humanoiden Roboter.



Im dritten Versuch stellen wir die Hypothese auf, dass die Quelle der

Rückkopplungen höhere kognitive Prozesse, wie zum Beispiel präsymbolische Re-

präsentationen sein können. Darüber hinaus sind die Entstehung dieser kogni-

tiven Prozesse und rückkopplungs-bezogenen sensomotorische Funktionen nicht

unabhängige Prozesse, sondern sie integrieren und unterstützen sich gegenseitig

auf eine hierarchische Weise. Deshalb erweitern wir das erste horizontale Produkt-

modell um zusätzliche Einheiten, die so sogenannten parametrischen Bias (PB)

Einheiten, als präsymbolische Repräsentation. In Roboterexperimenten zeigen wir,

dass während des Lernprozesses, bei dem sensomotorische Primitive beobachten

werden, sich die präsymbolische Repräsentation in den PB Einheiten selbstorga-

nisiert. Während der Vorhersage wirken diese Darstellungseinheiten als Vorerwar-

tung, die den Roboter dazu führt, verschiedene vorher gelernte sensomotorische

Primitive zu erwarten und zu erkennen.

Diese drei Versuche zeigen, dass die Implementierung der Rückkopplungen mit

rekurrenten Verbindungen eine prädiktive Sensomotorik verwirklichen kann. Die

Entstehung dieser Rückkopplungen ist auch für die präsymbolische Re-

präsentationen in kognitiven Systemen verantwortlich. Außerdem behaupten wir,

dass rekurrente Verbindungen mögliche neuronale künstliche Netzwerkstrukturen

zum Aufbau der Rückkopplungen für die sensomotorische Integration in künstlichen

kognitiven Systeme sein können.
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Chapter 1

Introduction

The main aim of this thesis is to implement feedback neural connections using

artificial recurrent neural networks (ARNN) on the sensorimotor integration of

cognitive robotics systems. This is based on the cognitive finding that neural

feedback transmits signals from high-level cognitive functions to the lower-level

neuron activities in the sensorimotor systems. These processes also account for

several cognitive functions and phenomena. This thesis proposes that the feedback

information is partially originated from cognitive processes, such as (pre-)symbolic

representations. These feedback mechanisms in sensorimotor processes are imple-

mented with recurrent neural models in this thesis. Furthermore, such recurrent

connections-based neural models will be examined in cognitive robotic systems.

1.1 Cognitive Robotics

Since as early as 1920 when the Czech writer Čapek invented the word ‘robot’, dif-

ferent kinds of robotic systems have been designed and deployed in various fields.

As a branch of technology, a robotic system is usually built to provide solutions

for a single or a set of task(s) or problem(s) with configurations of mechanical sys-

tems, electrical systems and control systems. Due to the fact that robots are built

with tireless and (mostly) faultless manipulators, they are suitable to aid us with

repetitive, dangerous and demanding situations. Therefore, these systems have

been extensively used in the fields of industrial manipulation, space exploration,

etc. For instance, a number of industrial robots (mostly articulated robots) have

been deployed in the auto-mobile industry. The ratio of robots to the employed

human workers has increased to ten to one [Gates, 2007]. The semi-autonomous

1
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robots ‘Robonaut’ have been sent to space stations to handle different types of

tasks in space with their dexterous manipulation skills [Lovchik & Diftler, 1999,

Ambrose et al., 2000, Bluethmann et al., 2003].

Nevertheless, the industry robots and the ‘Robonaut’ robots are not fully au-

tonomous robotic systems. Instead, there are only a small number of fully au-

tonomous service robotic systems which are used in the real world and share the

same working space with humans. The reason why only such a small number

of robotic systems is employed to accompany a human being in daily life is that

such a robotic system needs to be accurate enough to understand the situation

by perception, to be adaptive enough to deal with the changing environment with

noisy sensors and to be knowledgeable enough to communicate with humans.

These problems (among others) are still yet to be fully solved by engineers and

researchers.

One solution to solve the problem regarding full autonomy is to develop a robot

that possesses its own cognitive capabilities. Thus, the topics of cognitive systems

and robotic systems are correlated and overlapping with the subject ‘cognitive

robotics’. Inspired by multiple disciplines such as cognitive science, neuroscience

and psychology, research in cognitive robotics mainly concerns how to develop

cognitive ability by designing architectures and algorithms in hardware and soft-

ware for robot systems so that they can execute intelligent behaviours in terms

of human-like perception and motor action as well as high-level cognition. There-

fore, these systems are able to be operated in a dynamic environment driven to

accomplish one or several complex goal(s).

Also, designing a cognitive robotic system is different from designing architec-

tures and algorithms to merely provide an ability for a machine to plan, to reason

and to deliberate a solution according to symbolic rules, although this artificially

intelligent method has been proven to be successful in applications that can be

reduced as a formulation of symbol manipulation, such as playing chess; for in-

stance, the renowned supercomputer ‘Deep Blue’ won a chess match against the

human world champion [Schaeffer & Plaat, 1997]. Such machines still belong to

disembodied devices, which can only passively receive and process symbolic data

as a calculator does. Despite it has intelligent abilities based on learning, it cannot

carry out a large diversity of tasks because it does not really learn from informa-

tion perceived from sensors, and does not own a body for interacting with the

environment. Intelligence and understanding are not only symbol manipulation.

Therefore, cognitive robotics is much related to provide an ability of ‘intelligent’
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thinking to a robotic system. The study of cognitive robotics is not only about

learning to ‘think’. Derived but different from the conventional ‘artificial intelli-

gence’, a ‘cognitive robot’ that possesses intelligence should also own ‘a group of

operations of the mind by which reasoning is performed, to give (an embodied)

expression to them in the symbolical language of calculus’ [Boole, 1854]. So, the

embodied knowledge (the ‘mind’ proposed by Boole) coming from different cogni-

tive systems differs when they have various configurations and constraints: birds

(or flying robots) that float in a six-dimensional (i.e. three-dimensional position

and three-dimensional rotation) free space (i.e. sky) have a different perceptual

world than ants (or vacuum-cleaning robots) which are restricted to planar sur-

faces; human beings (or humanoid robots that have legs and arms) need a more

complex control scheme for learning dexterous hand and finger movements.

Thus, the behaviours of the embodied ‘acting’, i.e. taking into account the phys-

ical body for learning, are crucial for cognitive systems. In line with the learning

of ‘acting’ in human and other biological cognitive systems, it actually takes up

the majority of the cerebral cortex in the brain to accomplish such related sen-

sorimotor tasks1. This can also answer Moravec’s paradox2: the more abstract

knowledge obtained from sensorimotor integration can consequently be utilized

as a description of the machine’s reasoning. To sum up, to realise a full ‘arti-

ficial cognitive system’, the software and hardware design of a cognitive system

should first take into account ‘the embodiment of intelligence’, which advocates

that there is no clear distinction between the representation of thinking and the

way of perceiving and acting. Perceiving and acting are major ways to acquire

knowledge of thinking; the cognition ability is acquired during interaction with

the environment and presented with the body. Besides, there are no differences

in terms of basic cognitive mechanisms between biological agents and artificial

agents, although they have different manifestations.

In terms of artificial systems, some of the researchers focused on building artificial

machines to realize embodied behaviour-based intelligence by demonstrating low

level sensorimotor behaviours (e.g. navigation [Cordeschi, 2002, Holland, 2003,

Webb, 2002]). But most of them have merely done simple formulation of embod-

iment, as they ignored either higher-level cognition or its strong link grounded in

bodily activity and experience.

1The human temporal lobe, occipital lobe and parietal lobe, where various sensory cortices
and motor cortices locate, occupy approximately 60-65 % of the cerebral hemispheres.

2According to Moravec’s paradox, it is contrary to traditional assumptions that the high-level
reasoning requires very little computation, but low-level sensorimotor skills require much more
computational resources.
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Alternatively, some researchers started to identify possible cognitive mechanisms

in biological systems that endow intelligence to emerge from dynamic interaction

with the environment through sensorimotor experience. These findings are then

transferred by building artificial cognitive systems. For instance, researchers in-

vestigate the developmental mechanisms of infants and program them in robotic

systems (see also [Asada et al., 2001, Weng et al., 2001]). These systems delib-

erate about the surrounding by understanding and interaction; the acquisition of

‘cognition’, especially the way to act, is also done with the accumulating process

of sensorimotor skills instead of being programmed by the human designer. Fur-

thermore, high-level cognition, such as symbolic representation for language ac-

quisition and reasoning, is also obtained by the interaction process which involves

the physical body, its sensorimotor process and the environment [R. A. Wilson &

Foglia, 2011]. So, cognitive learning is not only a knowledge acquisition process

mediated by the physical body, but also an abstraction process grounding intel-

ligence and skill development at the same time. In terms of artificial systems,

this is achieved by constituting a structural coupling between mind, neural struc-

tures and the physical body, by a small set of pre-programmed learning rules. By

this mean, the system acquires a representation from sensorimotor knowledge: it

becomes capable of interaction using more complex verbal and non-verbal expres-

sions.

1.2 Modelling Feedback Pathways on Cognitive Robotic

Systems

In the context of sensorimotor integration, it is straight-forward to regard that

the perceptual world is directly obtained by a series of sensory-driven information

flows that come from various kinds of perceptual receptors (a.k.a. the bottom-up

influences); they directly represent the physical characteristics of the stimulus-

driven perception, which indicates that the percept is a true representation of

reality. For instance, in the visual system, the electrical signals from the retina

carrying visual information are sent across a series of cortical areas until they

reach a high-level neural representation in which the visual scene is understood.

Therefore, the higher level represents more abstract information; this continues

until the highest cognitive representations, such as language acquisition, decision

making and reasoning, are formed on the highest levels.
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However, our percept is also affected by the information about previous experi-

ence, concerning how the percept/action might appear [Gilbert & Li, 2013], which

is transmitted in the feedback neural pathways. These schemata are affected by

the existing attention, expectation, perceptual tasks, working memories and pro-

posed motor commands. Existing in the feedback neural pathways, the complete

schema is constituted by the information provided from the top-down and lat-

eral connections. Physiologically, these influences can be represented as a type

of neural transmission that originates from the high-level cortical areas and ex-

erts neuronal influences to the low-level neuronal activities, such as chemical and

electrical transmission. It consequently affects the existing response patterns of

neuronal population in order to become better suited to the (anticipated) envi-

ronment. This is especially useful, as its existence increases processing speed and

accuracy, and reduces the bandwidth of sensorimotor processing by interpreting a

percept or motor action, filtering sensory information or predicting the upcoming

sensory information.

In this thesis, we specifically focus on designing embodied neural networks to

model the feedback pathways on the sensorimotor integration of cognitive robotic

systems. This is inspired by biological cognitive systems, whose sensorimotor con-

trol is ubiquitously affected or modulated by the feedback pathways. Generally

speaking, the feedback pathways link the cortical areas, which constitute vari-

ous levels of representation in a hierarchical sensorimotor system. Generally, the

feedback pathways include:

• the top-down projections from high-level to low-level representation;

• the lateral connections within the same level.

In agreement with our embodied cognition theory, the emergence of such feed-

back information is also accomplished by learning knowledge in an embodied way

through sensorimotor integration, which refers to a dynamic process involving

action, perception and interaction.

1.3 Research Questions and Contributions

In short, we will investigate the feedback pathways on sensorimotor functions of

cognitive robotic systems, modelled by different kinds of recurrent neural networks

in this thesis. We will answer the following questions:
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• What kind of information do the feedback pathways deliver?

• What are the mathematical descriptions of these feedback signals? What is

the model to describe them under these descriptions?

• From an engineering perspective, is it possible that the feedback pathways

also give rise to some of the sensorimotor functions in artificial cognitive

systems as they do in biological systems? Do the artificial feedback path-

ways also facilitate the sensorimotor learning and adaptation in a dynamic

environment for a cognitive robotic system?

1.4 Structure of the Thesis

The remainder of this thesis is organised as follows:

Chap. 2 sees an overview of the feedback pathways in the context of the neuro-

science and cognitive science. The concepts of functional modularity and hierar-

chical organization in the sensorimotor areas also provide the theoretical founda-

tion of the existence of the feedback pathways. Additionally, cognitive evidence is

introduced to support the existence of the feedback pathways. Two theories (pre-

dictive coding and biased competition) are introduced which attempt to explain

how the information from feedback pathways affect the sensory-driven bottom-up

neural stimuli on the cortical functions.

In Chap. 3, we focus on the implementation of feedback pathways with an emphasis

on their feedback signals. This can be implemented by recurrent artificial neural

networks on situated agents. In this chapter, the fundamental structures and

algorithms of recurrent neural networks are introduced in the context of computer

science. We also present a few variants of recurrent network models.

In Chap. 4, an overall cognitive architecture of this thesis is proposed, which

also gives a general framework of this thesis. This framework is based on the

perception-action model, where the hierarchical perception and action share the

common coding representation. This representation also plays a role in exerting

feedback pathways in both perception and action. The following chapters describe

different parts of this architecture.

From Chap. 5 to Chap. 7, we begin to propose the neural network models on

embodied systems. Firstly, in Chap. 5, we concentrate on the modelling of differ-

ent temporal-encoding requirements in the two-stream theory within the primary

visual cortex. These requirements, specifically, mean that the fast-changing units
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are needed for encoding dorsal information, while the slow-changing units are

needed for encoding ventral information. We claim the maintenance of such units

is contributed by the feedback pathways on the neural structure level in the vi-

sual system. To model this, two homogeneous recurrent connections are used to

maintain the encoding of object features and movements. These two recurrent

networks are linked by a horizontal product where the information about the fea-

tures and movements of an object are able to be separated successfully in the two

hidden layers.

Since the dorsal pathway also exerts the motor-relevant information which allows

smooth sensorimotor integration, the filtering and predictive functions of the feed-

back information ensure a stable and rapid motor action. Therefore, we examine

the predictive function on the sensorimotor system based on feedback pathway

models in a robotic system in Chap. 6.

In Chap. 7, a hypothesis that the pre-symbolic representation emerges from sen-

sorimotor integration is modelled and examined by robot-object-interaction. This

representation relates to a high-level language acquisition and conversely it oper-

ates as one of the sources of the feedback influences. Here, the feedback signal is

across neuronal and cognitive levels as well as motor and sensory cortices. The

model is realised by a novel horizontal product recurrent neural network model

featuring a recurrent network with parametric biases.

Finally, a discussion and conclusions are given in Chap. 8.



Chapter 2

Feedback Pathways in a

Hierarchical Modularity Brain

In this chapter, the feedback pathways of the sensorimotor system will be reviewed.

The sections introduce the sensorimotor system from a lower (neurobiology) to a

higher (cognition) level: we first introduce the anatomical organization of the

sensorimotor system of biological cognitive systems. The hierarchically organized

cortices are extensively linked by reciprocal connections of the sensorimotor sys-

tem, which is the prerequisite of the existence of the feedback pathways. These

feedback pathways convey prior knowledge guided perception/action into neuronal

and even lower levels. Together with the sensory-driven bottom-up influences, the

information from the feedback pathways maintain asymmetric information flows

on the artificial/biological sensorimotor system. In addition, two hypotheses about

how the feedback pathways influence low-level neural activities are introduced.

2.1 Sensorimotor Integration

Perception and action hold a synergistic relationship, in which these two parts

communicate and coordinate with each other. In particular, the sensory represen-

tation as well as sensory awareness emerges from the changes of the perceptual

world in the sensory input, which results from the active execution of certain sen-

sorimotor skills through cognitive processes, rather than an internal representation

merely from sensory signals. Therefore, perception can simply be conceived as a

process of probing the external world by action (e.g. moving the arm and touch-

ing, and perceive what has been changed). This relationship can be depicted as

8



Chapter 2. Feedback Pathways 9

sensorimotor regularities, according to the framework of sensorimotor contingency

(SMC) [O’Regan & Noë, 2001]. This law-like relationship between perception and

action rejects the traditional theory that perception is fully composed by cognitive

processes in the brain. Also, this law allows perception to be acquired by engaging

a full set of skillful action and establishes cognitive processes from sensorimotor

interaction.

Within the SMC framework, Prinz [1984, 1992, 2003] proposed that perception

and action systems are represented as a common-coding mechanism, stating that

perception and action share the same representation which reflects the perceptual

events that actions produce, rather than that there are cognitive processes in-

between. This means that perceiving an action triggers the same representations

as the perception system does when it receives sensory input. These represen-

tations are called ‘common-coding’. These shared representations do not encode

explicit actions, but rather do they encode the information which is perceived as

a consequence of the corresponding actions.

Although there is still not a convincing conclusion in how perception and motor

actions are related, the common-coding theory may be one answer to the key part

in most, if not all aspects of cognition. As the common representation may be

able to be scaled up to represent a perceptual symbol, this theory may be able to

conclude a unified perception representation that comes from the exploration of

the environment and from the immediate effect of the sensorimotor contingencies.

This representation can be further exploited for one’s planning, reasoning, and

speech behaviours. From this theory, our prior experience and knowledge come

from both the sensory input channels (sensory cortices) and the motor action

channels (motor cortices). In the next section, we will review the anatomy of the

sensorimotor system.

2.2 Sensorimotor System

2.2.1 Sensory and Motor Cortices

Sensory Cortices The sensory cortices mainly include the visual cortex, the

auditory cortex and the somatosensory cortex. These brain areas, and the recep-

tors constitute a hierarchical system for sensory systems. We will briefly introduce

them from low to high levels.
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The lateral geniculate nucleus (LGN) is the first processor of visual information as

it receives its information from the retina. Receiving the majority of input from

LGN, the primary visual area (V1) is the first stage of the cortex that processes

visual information in all visual areas. It forms a mapping of the whole visual field

in a topographical way: anatomical locations in V1 maintain the similar spatial

arrangement of the visual field. Inside V1, neurons with different receptive fields

are functionally considered to be local feature detectors for preferred orientation

in the visual stimuli. The neural encoding of orientation perception, subject move-

ment as well as feature recognition usually begins on this level of processing. So,

the V1 area is the first brain area that receives the electrical signals from the

eyes and transmits it for further perception and motor action. After V1, visual

information is transmitted to the surrounding visual areas such as V2 and the

associative visual areas: V3, V4, V5 (or MT), etc. Although these areas are not

as comprehensively studied as V1, the main functions of these areas have been

identified:

• Visual area V2, also called prestriate cortex, is the second major area in

the visual cortex. It receives strong connections from V1, and is mostly con-

sidered as a mapping of V1, but its neurons possess more complex receptive

fields. Also strong connections are sent from V2 to V3, V4, and V5.

• Visual area V3 receives the majority of inputs from V2, and projects to

the area MT and V4. Part of the V3 normally contains a representation of

the dynamic shape of visual stimuli.

• Visual area V4 receives feed-forward connections which are from V1 via

V2. Different from the complete mapping of V1 and V2 in the visual field,

the receptive field of V4 is only sensitive to both colour and orientation.

• The inferotemporal area (IT) is located anterior to V4. Its neurons also

activate to a wide range of colours and an object feature of intermediate

complexity.

• Visual area V5/The medial temporal lobe (MT) is part of the extras-

triate visual cortex. With connections to area V3, it is considered to play

an essential role in the perception of motion.

From V1 via V2 to other associative cortices, the receptive fields have a relatively

increasing complexity. Also, these areas appear to form two major cortical systems

for processing visual information: a ventral visual stream begins with V1, into



Chapter 2. Feedback Pathways 11

V2

V3

V5/MT

Ventral Stream Dorsal Stream

LGN

V1

Parietal 

Cortex

Left Eye Right Eye

V4

IT

Figure 2.1: Ventral and Dorsal Streams in Visual System

Areas in ventral streams are denoted in blue, while areas in dorsal streams are
denoted in green. Common areas are in white. We can see a hierarchical

organization in both layers from the eyes to higher cortices for visual
information understanding.
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V2 and V4, and terminates at the IT cortex. This stream processes the local

features of a visual stimuli, which is utilized to process form recognition as well

as object representation and to keep a long-term memory. All this information

is used to identify, recognize, and remember objects. The other pathway is the

dorsal stream, which begins with V1, goes through V2 and V5 until the posterior

parietal cortex. The dorsal stream is essential to provide spatial information of

stimuli. This information further relates to motor action, location of the object,

and control of the saccades.

From the above-mentioned connections in the visual system (Fig. 2.1), we can

conclude that various cortical areas of the visual system are connecting and func-

tioning in a hierarchical manner related to their receptive fields’ complexities and

abstractness: from low- to high-level, the sensory representation in the neural

activities are becoming more and more abstract.

Motor System A complete motor system includes the motor cortex, the central

nervous system and the manipulator.

Particularly, the motor cortex can be divided into several parts:

• The primary motor cortex (M1) controls the execution of movement

by neural impulses through the central nervous system. It is located at the

frontal lobe, forming a somatotopic representation of different parts of the

body.

• The premotor cortex (PMA) controls some aspects of motor action,

such as torso muscles of the body. Also, it is involved in the preparation for

movement and the planning of a movement. The so-called mirror neurons

are also located in area F5 of the premotor cortex.

• The supplementary motor area (SMA) controls body movement, which

has a direct connection to the spinal cord.

• The posterior parietal cortex (PPC) is responsible for multi-sensory

information to motor commands.

The control process of motor action is simply following a top-down control scheme

from the cognition level to the execution of a voluntary action. This control scheme

is enacted hierarchically (Fig. 2.2).
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Figure 2.2: Motor Control Flowchart

• Intention Description First, as any voluntary movement is jointly deter-

mined, mediated or affected by the motor cortex and numerous other neural

systems, cognitive processes determine motor strategies according to goals,

objectives or intentions of the intended movement at the topmost level. This

is anatomically involved in the pre-frontal cortex (PFC).

• Vision-for-action The parietal cortex projects spatial perception to the

frontal cortex. The function of the frontal cortex involves the analysis of

the position of body, from which further motor actions can be accordingly

determined. The basal ganglia are also involved in this process.

• Pre-structured Actions The secondary motor areas (PMA and SMA), to-

gether with the cerebellum, further augment the goal-directed pre-structured

motor programs into motor synergies, which calculate the precise force pro-

duced by different muscles in agreement with the principle of redundancy.

• Muscles Contractions According to the outcome of secondary motor ar-

eas, the primary motor cortex, the brain stem and the spinal cord further

specify and generate the contractions of all the muscles needed for the motor

actions.

The voluntary motor action is determined by the cognitive processes with con-

sideration of the sensory information obtained from the perceptual world, the
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current state of the body and the goal (objective or intention). The whole process

is executed in a top-down way: the cognitive process augments the goal into a set

of motor primitives, which are physically executed by muscles. More specifically,

this execution process requires a top-down control scheme from the motor cortices

and the central nervous system to the musculoskeletal system.

This section briefly introduced the anatomy of the visual and motor cortices. To

summarize, the cortices are organized in a hierarchical way. Among these cortices,

besides of the main stream signals (i.e. sensory-driven signal in visual cortex, top-

down signal in motor cortex), there are also feedback signals (c.f. Fig. 2.1 and

Fig. 2.2). We will address this problem in the following section.

2.3 Functional Modularity of Sensorimotor System

The human body is physiologically constituted by clustering on various levels: the

neuronal cells are formed by clusters of molecules, while the neurons constitute

various structures of the brain. Also, accomplishment of a cognitive function

involves a series of structures. To sum up, these physiological parts which own

similar or related functions usually interact, cluster and function as a whole and

form another physiological network on a higher level. In this way these parts

become another unique level in the physiological organization. That is the way

neurons, neural structure and cognitive functions emerge. Literally, we call the

clustering phenomenon to form cells, neurons, brain issues and networks with

similar/related functions functional modularity.

Although this is a common phenomenon to form various parts of the physiological

body, we only depict a few examples in the human brain in this section. On the

neuronal level, for instance, neurons are segregated into different layers within an

individual cortical column (also known as the hyper-column or cortical module)

with different kinds of connectivities in the cerebral cortex. These modules carry

out specific cellular functions, such as signal transmission, by the interaction of

cells within the same modularity. Those cells own various physiological charac-

teristics, all of which are linked by the connections. These connections endow

cells with different characteristics to interact efficiently and to perform cellular

functions jointly [Mountcastle, 1957].

Within each of these cortical columns, the neurons have almost identical receptive

fields, which implies that they have similar firing activities while a similar stimuli

is presented. In the V1 area, specifically, cells with the same eye preference as well
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as the same orientation of line stimuli are grouped into the same cortical columns.

In other words, each column typically responds to a sensory stimulus representing

a certain feature of sound, vision or other sensory modalities.

Such columnar organisation can be mostly found in the sensory and motor areas

of the neocortex, in which the cells in neighbouring cortical columns have similar

functions (e.g. orientation selection, eye preference), so the cortical columns are

considered to be one of the most basic repeating functional units on the neuronal

level [Ng, 2009]. This has been recorded from micro-electrode mapping experi-

ments, metabolic studies and nerve regeneration experiments (e.g. [Kaas, 1987,

Mountcastle, 1957, 1997, O. Favorov & Whitsel, 1988, O. V. Favorov & Diamond,

1990, Tommerdahl et al., 1993]).

As a basic functional unit, each cellular module contains afferent excitatory and

inhibitory connections from and to other modules as well as intra-cortical connec-

tions. This is realised by cells with different functions within the same module.

For instance, there are six different layers of different neurons within the cortical

column. Each of them has distinct functions (Fig. 2.3): the neocortical neurons

and pyramidal cells retain excitatory connections which are grouped into separate

bundles with dendritic cells at their centres, while in another layer the basket cells

and stellate cells form local inhibitory connections to exert strong intra-modular

lateral connections to other modules [M. E. Newman, 2004, 2006]. The six layers

of cells constitute a module as an informational encapsulation and limited cen-

tral accessibility, except with some kind of input and output channels. On the

other hand, due to the encapsulation, these modules require information flows

to communicate out of the module and form a larger system via inter-modular

connections such as axons and dendrites.

Similar to the formulation of the cellular level, the quasi-independent neural mod-

ules with similar functions are integrated within themselves. They exhibit some

degrees of interdependency among other modules and form another level of mod-

ules, from which they assemble the basic networks on a higher-level: structural

level.

A structure module in the human brain is one tissue to accomplish several cog-

nitive functions in the human body, which usually is anatomically referred to as

the Brodmann areas (such as sensory areas of visual cortex, somatosensory cor-

tex, motor cortex, premotor cortex, etc.) in the cerebral cortex. A bit different

from the modularity on the cellular level, the organization of structural areas sug-

gests that both functional segregation and functional integration are happening
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simultaneously in the brain to some extent (for a detailed review see [Bullmore &

Sporns, 2009]).

For instance, the functional modularity in brain structures can be indicated during

detection of neural activation in the fusiform face area (FFA) and other structural

areas, in response to different facial recognition tasks [Sergent et al., 1992, Kan-

wisher et al., 1997]. These activations of neural coupling are dynamically changing

according to various types of stimuli and context [Ishai, 2008] depending on stim-

ulus and tasks. This suggests that the mapping between brain structures and

functions are not static but a dynamic changing process according to the con-

scious/subconscious cognitive processes. Furthermore, the modularity results in a

prompt interaction between neurons within the same structure if they are involved

in a similar task. Fig. 2.4 shows the main brain structures which are involved in

visual and auditory perception. We can see the visual and auditory cortical areas

are located closer to their linking areas in the occipital lobe and the temporal

Cerebral 

Cortex

Six Layers of 

Cerebral 

Cortex

Figure 2.3: Layers of Cortical Columns

The cerebral cortex is the outermost of the mammalian brain. It constitutes of
up to six horizontal layers. These layers have a different composition in terms of

neurons and connectivity1.

1This image is a derivative work based on images from http://commons.wikimedia.org/

wiki/File:Human cerebral cortex.png, http://commons.wikimedia.org/wiki/File:Cajal

cortex drawings.png and http://pixabay.com/en/brain-human-anatomy-body-155655/. All
of the images are licensed under the Public Domain license.

http://commons.wikimedia.org/wiki/File:Human_cerebral_cortex.png
http://commons.wikimedia.org/wiki/File:Human_cerebral_cortex.png
http://commons.wikimedia.org/wiki/File:Cajal_cortex_drawings.png
http://commons.wikimedia.org/wiki/File:Cajal_cortex_drawings.png
http://pixabay.com/en/brain-human-anatomy-body-155655/
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Systems Neuron Structure Cognition

Visual System [Tootell et al., 1998],
[Fujita et al., 1992]

[Felleman & Van Es-
sen, 1991], [Ungerleider
& Pessoa, 2008]

[Ward, 2008], [Zeki &
Bartels, 1998]

Motor System [Eisenberg et al., 2010],
[Kakei et al., 2001]

[Rizzolatti et al., 1988],
[Alexander et al., 1986]

[Kuppuswamy & Har-
ris, 2013], [Carruthers,
2002]

Table 2.1: Examples of Functional Modularity in Different Physiology Scales

lobe, respectively.

This could be explained by the fact that the organization of modularity saves a lot

of time for neural information transmission, although the speed of neural impulse

can reach 100 m/s2. Also, it is an advantage in evolution to reduce energy required

for information transmission. Research has been conducted to investigate how

neuronal modularities emerge in complex networks (e.g. [Kashtan & Alon, 2005,

Kashtan et al., 2007, Chen et al., 2006, Clune et al., 2013]). It is widely believed

that the modular structure of complex brain networks plays a critical role in their

functionality to make the transmission of information within cognitive functions

more efficient by shortening the nerve length for a fast information transmission,

as the brain structures have various information routes in different contexts.

Besides the functional modularity examples above, there are more examples of

multiple levels of functional modularity, which are shown in Tab. 2.1. We can

see that modularity is a pervasive phenomenon in the whole physiological body

on various levels. From these examples of the brain, we can conclude that a

cluster on one physiological level allows them to process one function at a time

without changing too much information within one module. The whole brain

system is composed of specialised-function cognitive modules, which are localised

from the low-level peripheral neurons to high-level brain structures. Because of

the dynamic connectivity between the structures in the facial recognition tasks,

modularity also requires a series of dynamic inter-modular interactions. Some of

them are transmitted via feedback pathways.

2.4 Multi-dimensional Hierarchical Modularity

Since we have introduced the functional modularity of the brain (especially in the

cellular and structural levels), the question might arise how do these functionally

2For instance, some myelinated neurons conducting at speeds up to 120 m/s (432 km/h).
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coherent modules combine into larger, less cohesive subsystems as well as the

complete cognitive functional sensorimotor system?

Here, we conclude that both within and across various physiological scales, there

is a hierarchical organisation to control the body, to carry out metabolism and to

restructure its own physiological function in each dimension. This conclusion is

based on the anatomy and physiology studies on the human body and brain. As

shown in Fig. 2.5, the feedback pathways have two directions along two physio-

logical dimensions.

We call the first dimension hierarchical organization within the same level (scale)

of physiology. Along this dimension, modules are with the similar physiological

composition (i.e. the same physiological scale). The studies of this dimension can

be extensively conducted on neural structural level, such as in the visual systems

(e.g. [Gilbert & Li, 2013]) and the auditory system (e.g. [Polley et al., 2006]).

For instance, the feedback pathways on the neural structure level can be found

in electrophysiological studies of the visual system, especially the visual informa-

tion extraction through the ‘what’ and ‘where’ pathways. In general, the visual
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Figure 2.4: Cortices in Sensorimotor System

Nearby cortices are grouped and linked in a hierarchical way: from primary
sensory areas, association sensory areas to higher-order areas.

(Redrawn from [Saper et al., 2000]3)

3This image is a derivative work based on image http://pixabay.com/en/brain-human

-anatomy-body-155655/, which is licensed under the Public Domain license.

http://pixabay.com/en/brain-human-anatomy-body-155655/
http://pixabay.com/en/brain-human-anatomy-body-155655/


Chapter 2. Feedback Pathways 19

M
e
m

o
ry

E
x

p
ec

ta
ti

o
n

G
o

al

Top-down across 

Physiological Levels

R
e
as

o
n

in
g

Figure 2.5: Multi-dimensional Feedback Pathways

The feedback pathways (including top-down and lateral connections) spread
across various physiological levels and within the same physiological level, while

we can also find numerous lateral connections within neuronal structural and
cellular levels.



Chapter 2. Feedback Pathways 20

processing starts from early to late vision system, which is physiologically corre-

sponding roughly to the pathway from LGN to the visual cortex hierarchically.

Neurons on each level of brain area in this hierarchy extract a more abstract infor-

mation, forming non-random structural features in the ventral and dorsal streams

[Van Essen et al., 1992], which correspond approximately neural activities in the

spatially posterior-anterior and to the dorsal-ventral brain areas. In addition to

the sensory-driven neural signals which are transmitted successively from magno-

cellular retinal cell (M-cells) to V1, V2 and MT areas, there also exist feedback

signals from MT to V3 and V2 (Fig. 2.1). Neuron population in the MT is sen-

sitive to a moving stimulus (i.e. a spatial information), which considered to be

accounted for motor action such as saccades for fixation, rapid eye movement (see

also [Milner et al., 2006]). The bottom-up influences on dorsal stream reaches

part of the frontal cortex, which is associated with high-level control of cogni-

tion. On the other hand, the position change information of the visual stimuli in

the MT area also mediates low-level perception, resulting in visual illusions, such

as ‘flash-lag effect’, which is a visual illusion wherein a flash or a moving object

that perceived is displaced from the actual position (usually perceived as motion

extrapolation [Nijhawan, 1994]).

At the other dimension, a new decomposable module can be formed from lower

physiological level modules in a self-organizing way by multiple, sparsely inter-

connections. In other words, modules on one level form a specialised-function

system (i.e. network) in some extents, which becomes another module on a higher

physiological level. In this way, modules on various levels are segregated and

nested in a hierarchical way: the macro-molecular networks are composed from

molecules, the macro-molecular networks constitute neuron circuits, and neuron

circuits constitute neuronal networks, which further build the whole brain sys-

tem of neuronal networks. The whole system is assembled from various neuronal

structures. They operate as an organized computational system in which a kind

of high-level processing with multiple ‘syndromic response’ functions4 is formed.

That is, it becomes a physiological fact that various cells combine to form tis-

sues which then organize into larger units called organs. On the highest level of

the hierarchical system, there are other cognitive processes controlling the neural

processes via attention and consciousness. Among those levels, the information

transmission from high-level to low-level becomes one of the top-down influences,

a kind of feedback signals. Examples can also be found in the visual system: there

4Syndromic response means that the response of the neuronal system is tuned in a form
which should be described as a multi-facet function among various neurons.
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are top-down influences from frontal areas which modulate the receptive fields of

V1 by predicting the possible position of the flanking stimulus to the relative cen-

tre. It implies that neural representations of attention in frontal regions are at

the top of the hierarchy, voluntarily assisting a prompt spatial processing in area

V1 [Ozaki, 2011]. There are still quite a few feedback pathways controlling the

physiological function from the brain, such as cellular functions controlled by the

autonomic nervous system and motor movement controlled by the central nervous

system. These belong to the cross-level dimension feedback pathways in Fig. 2.5.

Although there are various kinds of feedback pathways in physiology, in the fol-

lowing text, we focus only on the feedback pathways in the brain which mainly

happen within the neural structure level and cognitive level. Such feedback path-

ways are considered to represent a kind of subjective experience depending not

only on sensory information from the environment but also on parts of cognitive

processes, such as our prior knowledge or expectations (Fig. 2.6).

Thus, this suggests that the feedback pathways can spread among multiple phys-

iology scales. The high-level module of the hierarchy generalises the low-level

statistics, which includes structural functions, and in turn it controls some parts

of the neural activities, cell activities or molecular activity. For instance, the

neurotransmitter dopamine modulation (such as arousal) are affected by emo-

tion, which is why body states can express emotion to some extents, e.g. the

fear emotion causes trembling hands quickly. On the neural structure level of

perception, the encoding of high-level neuron populations generalize the low-level

stimuli, so the maintenance of such neural activity predicts part of the low-level

sensory driven inputs, according to the previous neural activity from motor action

and contextual stimuli as a prior. On the neural structure level of the motor ac-

tion, the higher-level control includes, but is not limited to, the upcoming motor

action command according to the perception and action information as well as

the goal reinforcement, etc. (Fig. 2.6). Generally speaking, we can further rep-

resent these feedback pathways on the neural and cognitive level in a Bayesian

framework, which will be stated in next section. This Bayesian inference on each

neural structure level should take into account the stimuli from the low-level sen-

sory input which reflects the structure of the perceptual world around us, with

consideration of the other kinds of prior.

In this section, we have concluded that the physical parts constitute the complete

cognitive system which can be considered as function modules. Particularly, mod-

ules are systematically organized as layers in a hierarchical manner in the brain,
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as well as in part of the biological body (cognitive, neural structure and neuronal,

etc.).

2.5 Neural Feedback Connections

In this section, we focus our discussion on how the feedback connections affect

the neural structure level. Despite of the fact that the reciprocal connections

dominate the neural transmission in the brain (e.g. [Felleman & Van Essen, 1991,

Coogan & Burkhalter, 1993]) as it is more efficient and robust for control and

information transmission, among these levels and modules there are also complex

asymmetric interactions formed by the feedback connections. Specifically, the top-

down influences form a series of feed-back projections from a high-level neuron

population to a low-level one, while there are also numerous lateral connections

Cognitive Processes

Action Perception

Figure 2.6: Example of Neuronal Feedback from Cognitive Processes: Goal-
keeper

The perception predicts the object movement, which may account for the
‘flash-lag effect’ (we will introduce later). The motor action part is affected by
the predictive perception too. It predicts the object movement from sensory

information based on prior knowledge (e.g. experience) in order to accomplish a
certain task (e.g. to save the goal)5. After that, if a high-level cognitive process,

such as reasoning, makes a decision and concludes that there is no need to be
fearful, such motor actions will slowly dissipate. In this example, emotion as a
process on the cognitive level can affect the dopamine neurons; it also controls
the motor cortex, the central nervous system (CNS) as well as muscles. Part of
these control flows (from emotion process to neural and dopamine modulation
and from reasoning process to motor cortex) can be included in two feedback

pathways in Fig. 2.5.

5Copyright by Kira Chow.



Chapter 2. Feedback Pathways 23

within one cortical area. As the V1 cortex has been well studied, an example is

made in this particular area.

Generally speaking, the visual information at the primary visual system is special-

ized to process static and moving objects and their patterns, while the higher-level

areas receive the basic visual information from the primary visual system and

generalize more abstract information, such as visual object identity and move-

ment. Although there exist varieties between the exact connectivities of different

species of animals in their sensory or motion cortices, the bottom-up influences

in different biological cognitive systems generally play a similar role: they receive

information from the raw sensory input and extract information in a hierarchi-

cal way. Each level in this hierarchical organization processes one specific feature

within the bottom-up influences; this processed feature proceeds to the next higher

level [Hubel & Wiesel, 1963].

For instance, the feedback connections ubiquitously link the cortical areas, mod-

ulating the neural activities by the top-down and recurrent influences.

• There are direct feedback projections from higher-level (V2, V3, V4, V5) to

V1 (e.g. [Ungerleider & Desimone, 1986a,b, Shipp & Zeki, 1989, Rockland

& Van Hoesen, 1994]).

• It has also be found that direct feedback projecting signals from V1 to Su-

perior Colliculus (SC) and Lateral Geniculate Nucleus (LGN) and pulvinar

(e.g. [Lund et al., 1975, Graham, 1982, Fries, 1990]).

• Lateral connections also ubiquitously exist within the same neural structure.

(e.g. [Raiguel et al., 1989, Kisvarday et al., 1997, Angelucci et al., 2002]).

A similar case can also be found in the motor system, where the motor primitives

ascend through various areas [Calais-Germain & Lamotte, 1996]. To sum up, the

bottom-up influences on the sensorimotor process provide a raw sensory input

to construct a representation to perception and motor actions by analysing its

raw inputs and building up an impartial source of the perceptual world or action

commands.

If we trace down the roots of the feedback pathways, except the lateral inhibition

connections within V1, the feedback signals are partially derived from the cognitive

processes such as memory, experience and expectations. Experiments done by Bar

et al. [2001] suggested that the predictive perception and action should come from

memory. Therefore, our perceived world is constituted from both a proactive
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prediction based on the prior experience of sensory input as well as the actual

incoming information [Herwig & Schneider, 2014]. Furthermore, predictions are

suggested to account for the construction of a static visual world despite of the fact

that the saccade is happening continuously (e.g., [Colby et al., 1992, McConkie &

Currie, 1996, Rolfs et al., 2011, Sommer & Wurtz, 2006]).

2.5.1 Embodied Feedback Pathways

Since environment-agent interaction is the fundamental part to develop a complete

autonomous (artificial or biological) agent [Brooks, 1991, Beer, 1995], the same

rule applies to the development of the feedback pathways on the sensorimotor

integration of robotic systems too. However, a few differences between them

should be addressed:

• First, the configurations of the agents are different from each other. As

we are already aware, the feedback pathways are mostly rooted in the past

knowledge which is obtained from environment-agent interaction, encoded

in genes or computer codes and stored in the brain neurons or storage media.

For instance, what an artificial agent perceives from its camera is RGB pix-

els, which is fundamentally different from what a biological agent perceives

with its eyes.

• This difference further relates to the cues and coding in the knowledge source

of the feedback pathways, which is stored by the construction of new memory

proteins in a biological system, or change of patterns of magnetization in

an artificial system. Thus, the differences in anatomy and physiology of

processing units (e.g. the brain) and memory also result in the diversity of

knowledge representation and learning schemes on feedback pathways.

Nevertheless, the basic form of the feedback pathways (i.e. it is being transmitted

from a high level to a lower one or within the same level) should be consistent.

Although quite a few previous works have been focused on models of top-down

influences (e.g. [Li et al., 2004, Gilbert & Sigman, 2007, Itti & Koch, 2001]) and

lateral connections (e.g. [Amari, 1977, Sirosh & Miikkulainen, 1997]) of biological

systems, few studies have been done on an artificial sensorimotor systems.
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2.6 Phenomena from Feedback Pathways

Feedback pathways influence human sensorimotor integration. This can be found

in various sensorimotor phenomena. Additionally, they are also able to indirectly

demonstrate that the existence of the feedback pathways is beneficial to the brain

cognitive functions.

2.6.1 Binocular Rivalry

Binocular rivalry depicts a visual phenomenon that when two distinct images are

shown to each eye simultaneously: instead of the two images being overlapped or

merged, these images are perceived for a few moments one by one in the perception,

as they are competing in a consecutive and ‘bi-stable’ manner (Fig. 2.7). This

usually happens when sufficiently dissimilar stimuli are presented to the two eyes;

the stimuli can be as simple as different gratings in orientation or as complex as

pictures of a human face or a horse.

This can be explained by the feedback pathways on the neural structure level,

which correlates for the conscious visual experience. It changes stable visual stim-

uli into fluctuations in perception [Alais & Blake, 2005]. According to S.-H. Lee

et al. [2004], such top-down influences may start hierarchically from high-level

‘expectation’ and descend to V1. When they are integrated with the sensory

information perceived from two eyes, the percept is represented as the images

competing with each other.

Furthermore, the functional mechanism of the feedback pathways is not only dis-

tributed in a hierarchical manner over visual cortices, but also forms part of the

cognitive processes. For example, experiments done by Blake [2001] found that

Jewish and Catholic believers judged the relative predominance of symbols mostly

according to their two religions: Jewish believers are likely to see Judaist symbols

during binocular rivalry in a longer visual dominance duration, while the Catholic

believers are likely to see Catholic religious symbols in a longer visual dominance

duration. Similarly, an upright human face tends to predominate over an inverted

face, which could be accounted for by the feedback pathways of facial recognition

area.

To summarize, binocular rivalry is a result from an imposition or stamping of the

high-level temporal cortical areas back onto the V1 cortex. Thus, the feedback

pathways may determine dominance appearances of the binocular rivalry. The
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binocular rivalry dynamics could be influenced by multiple cognitive processes,

such as sensory, cognitive, working-memory and affective factors [Tong et al.,

2006].

Presented

Perceived TIME

Figure 2.7: Binocular Rivalry

When two distinct stimuli are presented, in perceptual awareness over time two
different stimuli compete for perceptual dominance6.

2.6.2 Retina Prediction

The vertebrate retina is a tissue in the visual system that converts light energy

into electrical signals in a form of nerve impulses, by its ganglion cells. As part of

the visual system, the ganglion cells inside the retina have the off-centre and on-

centre properties: the off-centre cells with excitatory synapses are hyper-polarized

by light, while the on-centre cells having inhibitory relationships with synapses

are suppressed without the light.

However, this property of the on-centre-off-surround receptive field (or reverse)

is not always held with constant lighting. They also have an ability to adapt

according to background illumination, intensity and duration of stimulation and

other factors of the stimuli within the receptive fields [Kuffler et al., 1953]. The

firing rate of both types of ganglion cells may be altered if there is a prolonged

presence of contrast or luminance stimuli presented. This could not only account

for natural selection from development, but also the relatively short adaptation

time (only a few seconds) indicates that this is also the result from the adaptation

6This image is a derivative work based on https://openclipart.org/detail/856/eyes-by

-molumen, which is licensed under the Public Domain license.

https://openclipart.org/detail/856/eyes-by-molumen
https://openclipart.org/detail/856/eyes-by-molumen
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of spatio-temporal organization of the receptive fields of the ganglion cells, with

the predictive vision learnt from prior knowledge.

Besides, the majority of ganglion cells are also sensitive to temporal movement

patterns, so that they are able to follow the detection of temporal patterns in the

environment in a predictive manner [Barlow, 1953]; for example, measurement of

different periodic waveforms has shown that the operation of the ganglion cells is

modulated by both luminance and chromate. Hosoya et al. [2005] proposed that

the local encoding in the ganglion cells also have differences in raw image intensity

in a biphasic temporal sequence.

Therefore, the adaptation of ganglion cells in the form of spatial antagonism and

temporal antagonism should be a result of the feedback pathways. To sum up, the

information provided from feedback pathways to the retina encode the possible

image intensities in the perception, assuming that nearby spots of the receptive

field will display similar image intensities. This adaptation can be achieved by

‘anti-Hebbian’ learning7, which serves as a ‘novelty filter’ that learns to suppress

the sensitivity of ganglion cells which correspond to the predictable elements. At

the same time, it increases the correlation between the ‘unexpected forth-coming

events’ and the visual stimuli.

2.6.3 Feedback Pathways on Predictive Action

We mainly introduced the feedback pathways on perception. However, due to

the homogeneous hierarchical organization of perception and action, the feedback

pathways should exist in both parts (perception and action). Also, those influences

are not independent but may influence each other, which results in the feedback

pathways integrating the most updated sensory stimuli as well as the current

motor action on the whole sensorimotor integration.

Brown et al. [2011] asserted that the peripheral motor action is a kind of active

inference in estimating the attention execution in order to compensate predicted

sensory signals. This assumption accounts for the fact that the spatial attention is

mediated by feedback pathways, which usually predict the possible visual stimuli

with consideration of the action inference. In the context of embodied intelligence,

if an agent actuates an action, it may also tend to react with the environment

changes according to this very action, so that the sensation matches the mental

7Anti-Hebbian learning is a learning process in contrast to ‘Hebbian learning’ which pro-
poses an algorithm that the corresponding synaptic weight increases if a repeat firing of one cell
contributes to the firing of another cell connected.
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prediction. Such action mediated feedback pathways can account for the visual

stability [Wurtz, 2008], which means that our visual perception remains stable

even though the movements of our eyes, head and body create a stochastic yet

predictable motion pattern. Here this action inference may include a scene or goal

movement understanding, long-term memory and expectation. This facilitates

quicker processing of the incoming visual information when an agent has prior

knowledge of this kind of advanced information, which biases the processing of

incoming visual information. This mediated attention also makes our perceptual

world stable by utilising an unfolded sensory prediction to cause the subsequent

motor action [Hawkins, 2004]. The representation of this mechanism may be

similar to the predictive sensorimotor integration framework, such as Wolpert &

Kawato [1998] and Kawato et al. [2003]. Also, this can be modelled as a partially

observable Markov decision process (POMDP) model in the perspective of optimal

feedback control theory [Todorov & Jordan, 2002].

2.7 Representation as Bayesian Inference

In terms of the mathematical representation of the feedback pathways, the Bayesian

Inference may be one common link between the biological and the artificial sys-

tems. Von Helmholtz, as a pioneer to interpret perception within a Bayesian

framework, proposed a general rule: that perception is actually composed of vi-

sual statistical representations, which are determined by the previous perceptions

themselves [von Helmholtz et al., 1909]. He stated that previous perception must

be inferred in order to fully understand the pattern perception appearance, so

that a single percept can be regarded as a result of a full description of the prior

as well as the raw sensory inputs.

This hypothesis inspired a group of theorists proposing inverse inference and

‘analysis-by-synthesis’ (e.g. [Neisser, 1967, D. MacKay, 1956, Gregory, 1980]),

which infers an up-coming prediction from a pre-learnt knowledge from low-level

sensory information (short-term prior), and a learnt internal model (long-term

prior). Eqs. 2.1 and 2.2 show how a visual system infers the most probable repre-

sentation according to the Bayesian perspective if we already know the prior prob-

ability of visual knowledge and action [T. Lee & Mumford, 2003]. It is achieved

by the posterior Si given a particular sensory evidence (E), motor action (A) and

other prior information we have already known (I).
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P (Si|E, I) ∝ P (E|Si)P (Si) (2.1)

P (Si|E,A, I) ∝ P (E|Si)P (A|Si)P (Si) (2.2)

where P (Si|E, I) and P (Si|E,A, I) are the conditional probabilities given the

scene E, motor action A and the prior information I. P (Si|I) and P (Si|A, I) are

the prior probability.

Generally, this inference process includes two steps: at the first step, the percep-

tion is obtained from inverse Bayesian Inference, which presupposes an integration

of the past input, as well as a model used to determine how the input should be

estimated. At the second step, the final inference of the perception is obtained

from an integration from a top-down generative neuronal representation and the

bottom-up influence. This can be formulated mathematically using a sequential

hypothesis to compute the posterior by mixed probability distributions, each of

which represents a single prior, depending on a causal relation inferred from sen-

sory information.

Apart from the earlier works proposing to construct non-probabilistic generative

models (e.g. [D. MacKay, 1956, Pece, 1992]), the theory from von Helmholtz

inspired the development of a family of probabilistic models called Helmholtz

machines [Dayan et al., 1995, Dayan & Hinton, 1996]. These models attempt to

learn a new uniform representation of deep regularities through temporal cycling

of perceptual sensing, thus creating a succinct internal model without any prior

knowledge of pre-classified samples. This kind of generalisation methods performs

stochastic recognition and reconstruction through the interaction of bottom-up

sensory data and top-down expectation. Moreover, this kind of generative model

is also akin to the information flow in the cortex. This explains the asymmetric

information flows between the top-down and bottom-up influences, which encode

with a more ‘experienced’ perceptual and an up-to-date sensory correction on

their activity, respectively [Hohwy, 2007]. This procedure combines ‘top-down’

and ‘bottom-up’ influences in a delicate and potent fashion, and explains how the

non-intrinsic activity in the perception area developed with interactions across

levels [Friston, 2003].

Hawkins [2004] also proposed that the two basic principles of sensorimotor inte-

gration are ‘hierarchy’ and ‘integration’: when one’s own behaviour is involved,
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the associated motor actions not only ‘precede sensation’ but they can also ‘deter-

mine sensation’ by changing the experience of sensation. This is partially realised

by simulating the changes in the perceptual world prior to any actual movements.

During this process, the nervous system transforms the difference between the

current and the desired sensory coordinates into the motor system’s coordinates,

so that the motor system is able to generate the necessary motor commands to

move the actuator and thus reach the target state. At the same time, the efferent

copy of the motor command forms a feedback signal that is able to improve the

sensory perception by predicting the next time-step. A minimised representation

of perception requires at least one single feedback (or bias) to deliver the error

between the expectation and the sensory information hierarchically [Fletcher &

Frith, 2008, McMains & Kastner, 2011], by learning from reciprocal interactions

on various hierarchical levels. Although the Helmholz machine is identical from

observation in a neuroimaging study that the top-down influences actually acti-

vate the neural activities in the perception by providing ‘surprise’ signals [Egner

et al., 2010], a single-layer Helmholtz machine cannot be used as a universal func-

tion approximator. Instead, a more simple but still Bayesian compatible method

is learning by back-propagation [D. J. MacKay, 1996]. This may be practical to

be implemented and adopted [McClelland & Rumelhart, 1981, Rumelhart & Mc-

Clelland, 1986]. Learning mechanisms in the field of artificial neural networks will

be discussed in detail later in Chap. 3.

To summarise, one role of feedback pathways (especially in the perception) can be

explained by a Bayesian model which is able to estimate the statistical dependen-

cies on a high-level cognition from the temporal perception inputs by an inverted

generative process (i.e., the top-down influences deliver a prior knowledge). This

model justifies the intertwining relation between neuronal activities on the high-

level of perception and motor action and on the low-level sensory motor action

cortices.

2.8 Hypotheses of Feedback Integration

We have been aware that part of the feedback pathways can be formulated as a

Bayesian inference. However, investigations about how the brain integrate these

two sources of information seamlessly in a dynamic and rapidly changing environ-

ment are still in progress. A few theories have been proposed concerning how the
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integration of top-down and bottom-up influences happen in the perception and

action cortices.

2.8.1 Predictive Coding

As argued by von Helmholtz et al. [1909], what is perceived by the brain is not

exactly what is sensed, as the brain itself continuously predicts the upcoming

percepts and corrects a certain kind of error in various hierarchies of the cortices.

As shown in Fig. 2.8, predictive coding theory proposes that these cortices work

in a cascade so that the high-level system attempts to predict the up-stream from

the low-level statistics according to the innate or learnt models (e.g. Bayesian

model) [Friston, 2005, Rao & Ballard, 1999, Clark, 2012]. In other words, only the

errors are accumulated and transmitted from the lower level of sensory input to the

higher-level cognition. This is how the bottom-up perception information adapts

the environment changes and reduces the error between top-down expectations

and bottom-up raw sensory inputs. Thus, the predictive coding theory asserts

that the brain is always working in ‘error-correction’ mode.

L1 L2 L3

Prediction 

Error

Prediction

Figure 2.8: Schematic of Predictive Coding

According to predictive coding, prediction about the incoming sensory
information comes from each level of this hierarchical architecture. If the

expected information is different to the prediction, error signals or surprising
information is incorporated in the feedback. Also, the predictive model is

updated.
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The hierarchical predictive coding theory is suggested by a number of experimen-

tal studies. For example, functional magnetic resonance imaging (fMRI) data has

shown that illusory contours remain in the early visual cortex even if the con-

tours from sensory input disappear [Muckli et al., 2005], which can be explained

by the encoding at the local lateral interactions within V1 as well as the top-

down predictive influences mediate from higher-level motion-sensitive areas such as

MT/V5. The predictive coding theory can also explain other low-level adaptation

phenomena, such as relative attenuation of neural signals (a.k.a. repetition sup-

pression) [Summerfield et al., 2008], which means a reduction of neural response

when stimuli are presented repeatedly. To further explain the predictive coding

theory on the visual motion processing in a neuroanatomical context, Bar [2004]

proposed that the medial frontal regions should encode predictive templates (con-

structed by individual objects) that are learnt associatively in contextual scenes

at a higher visual cortex, which acts as a low-frequency adaptive filter. Similarly,

this has also been observed in electrophysiological recording of auditory cortices;

while the participants listened to auditory stimuli with varying pitch strength, the

neural activities between the adjacent and primary auditory cortical areas can be

explained with the principle of predictive coding [Kumar et al., 2011].

To summarize, all of these phenomena can be interpreted by the theory that

there is an innate mechanism that compares expected and actual inputs (previ-

ous percepts in perception, or both percept and actuated actions in sensorimotor

processing) in information processing, during which the expected information acts

with a predictive coding-like mechanism. If the prediction of perception is per-

fectly identical to the raw sensory input, successful perception, cognition and

action transmit an identical suppression which ‘explains away’ prediction error so

that no neural suppressions (responses) happen. If the predictive coding is related

to action, it is also considered to be a type of suppression that always attempts

to minimise the expected percept, similar to the ‘error correction’ in predictive

coding theory.

The coding mechanism is similar to the data compression technique used in audio

signal processing and speech processing that encode the signal at the current

time-step by using a weighted representation from the previous time-steps. That

is where the term ‘predictive coding’ was taken from.
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2.8.2 Biased Competition

An alternative theory, biased competition, can also explain the role of feedback

pathways on the sensorimotor coordination. This theory claims that the senso-

rimotor process is the result of competitive interactions among large assemblies

of neuronal processes, including the top-down and bottom-up influences as well

as local lateral neuronal dynamics. This biased role from top-down and lateral

influences on the bottom-up sensory input may be similar to negative feedback

(Fig. 2.9); but the feedback signal comes from more than one process on a single

level. Among those processes, there is no explicit selection for specific processes

which results to behaviourally relevant stimuli. Instead, the final spatio-temporal

sequences in perception are biased by all of those stimuli [Desimone, 1998].

In the single-cell activity study conducted by Kastner & Ungerleider [2001], when

multiple but simultaneous stimuli are shown within the same receptive field, the

neural response to the paired stimuli was reduced compared to a single stimulus.

It suggests that these stimuli are not processed independently in the visual process

but that they are mutually suppressed. Therefore, it also implies that the larger

the number of stimuli, the smaller chance that attention is routed to a specific

object due to the increase of neural suppression. Other neurological studies, such

as neuronal spiking recording by Yilmaz [2012], have also suggested that attention

may result from a biasing routing by the feedback pathways.

This theory can explain the formulation of the attention by regarding that it is

an obligatory competing process for tracking multiple objects. For an attention

process, one reason of employing such a biased mechanism is that a visual system

(as well as other perception systems) has only a limited information capacity to

focus on the object (stimuli) of interest. Therefore, when multiple objects are

presented simultaneously in the visual field, the stimuli will compete in the neural

representation due to the limited routing and processing resources of the visual

system. According to the biased competition theory, a final attention might be

caused by a biased effect from some other mental processes, which results in the

tracking of the features which are previously attended in the visual field and

prioritise the feature-driven attention. In addition, this biases the attention to

move toward the object which is the most relevant to the agent’s behaviour, or is

the most interesting in conscious/unconscious processes.

Although it seems that the theories of the biased competition and the predic-

tive coding are incompatible, in principle they both depict that the feedback
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Figure 2.9: Schematic of Biased Competition

On each level, competition among multiple stimuli is biased by mutual
influences.

pathways are integrated with bottom-up influences in various manners. Physio-

logically speaking, this is realised by the competition of neuron populations via

lateral inhabitation in a cortical region. Globally it becomes neural suppression.

Spratling [2008] unified these two theories mathematically as well, with which

he successfully explained the single-cell electrophysiological mechanism in visual

attention.

2.9 Discussion

How the feedback signals and the sensory-driven influences integrate may be ex-

plained by the free-energy principle. This principle explains that a (biological

or other dynamical) system tends to minimise the free-energy function of their

finite degrees of internal states by maximizing the similarity of their internal men-

tal states to environment orders. In other words, the free-energy can in-turn be

measured by a surprisal (which represents the quantity of ‘surprise’ of seeing an

outcome). This surprisal, in the context of perception, is delivered by the feed-

back pathways. Therefore, reducing the information-theoretic free energy inside

a system’s world model means to reduce prediction errors, i.e. reduces surprisal.

This is how the statistical regularities are employed to infer sensory perception by
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eliminating the redundant energy in the uniformity of the spatial and temporal

domains of the sensory signals.

Furthermore, a similar principle also applies to any biological system (from single-

cell organisms to social networks) that resists a tendency to become disorderly,

which is probably a result of evolution to efficiently save energy to perceive sen-

sory inputs, as well as survive in a dynamically changing environment. This could

also account for the topological characterisation of cortical areas, where a com-

plex network is formed based on the best optimisation result of the structural

and functional organisation in order to ensure the shortest routes for frequent in-

formation transmission. Therefore, neurons with similar functions are clustered,

structures that communicate often are close. Connections are mainly reciprocal.

This process of modularity is naturally formed with the most efficient information

presentation [Clune et al., 2013]. The minimisation of energy is also identical to

the basic training rule of machine learning techniques, such as the Boltzmann

machine [Hinton & Sejnowski, 1983] or back-propagation learning [Rumelhart et

al., 1986].

The hierarchical control of physiology partially contributes to the formation of

the feedback pathways in the cognitive processes, in which smaller numbers of

parameters (e.g. a symbolic command) determines the high degree of freedom

(DOF) dynamics in the lower layer. This has also been discovered by motor

control in biological systems. As Bernstein [1967] proposed, the generation of

certain movements is not so trivial, as the body in most biological systems is

a highly-redundant manipulator, which is comparable to solving the control in

extreme abundance of DOF systems in a stable manner. Kuppuswamy & Harris

[2013] recently also claimed that only smaller number of variables are needed for

the acquisition of motor control. Such an idea can be extended from the central

nervous system (CNS) to other hierarchical control of cognitive processes (e.g. the

grandmother cell theory [Gross, 2002]). Conversely, the sensory-driven bottom-

up processes relieve the high-dimension of neuro-mechanical redundancy in the

body of organisms. This is realized by extracting relatively persistent ‘profiles’ of

sensory data (e.g. identity of a moving visual object, an emotion-driven or goal-

directed behaviour) to construct high-level cognitive processes. Such ‘profiles’ may

result in the emergence of language acquisition too (Chap. 6).

These feedback and sensory-driven influences are highly integrated, which results

in an agile movement and a stable perceptual world of the cognitive agents. There-

fore, in this thesis, we also advocate this idea and build up a model to interpret



Chapter 2. Feedback Pathways 36

how the ‘familiarity’ is derived from the previously learnt knowledge on the high-

level mental state and affects the low-level sensorimotor processes by top-down

influences.

2.10 Summary

This chapter begins with a review about the hierarchical modularity of physiol-

ogy, from which we conclude that there are multi-dimensional feedback pathways

within the same level of physiology, and across various levels. Due to this fact,

the feedback pathways affect neuron activities, control motor actions, carry out

metabolism and restructure physiological functions. Specifically, in this chapter,

the feedback pathways on the sensorimotor integration of the brain at the neu-

ronal and cognitive levels are investigated. The roots of the feedback pathways

here are cognitive processes like goal movement understanding, long-term memory

and expectation, or neural processes like first-order movement encoding.

The hierarchical modularity organization of sensory and motor cortices are con-

nected with long-distance inter-cortical connections, which are physiological paths

of feedback pathways. On each level, these feedback pathways are distributed and

integrated with the sensory-driven stimuli. In this way, they affect the perception

and action in various ways and can be observed as a few phenomena and illusions,

such as binocular rivalry, prediction in vertebrate retina and feedback pathways

on motor actions.

As the feedback pathways can be formulated as a Bayesian inference, which is

identical to the hypothesis by von Helmholtz, the integration of the bottom-up

and feedback influences can be explained by two main theories: namely predictive

coding and biased competition. Both of them emphasize the fact that these two

influences should integrate on each level and affect each other.

It inspires a few models in cognitive modelling, computational neuroscience and

machine learning (e.g. back-propagation in multi-layer perceptron (MLP), Helmholtz

machines and other variant models). Since the feedback pathways existing on dif-

ferent levels of the hierarchical cortical areas (especially visual and motor cortices)

endow predictive sensorimotor functions for a cognitive system, it also encourages

us to design an architecture to realize such mechanisms in artificial cognitive sys-

tems.



Chapter 3

Artificial Recurrent Neural

Network Models of Feedback

Pathways

3.1 Introduction

The mechanisms of the neural signal feedback transmission motivates us to im-

plement it in an artificial cognitive agent. In this chapter, we investigate the

possibility of using an artificial recurrent neural network (ARNN) to be one of the

possible techniques to achieve this target by reviewing its background.

From the perspective of machine learning, ARNN are a class of artificial neu-

ral networks which usually include directed connections between units and which

contain cycles in the graphical model. These connections establish feedback con-

nections and maintain a network activation in a temporal loop. This chapter

firstly introduces the basic component of an artificial neural network (ANN): the

perceptron model. After the introduction of the multi-layer perceptron (MLP)

networks, we describe how the recurrent connections are constituted and trained,

and investigate how they contribute to the network dynamics in a simple ARNN

and other ARNN variants. A comparison between an ARNN and the neural feed-

back mechanism will be also given.

37
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3.2 Multi-Layer Perceptron

An MLP network is an artificial neural network that consists of multiple layers of

simple units called perceptrons. These units are connected by directed weighted

connections without any cycles or loops in the network.

3.2.1 A Single Perceptron

The perceptron model designed by Rosenblatt [1958] computes an output from a

non-linear transfer function with a weighted summation of all inputs and a bias

value. Mathematically, the output of the perceptron can be written as:

z = ϕ(
n∑
i=1

wixi + b) = ϕ(wTx + b) (3.1)

where w denotes the vector of weights, x is the vector of inputs, b is the bias. ϕ

represents a binary classifier:

ϕ =

0 if wTx + b > 0

1 otherwise
(3.2)

As shown in Fig. 3.1, the actual output of the perceptron can be written as

ϕ(wTx + b) = z (3.3)

Eq. 3.3 indicates that the output of a single perceptron is a linear function of all

the inputs. In the simplest case of two-dimensional problems, it means that the

two inputs x1 and x2 are separated by a straight line which is determined by two

weights and the bias of the perceptron:

w1x1 + w2x2 + b = 0 (3.4)

Similarly, in a higher-dimensional space it means that the data points can be

classified by a hyperplane.

Training of a perceptron is done by adjusting the weighting matrix connecting to

the inputs with feature vectors correlated to the error between desired and actual

outputs at one iteration (Eq. 3.5). This correction step is executed iteratively
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Figure 3.1: A Perceptron Unit

until the network learns to reproduce the desired response or the error is within

a certain threshold.

wi(t+ 1) = wi(t) + ηxiδ (3.5)

where xi is the i-th input, and wi is the corresponding weight, η is the learning

rate and δ denotes the output error:

δ = d− z (3.6)

which means that the update of the weights depends on the difference between

expected (target) output d and the actual output z.

3.2.2 Multi-Layer Perceptron Network

A single perceptron is a linear classifier; it cannot solve a simple XOR problem1.

Since the nature of the decision boundaries varies with the network topology, it has

1XOR is true whenever an odd number of inputs is true.
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Figure 3.2: A Multi-layer Perceptron (MLP)

The transfer functions ϕ1(·) and ϕ2(·) in an MLP should be differentiable
non-linear functions.

been proved that a neural network with three layers, i.e. an MLP network, is able

to generate arbitrary decision boundaries. This network is constituted by a group

of perceptron units that are being connected by a set of weighted connections. In

this way they constitute an input layer, a hidden layer and an output layer. As

all the connections are directed, the input signal actually propagates through the

network layer by layer (Fig. 3.2).

Fig. 3.2 presents how an output can be calculated from forward-propagation layer-

by-layer in an MLP; the function of an MLP can be interpreted as a non-linear

mapping f : RD → RP , where D is the size of input vector x and P is the size of

the output vector f(x). Generally, a full mapping function in matrix notation is

given as:

z = f(x) = ϕ2(b(2) + W(2)(ϕ1(b(1) + W(1)x)) (3.7)

where b(1) and b(2) are bias vectors, W(1) and W(2) are weighting matrices, and

ϕ1(·) and ϕ2(·) are transfer functions in hidden and output layers, respectively.

W(1) ∈ RD×H and W(2) ∈ RH×P are the two weighting matrices between three

layers.
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Particularly, the transfer function in a perceptron unit can be realised with any

differentiable non-linear function, such as the logistic sigmoid function:

z = ϕ(y) =
1

1 + e−y
(3.8)

or the hyperbolic tangent function:

z = ϕ(y) =
1− e−2y

1 + e−2y
(3.9)

Such a non-linear function is used as a transfer function in the perceptron model,

because it prevents rapid saturations and the learning makes the output to regress

into a certain range until the cost function of the network reaches the local optima

(usually the cost function reaches the local minimum value) after training. This

allows the output of the perceptron unit to be constrained within a certain pre-

defined interval, thus enabling it to contribute to a stable mapping to the desired

output values. In practice, such selection of transfer functions often depends on

the experience of the designer based on what kind of data (inputs and outputs)

the model has to cope with.

We use vector θ to define all the parameters of an MLP that are to be learnt,

θ = {W (2), b(2),W (1), b(1)} (3.10)

Similar to what we introduced in the single perceptron section, a logistic sigmoid,

the hyperbolic tangent function or other non-linear functions can be utilised as

the transfer function of a layer of an MLP. The update of this vector is basically

based on the error back-propagated from the outputs.

3.2.3 Back-propagation

The training of an MLP is more complicated than training of a single perceptron,

because the error in neuronal units of the hidden layer is difficult to define. Usu-

ally it is derived from a cost function, which is a direct mapping to the difference

between the actual and the desired output patterns; using this difference, the gra-

dient of a cost (or error) is used to modify the weighting matrices according to

the conventional gradient decent method. The most frequently used cost func-

tion is the summed squared error (SSE), which is defined as the summation of
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the squared differences between each actual output and its corresponding desired

output.

C =
1

2

T∑
t

P∑
k

(dk(t)− zk(t))2 (3.11)

where d is the desired output vector, T is the total number of training samples and

P is the size of the output vector. According to the gradient descent, each weight

change in the network should be proportional to the negative gradient of this

cost with respect to the specific weight that is going to be modified. Intuitively,

the larger the neural activation is, the bigger error it contributes, so it should be

corrected more by the training process. Mathematically, it can be written as

∆w = −η∂C
∂w

(3.12)

where η is a learning rate.

In order to obtain the partial derivative, the exact weight change with respect

to the cost function can be rewritten as the product of the internal error of each

neuron δ = −∂C/∂net and the network output with respect to the specific weight

∂net/∂w.

− η∂C
∂w

= −η ∂C
∂net

∂net

∂w
(3.13)

in which ∂C/∂net is the internal error of the output layer. It can be derived as,

δk =
∂C

∂netk
= − ∂C

∂ϕ2

∂ϕ2

∂netk
= (dk − yk)ϕ2(yk)

′ (3.14)

where ϕ2(·) is the transfer function of the output layer. ϕ2(·)′ represents the first

derivative of the output layer’s transfer function.

Similarly, the error of the hidden layer is given by,

δj = −
P∑
k

∂C

∂ϕ2

∂ϕ2

∂netk

∂netk
∂ϕ1

∂ϕ1

∂netj
=

P∑
k

δkwkjϕ
1(yj)

′ (3.15)

where wkj is the element of k-th row and j-th column in the weighting matrix

W(2), ϕ1(·) is the transfer function of the hidden layer. ϕ1(·)′ is the first derivative

of the hidden layer.
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For a first-order polynomial, ∂net/∂W (2) equals the outputs of the hidden layer.

Denoting the k-th row and j-th column of element in matrix W(2) as wkj , the

weighting matrix W(2) between the hidden and output layers is updated according

to

∆wkj = ηδkyj (3.16)

Also ∂net/∂W (1) equals the network inputs. Denoting the j-th row and i-th

column of element in matrix W(1) as wji, the weight change W(1) between the

input and hidden layers is given by:

∆wji = ηδjxi (3.17)

where xi is the activation of the i-th element of the input layer.

Thus, combining Eqs. 3.14 and 3.16, we can derive the update of the weights

between hidden layer and output layer W(2), and combining Eqs. 3.14, 3.15 and

3.17, we can derive the update of the weights between input layer and hidden layer

W(1).

3.3 Artificial Recurrent Neural Networks (ARNNs)

When additional weighting matrices are connecting either two layers in one net-

work with a directed cycle, a recurrent neural network is established. With such

a cycle, the outputs of an RNN become input functions of next states, thus the

internal states of an RNN can theoretically affect the network dynamics with an

infinite time-length.

3.3.1 Recurrent Connections

Recurrent connections offer a feedback loop in the whole network, which enables

signals from one layer to be fed back to a previous layer. With this directed

flow, neural signals can affect future network dynamics, so that arbitrary tempo-

ral sequences can be represented as a function of the previous internal network

states. The ARNN is able to learn any arbitrary dynamical system with arbitrary

precision, whereas an MLP can merely learn static non-linear models.
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Typically, a feedback connection within one layer or between two layers forms

a simple recurrent connection. Two simple recurrent networks (SRNs) are il-

lustrated in Fig. 3.3 (Elman Network [Elman, 1990]) and Fig. 3.4 (Jordan Net-

work [Jordan, 1997]). In both of them, the hidden layer is updated not only from

the external input of the network, but also with activation of certain layers from

the previous states. Specifically, since the connections are recurrently connected

within the network (i.e. they feed-back onto the network itself), the local recur-

rence results in a compensation of the decrease of the internal neural activities by

a constant τ (a time constant that defines how many time-steps the network is

unfolded during training) as they are fed back by building a short-term memory.

This constant also determines the depth of the short-term memory (i.e. how long

a given value fed to the context unit will be stored).

Like the feed-forward connections, this feedback is also learnt by modifying the

weights which enable an adaptation of the temporal effects of the internal states.

However, since the weighting matrix connection is in the temporal domain (i.e.

the past activity of one layer is the input of the current activity of another/the

same layer), it is necessary to modify the back-propagation algorithm.

3.3.2 Back-propagation through Time

Elman [1990] proposed an approximation learning rule based on truncated back-

propagation, in which the time-delayed input xi(t−1) is regarded as an additional

input (i.e. time constant τ = 1), so that error from the output patterns was also

back-propagated to the weighting matrix between the hidden layer and the ad-

ditional input layer. However, it was found that this approach is not sufficiently

accurate to find the optimal weight change according to the gradient descent,

because the effect of error should further propagate even further in the tempo-

ral domain. Therefore, back-propagation should also be applied in the temporal

domain, which leads to the so-called ‘back-propagation through time’ (BPTT)

approach [Rumelhart et al., 1988].

The time-constant τ defines the number of time-steps within which the error

is back-propagated. Then all the recurrent connections are duplicated spatially

within these time-steps, thus it is a mapping from the temporal dynamics to

the spatial dynamics. We take an Elman network as an example, as shown in

Fig. 3.3; each hidden layer sends its activation (either directly or indirectly) to the

current output by recurrent connections, with τ numbers of copies of the neuron

activations. Therefore, all of the internal states within τ time-steps contribute to
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Figure 3.3: Elman RNN Network

Weights with dash arrows are fixed, i.e. the context layer is the copy of the
hidden layer at the previous time-step.

the output. Conversely the output error can also be back-propagated along these

unfolded connections.

From Eq. 3.15, the error on the hidden layer at the previous one time-step, which

can be obtained by back-propagation from the current state of the hidden layer

by the recurrent weights can be written as

δj(t− 1) =
H∑
j

δj(t)W
3ϕ1(yj(t− 1))′ (3.18)
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Figure 3.4: Jordan RNN Network

Weights with dash arrows are fixed, i.e. the context layer is the copy of the
output layer at the previous time-step.

where h is the index of the vector that is from time-step t, and j is the index of

the vector that is from the previous time-step t− 1.

If the error on the hidden layer is calculated back to the T th step, it can be written

as a recursive form:

δj(t− T ) =
H∑
j

δj(t− T + 1)W 3ϕ1(yj(t− T ))′ (3.19)

where T ∈ {1, 2, ...τ}. Hence, the recurrent connection is updated (for totally τ

times for each sample) by

∆wjj′ = ηδj(t− T )yj′(t− T + 1) (3.20)

Note that the update of the weights ∆wjj′ can be done within several time-steps,

depending on the time-constant τ . Therefore, Eq. 3.20 is applied τ times for each

update.

Generally, this equation allows a calculation of the weight update according to

the error at previous time-steps from t − τ to t with arbitrary length. Further

deduction can be made according to Eqs. 3.18 and 3.20.

However, it is important to note that error δ contributes to each weight in Fig. 3.5
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Figure 3.5: Unfolding an RNN for BPTT (τ = 3)

which is unfolded in a spatial domain. Clearly, this requires a lot of memory to

store both previous errors and activations if we set τ to be too large. Additionally,

in practice, the error from previous time-steps with too large τ makes too small

contribution to the weight update due to a ‘vanishing gradient effect’ [Bengio et

al., 1994], which means that at each time-step (each layer in Fig. 3.5), when the

error is back-propagated through one time-step, it gets smaller and smaller until

it quantitatively vanishes. On the other hand, the error from previous time-steps

with too small τ will result in another truncated back-propagation.
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3.3.3 Variants of ARNN

As we mentioned, the generic ARNNs only own a short-term memory which results

from the simple recurrent connections. However, in some circumstances, we need

a memory that can sustain longer. Besides, multiple spatiotemporal training

sequences usually result in training divergence when they attempt to implement

multiple attractor dynamics if the network memory is too small. Therefore, more

state-of-the-art recurrent networks have been developed to address these problems.

RNN with Parametric Biases A recurrent neural network with parametric

bias (RNNPB) [Tani & Ito, 2003] is capable of learning different sequences with

different parametric biases. These sequences are learnt as non-linear dynamic

attractors while the parametric biases are represented as bifurcation parameters.

Interestingly, the parametric bias learnt by BPTT can also be regarded as a high-

level representation in the neural architecture.

Comparing with the generic RNN networks, with which it is difficult to imple-

ment multiple attractor dynamics, the RNNPB is able to generate and recognize

multiple temporal sequence patterns by its self-organizing property within an ad-

ditional layer, called parametric bias units (PB Units). As shown in Fig. 3.6, an

RNNPB is essentially a recurrent network (Elman [1990] or Jordan [1997] types)

with a set of bias units with adjustable values.

Figure 3.6: RNNPB with Elman-like Connections

The parametric bias (PB) units in this recurrent network are connected to the hid-

den layer as ordinary bias units, but the internal values of them are also updated

through back-propagation. Comparing with the generic RNN, the RNNPB owns
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the additional PB variables which act as bifurcation parameters for the non-linear

dynamics. There exist three running modes in RNNPB. In the learning mode, all

connection weights and PB values are updated by BPTT. In the recognition mode,

only the PB units are updated. The PB value is manually set in the generation

mode.

Furthermore, according to Cuijpers et al. [2009], a trained RNNPB can success-

fully retrieve and recognize different types of pre-learnt, non-linear oscillation

dynamics. Thus, this bifurcation function can be regarded as an expansion of the

storage capability of working-memory within the sensory system. Furthermore,

it adds the generalization ability of the PB units in terms of recognizing and

generating non-linear dynamics.

Three running modes (learning, recognition and generation) can functionally simu-

late different stages between sensorimotor sequences and high-level representation

of these sequences. The illustrative demonstration of the model with three modes

is shown in Fig. 3.7, where parameters that are modified are denoted in red and

the constant weights are denoted in blue.

Action learning mode (Fig. 3.7(a)): The learning is performed off-line, but the

internal values in PB units are learnt unsupervised. When providing the training

stimulus for each movement pattern, the weights are updated with BPTT (back-

propagation through time). Similarly, the internal values of the PB units are also

updated in a self-organizing way from back-propagation. If we refer to one entire

learning cycle (all sequences) as an epoch e, in each epoch, the kth PB unit u

updates its internal value based on the summation of the back-propagated error

from one complete sequence.

Action recognition mode (Fig. 3.7(b)): This mode recognizes the types of be-

haviour sequences by updating the PB units according to the past observation.

The information flow in this running mode is mostly the same as in the learning

mode, i.e. back-propagation, except that the synaptic weights are not updated;

rather, the error between target and prediction is only back-propagated and up-

dated into the PB units. If a trained sequence is presented to the network, the

activation of the PB units will converge to the values that were previously shown

in the learning mode in order to recover the PB values trained before.

Action generation mode (Fig. 3.7(c)): After learning and after the synaptic weights

are determined, the RNNPB can act in a closed-loop way, in which the output

prediction can be applied as an input for the next time step. In principle, the
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Figure 3.7: Three Modes of RNNPB

The figures show different information flow in three modes of RNNPB. Internal
values/weights in red will be updated in each mode.
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network can generate a trained sequence by providing initial value of the input

and externally setting the PB values.

Input Signal

Dynamical 

Reservoir

Output (or teacher) 

Signal

Figure 3.8: Echo State Network (ESN)

Hidden neurons inside dynamical reservoir are usually sparsely connected (with
typically 1% connectivity). The weights of hidden neurons are fixed. Output

weights (dashed) can be trained. Modified from [Jaeger, 2001]

Echo State Network Echo state networks (ESN) [Jaeger, 2002] is a kind of

recurrent neural networks that have a sparsely and randomly connected hidden

layer. Among all the connections, only the weights of output neurons can be

changed and trained. Generally, an ESN is created using the following steps:

• A set of neurons with random connections is created to constitute a dy-

namic reservoir. These artificial neurons can employ any neuron model (e.g.,

non-spiking leaky integrator neurons are used in the frequency generator ex-

ample [Jaeger, 2001]). The input neurons are added to the reservoir with

randomly assigned all-to-all connections. If the feedback from outputs is re-

quired, another set of output neurons must be connected to the reservoir to

provide a teacher signal, also with randomly assigned all-to-all connections.

• After that we need to train the reservoir states. If the output signals are

presented, a ‘teacher forcing’ is applied to do the training: the error between
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the output and the teacher signals are used to modify the output weights

between the reservoir and the output. If there are no teacher signals, the

neural activity in the reservoir is only driven by the input, which becomes

the reservoir states.

• Finally, the output weights are updated by the linear regression (dotted

arrows in Fig. 3.8).

Due to the randomly-assigned connecting feedback (weights) within the neurons,

the reservoir states require certain asymptotic properties in the weighting matrix.

These properties lead to the echo state property which builds up the short-term

memory to the internal states. This echo state property is beneficial to some ap-

plications, for instance, it has been shown that the ESNs are able to reproduce

certain time series as a frequency generator [Jaeger, 2001] or to predict chaotic

dynamics in wireless communication [Jaeger & Haas, 2004]. There are numerous

studies in the literature concerning the necessary conditions to achieve the ap-

propriate echo state property and maintain the short-term memory (e.g., [Jaeger,

2001, Buehner & Young, 2006]).

Long Short Term Memory A long short term memory (LSTM) model

[Hochreiter & Schmidhuber, 1997] uses memory blocks to replace the hidden units

in a conventional RNN. These memory blocks are called LSTM block (Fig. 3.9).

Each of these blocks constitutes an LSTM layer in a recurrent network. This block

has the property that can store an internal value for an arbitrary length of time

with control by the gated signals. As shown in Fig. 3.9, the recurrent weight of

the linear unit is set to be 1.0. If there are no other inputs, this connection serves

to preserve the block’s current state to the next time-step. Additionally, there are

several gates to realise ‘memory’ function of the block as follows:

• The ‘input gate’, which is directly connected to the input unit with a product

operation, i.e. when the input gate is set to be zero, it wipes out the value

from the input unit.

• The ‘forget gate’, which if it is set to zero, stops the internal memory func-

tion. Therefore, it will forget whatever value it was remembering.

• The ‘output gate’ which determines when the unit should output the value

in its memory.
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As a single LSTM block can keep an arbitrary long memory, it is suitable to

be applied in classification and prediction time series with unknown length where

important events are hidden. For instance, an LSTM performs well in handwriting

recognition when it requires to scan meaningful characters in the whole writing

space with context information [Graves et al., 2009].
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Figure 3.9: A LSTM Block

3.4 Discussion

Feedback is ubiquitous in the brain. Simple recursive loops and circuit elements

in neurobiology also provide the ability to generate patterns of inhibition or exci-

tation.

Basically, a feedback circuit is formed when some neurons’ outputs are fed back

to the input. There are two types of feedback in neuronal circuits: positive and

negative ones. In positive feedback circuits, the effect of the output is to sustain

or to increase the activity of the initial input firing. A few neural mechanisms

are accounted for by the positive feedback. For instance, a cell firing is caused by

the opening of the ion channels that allows the positive feedback and therefore it
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causes an increase of the membrane potential. In turn, the increase of membrane

potential also causes more current to activate the channels. Such mechanism was

first characterised by the well-known Hodgkin-Huxley model [Hodgkin & Huxley,

1952].

The negative feedback circuits aim to inhibit the activity of the initial input re-

alized by a loop of axon, through which the neuron sends suppressing signals to

itself. For example, dopamine neurons label sensory stimuli with appropriate val-

ues, which are predicted and detected as their own reward signals [Schultz, 1998].

Furthermore, the feedback loop can also be formed between different neurons (in-

terneurons). For instance, the Renshaw cells send inhibitory axon to synapse of

the alpha motor neurons.

Comparing with the biological recurrent neural networks (e.g., [Grossberg, 1982,

H. R. Wilson & Cowan, 1972, Pilly & Grossberg, 2012]) which attempt to quan-

titatively interpret the exact electro-chemical activities in neurons and synapses,

the ARNNs mainly focus on building a simple model of recurrent connections

that can easily encode information of sensory percepts and motor outputs, but

also keep the basic ‘neural activity maintenance’ role of recurrent connections.

Moreover, although there are several ARNN models as we introduced, in this the-

sis, we mainly concentrate on the Elman-like models and its variant (RNNPB),

because these models are easier to implement in artificial systems and are to sim-

ulate sensorimotor functions related to the feedback signals. Also, the short-term

memory inside the Elman-like ARNNs is comparable to the working memory in

the sensorimotor integration.

3.5 Summary

At the neuron and cognitive levels of the brain, feedback signals are utilised to

constitute a form of recurrent pathways that interact with and adjust the adap-

tive filtering function of the bottom-up influence. Followed by the Bayesian in-

ference description of the feedback pathways, in this chapter we apply recurrent

connections to model such feedback signals. Recurrent connections in artificial

neural networks constitute a directed cycle in the temporal domain. They have

been demonstrated to provide a successful short-term memory function in spatio-

temporal learnt sequences. Usually, training is performed using back-propagation

through time by minimising the energy function in order to reduce the training

error. Compared to biologically realistic recurrent network models that focus on
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biological mechanisms, the implementation and training of artificial recurrent neu-

ral networks are simple and robust. Therefore, in the following chapters of this

thesis we will describe the implementation of the feedback pathways in artificial

cognitive agents with artificial recurrent connections.



Chapter 4

Perception-Action Model with

Hierarchical Feedback

Pathways

In this chapter, we present a cognitive system framework based on the principle

of perception-action model. This framework determines the whole organization

of the thesis; the models from Chap. 5 to Chap. 7 describe different parts of this

architecture with various kinds of implementations of the feedback information.

4.1 Perception-Action Model

The framework of Perception-Action Model (PAM) is based on the common coding

theory which advocates that action and perception are intertwined by sharing the

same representational basis [Prinz, 1997]. This model asserted that this common

representation is simply formed by either the mapping from perception or the

perceptual events that actions produce. Note that the representation does not

explicitly represent actions; instead, there is an encoding of the possible future

percept which is learnt from prior sensorimotor knowledge. This perception-action

framework is derived from the ideomotor principle [James, 1890], which advocates

that actions are represented with prediction of their perceptual consequences, i.e.

it encodes the forthcoming perception that is going to happen when an action is

executed (i.e. motor imagery) [Greenwald, 1970].

Different from the conventional view that a prior mapping rule should be acquired

before the linkage between action and perception (e.g. sensorimotor contingency)

56
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is created, the common coding theory asserts that perception and action may

modulate each other directly via the shared coding by a similarity-based matching

of common codes. Such a matching does not require a prior knowledge of preceding

rules, but it needs only the primitives of sensorimotor knowledge. Therefore, the

pairing of perception and action, i.e. the acquisition of ‘common coding’, emerges

from prior sensorimotor knowledge. For instance, assuming that one person (called

‘presenter’) is facing another person (called ‘observer’) doing a certain kind of

hand movement, according to the PAM model, the corresponding representational

domain in the observer about the hand movement should activate, either when the

hand movement is observed or the action is executed by the observer itself. Here,

both of the current afferent information (referring to the perceived event) and

predictive efferent information (referring to intended events from actions) have

the same format and structure of a perceptual representation. Specifically, the

action being executed is determined by the predictive effects in perception which

is caused by the intended action. Thus, in a long term, the acquisition of the

common coding from sensorimotor processes is also a learning process for action

planning.

4.2 Neural Basis of Architecture

4.2.1 Somatotopic Arrangement of Motor and Visual Cortices

Based on the evidence of common coding representation [Buccino et al., 2001], our

proposed architecture account for the somatotopic arrangement between primary

motor and somatosensory cortices. The primary motor cortex (M1) and the so-

matosensory cortex (S1) are located next to each other in the frontal lobe. These

two areas have different functions: the M1 is mainly involved in the execution

of voluntary movements by generating neural impulses to activate skeletal mus-

cles, while the S1 is part of the sensory system and is mainly involved with the

conscious perception of various sensory modalities, such as touch, pressure and

pain. Also, the primary motor cortex has plenty of afferent and efferent connec-

tions with the somatosensory cortex, which indicates that the motor commands

are partially integrated with the ongoing somatic sensory state of the body from

the somatosensory cortex.

Furthermore, the motor control representation in the brain is similar to the per-

ception representation. The motor representation from toe to mouth in brain

area M1 is arranged from the top of the cerebral hemisphere to the bottom as
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an inverted person. This representation in the cortex is also called ‘humunculus’

(which means ‘little person’ in Latin). From Fig. 4.1, we can see the motor cortex

has a large motor representation in dealing with speech and manipulation of ob-

jects by the hands, so the humunculus has a large mouth and large hands. This

somatosensory cortex also has a similar homunculus representation. Although

the exact proportions of the homunculus organization may vary (Fig. 4.1), the

general sequences of the stimulation associated with motor actions and sensory

perception are similar. The shortest distance between somatosensory cortex and

motor cortex forms a convenient link between certain modalities of perception and

motor action.
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Figure 4.1: Homunculus Organization in Motor and Somatosensory Cortices

Both the motor and somatosensory cortices corresponds point-to-point to one
area in the body, in which the fingertip representations in both areas are

relatively large, indicating that they are one of the most sensitive/dexterous
parts of the body1.

Therefore, we propose that parts of the neurons in perception (not first order

sensory perception neurons) and part of the motor action should be closely con-

nected, so that the somatosensory cortex maps a continuous representation in

some modalities of the primary motor cortex by the neural projection. This is

proven by the neurological finding that some neurons in the same brain region

1This image is a derivative work based on image http://commons.wikimedia.org/wiki/

File:Homunculus-ja.png, which is licensed under the Public Domain license.

http://commons.wikimedia.org/wiki/File:Homunculus-ja.png
http://commons.wikimedia.org/wiki/File:Homunculus-ja.png
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fire for both execution and observation [Keysers et al., 2010]. This somatotopic

arrangement also accounts for the phonetic learning which may involve motor cor-

tex and somatosensory cortex. Some of the motor neurons project to the neurons

of the somatosensory cortex with sound receptors, indicating that the executions

of articulatory movements of the lips and tongue are closely related to the repro-

duction of particular lip- or tongue-related phonemes [Pulvermüller et al., 2006].

4.2.2 Two Visual Streams for Action

As for the visual system, the representation of the common coding of the dorsal

stream emerges during the process of the real-time guidance of action. On the

other hand, the low-level visual process is affected by the asymmetric feedback

pathways, which guides the predictive dorsal processes. For instance, the neural

activities in the visual cortex are predictively modulated by the attention as well

as the intended action [Reynolds & Chelazzi, 2004]. Meanwhile, the less direct

route is through the ventral stream which maintains visual patterns, allowing the

development of visual memories by exploring the novel environment.

Thus, the development of system functions of the visual streams involves the exe-

cution of action, which emerges a prior perceptual knowledge about certain actions

from the end-manipulator; conversely, this common coding improves both percep-

tion and actions by feedback pathways. On the other hand, vision-for-perception

and vision-for-action must interact on some levels to accomplish a certain action.

For instance, grasping an object with suitable muscle force and movements needs

an estimation of the object weights and property, possibly in a semantic form,

which are from the ventral stream and the dorsal stream, respectively. Another

distinguishing feature provided by the ventral and dorsal streams is that they use

a different frames of reference: the ventral stream uses an object-centred frame,

while the dorsal stream uses various forms of egocentric frames [Committeri et

al., 2004]. Nevertheless, the ventral and dorsal streams cooperate on some levels

to voluntarily accomplish a certain action: vision-for-perception (ventral stream)

forms an object awareness, mostly according to their features. The actual action

planning mainly involves information from the dorsal stream (vision-for-action),

but it is also modulated by the representation of object awareness [Schenk & McIn-

tosh, 2010]. Therefore, in our proposed architecture, we also assert the fact that

two streams in the visual system are integrated on different levels of the motor

hierarchical representation.
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4.2.3 Mirror Neurons and Ideomotor Principle

As we introduced, the ideomotor principle assumes that actions should be repre-

sented as the upcoming perceptual when the actions are taken. The neuroscience

finding of mirror neurons in the monkey’s premotor cortex (F5) [Gallese et al.,

1996, Rizzolatti et al., 1996] and inferior parietal lobule (IPL) [Rizzolatti et al.,

2001, Fogassi et al., 2005] also implicitly endorsed this principle by verifying the

statement from James [1890]:

‘Every mental representation of a movement awakens to some degree

the actual movement which is its object.’

Indeed, the mirror neuron theory provides the neuroscience evidence of the ideo-

motor principle in terms of its functional logic in the brain. Moreover, the im-

portance of discovery of mirror neurons indicates that there is a mapping from

one’s action into cognitive knowledge in an automatic way [Rizzolatti & Craighero,

2004]. The mirror neuron can be considered as a root of language development

when it encodes the meaning of action-related words and controls the execution

of those actions (e.g. [Hauk et al., 2004, Liberman & Mattingly, 1985]). Also,

the discovery of the mirror neurons in premotor and somatosensory cortices sup-

ports the ideomotor principle. Based on the PAM model, our architecture also

defends the mirror neuron theory; when the cognitive process is consciously in-

tending to execute a motor action, it forms a loop involving perceptual knowledge

to drive the muscle movement. Later, the (predictive) perceptual world is involved

to maintain the action; together with the bottom-up sensory-driven perception,

it determines and updates the perceptual knowledge and the next motor action.

Thereby, the mirror neurons fill the gap in a sensorimotor loop, which establishes

a dynamical equilibrium between various entities: the mind, the body and the

environment [Case et al., 2013].

4.3 Sensorimotor Integration Architecture

From the above-mentioned sensorimotor functions, our proposed model is shown in

Fig. 4.2. It is mainly based on the common representation framework of perception

and action, where the information of the feedback pathways are formed through

various levels in the hierarchical organization of perception and action. As a

source of the feedback pathways, the common representation domain coding also

represents a perception–action linkage between perception, motor imagery, and
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action planning. To establish the links between movements (a) and their sensory

effects (e), one needs continuous learning throughout childhood. For instance, the

object-directed reaching [Woodward, 1998] and grasping [Rochat, 1987] during the

early stages of infant development are considered to be the learning of movements

and sensory effects, with consideration of object affordances. Once this link has

been established, these perception-action associations in this architecture allow

the following operations:

• First, these associations allow to predict the perceptual outcome of given

actions by means of the forward models (e.g. Bayesian Model) (a → e). In

the formulation of Bayesian inference which we introduced in Chap. 2, it

can be written as

P (E|A, I) ∝ P (A|E)P (E|I) (4.1)

where E estimates the upcoming perception evidence given an executed

action A and other prior information you have already known (I). The term

P (A|E) suggests a pre-learnt model representing the possibility of a motor

action A will be executed given a (possible) resulting sensory evidence (E)

is perceived (backward computation).

This perceptual prediction also affects low-level activities such as neural

activities, which account for the phenomena in perception we mentioned

before. The kind of sensorimotor integration proposed in Chap. 5 shows

the integration of perception and action in one modality. They share the

common predictive representation in form of the recurrent weights which are

used to explicitly represent the upcoming visual percept or the percept that

is caused from actions.

• Second, these associations allow to select an appropriate movement given

an intended perceptual representation. From the backward computations

introduced in Eq. 4.2 (e → a), a predictive sensorimotor integration occurs

(Chap. 6).

P (A|E,G) ∝ P (E|A)P (A|G) (4.2)

where A indicates a particular action selected given the (intended) sensory

information E and a goal G. Here we assume that one’s action is only

determined by the current sensory input and the goal.

Note that the above Bayesian inferences are not independent, but they incre-

mentally calculate (deduce) the forthcoming motor action and perception,
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and correct its internal model simultaneously, by the linkage of common

coding. The complete sensorimotor integration is hereby learnt.

• In terms of its hierarchical organization, it also allows this operation: with

bidirectional information pathways, a low level perception representation

can be expressed on a higher level, with a more complex receptive field,

and vice versa (elow ↔ ehigh). This can be realised by deep architectures

or by our proof-concept model shown in Chap. 7. These operations can be

achieved by extracting statistical regularity.

Spine

Brainstem

M1

SMA

V1

V3

V5/MT

MST

Action

Cognitive 

Processes

Common 

Coding

Common 

Coding

Visual Perception 

(dorsal)

Figure 4.2: A Hierarchical Perception-Action Model with Action and Visual
Dorsal Stream

To conclude, this framework proposes that as a source of feedback pathways, the

common coding domain represents a linkage (the same representation) between

perception, motor, and action planning on a higher cognitive level, while there are

also feedback pathways that maintain the representation on various levels in both

perception and action. We will discuss the details in the following chapters.
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4.4 Summary

In this chapter, we proposed a cognitive framework with which the different models

are going to be discussed in various perspectives in the next chapters. This hierar-

chical architecture is based on the perception-action model, in which the feedback

pathways transmit information in both perception and actions parts. The execu-

tion of an action is sharing the same representation with perception, while this

common coding is also modulated by the hierarchical feedback signals. Therefore,

the representation of common coding is integrated from both sensory-driven and

feedback signals. Particularly, the highest-level of perception and action encodes

prior knowledge and offers a source of feedback information, which is acquired by

the segregated emergence of perception and action.



Chapter 5

Feedback-influenced

Motion-coding in Visual Cortex

In this chapter, we mainly focus on the modelling of the feedback pathways on two

streams in the visual system, with emphasis on its role on the dorsal steam which

deals with motion perception. We firstly review the neurobiological background of

this theory. Then a brief introduction of the relevant techniques for implementing

the two streams for computer vision using neural learning is given. Different from

those models, we propose a horizontal product recurrent network model to encode

an object’s identity and its movement. For the recurrent connections, we claim

that the neural activity in the hidden layer is comparable to the observed activities

in neurobiological studies. Since there exists a significant neural delay which

is caused by the transmission of electrical and chemical signals, our hypothesis

is that recurrent connections compensate such neural delay, e.g. by predicting

neural activities for motion perception. This chapter is based on our published

paper [Zhong et al., 2012b,a].

5.1 The Visual System

5.1.1 Two-stream Theory

Mishkin et al. [1983] established the hypothesis that there are two parallel and

independent streams in the visual system of humans, in which the ‘dorsal pathway’

encodes spatial information, invariant of stimulus-specific properties, while the

‘ventral pathway’ encodes object feature identity, invariant of positions and sizes.

These ventral and dorsal streams can also be called the ‘what’ and ‘where’ streams

64
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or ‘perception’ and ‘action’ streams [Goodale & Milner, 1992] to some extent.

Generally, the visual areas along both the dorsal and ventral streams are organized

hierarchically [Livingstone & Hubel, 1988], where the abstractness and complexity

increase from lower to higher stages.

As shown in Fig. 5.1, these two streams convey the ‘what’ and ‘where’ information

from the visual stimuli in the following specific neuroanatomical areas:

V1

V2

V3

MT

V4

Dorsal 

Stream

Ventral Stream

Figure 5.1: Anatomy of Two-stream Theory

From V1 in the occipital lobe, visual processing continues in two streams: one
into the temporal lobe (ventral stream), one into the parietal lobe (dorsal

stream)1.

• The two streams first originate from the retina, which turns the lighting

signals into electric activity. Specifically, two kinds of retinal ganglion cells

exhibit different responses to different properties of visual information: par-

vocellular cells (P cells) sustain colour-opponent responses while magnocel-

lular cells (M cells) exhibit transient responses to a stimulus. These two

types of cells, together with the corresponding parvocellular pathway and

magnocellular pathway in LGN, are considered to be the beginning of ventral

and dorsal streams.

• The V1 locating in the occipital lobe has a topological arrangement of the

visual image. The ventral and dorsal streams start from here and receive

information directly from the LGN. There are simple and complex cells in

the V1 area. The classification of these cells is based on their responses to

1This image is a derivative work based on image http://pixabay.com/en/brain-human

-anatomy-body-155655/, which is licensed under the Public Domain license.

http://pixabay.com/en/brain-human-anatomy-body-155655/
http://pixabay.com/en/brain-human-anatomy-body-155655/
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drifting visual stimuli: it has been widely accepted that both simple and

complex cells are orientation selective. Particularly, recent research [Priebe

et al., 2006] discovered that the complex cells in V1 are tuned by not only

orientation but also speed of movement. This implies that the dorsal visual

stream starts to segregate from V1, encoding both orientation feature and

movement information.

• Both streams go through the V2 area, and they further link into higher order

visual cortices.

• The ventral stream goes through the higher order visual cortices (V4, IT) in

the temporal area, and further conveys information to the inferior temporal

cortex. In this cortex, neurons are mostly tuned to be responsive for object

shape of intermediate complexity. These areas are considered to have a

strong modulation in attention control by visual memory of prior visual

salience (e.g. [Desimone, 1996, Bussey & Saksida, 2007]).

• The dorsal stream is transmitted to the dorsomedial area (V3) and visual

area MT (also known as V5 in humans) and to the posterior parietal cor-

tex. Specially, MT in the middle temporal lobe is involved in visual motion

processing. It is also related to the functions of relaying local motion signals

and controlling eye movements (e.g. [Luna et al., 1998, M. Corbetta, 1998]).

Generally, the average receptive field size increases from a lower cortex to a higher

one in both streams. Besides, neural response latencies vary in the two streams.

In Schmolesky et al. [1998], it was found that most of the cortical visual areas in the

dorsal stream show a nearly simultaneous onset of activity for flashed stimuli while

the visual response latencies in occipito-temporal areas V2 and V4 are significantly

higher. This property of neurons suggests that the variance of visual response

latencies in these two streams may facilitate the difference of encoding in two

streams. In other words, the shorter latency neural response encodes motion

information from the stimuli [Priebe et al., 2006], and the longer latency response

encodes visual features from the stimuli. The latency can also be regarded to be

significantly involved in the formulation of the recurrent influences by assembling

the prior knowledge of the speed and direction (dorsal stream) or features (ventral

stream) of the visual stimuli.

Furthermore, the feedback pathways that convey the top-level encoding arouse

or sustain the neural activities on the lower neural levels. This could account

for various visual functions, such as the compensation of the neural delay in the
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visual dorsal stream [Nijhawan, 1994]. Since the neural delay exists in the visual

cortex, it could be crucial to eliminate it in certain circumstances. For example,

neural delays of one-tenth of a second will cause a large bias in visual perception

if a high-speed object is in the visual field. Therefore, the feedback pathways

on the dorsal stream play the role of a prediction mechanism, which can account

for some visual illusions such as the ‘flash-lag effect’. Also the feedback in the

ventral stream transmits the encoding of the features of the stimuli, facilitating

the formulation of visual memory. Therefore, the neural responses on higher levels

of the two streams can be regarded as the source of such feedback signals, which

affects the neural activities on lower levels by means of sustainment or prediction.

5.1.2 Identification and Tracking

In the field of computer vision, object identification and pattern recognition have

been active topics for decades. However, little attention has been given to encode

the object location (as well as movement) as it is straightforward to do the tracking

by sliding window. In this section, we will motivate our proposed horizontal re-

current network model by reviewing the related techniques and models of learning

‘what’ and ‘where’ in both computer vision and computational neuroscience.

In the computer vision community, invariant object recognition has been an ac-

tive topic, which is fundamental in scene recognition, autonomous driving, etc.

Existing techniques for invariant object recognition are mainly based on selecting

features from visual input (called feature-based techniques) or matching a tem-

plate (appearance-based techniques) to identify specific objects in the pictures

or video clips. For instance, scale-invariant feature transformation (SIFT) [Lowe,

1999] and Speeded Up Robust Features (SURF) [Bay et al., 2006], such techniques

search and identify features in the target frame and compare to the pre-learnt (pre-

defined) ones. From a psychologist’s point of view, these feature-based techniques

are compatible to the theory of RBC (Recognition-by-components) [Biederman,

1987], which asserts that the representation of a set of combinations includes the

basic elements in the visual fields (called geons, such as cubes, cylinders, wedges,

etc). The geons, together with their interrelations (e.g. the relative positions, size

of the geons), compose the concept of an object in the brain. The combinations

of these basic representations may yield millions of components to represent a

real visual object, which are stored in the brain by using structural descriptions,

which is a kind of semantic representation. These descriptions are further used

for matching when the brain needs to identify an object.
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Figure 5.2: Example of Pooling of Positional Variation

The pooling method over a group of simple cells allows a small variation from
one dimension of the visual stimuli, which may include different positions,

orientations, spatial frequencies, etc. Hence it results in the tolerance of such
dimension of the visual information. For instance, if neurons with similar

orientation and spatial frequency in space, but with different position preferences
are separated in the simple cell map, for a complex cell to achieve a position

invariant response, it pools the neural responses of simple cells of corresponding
positional variation located in the simple cell map.

In the field of computational neuroscience, this problem is formulated as trans-

formation invariance. In terms of transformation invariance modelling, layered

networks with simple and complex cell representations [Fukushima, 1980, Földiák,

1991, Hyvärinen & Hoyer, 2000] attempt to learn the transformation invariant per-

ception of objects through self-organizing or by constraints of maximizing sparse-

ness, in which simple and complex cells represent local features and transformation

invariant features. These simple and complex cells are arranged in layers one after

another so that the degree of transformation invariance gets higher and higher.

During learning, a set of images with small transformations are presented, so that

similar and localised features in the visual stimulus can be pooled in the complex-

cell-like layer(s) (Fig. 5.2). A Hebbian-learning-like method can be adopted to

learn transformation invariance by encouraging the neurons to fire invariantly

while transformations are performed in their input stimuli [Földiák, 1991, Wiskott

& Sejnowski, 2002]. Objects without positional transformation can also be learnt
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by a statistical representation of features, such as Restricted Boltzmann Machine

(RBM) [Hinton, 2002] and its deep hierarchical architectures [Norouzi et al., 2009,

Salakhutdinov & Hinton, 2009].

To conclude, the common feature of these models/techniques for object identifi-

cation is that most of them utilise localized, oriented or edge filters. Furthermore,

some of them employ the idea of hierarchical structures to extract features in

order to understand certain visual scenarios, which are considered to be similar

to the hierarchical feature extraction in the visual cortex [Livingstone & Hubel,

1988]. Nevertheless, most of these object identification techniques/models ignore

the information about the object location.

However, in terms of building an artificial cognitive system based on the principles

of biological systems, it is better to preserve all kinds of information gained on

various levels of visual perception, especially those involved in action and further

cognitive functions. Therefore, it is essential to keep the concurrence of ventral

and dorsal streams as these two sorts of information may intertwine again in

higher cognitive brain parts, such as the hippocampus in the medial temporal

lobe (ML). Thus the techniques which simply disregard object locations are defi-

cient. Therefore, it becomes more attractive for researchers in both neuroscience

and computer science to encode object identity and transformation simultane-

ously. For instance, using bilinear multiplication [Freeman & Tenenbaum, 1997,

C. Anderson et al., 2005] it is possible to separate the invariant features and their

transformations separately by sparse coding. This is based on an assumption that

a transformed image can be represented as a bilinear model of a standard trans-

formation invariant representation of features and the control units representing

transformation parameters. In bilinear models of visual routing, a set of control

neurons dynamically modifies the weights of the ‘what’ pathway on a short time

scale. The control units, encoding the object’s position, thereby route the visual

information from any retinal position to an object-centred reference frame on the

top-most level of the ‘what’ pathway [Olshausen et al., 1993, Bergmann & von der

Malsburg, 2011, Memisevic & Hinton, 2007].

5.1.3 Motivation

Considering the above network models, as well as the finding in V1 area of macaque

monkey [Priebe et al., 2006], which revealed that some of the complex cells are

‘speed tuned’ in V1, we advocate that the neural modelling of the V1 area should

not only constitute the information of both ‘what’ and ‘where’, but also encode
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the first-order movement percept. Furthermore, the difference of visual response

latencies may be accounted for by the horizontal connections within areas or feed-

back signals from higher cortical areas [Lamme & Roelfsema, 2000], which is iden-

tical to our proposed recurrent connection based on implementation of feedback

pathways.

With the idea of solving the ‘what’ and ‘where’ problem jointly, in this chapter

we propose a recurrent neural model that can extract two or more components

of information into separate pathways from visual stimuli. Unlike previous ap-

proaches, our model uses the horizontal product model, which efficiently reduces

the computational complexity. This model addresses the following problems:

• to encode motion direction and to predict the next visual stimuli;

• to mimic the feedback pathways on the ventral and dorsal streams. Both

pathways incorporate recurrent connections to capture different latencies of

neural responses of these streams.

5.2 Horizontal Recurrent Model

5.2.1 Horizontal Product

One way of integrating both of the two separate pathways, as well as motion

perception and prediction, is using a horizontal product model. For instance,

Köster et al. [2009] applied the horizontal product model together with Indepen-

dent Component Analysis (ICA). The model was successful to learn to separate

the localized image feature and the transformation. One feature of using ICA

model to solve bilinear formulation is to reduce the computational effort by de-

creasing connections because it isolates two pathways. For instance, if there are

N numbers of locations, considering M possibilities of transformations and F fea-

tures, F 2 ·M · N2 connections are needed based on bilinear multiplication. We

only need F 2N+FMN2 connections if we employ a horizontal product (Fig. 5.3).

Therefore, inspired by the functional properties of dorsal and ventral pathway

neurons, our model segregates the hidden layers into two groups:

• dorsal-like units that encode the (fast changing) current and future object

position, and more specifically, the object movement;

• ventral-like units that encode the (slow changing) object feature(s).
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We specify a three-layer network with recurrent connections and a horizontal

product (Fig. 5.3). The input layer corresponds to the simple cells in V1 (cortical

layer IV), while the hidden layer corresponds to complex cells in V1 (cortical layer

II and III). The output layer holds a similar object representation of the input,

but with a one-step prediction. The hidden layer contains two independent sets of

units representing dorsal-like ‘d’ and ventral-like ‘v’ neurons respectively, inspired

by the two visual streams and their functional properties we introduced in the last

section. The recurrent connection in the hidden layers helps to predict movement

in layer d and maintain a persistent representation of an object in layer v. The

horizontal product brings both pathways together again in the output layer with

one-step ahead predictions. Let us denote the output layer’s input from layer d

and layer v as xd and xv, respectively. The network output so is obtained via the

horizontal product as
. .

 .
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Figure 5.3: Horizontal Product Recurrent Network architecture

Due to the complexity, the one-step delayed input is not included in this figure,
but it is fully connected to the two hidden layers as the original input sb.

so = xd � xv (5.1)

where � indicates element-wise multiplication, so each pixel is defined by the

product of two independent parts, i.e. for unit i it is given that soi = xdi · xvi .
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5.2.2 Algorithm

Training We use sbi(t) to represent the activation of the input unit i at the t-th

time-step. In some of the following equations, we will omit the time-index t if all

activations are in the same time-step. The hidden units’ inputs yvj in the ventral

pathway and ydj in the dorsal pathway are defined as

yvj (t) =
∑
i

sbi(t)w
v
ji +

∑
i

sbi(t− 1)w̄vji +
∑
j′

svj (t− 1)vvjj′ (5.2)

ydl (t) =
∑
i

sbi(t)w
d
li +

∑
i

sbi(t− 1)w̄dli +
∑
l′

sdl (t− 1)vdll′ (5.3)

where wdli/w
v
ji represent the weighting matrices between dorsal/ventral layers and

the input layer, w̄dli / w̄vji represent the weighting matrices between a one-step de-

layed input and the two hidden layers and vdll′/v
v
jj′ indicate the recurrent weighting

matrices within the hidden layers (see Fig. 5.3). The incorporation of the time-

delayed inputs directly from sbi can introduce more stable input signals in both

layers regardless of the short-time changes of object features.

The transfer functions in both hidden layers employ a logistic function and a

soft-max function:

zvj =
1

1 + exp(−ajyvj + bj)
; zdl =

1

1 + exp(−alydl + bl)
(5.4)

svj =
exp(zvj )∑
j′

exp(zvj′)
; sdl =

exp(zdl )∑
l′

exp(zdl′)
(5.5)

The logistic function has two local modifiable parameters a and b, leading to the

intrinsic plasticity of neurons, which we will discuss in the following paragraphs.

Together with the soft-max function, the logistic functions ensure the regularity

of firing rate on the hidden layer.

The terms of the horizontal products of both pathways can be presented as follows:

xvk =
∑
j

svju
v
kj ; xdk =

∑
l

sdl u
d
kl (5.6)

Again, the output of the network composes a horizontal product from two hidden

layers:

so = xd � xv (5.7)
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The training progress is determined by a cost function:

C =
1

2

T∑
t

P∑
k

(sbk(t+ 1)− sok(t))2 (5.8)

where sbi(t + 1) is the one-step ahead input, as well as the desired output, sok(t)

is the current output, T is the total number of available time-step samples and

P is the number of output nodes (i.e. P = L · N), which equals to the number

of input nodes. Following gradient descent, each weight update in the network

is proportional to the negative gradient of the cost with respect to the specific

weight w that will be modified:

∆w = −η∂C
∂w

(5.9)

We use the lower indices i ∈ {1, 2, . . . , P} indicating neurons in the input layer, j ∈
{1, 2, . . . , F} indicates neurons in the ventral-like hidden layer, l ∈ {1, 2, . . . ,MN}
indicates neurons in the dorsal-like hidden layer and k ∈ {1, 2, . . . , P} indicates

neurons in the output layer. The back-propagation training progress is then mod-

ified according to the horizontal product as follows.

• Weights from ventral-like hidden layer to output layer:

∆uvkj(t) = ηδk · svj (t){(1− sok(t))sok(t)} ∗ xdk · avj (t) (5.10)

• Weights from dorsal-like hidden layer to output layer:

∆udkl(t) = ηδk · sdl (t){(1− sok(t))sok(t)} ∗ xvk · adl (t) (5.11)

• Weights from current input to ventral-like hidden layer:

∆wvji(t) = ηsbi(t)·svj (t)(1−svj (t))∗
P∑
k=1

xdk

{
δk(1−sok(t))sok(t)

}
uvkj ·avj (t) (5.12)

• Weights from current input to dorsal-like hidden layer:

∆wdli(t) = ηsbi(t)·sdl (t)(1−sdl (t))∗
P∑
k=1

xvk

{
δk(1−sok(t))sok(t)

}
udkl ·adl (t) (5.13)

• Weights from delayed input to ventral-like hidden layer:
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∆w̄vji(t) = ηsbi(t− 1) · svj (t)(1− svj (t)) ∗
P∑
k=1

xdk

{
δk(1− sok(t))sok(t)

}
uvkj · avj (t)

(5.14)

• Weights from delayed input to dorsal-like hidden layer:

∆w̄dli(t) = ηsbi(t− 1) · sdl (t)(1− sdl (t)) ∗
P∑
k=1

xvk

{
δk(1− sok(t))sok(t)

}
udkl · adl (t)

(5.15)

• Recurrent weights of ventral-like hidden layer:

∆vvjj′(t) = ηsvj (t− 1) · svj (t)(1− svj (t)) ∗
P∑
k=1

δkx
d
ku

v
kj · avj (t)

+ηsvj (t− 2) · svj (t− 1)(1− svj (t− 1)) ∗ vvjj′

{
svj (t− 1) ·

svj (t)(1− svj (t)) ∗
P∑
k=1

MN∑
l=1

sdl (t)u
d
kj(t)

{
δk(1− sok(t))sok(t)

}
uvkj · avj (t)

}
(5.16)

• Recurrent weights of dorsal-like hidden layer:

∆vdll′(t) = ηsdl (t− 1) · sdl (t)(1− sdl (t)) ∗
P∑
k=1

δkx
v
ku

d
kl · adl (t)

+ηsdl (t− 2) · sdl (t− 1)(1− sdl (t− 1)) ∗ vdll′

{
sdl (t− 1) ·

sdl (t)(1− sdl (t)) ∗
P∑
k=1

F∑
j=1

svj (t)u
v
kl(t)

{
δk(1− sok(t))sok(t)

}
udkl · adl (t)

}
(5.17)

where δ denotes the output error, i.e. the difference between expected (target)

output d and the actual output so:

δk = dk − sok (5.18)

The object identity and position information from the input data is distinguished

and extracted by the two pathways during training. This distinctive information
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coding is induced by the following arrangements: The activations in layer v are

first determined by Eq. 5.4 and 5.5; after that, a constraint is set to the ventral-like

units v so that the states in the following time-steps are forced to be equal to the

first time-step as long as the identity of the object remains unchanged. That is,

the ventral-like units’ activations remain the same until the appearance of a new

object. The dorsal-like units, which do not have such a constraint, can update

quickly according to the current position of the object.

To ensure a connection between two nodes could be excitatory, the weight matrices

between input and hidden layers, between delayed input and hidden layers, and be-

tween hidden layers and output, are set to contain only non-negative elements. In

a mathematical perspective, it equals to non-negative matrix factorization (NMF),

which only allows additive operation.

Intrinsic Plasticity When a neuron in the hidden layers employs non-linear

transformation function, it is possible for it to maintain equilibrium of an expo-

nentially distributed firing rate resulting in a regular firing in the hidden layer.

That is the reason we adopt the intrinsic plasticity in the neurons of the hidden

layers based on Weber & Triesch [2008]. With this model, the transfer function of

a neuron can basically adapt to fit a sparse exponential regime by adjusting its pa-

rameters, slope and threshold. The logistic transfer function here is adjusted with

respect to parameters a and b. They are updated in order to minimize d(fz||fexp)
which represents the Kullback Leibler divergence between the hidden layer neu-

ron’s firing rate distribution fz(zi) and a sparse target distribution fexp(zi) ≈ e−zi

∆ai = ηa(
1

ai
+ yi − 2yizi −

1

µ
yizi +

1

µ
yiz

2
i ) (5.19)

∆bi = ηb(1− 2zi −
1

µ
zi +

1

µ
z2i ) (5.20)

where µ is the mean for the exponential defined over the positive half-axis. The

learning of parameters a and b leads to different shapes of the transfer function.

The parameter a controls the gain of the input, changing the slope of sigmoid

function, while the parameter b shifts the non-zero point threshold of the function.
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Figure 5.4: Partial Sample of Input Data

Objects 1 and 2 (in 1st and 2nd squares) are moving horizontally rightwards.

5.3 Experiments

In the experiment here, we present artificially generated input data to the network

to simulate the neural coding in the cortical column; here the data set is generated

in a formulation of various two-dimensional matrices. One and only one element in

only one matrix is activated, which represents one object feature. The moving of

the activation mimics the moving objects, i.e. their positions change quickly, but

their features change rarely. In this way, the learning of this network is demon-

strated through showing different objects in various layers of inputs. Generally,

assume that the input images are composed of k layers which represent k various

kinds of objects. In each layer, there are m × n positions, in which the object

moves horizontally or vertically. The training data set comprises a complete hori-

zontal moving activation for both directions. It covers all of the possible horizontal

movements from all of the positions including all objects. For instance, the first

data set contains an activation in the first layer moving from coordinates (1, 1) to

(1, 2), (1, 3), · · · . These movements vary in different starting points and different

layers. Fig. 5.4 demonstrates an example of one part of the input sequence, in

which there are two kinds of objects, represented in the first and second squares of

the input block. Both objects are moving horizontally right. During the training

process, the target data is the one-step ahead instance from the training data.

The network parameters are shown in Tab. 5.1, the maximum iteration is set

to 100, 000. In order to learn movement appropriately, activation in both of the

hidden layers is reset to zero after the activation of changes between objects.

With the input in Fig. 5.5, Fig. 5.6 shows the corresponding one-step ahead predic-

tion. We can generally observe that the output layer predicts the one-step ahead
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Figure 5.5: Input of Activation Movement

Each row represents a complete movement of one object in one direction. In this
partial view of input, we only show horizontal movement from left to right.

Figure 5.6: Corresponding Output from Fig. 5.5

Parameters Description Value

L×N1 ×N2 Size of Input Layer 4× 5× 5
M Number of Movement Directions 4
µv Parameter of Intrinsic Plasticity in Ventral Stream 0.1
µd Parameter of Intrinsic Plasticity in Ventral Stream 0.01
ηa Learning Rate of a in Intrinsic Plasticity 0.0001
ηb Learning Rate of b in Intrinsic Plasticity 0.0001
η Learning Rate of Weights 0.01
ε Minimum Error Decreasing as a Stopping Criteria 10−8

Table 5.1: Network Parameters (Horizontal Product RNN)

movement. Note that the output is inactive in every first time-step since the recur-

rent and time-delayed connections require the previous inputs which are not avail-

able in the first time-step. As depicted in Fig. 5.7, activations in the corresponding

activations of hidden layer v stay stable when one object appears, while we can

distinguish various patterns in the dorsal-like layer d representing perceptions of

different positions. The training error over the course of learning is depicted in

Fig. 5.8. The stopping criterion (output error(t− 1)− output error(t) < ε or

output error is increasing) was achieved by around iteration 3100.

On the other hand, the activations in the dorsal pathway, including the hidden

layer d, horizontal product with weighting matrix, fluctuate with the changing of

the object position. In particular, we can tell there are different patterns in the

hidden layer d while the object is moving horizontally right or left.
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Figure 5.8: Output Error through Iterations
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5.4 Summary

In this chapter we introduce a recurrent network architecture of modelling feed-

back pathways on two streams in the visual system. Advocating the concept of

isolating ‘what’ and ‘where’ in ventral and dorsal pathways, a prediction in the

dorsal pathway is also encoded due to the recurrent connection.

The experimental results show that information of object identity and position

have successfully been separated: the activation of the ventral pathway remains

stable when presenting the same object, while in the activation of the dorsal

pathway, especially, there are different patterns appearing in the hidden layer d

indicating different kinds of movement directions. This result can be comparable

to the finding of the difference of latency of neural responses in two streams.

This model demonstrates an example of how the feedback signals (e.g. lateral

connections) affect neural activities in different parts of the visual system. The

role of recurrent connections in the visual system has been stressed in terms of

their transmission as a kind of feedback signals. In the modelling perspective, it

is inevitable to apply recurrent connections within the dorsal pathway because

its short-term memory stores the past movement information. Furthermore, con-

ventional back-propagation training through the horizontal product model is able

to isolate the ‘what’ and ‘where’ information into two pathways, to represent the

object identity and movement direction respectively, and then to couple them

again together in the output layer by the horizontal product, being able to predict

movement in the next time-step.



Chapter 6

Feedback Signals on a

Predictive Sensorimotor

System

In the last chapter, we introduced the prediction in the perception of motion.

In this chapter, we augment this idea with a motor action module and propose

that this kind of predictive mechanism is also beneficial in motion, particularly in

artificial cognitive systems.

The prediction is achieved by tracking a moving object by observing saliency

and predictively coding the evidence of preferred visual evidence, so that the

upcoming sensory data is predicted by the feedback pathways based on the prior

sensory information. We claim that with the predicted sensory information, the

sensorimotor integration reacts smoother and faster.

This chapter is mostly modified from our published paper [Zhong et al., 2012c].

6.1 The Sensorimotor System

6.1.1 Sensory Prediction

In the sensorimotor cycle of an artificial cognitive system, especially when the

artificial system is a robot which physically interacts with the environment, there

usually exists a temporal delay mainly contributed by the processing time of sen-

sors, transmission time of signals and mechanical latency. For example, because

few object recognition programs can recognize the identity of human faces from

80
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visual inputs in real time, the running speed of human-following behaviour based

on object recognition should be slower than a normal walking speed of human

beings. It is difficult for a robot to keep searching a face in consecutive images

within a short time scale. A simple predictive mechanism, such as Kalman filters,

can solve this problem by predicting the movement of a person as soon as he/she

has been identified (e.g. [Foresti, 1999]). However, since a Kalman Filter is based

on a linearity assumption, it does not consider very complicated movements with

e.g. non-linear influence from context. Such problems may be tackled by neural

networks which can learn to predict percepts in a general dynamic environment.

Sensory prediction is of great benefit to dynamic robot behaviours such as ob-

stacle avoidance, visually guided navigation, reaching, visual search, and rapid

decision-making under uncertainty, since these kinds of behaviour highly rely on

current sensory information. In these scenarios with non-linear dynamics, a de-

velopmental sensory prediction is needed to learn to compensate for the latency

of the sensorimotor cycle.

A second reason for employing the predictive mechanism is that the sensory inputs

of artificial cognitive systems are often noisy and inaccurate in a real environment,

which may lead to failure of robot behaviours. In that case, a predictive sensory

module can compare its prediction based on previous short-term sensory percepts

to the current sensory value. A noisy sensor value can thereby be identified and an

action adjustment executed. A severe case may result from sensor failure caused

by hardware problems or a change of the environment (e.g. lighting conditions). In

such cases, an embodied predictive sensory module can act as a filter to recursively

estimate the incoming percepts.

6.1.2 Tracking and Prediction

A well-known method for tracking and prediction used for artificial systems are

the Kalman filters [Kalman, 1960]. They are a set of equations built on linear

operators and model a POMDP to estimate the state of a process with Gaussian

noise. Despite that the conventional Kalman filters are based on the assumption

of a linear dynamic system, other improved/adaptive Kalman filters have been

proposed [Bonato et al., 2009, Klein et al., 2012] to avoid such a limitation.

Particle filters are also one set of the techniques to deal with non-linear/non-

Gaussian tracking problems. As their name implies, they apply a set of particles

to represent the posterior density in the state space by recursively calculating

the Bayesian inference. They have been extensively used in object tracking (e.g.
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Connection Mean Variance

LAN 366.0 84.5
WIFI 797.7 187.1

Table 6.1: Time delay in the Camera-arm Cycle of NAO (in milliseconds)

[Schulz et al., 2001, Yan et al., 2011]) as well as other robot perception problems

(e.g. [Thrun, 2002, Grisetti et al., 2007, Zhong & Fung, 2012, Zhong et al., 2010]).

Neural networks can learn universal function approximation and thereby optimally

predict non-linear data [Schaefer et al., 2008, Möller, 2012, Hirel et al., 2011,

Saegusa et al., 2007]. For example, a simple feed-forward network approximates

a time step occurring in a Hidden Markov model (HMM) to estimate an agent’s

position along a motion sequence [Thrun, 1998]. Furthermore, a neural network

with recurrent connections is able to predict the movement trajectory recursively,

since it also represents the recent data in its short-term memory, it exhibits smooth

and stable neural dynamics.

6.1.3 Motivation

We have argued in the last chapter that any cortical area should compensate for

its own processing delay via the feedback pathways. In this chapter, we will im-

plement this idea on a humanoid robot: the NAO robot1. It is designed as an

autonomous, programmable humanoid robot. However, as a disadvantage also

found in other robots, a sensorimotor cycle latency also exists in NAOs. To quan-

tify this latency, an experiment was conducted by capturing two time-stamps

between issuing a movement command and perceiving this movement from the

robot camera. Based on ten recordings in each case, the delay of NAO’s sensori-

motor cycle is around 0.8s with a wireless connection and 0.36s with a LAN cable

between the control PC and the robot (Tab. 6.1). This long delay was observed

despite the fact that the used QVGA resolution allowed up to 30 frames per sec-

ond in the LAN modus. This further motivates to realize sensory prediction to

compensate for this delay, which is realized by a predictive sensorimotor model:

• Prediction within an autonomous cognitive robot can happen in both per-

ception and action parts, but in this chapter we only consider the prediction

in the perception, i.e. a system predicting sensory signals given the current

and previous sensory states. Nevertheless, such prediction is also valuable

1http://www.aldebaran.com/en/humanoid-robot/nao-robot

http://www.aldebaran.com/en/humanoid-robot/nao-robot
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for the motor action part since it results in a smoother and faster motor

action.

• Such local sensory prediction may be easier to implement than prediction

of the entire system response, and enable the mixed hierarchical and paral-

lel processing in the (visual) cortex, including short-cut connections, while

keeping the representations in all areas temporally aligned.

• Prediction of restricted sensory percepts (instead of e.g. the next action)

may be generalizable to many contexts and actions.

6.1.4 Experiments Setting

Since prediction of the complete raw sensory percept (e.g. all pixels of the camera

image) is not desirable and would be very difficult for an autonomous robot, it

is advisable to predict only few features extracted from the sensory percepts as

human perception does [Darrin et al., 2004, Natale et al., 2007]. This can be

implemented as a learnt non-linear mapping of sensory representations to predict

the forthcoming sensory flow.

Again, this work shows that motion perception in early visual processing is affected

by the feedback pathways by modelling it with recurrent neural connections in a

robotic system. Furthermore, such implementation is also practical to be applied

as a predictive sensorimotor model as part of a developmental robotic system. In

our proposed design, we also emphasize that the motor action of the robot should

be executed based on the predicted sensory percepts, reacting to the forthcom-

ing sensory data. In this way, it enables faster and smoother robot behaviours.

Prediction of motion generally includes both active and passive movement, i.e.

movement of sensory events generated by action of the agent itself and those gen-

erated by the movement of the observed objects [Cullen, 2004]. In this chapter,

we concentrate on the prediction of active movement, inferred from the perceived

visual motion of a fixed landmark. However, since the prediction does not use

additional input from any behaviours or motor commands, this architecture can

predict sensory percepts, no matter whether they are caused by active or passive

movement. In statistical notation, we would regard the prediction process as an

HMM rather than a partially observable Markov decision process (POMDP), since

the action is unknown.

In the work by Navarro-Guerrero et al. [2012], the authors have realized a goal-

directed behaviour based on reinforcement learning by a NAO humanoid robot.
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The resulting behaviour, however, did not look natural compared to the walking

patterns of humans. In this chapter, therefore, we make several new contribu-

tions. First, instead of a discrete representation of state- and action spaces, we

use continuous representations in both, which results in more sophisticated walk-

ing behaviours. This is made possible by the Continuous Actor-Critic Learning

Automaton (CACLA) [van Hasselt & Wiering, 2007]. The continuous action space

facilitates generalization of learnt actions to unlearnt regions in the state space,

which could help speed up learning and optimize the action selection. This rein-

forcement learning algorithm is similar to motor adaptation according to error-

prediction in biology [Shadmehr et al., 2010, Izawa & Shadmehr, 2011].

Another property of our previous work was the robot’s slowness. Instead of using

prediction, the visual percept was retrieved after a short waiting time in which the

robot stood still to obtain a clear camera image. A behavior that now takes little

more than a second with our proposed model (see results below) took roughly half

a minute due to the still standing periods [Navarro-Guerrero et al., 2012].

Corresponding to the integration of predictive visual information and smooth mo-

tor action, two modules, the sensory and motor modules, are incorporated in this

architecture (Fig. 6.1). Within the sensory module, an Elman network is applied

to predict the upcoming sensory information, while the motor-action module uses

a network trained by CACLA [van Hasselt & Wiering, 2007]. Integration of these

two modules drives a NAO robot to approach a target position with smooth and

continuous behaviour in an autonomous manner. Also, the NAO robot hardware

and control commands allow continuous walking without stopping, so that the

robot can change the parameters of walking, i.e. speed, walking direction and

torso orientation, at any given time while walking. Besides, the light weight of

the robot guarantees that it reacts fairly fast.

6.2 Recurrent Prediction Sensorimotor Model

6.2.1 Landmark-based Detection

The NAO robot is endowed with circular NAOMarks landmarks and a built-in

detection routine. However, this closed-source recognition program costs quite a

lot of computation power and causes significant delay. Besides it leads to over-

estimation of the landmark size if the images are blurry, which leads to wrongly

estimated poses. Therefore, we designed an own landmark to identify the position
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Figure 6.1: Overall Architecture Combining Sensory Prediction and Sensori-
motor Action

Figure 6.2: Sample of the Landmark

The perceived vertical distances between two circle centres from the NAO
camera are denoted as dl and dr, from which we calculate three identities based

on Eq. 6.1.

of the approach target. It consists of four circles, each including a large blue

ring with a smaller yellow circle inside (Fig. 6.2). We detect the positions of the

circle centres in the robot’s visual field using 2D Gaussian Fourier filters in RGB

channels. The colour combination of the landmark is different from the wooden

docking station to be easily distinguishable. Then, Hough circle detection finds

circles within a certain radius range [Ballard, 1981]. Our routine is faster than the

previous NAOMarks, the total pre-processing and searching time of the landmark

data is less than 0.01s.
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Then the position and orientation of the robot with respect to the landmark can

be defined by the following three values:

I1 =
dl + dr

2
, I2 =

dl − dr
I1

, I3 =
∑
x

pixx (6.1)

where the measurements dl and dr are defined according to Fig. 6.2. pixx is the

summation of the x coordinate of all the four circle centres within the robot’s

visual field. Referring to the overall installation of the shelf in Fig. 6.3, the first

identity I1 correlates with the proximity between the robot and the landmark.

The second identity I2 correlates with the angle of the robot’s position w.r.t. the

landmark, while the third identity I3 informs about the robot’s orientation w.r.t.

the horizontal direction to the landmark.

The three values of Eq. 6.1 contain all position/orientation information relevant

for the robot’s approach behaviour. Neurons in the input layer are arranged as

a three-dimensional cube, in which they are activated with a Gaussian activation

blob that is centred around (sc1, s
c
2, s

c
3) defined as:

scn =
In − Iminn

Imaxn − Iminn

×Nn (6.2)

where n (n = 1, 2, 3) is the n-th dimension of the cube, corresponding to the n-th

identity of Eq. 6.1. Iminn and Imaxn are the minimum and maximum value of the

identities data, respectively. Nn is the number of neurons in the n-th dimension.

The activation of neighbouring neurons sb(x1, x2, x3) is distributed according to a

Gaussian:

sbi(x1, x2, x3) ∼ N (scn, δm) (6.3)

These values define the activation on the sensory input layer.

6.2.2 Algorithm

Visual Prediction via Recurrent Connections Similar to Chap. 5, the

predictive module consists of a three-layer Elman network. Inputs to this network

are the three observed identities of the landmark from the perceived images {sb}.
Outputs are the one-step ahead predictions {sp} (c.f. Fig. 6.1).
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sbi(t) denotes the state of input neuron i at the t-th time-step. The activations of

the hidden units yj at time t are defined as

yj(t) =

N1×N2×N3∑
i

sbi(t)u
I
ji +

N1×N2×N3∑
i

sbi(t− 1)ūIji +

Nh∑
j′

shj′(t− 1)uRjj′ (6.4)

where uIji represents the weight matrix between input layer and hidden layer, ūIji

represents the weight matrix between the time-delayed input and the hidden layer

and uRjj′ indicates the recurrent weight matrix within the hidden layer. The above

equation shows that the hidden layer is connected to the weighted stimuli of the

current input and the delayed input, while there are additional lateral connections.

The transfer function of the hidden layer is the logistic function,

shj (t) =
1

1 + exp(−βyj(t))
(6.5)

The k-th output for sensory prediction spk(t) at time t is

spk(t) =

Nh∑
j

shj (t)uOkj (6.6)

where uOkj are the weights to the output layer (cf. Fig. 6.1).

Smooth Action Generation In the CACLA-trained reinforcement learning

network, the input layer encodes the predicted sensory states sp and the output

layer encodes a critic value and three robot action commands. Two of these

represent the moving direction and torso orientation change, and are activated

linearly as

am/o/g(t) =
∑
k

spk(t)w
a
k (6.7)

where wak is the weight matrix between the sensory state units spk(t) and the action

units am/o/g(t). The third action unit signals the robot to stop walking (to initiate

a possible grasping action) and is activated by a sigmoid function:

grasp(t) =
1

1 + exp(−ag)
(6.8)

A value of grasp(t) > 0.5 in this unit causes the robot to stop, while a value < 0.5

lets it continue the docking behaviour.
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Parameters Description Value

δs Variance of Gaussian Distribution in Sensory Module 1.0
N1 ×N2 ×N3 Size of Input Layer in Sensory Module 10 × 10 × 10
Nh Size of Hidden Layer in Sensory Module 1,500
η Learning Rate in Sensory Module 0.1
β Slope in Logistic Function 1.0
δm Variance of Gaussian Distribution in Motor Module 1.0
ηw Learning Rate in Motor Action Module 0.4
γ Discount Factor of Reinforcement Learning 0.8
ε Decay Rate of Reinforcement Learning 0.5

Table 6.2: Network Parameters (Predictive Sensorimotor Integration)

A critic unit guides reinforcement learning. It is activated as

c(t) =
∑
k

spk(t)vk (6.9)

where vk are the weights between the sensory state units spk(t) and the critic.

The action weights wa are updated by the following rule:

waj (t+ 1) = waj (t) + ηwδaa
m/o/gsj (6.10)

where δa is the action output error. According to CACLA by van Hasselt &

Wiering [2007], this update is only performed while the critic value (Eq. 6.9) is

increasing. The updating of the critic weights is defined by:

vij(t+ 1) = vij(t) + εδpsj (6.11)

where δp is the prediction error. When the reward is achieved, it is defined as

δp = r − c(t) (6.12)

while the reward is not yet achieved,

δp = r + γc(t+ 1)− c(t) (6.13)

where γ is the temporal discount factor. An important difference of CACLA and

conventional actor-critic learning is that the action weights wa are only updated if

the state value is increased, but not if it is decreased, since the optimum may exist

between the current selection and the executed one due to the continuous encoding.

Tab. 6.2 shows the training parameters used in the two network modules.
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6.3 Experiments

Previously Navarro-Guerrero et al. [2012] have studied that, autonomous robot ap-

proaching based on reinforcement learning can serve as a basis for different kinds

of robot behaviours, such as grasping, human-robot-interaction, re-charging, etc.

We test our predictive sensory model in our home lab, where a shelf with a land-

mark is installed (Fig. 6.3). The goal of autonomous docking is to approach a

narrow area which allows the robot to execute the grasping behaviour afterwards.

Grasping will be controlled by a self-organizing map with supervised control out-

put, which ensures robustness and tolerance towards the position and pose reached

by the docking: as long as the object (a plastic goblet) is visible in a certain area

of the visual field, the robot is able to grasp it.

In our scenario, we define an area of 22cm by 13cm in front of the shelf as the

optimal stopping area within which both feet of the robot must halt after ap-

proaching (red square in Fig. 6.3(b)) based on the kinematics and dimensions of

the NAO robot for the grasping behaviour. The largest distance is limited by the

robot’s arm length, while a too short distance to the shelf leads to the robot’s arm

being blocked by the shelf when raised. A larger area for the start of the approach

is constrained by the requirement that the landmark must be visible within the

robot’s visual field.

6.3.1 Training Scheme

First, training sequences of the robot were collected through manual control in

real world experiments, which leads to supervised learning of the forward model

and a form of supervised reinforcement learning for the action model [Navarro-

Guerrero et al., 2012]. We avoided the use of a robot simulator since it is very

difficult to configure it to reflect the exact physical parameters of the real world,

such as the camera optics or friction on various carpets. With real world training,

these factors are learnt without explicit model. The Gaussian activations (Eq. 6.3)

speed up training and a large training set can be avoided.

Since the NAO robot has many degrees of freedom, for simplicity we keep the

robot pose constant except for leg movements to keep the number of action units

small. The training sequences are not recorded under continuous walking, but

step-wise; in every step, the following data is recorded: the sensory identities from

the landmark, the robot movement direction, a change in torso orientation and the

stop action for grasping. Based on the hardware constraints of the NAO robot,
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(a) Back view of the docking station

(b) Top view of the docking station

Figure 6.3: Shelf Installation / Docking Station

The robot tries to approach the square mark. After docking, the robot could
grasp some object from the shelf.

the walking direction is between −π and +π and the torso orientation change is

from −0.1 to +0.1 (both in radians). Furthermore, to keep the dimensionality of

the continuous action space limited, we try to keep the consistency of the step-

walk-distance and the continuous-walk-distance covered by the sampling time, i.e.

∆D = 3cm.
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Methods # of Trials # of Success Success Rate Avg. Time Variance

Without 25 16 0.640 1.57 0.75
With 25 20 0.800 1.22 0.51

Table 6.3: Docking Trials by Reinforcement Learning with and without Pre-
diction

The approaching can start at any point within the approach area. For the reason of

spatially balancing weights representing the walking data in the training sequence,

we carefully selected the starting points as four points in the middle, six points

in the left half and six points in the right half of the approaching area. We chose

more training sequences of walking sideways because they are more challenging.

The recorded training sequences were used to train both modules off-line using the

rules described above. The training in the sensory predictive module is identical

to the conventional back-propagation through time (BPTT) algorithm. Fig. 6.4

shows the learning curves representing the output error in both two modules. The

figures show that both modules quickly converge before the 50th iteration.

6.3.2 Experimental Results

Approaching based on Reinforcement Learning without Prediction As

soon as the first training procedure of CACLA was done, the NAO robot was able

to approach the shelf in a continuous way. Connecting the sensory input directly

to the motor action module, we conducted twenty-five approach trials without a

predictive model with LAN connection. Results are shown in Tab. 6.3. We count

a trial successful if the subsequent grasping behaviour leads to a successful grasp

of the goblet.
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(a) Training Curve of the Predictive Sensory Module. The error is calculated by
the mean squared difference between the target and the output of each unit in the
output cube.

(b) Training curve of the motor action module.

Figure 6.4: Training Curves of Two Modules

From the on-site observations of docking trials, the robot sometimes reacted late

when observing the landmark. For instance, it usually stopped too close to the

docking station, which can lead to failure of grasping. In some cases the robot
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(a) Robot Trajectories without Sensory Predic-
tion

(b) Robot Trajectories with Sensory Prediction

Figure 6.5: Comparison of Trajectories

Trajectories of docking trials observed by a ceiling camera (true positions, red)
and inferred from the robot’s current sensory perception (green). (a) Without

sensory prediction, sensorimotor delay causes the grasp signal to be produced at
positions beyond the optimal position at (0cm, 15cm), which often results in

failure of grasping. (b) The sensory prediction (blue) matches the true position
better than the current estimate. With prediction, the robot correctly stops and

gives the grasping command before the optimal position is inferred from the
camera.
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performed corrective actions following such responses, which led to longer average

docking durations, as evident in Tab. 6.3.

Two trials from both sides are shown in Fig. 6.5. To objectively compare the offsets

of the robot camera, the trajectories were also tracked from a ceiling camera. With

0.2s sampling rate, we measured the x-y position of the robot. After synchronizing

the ceiling camera and the robot observation data, we observe that a delay happens

during the whole docking process, manifested by the observed inferred position

being offset from the true position. This latency is likely to be the cause of

the observed late NAO reaction, which led to a longer approaching time, when it

attempted to produce additional back and forth movements, and even failure of the

docking and the following grasping, specifically when NAO elicited the grasping

signal when it was already too close to the station (see the final stopping/grasping

points were not at (0cm, 150cm) but beyond it in Fig. 6.5).

Approaching based on Reinforcement Learning and Predictive Sensory

System In the following experiment of the integration of both modules, the

predictive sensory module should build up an internal mental model to predict

the upcoming sensory signal sequence based on the previous sensory experience.

We used both the predictive sensory value and the real sensory value by averag-

ing them and applying the averaged value as the input of the units am and ao.

This method can compensate the sensorimotor cycle latency, filter noisy sensory

information and therefore enhance the success-rate and speed while the robot is

walking. But the stopping/grasping signal should arrive even earlier due to com-

mand delay in mechanics, so only the predictive sensory value is fed as input of the

grasping command unit ag to further compensate this delay. These trial results

are compared to the former results as shown in Tab. 6.3.

To visualize the effect of the predictive sensory model, we also synchronized the

predictive sensory percepts of x-y distances and the observed ones in Fig. 6.5(b)

with the ceiling camera data. Since the grasping signal only depends on the

predictive sensory information, it solves the problem of the grasping signal coming

too late and the robot stopping too close to the docking station, as it occurred

in the previous experiment. Besides, in Fig. 6.5 we can see that the predicted

trajectory is smoother than the one obtained from current robot vision, which

hints to a denoising function of the predictive sensory module.
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Methods # of Approaches # of Success Success Rate Avg. Time Variance

LAN 20 16 0.800 1.25 0.59
WIFI 20 15 0.750 1.35 0.58

Table 6.4: Docking Trials in Different Connections

Docking Trials with Different Connections To test the model predicting

sensory percepts in a general context, an experiment with a different network

connection was conducted. Due to different network delays (c.f. Tab. 6.1), the

robot received different kinds of sensory percept sequences when we used the

slower wireless (WIFI) connection. As mentioned before, the predictive sensory

module estimates an HMM process. To train the predictive sensory module for the

different connection delays, we adjusted training samples to match the delay time

of different connections. Tab. 6.4 shows that the results of docking trials under

different connections are similar, implying that the predictive sensory architecture

adapts its prediction. Hence motor responses will be different in a different sensory

percept context.

6.4 Summary

In this chapter, we presented a predictive sensory architecture that predicts the

visually retrieved coordinates. It specifically extends the dorsal-like stream in

the visual cortex based on recurrent connections, which was shown in the last

chapter and models its integration with a motor action module. Together with a

continuous reinforcement-learnt action strategy based on these predicted sensory

values, the predictive architecture resulted in a smoother and faster approaching

behaviour in the case study of robot approaching. The filtering function of the

predictive sensory module provided a smooth sensory signal leading to a smooth

and robust behaviour. We also showed that the predictive sensory model effec-

tively compensated the latency of the sensorimotor cycle of the robot, which led

to less errors being made and to faster executed behaviour.



Chapter 7

Pre-symbolic Representation

Emerged from Sensorimotor

Feedback

In last two chapters, we investigated the prediction function of feedback signals

on perception, and how it affects the sensorimotor integration. In this chapter,

we continue to examine such influences coming from various cognitive processes.

Cognitive processes are learnt by sensory-driven signals. For instance, the acqui-

sition of the symbolic and linguistic representations of sensorimotor behaviour is

done by an agent when it is executing and/or observing own and others’ actions.

Conversely, this cognitive process accomplishes the sensory prediction function via

the feedback pathways. This chapter is mostly based on our published work [Zhong

et al., 2011, 2014].

7.1 Language Acquisition

7.1.1 Pre-symbolic Communication

Although infants are not supposed to acquire a symbolic representational system

at the sensorimotor stage, based on Piaget’s definition of infant development, the

preparation of language development, such as a pre-symbolic representation for

conceptualization, has been set at the time when the infant starts babbling [Man-

dler, 1999]. Experiments have shown that infants have established the concept of

animate and inanimate objects, even if they have not yet seen the objects before

96
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[Gelman & Spelke, 1981]. Similar phenomena also include the conceptualization of

object affordances such as the conceptualization of containment [Bonniec, 1985].

This conceptualization mechanism is developed at the sensorimotor stage to rep-

resent sensorimotor primitives and other object-affordance related properties.

During an infant’s development at the sensorimotor stage, one way to learn affor-

dances is to interact with objects using tactile perception, to observe the object

from visual perception and thus learn the causal relation between the visual fea-

tures, affordances and movements as well as to conceptualize them. This learning

starts with the basic ability to move an arm towards the visual-fixated objects in

new-born infants [von Hofsten, 1982], continues through object-directed reaching

at the age of 4 months [Streri et al., 1993, D. Corbetta & Snapp-Childs, 2009],

and can also be found during the object exploration of older infants (c.f. [Mandler,

1992, Ruff, 1984]). From these interactions leading to visual and tactile percepts,

infants gain experience through the instantiated ‘bottom-up’ knowledge about

object affordances and sensorimotor primitives. Building on this, infants at the

age of around 8-12 months gradually expand the concept of object features, affor-

dances and the possible causal movements in the sensorimotor context [Gibson,

1988, C. Newman et al., 2001, Rocha et al., 2006]. For instance, they realize that

it is possible to pull a string that is tied to a toy car to fetch it instead of crawling

towards it. An associative rule has also been built that connects conceptualized

visual feature inputs, object affordance and the corresponding frequent auditory

inputs of words, across various contexts [Romberg & Saffran, 2010]. At this stage,

categories of object features are particularly learnt in different contexts due to

their affordance-invariance [Bloom et al., 1993].

Therefore, the integrated learning process of the object’s features, movements

according to the affordances, and other knowledge is a globally conceptualized

process through visual and tactile perception. This conceptualized learning is a

precursor of a pre-symbolic representation of language development. This learning

is the process to form an abstract and simplified representation for information ex-

change and sharing1. To conceptualize from visual perception, it usually includes

a planning process: first the speaker receives and segments visual knowledge in

the perceptual flow into a number of states on the basis of different criteria, then

the speaker selects essential elements, such as the units to be verbalized, and

last the speaker constructs certain temporal perspectives when the events have

to be anchored and linked (c.f. [Habel & Tappe, 1999, von Stutterheim & Nuse,

1For comparison of conceptualization between engineering and language perspectives, see
[Gruber & Olsen, 1994, Bowerman & Levinson, 2001].
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2003]). Assuming this planning process is distributed between ventral and dorsal

streams, the conceptualization process should also emerge from the visual infor-

mation that is perceived in each stream, associating the distributed information

in both streams. As a result, the candidate concepts of visual information are

statistically associated with the input stimuli. For instance, they may represent

a particular visual feature with a particular class of label (e.g. a particular visual

stimuli with an auditory wording ‘circle’) [Chemla et al., 2009]. Furthermore, the

establishment of such links also strengthens the high-order associations that gen-

erate sensory predictions and generalize to novel visual stimuli [Yu, 2008]. Once

the infants have learnt a sufficient number of words, they begin to detect a par-

ticular conceptualized cue with a specific kind of wording. At this stage, infants

begin to use their own conceptualized visual ‘database’ of known words to iden-

tify a novel meaning class and possibly to extend their wording vocabulary [Smith

et al., 2002]. Thus, this associative learning process enables the acquisition and

the extension of the concepts of domain-specific information (e.g. features and

movements in our experiments) with the visual stimuli.

This conceptualization will further result in a pre-symbolic way for infants to

communicate when they encounter a conceptualized object and intend to execute

a correspondingly conceptualized well-practised sensorimotor action towards that

object. For example, behavioural studies showed that when 8-to-11-month-old

infants are unable to reach and pick up an empty cup, they may point it out

to the parents and execute an arm movement intending to bring it to their lips.

The conceptualized shape of a cup reminds infants of its affordance and thus

they can communicate in a pre-symbolic way. Thus, the emergence from the

conceptualized visual stimuli to the pre-symbolic communication also gives further

rise to the different periods of learning nouns and verbs in infancy development (c.f.

[Gentner, 1982, Tardif, 1996, Bassano, 2000]). This evidence supports that the

production of verbs and nouns are not correlated to the same modality in sensory

perception: experiments performed by Kersten [1998] suggest that nouns are more

related to the movement orientation caused by the intrinsic properties of an object,

while verbs are more related to the trajectories of an object. Thus, we argue that

such differences of acquisitions in lexical classes also relate to the conceptualized

visual ventral and dorsal streams. The finding is consistent with Damasio &

Tranel [1993]’s hypothesis that verb generation is modulated by the perception of

conceptualization of movement and its spatio-temporal relationship.

For this reason, we propose that the conceptualized visual information, which is
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a prerequisite for the pre-symbolic communication, is also modulated by percep-

tion in two visual streams. As we introduced in the last chapter, there have been

studies of modelling the functional modularity in the development of ventral and

dorsal streams (e.g. [Jacobs et al., 1991, Mareschal et al., 1999]) and the bilin-

ear models of visual routing (e.g. [Olshausen et al., 1993, Bergmann & von der

Malsburg, 2011, Memisevic & Hinton, 2007]). However, a model which explains

the development of conceptualization from both streams and results in an explicit

representation of conceptualization of both streams, while the visual stimuli are

presented, is still missing in the literature. This conceptualization should be

able to encode the same category for information flows in both ventral and dorsal

streams like ‘object files’ in the visual understanding [Fields, 2011] so that they

could be discriminated in different contexts during language development.

On the other hand, this conceptualized representation that is distributed in two

visual streams is also able to predict the tendency of appearance of an action-

oriented object in the visual field via feedback pathways, which causes some

sensorimotor phenomena such as object permanence [Tomasello & Farrar, 1986]

showing that the infants’ attention is usually driven by the object’s features and

movements. For instance, when infants are observing the movement of the ob-

ject, recording showed an increase of the looking times when the visual informa-

tion after occlusion is violated in either surface features or location [Mareschal

& Johnson, 2003]. Also, the words and sounds play a top-down role in the early

infants’ visual attention [Sloutsky & Robinson, 2008]. This could hint at the dif-

ferent development stages of the ventral and dorsal streams and their effect on

the conceptualized prediction mechanism in the infant’s consciousness.

Accordingly, the model we propose about the conceptualized visual information

should also be able to explain the emergence of a predictive function in the sen-

sorimotor system, e.g. the ventral stream attempts to track the object and the

dorsal stream processes and predicts the object’s spatial location, when the sen-

sorimotor system is involved in an object interaction. We have been aware of

that this build-in predictive function in a forward sensorimotor system is essential:

neuroimaging research has revealed the existence of internal forward models in the

parietal lobe and the cerebellum that predict sensory perception from efference

copies of motor commands [Kawato et al., 2003] and supports fast motor reactions

(e.g. [Hollerbach, 1982]). Since the probable position and the movement pattern

of the action should be predicted on a short time scale, sensory feedback produced

by a forward model with negligible delay is necessary in this sensorimotor loop.
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Figure 7.1: Diagram of Sensorimotor Integration with the Object Interaction.

The lower forward model predicts the object movement, while the upper forward
model extracts the end-effector movement from sensory information in order to

accomplish a certain task (e.g. object interaction).

7.1.2 Motivation

The sensorimotor model to explain the predictive role of the feedback pathways

is suitable to work as one of the building modules that takes into account the

predictive object movement in a forward sensorimotor system to deal with object

interaction from visual stimuli input as Fig. 7.1 shows. This system is similar

to Wolpert et al. [1995]’s sensorimotor integration, but it includes an additional

sensory estimator (the lower brown block) which takes into account the visual

stimuli from the object so that it is able to predict the dynamics of both the end-

effector (which is accomplished by the upper brown block) and the sensory input

of the object. This object-predictive module is essential in a sensorimotor system

to generate sensorimotor actions like tracking and avoiding when dealing with fast-

moving objects, e.g. in ball sports. We also assert that the additional inclusion of

forward models in the visual perception of the objects can explain some predictive

developmental sensorimotor phenomena, such as object permanence.

In summary, we propose a model which should accomplish the following tasks:

• Links should be established between the development of ventral/dorsal visual

streams and the emergence of the conceptualization in visual streams, which

further leads to the feedback predictive function of a sensorimotor system;
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• As such conceptualization may become a source of the feedback signals in

a forward (predictive) sensorimotor model, we verify the hypothesis that a

higher-level cognition process (e.g. symbolic representation) and a predictive

sensorimotor process are integrated.

To validate this proof-of-concept model, we also conducted experiments in a sim-

plified robotics scenario. Two NAO robots were employed in the experiments:

one of them was used as a ‘presenter’ and moved its arm along pre-programmed

trajectories as motion primitives. A ball was attached at the end of the arm so

that another robot could obtain the movement by tracking the ball. Our neural

network was trained and run on the other NAO, which was called the ‘observer’.

In this way, the observer robot perceived the object movement from its vision

passively, so that its network took the object’s visual features and the movements

into account. Though we could also use one robot and a human presenter to run

the same tasks, we used two identical robots, due to the following reasons: 1.

the object movement trajectories can be done by a pre-programmed machinery so

that the types and parameters of it can be adjusted; 2. the use of two identical

robots allows to interchange the roles of the presenter and observer in an easier

manner.

7.2 Horizontal Recurrent Network with Parametric

Bias

A similar forward model exhibiting sensory prediction for visual object percep-

tion has been proposed in the previous chapter (Chap. 5) where we suggested

an RNN implementation of the sensory forward model. Together with a CACLA

trained multi-layer network as a controller model, the forward model embodied

in a robot receiving visual landmark percepts enabled a smooth and robust robot

behaviour. However, one drawback of this work was its inability to store multiple

sets of spatial-temporal input-output mappings, i.e. the learning did not converge

if there appeared several spatial-temporal mapping sequences in the training. Con-

sequently, a simple RNN network was not able to predict different sensory percepts

for different reward-driven tasks. Another problem was that it assumed that only

one visual feature would appear in the robot’s visual field, and this one was the

only visual cue it could learn during development.
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Figure 7.2: The HoRNNPB Network Architecture

In this network, L layers represent L different types of features. Size of N
indicates the positional information of the object.

To solve the first problem, we will consider to use the RNNPB model we intro-

duced in Chap. 3. Merging the ideas of RNNPB and the forward model, in the

context of sensorimotor integration of object interaction, the PB units can be

considered as a small set of high-level conceptualized units that describe various

types of non-linear dynamics of visual percepts, such as features and movements.

This representation is more related to the ‘natural prototypes’ from visual per-

ception, for instance, than a specific language representation [Rosch, 1973]. The

development of PB units can also be seen as the pre-symbolic communication that

emerges during sensorimotor learning. The conceptualization, on the other hand,

could also result in the prediction of future visual percepts of moving objects in

sensorimotor integration via feedback pathways.

In this novel horizontal recurrent model with parametric bias (HoRNNPB) (Fig. 7.2),

we propose a three-layer, horizontal-product Elman network with PB units. Simi-

lar to the original RNNPB model, the network is capable of being executed under

three running modes, according to the pre-known conditions of inputs and out-

puts: learning, recognition and prediction. In learning mode, the representation

of object features and movements are first encoded in the weights of both streams,

while the bifurcation parameters with a smaller number of dimensions are encoded
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in the PB units. This is consistent with the emergence of the conceptualization

at the sensorimotor stage of infant development.

Apart from the PB units, another novelty in the network is that the visual object

information is encoded in two neural streams and is further conceptualized in PB

units. Two streams share the same set of input neurons, where the coordinates

of the object in the visual field are used as identities of the perceived images.

The appearance of values in different layers represents different visual features:

in our experiment, the colour of the object detected by the yellow filter appears

in the first layer whereas the colour detected by the green filter appears in the

second layer; the other layer remains zero. For instance, the input ((0, 0), (x, y))

represents a green object at (x, y) coordinates in the visual field. The hidden layer

contains two independent sets of units representing dorsal-like ‘d’ and ventral-like

‘v’ neurons respectively. Similar to the model we showed in Chap. 4, these two

sets of neurons are inspired by the functional properties of dorsal and ventral

streams:

• fast responding dorsal-like units predict object position and hence encode

movements;

• slow responding ventral-like units represent object features.

The recurrent connection in the hidden layers also helps to predict movements in

layer d and to maintain a persistent representation of an object’s feature in layer v.

The horizontal product brings both pathways together again in the output layer

with one-step ahead predictions. Let us denote the output layer’s input from layer

d and layer v as xd and xv, respectively. The network output so is obtained via

the horizontal product as

so = xd � xv (7.1)

where � indicates element-wise multiplication, so each pixel is defined by the

product of two independent parts, i.e. for output unit k it is sok = xdk · xvk.

7.2.1 Algorithm

Similar as in the previous two chapters, we use sb(t) to represent the activation and

PBd/v(t) to represent the activation of the dorsal/ventral PB units at time-step

t. In some of the following equations, the time-index t is omitted if all activations
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are from the same time-step. The inputs to the hidden units yvj in the ventral

stream and ydj in the dorsal stream are defined as

ydl (t) =
∑
i

sbi(t)w
d
li +

∑
l′

sdl (t− 1)vdll′ +
∑
n2

PBv
n2

(t)w̄dln2
(7.2)

yvj (t) =
∑
i

sbi(t)w
v
ji +

∑
j′

svj (t− 1)vvjj′ +
∑
n1

PBd
n1

(t)w̄vjn1
(7.3)

where wdli, w
v
ji represent the weighting matrices between dorsal/ventral layers and

the input layer, w̄dli, w̄
v
ji represent the weighting matrices between PB units and

the two hidden layers, and vdll′ and vvjj′ indicate the recurrent weighting matrices

within the hidden layers.

The transfer functions in both hidden layers and the PB units all employ the

sigmoid function recommended by LeCun et al. [1998],

s
d/v
l/j = 1.7159 · tanh(

2

3
y
d/v
l/j ) (7.4)

PB
d/v
n1/n2

= 1.7159 · tanh(
2

3
ρ
d/v
n1/n2

) (7.5)

where ρd/v represent the internal values of the PB units.

The terms of the horizontal products of both pathways can be presented as follows:

xvk =
∑
j

svju
v
kj ; xdk =

∑
l

sdl u
d
kl (7.6)

The output of the two streams composes a horizontal product for the network

output as we defined in Eq. 7.1.

Learning Mode The training progress is basically determined by the cost

function:

C =
1

2

T∑
t

N∑
k

(sbk(t+ 1)− sok(t))2 (7.7)

where sbi(t + 1) is the one-step ahead input (as well as the desired output), sok(t)

is the current output, T is the total number of available time-step samples in

a complete sensorimotor sequence and N is the number of output nodes which

is equal to the number of input nodes. Following gradient descent, each weight

update in the network is proportional to the negative gradient of the cost with
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respect to the specific weight w that will be updated:

∆wij = −ηij
∂C

∂wij
(7.8)

where ηij is the adaptive learning rate of the weights between neuron i and j,

which is adjusted in every epoch [Kleesiek et al., 2013]. To determine whether

the learning rate has to be increased or decreased, we compute the changes of the

weight wi,j in consecutive epochs:

σi,j =
∂C

∂wi,j
(e− 1)

∂C

∂wi,j
(e) (7.9)

The update of the learning rate is

ηi,j(e) =


min(ηi,j(e− 1) · ξ+, ηmax) if σi,j > 0,

max(ηi,j(e− 1) · ξ−, ηmin) if σi,j < 0,

ηi,j(e− 1) else.

(7.10)

where ξ+ > 1 and ξ− < 1 represent the increasing/decreasing rate of the adaptive

learning rates, with ηmin and ηmax as lower and upper bounds, respectively. Thus,

the learning rate of a particular weight increases by ξ+ to speed up the learning

when the changes of that weight from two consecutive epochs have the same sign,

and vice versa.

Besides the usual weight update according to back-propagation through time, the

accumulated error over the whole time-series also contributes to the update of the

PB units. The update for the i-th unit in the PB vector for a time-series of length

T is defined as:

ρi(e+ 1) = ρi(e) + γi

T∑
t=1

δPBi,j (7.11)

where δPB is the error back-propagated to the PB units, e is e-th time-step in

the whole time-series (e.g. epoch), γi is PB units’ adaptive updating rate which

is proportional to the absolute mean value of the back-propagation error at the

i-th PB node over the complete time-series of length T :

γi ∝
1

T

T∑
t=1

δPBi,j (7.12)
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The reason for applying the adaptive technique is that it was realized that the

PB units converge with difficulty. Usually a smaller learning rate is used in the

generic version of RNNPB to ensure the convergence of the network. However,

this results in a trade-off in convergence speed. The adaptive learning rate is an

efficient technique to overcome this trade-off [Kleesiek et al., 2013].

Recognition Mode The recognition mode is executed with a similar informa-

tion flow as the learning mode: given a set of spatio-temporal sequences, the error

between the target and the real output is back-propagated through the network

to the PB units. However, the synaptic weights remain constant and only the PB

units will be updated, so that the PB units are self-organized as the pre-trained

values after certain epochs. Assuming the length of the observed sequence is a,

the update rule is defined as:

ρi(e+ 1) = ρi(e) + γ
T∑

t=T−a
δPBi,j (7.13)

where δPB is the error back-propagated from a certain sensory information se-

quence to the PB units and γ is the updating rate of PB units in recognition

mode, which should be larger than the adaptive rate γi at the learning mode.

Generation Mode The values of the PB units can also be manually set or ob-

tained from recognition, so that the network can generate the upcoming sequence

with one-step prediction.

7.3 Experiments

7.3.1 Preliminary Experiments

To introduce the usage of RNNPB and test if it is useful to recognize and to

predict multiple perception sequences, in this part of the experiment, we will first

conduct preliminary experiments on action recognition and prediction using a

generic RNNPB model. Due to PB units’ property of recognizing temporal input

sequences, PB units should be beneficial to robot action understanding. With a

prototype architecture of PB units, we will focus on robot trajectory prediction

and recognition in the following sections, and test their ability to understand what

the robot is doing.
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As a foundation of robot action understanding, the recognition and prediction of

robot walking trajectories are the objectives of the following experiments. For

effectiveness, we use the Webots simulator [Michel, 2004] to collect the trajectory

data. Our NAO robot is controlled in the Webots simulator to walk along pre-

defined trajectories. From the supervisor function within Webots, three kinds of

trajectories, that is a straight line, a sine curve and a half circle were recorded

using x and y coordinates. Different combinations of these curves with different

parameters make the robot walk in various trajectories. As an initial controlled

experiment with known trajectories, we select three trajectories: 1. a sine curve:

y = 50sin(2π3 ∗ x)cm; 2. a half circle curve with 50cm radius; 3. a straight line.

The reason why we use these kinds of trajectories is that they can constitute differ-

ent kinds of trajectories, e.g. a walking trajectory when doing obstacle avoidance,

by changing their parameters, i.e. frequency and amplitude in sine curve and ra-

dius in half circle. We train the network with three types of input sequences. The

expectation is that the generalization ability of PB units can recognize similar tra-

jectories with different parameters. For all simulations we use the same network:

2 input nodes, 10 hidden nodes, 10 context nodes, 2 output nodes. Addition-

ally, we use 3 PB nodes in the experiment. The empirically determined network

parameters are: l = 30, ηl = 0.01, ηr = 0.5, and the learning rate of connection

weights in back-propagation is defined by ηBP = 0.01.

After training, we input the walking records from the above three trajectories

respectively and attempt to predict the position one step ahead given the previous

inputs. As shown in Figure 7.3, after several time-steps, the network can basically

predict the learnt trajectories. Furthermore, we inspect the values in the PB units

while we continuously feed three types of input sequences into it. As shown in

Figure 7.4 internal values in the PB units can reflect different input patterns of

the whole learning sequence.



Chapter 7. Pre-symbolic Communication Emergence 108

(a) Prediction of sin curve

(b) Prediction of circle curve

Figure 7.3: Prediction of Three Curves
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(a) Prediction of straight line

Figure 7.3: Prediction of Three Curves (cont.)

Prediction experiments were done for three types of trained sequences. Solid
lines represent the true positions and the dashed line represent the predictions.
It can be observed that the predicted sequence and the target sequence were

quite close in the above figures.

RMSE sine line circle sine2 line2 circle2

x coordinate 0.0714 0.0052 0.0077 0.2655 0.0187 0.0427

y coordinate 0.0829 0.0066 0.0108 0.1884 0.0094 0.0744

Table 7.1: Root Mean Square Error of Two Curve Set Predictions

Secondly, we attempt to input another three different types of similar patterns,

but with different parameters in order to test the generalization ability for other

untrained trajectories. Fig. 7.5 shows the prediction results of the network. Al-

though some errors occur, the generalization of the network still successfully pre-

dicts the trend of the curves: 1. a sine curve: y = 100sin(π2 ∗ x)cm; 2. a half

circle curve with 30cm radius; 3. a straight line. Tab. 7.1 shows the RMS error

between the true value and prediction.
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(b) Output in PB Unit 1

(c) Output of PB Unit 2

(d) Output of PB Unit 3

Figure 7.4: PB Values in Recognition

Three sequences were fed into the network to demonstrate the recognition in PB
units.
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(a) Prediction of sin curve 2

(b) Prediction of circle curve 2

Figure 7.5: Prediction of Three Untrained Curves
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(a) Prediction of straight line 2

Figure 7.5: Prediction of Three Untrained Curves (cont.)

The errors between the predicted curves and untrained curves were larger than
those in Fig. 7.3, but the trend of the similar curves can also be predicted.

7.3.2 Pre-symbolic Learning via Interaction

In this experiment, we examined our HoRNNPB network with robotic experi-

ments. Two NAO robots were placed face-to-face in a rectangle box of 61.5cm×
19.2cm as shown in Fig. 7.6. These distances were carefully adjusted so that the

observer was able to keep track of movement trajectories in its visual field during

all experiments using the images from the lower camera. The NAO robot has two

cameras. We use the lower one to capture the images because its installation angle

is more suitable to track the balls when they are held in the other NAO’s hand.

Two 3.8cm-diameter balls with yellow/green colour were used for the following

experiments. The presenter consecutively held each of the balls to present the

object interaction. The original image, received from the lower camera of the ob-

server, was pre-processed with threshold in HSV colour-space and the coordinates

of its centroid in the image moment were calculated. Here we only considered

two different colours as the only feature to be encoded in the ventral stream, as

well as two sets of movement trajectories encoded in the dorsal stream. Although

we have only tested a few categories of trajectories and features, we believe the

results can be predicted to multiple categories in future applications.

Learning The two different trajectories (in cm) are defined as below,
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Figure 7.6: Experimental Scenario

Two NAOs are standing face-to-face with in a rectangle box.

the cosine curve,

x = 12 (7.14)

y = 8 · (− t
2

) + 0.04 (7.15)

z = 4 · cos(2t) + 0.10 (7.16)
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and the square curve,

x = 12 (7.17)

y =



0 t ≤ −3π
4

16
π t+ 12 −3π

4 < t ≤ −π
4

8 −π
4 < t ≤ π

4

−16
π t+ 12 π

4 < t ≤ 3π
4

0 t > 3π
4

(7.18)

z =



16
π t+ 20 t ≤ −3π

4

14 −3π
4 < t ≤ −π

4

−16
π t+ 10 −π

4 < t ≤ π
4

6 π
4 < t ≤ 3π

4
16
π t− 6 t > 3π

4

(7.19)

where the 3-dimension tuple (x, y, z) are the coordinates (centimetres) of the ball

w.r.t the torso frame of the NAO presenter. t loops between (−π, π]. In each

loop, we calculated 20 data points to construct trajectories with 4s sleeping time

between every two data points. Note that although we have defined the optimal

desired trajectories, the arm movement was not ideally identical to the optimal

trajectories due to the noisy position control of the end-effector of the robot. On

the observer side, the (x, y) coordinates of the colour-filtered moment of the ball

in the visual field were recorded to form a trajectory with sampling time of 0.2s.

Five trajectories, in the form of tuple (x, y, z) w.r.t the torso frame of the NAO

observer were recorded with each colour and each curve, so in total 20 trajectories

were available for training.

Parameters Parameter’s Descriptions Value

ηventral Learning Rate in Ventral Stream 1.0× 10−5

ηdorsal Learning Rate in Dorsal Stream 1.0× 10−3

ηmax Maximum Value of Learning Rate 1.0× 10−1

ηmin Minimum Value of Learning Rate 1.0× 10−7

Mγ Proportionality Constant of PB Units Updating Rate 1.0× 10−2

n1 Size of PB Unit 1 1
n2 Size of PB Unit 2 1
nv Size of Ventral-like Layer 50
nd Size of Dorsal-like Layer 50
ξ− Decreasing Rate of Learning Rate 0.999999
ξ+ Increasing Rate of Learning Rate 1.000001

Table 7.2: Network Parameters (HoRNNPB)
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In each training epoch, these trajectories, in the form of tuples, were fed into the

input layer one after another for training, with the tuples of the next time-step

serving as a training target. The empirically-obtained parameters are listed in

Tab. 7.2. The final PB values were examined after the training was done, and the

values were shown in Fig. 7.7. It can be seen that the first PB unit, along with

the dorsal stream, was approximately self-organized with the colour information,

while the second PB unit, along with the ventral stream, was self-organized with

the movement information.

Figure 7.7: Values of PB Units in Two Streams

The square markers represent those PB units after the square curves training
and the triangle markers represent those of the cosine curves training. The

colours of the markers, yellow and green, represent the colours of the balls used
for training.

Recognition Another four trajectories were presented in the recognition ex-

periment, in which the length of the sliding-window is equal to the length of the

whole time-series, i.e. T = a in Eq. 7.13. The update of the PB units are shown

in Fig. 7.8. Although we used the complete time-series sequence for the recog-

nition, it should also be possible to use only part of the sequence, e.g. through

the sliding-window approach with a smaller number of a to fulfil the real-time

requirement in the future.
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(a) PB value 1

(b) PB value 2

Figure 7.8: Update of the PB Values in Recognition Mode
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(a) Cosine curve, yellow ball

(b) Cosine curve, green ball
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(c) Square curve, yellow ball

(d) Square curve, green ball

Figure 7.8: Generated Values from HoRNNPB

The dots denote the true values for comparison, curves show the estimated ones.
Yellow and red colours represent the values of the two neurons in the first layer

(yellow), the colours green and cyan represent those in the second layer (green).
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Error of Outputs Unit 1 Unit 2 Unit 3 Unit 4

cosine, yellow 2.28× 10−4 8.09× 10−5 7.29× 10−4 8.63× 10−4

cosine, green 8.34× 10−4 7.04× 10−4 1.50× 10−4 2.01× 10−4

square, yellow 3.91× 10−4 9.64× 10−5 1.74× 10−3 3.23× 10−4

square, green 1.40× 10−3 3.27× 10−4 3.54× 10−4 2.60× 10−4

Table 7.3: Prediction Error

Generation In this simulation, the obtained PB units from the previous recog-

nition experiment were used to generate the predicted movements using the prior

knowledge of a specific object. Then, the one-step prediction from the output

units were again applied to the input at the next time-step, so that the whole

time-series corresponding to the object’s movements and features were obtained.

Fig. 7.8 presents the comparisons between the true values (the same as used in

recognition) and the predicted ones.

From Fig. 7.8, it can be observed that the estimation was biased quite largely to

the true value within the first few time-steps, as the RNN needs to accumulate

enough input values to access its short-term memory. However, the error became

smaller and it kept track of the true value in the following time-steps. Considering

that the curves are automatically generated given the PB units and the values at

the first time-step, the error between the true values and the estimated ones are

acceptable. Moreover, this result shows clearly that the conceptualization affects

the (predictive) visual perception.

Generalization in Recognition To testify whether our new computational

model has the generalization ability as Cuijpers et al. [2009] proposed, we recorded

another set of sequences of a circle trajectory. The trajectory (in cm) is defined

as:

x = 12 (7.20)

y = 4 · sin(2t) + 0.04 (7.21)

z = 4 · cos(2t) + 0.10 (7.22)

The yellow and green balls were still used. We ran the recognition experiment

again with the weight previously trained. The update of the PB units are shown

in Fig.7.9. Comparing Fig. 7.7 and Fig.7.9, we can observe that the positive

and negative signs of PB values are similar to the square trajectory. This is
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probably because the visual perception of circle and square movements have more

similarities than those between circle and cosine movements.

(e) PB value 1

(f) PB value 2

Figure 7.9: Update of the PB Values in Recognition Mode with an Untrained
Feature (Circle)
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PB Representation with Different Speeds We further generated 20 trajec-

tories with the same data functions (Eqs. 7.14 - 7.19) but with a slower sampling

time. In other words, the movement of the balls seemed to be faster with the

robot’s observation. The final PB values after training were shown in Fig. 7.10.

Comparing with Fig. 7.7, It can be seen that generally the PB values were smaller

in Fig.7.9, which was probably because there was less error being propagated

during training. Moreover, the corresponding PB values corresponding to colours

(green and yellow) and movements (cosine and square) were interchanged within

the same PB unit (i.e. along the same axis) due to the difference of random

initial parameters of the network. But the PB unit along with the dorsal stream

still encoded colour information, while the PB unit along with the ventral stream

encoded movement information. The network was still able to show properties of

spatio-temporal sequences data in the PB units’ representation.

Figure 7.10: PB Values with Faster Speed

Values of two sets of PB units in the two streams after training with faster
speed. The representation of the markers is the same as in Fig. 7.7.

7.4 Summary

In this chapter a recurrent network architecture integrating the RNNPB model and

the horizontal product model has been presented, which shows that it is possible
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to link the conceptualization of ventral/dorsal visual streams, the emergence of

pre-symbolic communication, and the predictive sensorimotor system.

Based on the horizontal product model, the information in the dorsal and ventral

streams is separately encoded in two network streams and the predictions of both

streams are integrated via the horizontal product while the PB units act as a

conceptualization of both streams. These PB units allow for storing multiple

sensory sequences. After training, the network is able to recognize the pre-learnt

conceptualized information and to predict the up-coming visual perception. The

network also shows generalization abilities in both ventral and dorsal streams.

Therefore, our approach offers preliminary concepts for a similar development of

conceptualized language in pre-symbolic communication and further in infants’

sensorimotor-stage learning.



Chapter 8

Discussion and Conclusion

In this chapter, we will discuss the related issues of this thesis in the context of

computer science, cognitive science and neuroscience. Some potential research

related to the topic of feedback pathway modelling based on our proposed models

will also be discussed. Finally, a summary of this thesis will be given.

8.1 Discussion

8.1.1 Hierarchical Action Control

As it has been widely accepted that perception is constituted in a hierarchical

way (e.g. [Van Essen & Maunsell, 1983]), we argue that action is executed in a

similar way (as e.g. [Rosenbaum, 2009] proposed). From Fig. 8.1 which depicts the

general framework of the sensorimotor integration in this thesis, we claim that:

• Execution of an action activates the same representation as if the action is

perceived.

• Each upper level has top-down influences to the lower one.

• Lateral connections exist within each level.

As we can see in Fig. 4.2, according to the common coding theory, the action is

represented as a homogeneous predictive percept. As we discussed in Chap. 2,

Latash et al. [1996] claimed that the control of a specific action leads not merely

to a simple movement but to a series of movements. Execution of a single mo-

tor primitive spans multiple levels in the neural dimension, with the increasing

complexity of the receptive fields from muscle over spine to brain.

123
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Figure 8.1: Hierarchical Perception-Action Model

Generally, there are five essential rules to accomplish a hierarchical action repre-

sentation [Grafton & de C. Hamilton, 2007]:

• An action includes a series of movements to accomplish a final, temporally

distal goal;

• Action (i.e. a series of movements) should be adaptive to the environment;

• The basic movement (motor primitives) can be learnt and retrieved;

• The highest representation is to achieve a desired goal and to solve a prob-

lem;

• It is possible to integrate the basic motor elements into a single module.

Despite of the fact that an actual action execution relates to multiple factors, such

as musculoskeletal form and function, biomechanics, observations of goal-driven

behaviour, a single execution can generally be grouped into musculoskeletal and

neural parts.



Chapter 8. Discussion and Conclusion 125

8.1.2 Language Acquisition from Sensorimotor Integration

The visual conceptualization and perception are intertwined processes. Besides the

infant development we introduced in Chap. 7, these intertwined processes can also

happen during adult learning. As experiments in Schyns & Oliva [1999] showed,

when the visual observation is not clear, the brain automatically predicts the visual

percept and updates the categorization labels on various levels according to what

has been gained from the visual field. On the other hand, this conceptualization

also affects the immediate visual perception in a predictive manner. For instance,

the conceptualization of a human face predictively spreads conceptualizations on

other levels (e.g. face emotion). These feedback pathways propagate from object

identity to other local conceptualizations, such as object affordance, motion, edge

detection and other processes at the early stages of visual processing. This can be

tested by classic illusions, such as ‘figure–ground vase illusion’, where perception

depends largely on prior knowledge derived from experiences rather than direct

observation.

Therefore, our pre-symbolic representation model in Chap. 6 to some extent

also demonstrates the integrated process between conceptualization and spatio-

temporal visual perception. This predictive perception may also arouse other

visual-based predictive behaviours such as those arising from object permanence.

The model explains that, in a hierarchical structure of a sensorimotor system, the

high-level conceptualization representation is continuously updated with the par-

tial sensory information perceived in a short-time scale from sensory-driven inputs.

Conversely, the feedback pathways accomplish some of the sensorimotor functions

by the conceptualized high-level representation of visual perception which is iden-

tical to the integration conceptualization and (predictive) visual perception.

The models that we proposed in this thesis are proof-of-concept models focus-

ing on the feasibility of using recurrent connections to model feedback pathways.

Therefore, the networks we used can be augmented in two different ways:

• the memory can be enlarged by increasing the number of hidden unit(s);

• more layers can be added to extract more abstract features of the spatio-

temporal sequences to form deep-learning architectures.

The language acquisition and mirror neuron theory are also closely related, in the

sense that language evolves while the mirror neurons are learning to understand
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the intention/meaning of certain motor actions [Hurford, 2004]. It is based on the

following two mechanisms.

• Mirror neurons may explain speech imitation during the infant development

stages; they imitate the speech from the words they hear [Studdert-Kennedy,

2002]. Also, the firing of mirror neurons trigger the corresponding parts

of the somatosensory cortex to configure the vocal tract by executing the

muscles’ contraction [Goldstein et al., 2006].

• Mirror neurons may support concept representation, especially the mental

representation (or simulation) of certain actions. This coding may be rep-

resented as the perception anticipation according to the outcome of these

actions, based on the common coding theory [Prinz, 1984].

In terms of the model we proposed in Chap. 6, we claim that it was supported

by the neuroscience study about the role of the mirror neuron system (MNS) in

executing object-oriented-actions (e.g. grasping). This property is similar to the

‘data-driven’ models such as MNS [Oztop & Arbib, 2002] and MNS2 [Bonaiuto

et al., 2007, Bonaiuto & Arbib, 2010], although the main hypothesis in our model

is not based on the MNS theory. In the MNS review paper by Oztop et al.

[2006], the action generation mode of the RNNPB model was considered to be

excessive as there has not been found evidence yet to show that the MNS par-

ticipates in action generation. However, in our model (as well as the overall ar-

chitecture) the generation mode has a key role of conceptualized PB units in the

sensorimotor integration of object interaction. Nevertheless, the similar network

architecture (RNNPB) used in modelling mirror neurons [Tani et al., 2004] and

our pre-symbolic sensorimotor integration models may imply a close relationship

between language (pre-symbolic) development, object-oriented actions, and the

mirror neuron theory.

8.1.3 Predictive Perception

The feedback affecting sensory input can be regarded as a kind of predictive

information retrieved from the internal memory [J. Anderson & Schooler, 2000].

Based on predictive coding theory, in the hierarchical architecture, the feedback

signals (especially the top-down signals) predict the forthcoming sensory input,

while the sensory-driven bottom-up signals only deliver the error of the estimation.
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The predictive function of feedback pathways is essential as they have the following

benefit on the lower-level peripheral perception functions:

• The target of the feedback pathways in perception is applied for sensory

prediction. It is realized by extracting cues from multimodal or amodal

perception via feature extraction (e.g. by the early visual system) which

becomes a prior. Then, the posterior estimation is applied to the next

predictive perception.

• If there is a difference between the posterior estimation and the current re-

ceptor signals, the percept may be derived as a combination of the two to

avoid the fluctuation caused by neuronal or receptor noise. On the other

hand, the error signals are also transmitted from bottom-up signals to fur-

ther act as a prior in the perception cues.

These functions are not independent; instead they are processes that happen at

the same time and integrate with each other. They are performed with the similar

Bayesian inference and are always interchanging prior knowledge on the cognitive

processes level. On various levels of perception, the feedback signals play a role of

significant modulation to the lower-levels, indicating that the top-down processes

can affect early perceptual cortex and play a role of sensory prediction. Shulman et

al. [1997] showed that the top-down feedback selectively modulates attention based

on prior knowledge about the feature or feature-related-analysis of the object.

Therefore, perception is constructed not only by ‘bottom-up’ external stimuli,

but also formed by the internal priori constraints such as expectation, memory or

the current goal, although these constraints are also initially learnt from ‘bottom-

up’ sensory signals. That is how different kinds of a prior work as a forward model

to form the perception prediction via feedback pathways.

Although our models (Chaps. 5 and 6) with lateral connections based on the

Elman networks only dealt with one-dimensional motion prediction, it showed

that the recurrent connections should be a necessary part to build the predictive

role of the feedback connections. Specifically, the recurrent connections had the

following roles in these models:

• In both models, recurrent connections record the possible movements by

exciting the corresponding units and inhibiting the others. Therefore, the

weighting matrix of the recurrent connections deliver a predictive perception

in the feedback signals.
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• In the model shown in Chap 6, the inhibition of the recurrent connections

also plays a role of filtering perception noise. The recurrent weights are

learnt from the perception caused from action execution, and are also used

for predictive action. Thereby, this model builds a common-coding model

with filtering functions.

8.1.4 Robotics as Synthetic Methodology and Neuro-robotics

In the previous chapters, we implemented three models based on recurrent con-

nections. As we mentioned, the main target of these chapters is to prove that they

can be used to model feedback pathways in the sensorimotor cortices of artificial

cognitive systems. Training of these neural feedback is done by interacting with

environment, called embodiment (Fig. 8.2). Based on the embodied cognition,

any embodied cognitive system should regard the sensorimotor learning as an in-

teraction process that is shaped by the environment, while the motor action itself

also changes the environment in various ways.

Also, this is how we can regard the construction of artificial cognitive systems as

a way to examine different hypotheses in neuroscience and cognitive science. This

is usually realized by building up models based on such hypotheses and imple-

menting these models in a robotic system. Therefore, using robot as a synthetic

methodology is an important way to understand biological principles, although

testing such computational models is often constrained by different configurations

in executors, sensors and environments.

Furthermore, the embodiment theory also indicates the following procedures of

using robots as synthetic methodology:

• Hypotheses are formulated based on findings of biological studies.

• Basic principles should be extracted based on these hypotheses.

• Biologically-inspired but simple enough models can be built to realize these

principles.

• In terms of the sensorimotor interaction, it would be more convenient to

extract only the relevant information for the model processing, rather than

using the raw inputs.

Among all modelling methods for feedback pathways we have shown that the

artificial neural network (ANN) is one of the structures to be adopted as it is
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comparable to the feedback structures. Also, its information and coding are also

similar to the existing feedback pathways in the neural structures, according to

cognitive and neuroscience experiments. As a result, the robots which are con-

trolled by ANNs are called ‘neuro-robots’. Nowadays, neuro-robotics research has

covered modelling of visual cortex (e.g. [Orabona et al., 2005, Vijayakumar et al.,

2001]), auditory localisation (e.g. [Webb, 1995, Liu et al., 2009]) to higher cogni-

tion modelling (e.g. [Yamashita & Tani, 2008]) and other sensorimotor behaviours

(see e.g. [Wermter et al., 2005] and [Wermter et al., 2014] for edited collections

presenting broad samples of models in neuro-robotics). These models offered a

Figure 8.2: Cognitive Development

Cognition is achieved through sensorimotor interaction with the environment1.

1Copyright by Kira Chow.
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complementary insight into understanding various levels of the cognitive and neu-

ral systems, by providing a grounded demonstration of neural activities, language

acquisition and motor behaviours which have emerged from real-world interaction.

Furthermore, from the robotics engineering point of view, an ideally learnt sensori-

motor model on a robot can assist to robustly provide flexible interaction between

human and environment, to estimate the incoming sensory data in a stable way

for a changing sensory environment and even to have its own thoughts. Although

some engineering methods could also mimic the process of the sensorimotor in-

teraction, e.g. the potential field method that allows the robot to have obstacle

avoidance and path planning [Khatib, 1985, Huang, 2009, Pradhan et al., 2011],

their limitations include local minima, linearity assumptions or non-adaptability

to environmental changes.

Due to the complexity of building a sensorimotor system that can interact with a

fully dynamic environment, we cannot build a complete sensorimotor model with

all of the sensorimotor functions. However, from Chap. 5 to Chap. 7, we gradually

built three models with different constraints in perception and action. With the

framework introduced in Chap. 4, these models are able to interact together with

bottom-up sensory-driven signals and feedback signals, by which a sensorimotor

integration system is built.

8.2 Future Work

8.2.1 Conceptor Representation and Mirror Neuron System

As introduced before, with the increasing complexity of the receptive fields from

low-level to high-level in the sensorimotor hierarchy, it is possible that only a

small number of neurons are activated by a specific percept or a particular motor

action on the highest level. This also leads to the hypothesis that the brain may

contain ‘grandmother cells’ which is a set of neurons that have a specific receptive

field that responds to only one precise stimulus: e.g. the face of the person’s

grandmother.

In terms of modelling, interestingly, the PB units in the RNNPB model, which we

applied, exhibit a similar property of grandmother cell-like encoding in the sen-

sorimotor system. Likewise, the hypothesis model of ‘conceptor’ is also proposed

by Jaeger [2014]. A small number of ‘conceptors’ may control complex human

sensorimotor behaviours.
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Besides the theory of ‘conceptors’, this high-level representation of action is also

related to firing of mirror neurons in the mirror neuron theory. Specifically, the

mirror neurons in this theory indicate some neurons in the pre-motor cortex not

only responding to the execution of an action, but also firing during the observa-

tion of that same action that is executed by others [Rizzolatti et al., 1996]. This

function of action recognition as well as action mirroring is embedded in percep-

tion, incorporating the action context and the interacting objects and mapping

into various parts of the mirror neurons system [Oztop & Arbib, 2002]. From the

studies on macaque monkeys, there are three cortical areas forming a hierarchical

architecture of the MNS with the reciprocal connections: area F5 and area PF

form a premotor-parietal MNS system [Luppino et al., 1999], with the bottom-up

inputs about the object features from the STS area as well as a feedback influence

[Harries & Perrett, 1991, Seltzer & Pandya, 1994]. In this way, it is possible that

the proposed MNS performs action understanding on multiple levels via reciprocal

connections [Hamilton et al., 2007, Kilner et al., 2007]:

• The intention level that determines the long-term goals from the agent itself

or anticipates them from observing others;

• The goal level that describes the short-term goals related to achievement of

the long-term intention;

• The kinematic level that controls the spatio-temporal inverse kinematics of

the actuators;

• The muscle level that governs the meta-patterns of the cells of the muscle

tissues required to execute the actions.

The whole system is thus always attempting to understand one’s short-term goals

as well as the long-term intention by observing its movements, or it is attempting

to control and to adjust its own movement by changing short-term goals contex-

tually according to the long-term intention by the integration of the feedback and

bottom-up influences. As Iacoboni et al. [2005] suggested: the mirror neurons

encode goal-directed actions; when an action is observed by another individual,

the feedback information comes from the inferior parietal lobule (IPL), encoding

the final goals of the actions, i.e. ‘why’ the actor is doing it. For example, when

an agent is grasping an apple with a certain series of motor actions, it can gradu-

ally be understood that it is grasping-for-eating but not grasping-for-placing, i.e.

its intention of actions, according to the trivial difference actions and objects.
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Specifically, this action understanding role is accomplished by both bottom-up

mechanisms arising in early visual areas and feedback mechanisms arising in pre-

frontal cortex. In this way, the feedback pathways encoding certain intention

modulates the forthcoming action understanding and recognition. Moreover, the

functions of the MNS may also include intention understanding [Iacoboni et al.,

2005] as well as other action-related functions such as action imitation [Rizzolatti

et al., 2001] and even language acquisition [Rizzolatti & Arbib, 1998].

The findings and hypotheses introduced above about the mirror neuron theory

conclude the properties of the related theories about ‘conceptor’ neurons:

• These neurons representing some kinds of ‘profile’ of sensorimotor primitives

work in a small-dimensional space to encode the sensorimotor sequences.

The units can be regarded to code high-level representations such as action

goals. The dimension of this space should not be as large as that in muscu-

loskeletal movement, since it is more convenient to execute the reasoning to

select an action given the a specific goal, when it is a law dimensional space

to encode goals, motor commands, etc.

• On the other hand, the representation on the lower level becomes more and

more simple. On the lowest level, the sensorimotor sequences being encoded

are composed from musculoskeletal movements, which are explicitly encoded

in their corresponding motor cortices with a high number of dimensions;

• Corresponding to the continuous space of sensorimotor primitives, such an

expression space of ‘profile’ should also be continuous.

• Importantly, the ideas of ‘conceptor’, mirror neurons, etc. are attempting

to connect the missing link between the symbolic (conceptualized) represen-

tation and the non-linear sensorimotor sequences, because the highest level

of abstract representation of sensorimotor sequences should be essential for

reasoning, memory and other cognitive processes.

As a proof-of-concept model, the RNNPB can fulfil the above requirements given

that

• There is a limited number of sensorimotor sequences.

• Only two levels of representations (i.e. conceptual and sensorimotor repre-

sentations) are needed in the whole architecture.
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Although it has constraints, the RNNPB can realize several hierarchical sensori-

motor functions due to its flexibility in neural dynamics:

• It can generate multiple sequences with the implication of high-level rep-

resentation: since a recurrent network has the ability to approximate the

exact Bayesian processes [Frean et al., 2006], it is theoretically feasible for a

recurrent network with a fixed number of hidden layers to train with a finite

set of spatio-temporal sequences of movement data.

• Likewise, the low-dimensional PB space can be trained as a continuous ex-

pression space with behaviour data.

Admittedly, other models can also be employed, if there are different constraints

in the process of building the hierarchical sensorimotor architecture or in the ar-

tificial system itself. Modelling the brain of a fly only needs a smaller capacity

of memory (e.g. [Greenspan & Van Swinderen, 2004]). On the other hand, a

long-term memory is also needed for modelling a human brain if memory is in-

volved in the feedback signal. Thus, it implies that models that are similar to

the RNNPB, HoRNNPB and the conceptor models can be further developed as

a hierarchical architecture, where a higher-level representation (e.g. PB units)

extracts information from lower levels.

8.2.2 Deep Learning and Predictive Coding

In this thesis, we mainly developed three-layer recurrent networks to examine the

functions of recurrent connections. Particularly, in terms of the sensorimotor levels

they represent, the models in Chaps. 5 and 6 constitute feedback (lateral) connec-

tions within the same level in the sensorimotor hierarchy, while the HoRNNPB

model in Chap 7 constructs a two-level architecture in the sensorimotor hierarchy.

Admittedly, three-layer networks could not extract enough sensorimotor represen-

tations. They cannot cover all the variability in realization of predictive perception

either. However, the three models we proposed suggest that feedback connections

with a more sophisticated deep architecture can be beneficial in terms of extract-

ing sensorimotor features from complex structures [Bengio, 2009]. Similar to the

hierarchical organization of cortices we mentioned in Chap. 2, the deep structure

cannot only extract complex structure and build internal representation from the

regularities of the sensory inputs, but also plays a role in transforming the neu-

ronal spike waveforms to a very abstract level of representation. Nevertheless, we
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assert that the PB units in the RNNPB, or models with similar neural dynamics,

can also realize the function of extracting a statistical regularity on a higher level.

Future experiments can be pursued by stacking several similar statistical models

into a deep architecture which is learnt in a self-organized way by the feedback

error (for detailed reviews see also [Bengio, 2009, Bengio et al., 2013]). The self-

organization can be inspired from the cognitive science theory that the perceptual

world is actually constructed by the error signals plus our top-down prediction;

the error signals are caused by the mismatch and are transmitted and distributed

on various levels from the ‘predictive coding’ theory.

Also, it should be promising to build a hybrid architecture by stacking ARNN

models (especially the PB models) with a deep learning structure, where the

abstract representation can form another symbolic representation on a cognitive

level in a hierarchical way (Fig. 8.3).

V1

V2

V5/MT

MST

Neural Structure

Cognitive 

Processes

Figure 8.3: Neural and Cognitive Model by RNNPB with Deep Structure

Each layer can be regarded as an abstract representation of the lower one. At
the uppermost layer there are different kinds of abstract concept representation,

which also relate to various cognitive processes.
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8.3 Conclusion

Feedback pathways exist on different levels of the hierarchical cortical areas (espe-

cially visual and motor cortices). Concerning their functions in the sensorimotor

system, we raised four main questions at the beginning of this thesis (Chap. 1).

To answer these questions, we investigated the feedback signals in biological sys-

tems. Having it formulated as Bayesian inference, we model those signals in

artificial recurrent connections. Consequently, we conducted three experiments

using various types of recurrent neural networks to examine their feasibility and

performance in artificial systems.

In the first experiment, we focused on the predictive encoding of information in

the primary visual cortex. To model this, we designed a recurrent predictive

network with a horizontal product where the information of object feature and

object movement becomes successfully separated in its two hidden layers. This

experiment demonstrates how the recurrent network constructs lateral connections

which allow to accomplish predictive function in both visual pathways.

Since the dorsal pathway also allows for motor-relevant representations, in the sec-

ond experiment, we also developed such recurrent connections for sensory latency

compensation which also supports smoother and faster behaviours in sensorimo-

tor integration tasks. For example, the latency of the sensorimotor cycle of a

robot may affect the response time for the motor action. We expanded the use

of recurrent connections in the sensorimotor system, particularly in the sensory

prediction part, so that the recurrent connections can compensate the delay in the

sensory percepts. A continuous actor-critic automaton (CACLA) was developed

for the generation of smooth behaviours corresponding to the predictive sensory

percepts. Experiments showed that the predictive sensorimotor architecture suc-

cessfully increases the speed and robustness of the robot docking experiment.

The recognition and prediction functions are not independent processes, but they

also integrate and assist each other in a hierarchical way. Furthermore, we propose

that they result in the development of pre-symbolic communication. Therefore,

in the last experiment, we proposed that the learning of the visual pathways also

leads to the conceptualization of visual information. This was realized by a hor-

izontal recurrent network with parametric bias (HoRNNPB). We examined this

model through a robot passively observing an object to learn its features and

movements. During the learning process of observing sensorimotor primitives,
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i.e. observing a set of trajectories of arm movements and its oriented object fea-

tures, the pre-symbolic representation was self-organized in the parametric units.

These representational units acted as bifurcation parameters guiding the robot to

recognize and predict various learnt sensorimotor primitives.

The above three experiments also examine our proposed feedback common-coding

sensorimotor framework (Chap. 4) in different perspectives:

• The bidirectional pathways maintain the perception representation in the

neural dynamics, within a single level (Chap. 5) and across two levels (Chap. 7).

In Chap. 5, we focus on the feedback pathways modelling in the dorsal and

ventral streams on a single level. We only model the lateral connections with

the Elman networks, but these feedback pathways can be also modelled by

other recurrent networks, in which the higher level represents memory, ex-

pectation and other top-down prior experience too. The model in Chap. 7

further elaborates the model in Chap. 5 in a hierarchical way.

• As we mentioned in Chap. 4, the posteriors of action motion and perception

are inferred incrementally. At the same time, in the loop of sensorimotor

inferences, the linkage of common coding is learnt. Chap.6 showed the basic

principle of this learning loop (e → a → e) by a proof-of-concept recurrent

model.

• The common coding is learnt by either perception or action or both in an

unsupervised way; in this thesis, it is represented as shared weighted con-

nections, which are also modulated by the feedback information. In Chap.

6, we build a linkage between perception and action with the PAM model.

Specifically, the learning of action-oriented visual perception is driven by the

motor actions.

To sum up, all of the three recurrent connections based models we used in these

experiments are built to demonstrate the role of feedback information in the con-

text of predictive sensorimotor integration. This information transmitted in the

feedback pathways comes from higher-levels of neural activities as well as different

kinds of cognitive processes.

The main scientific contribution is that in order to answer the questions about

feedback pathways in biological and artificial cognitive systems we raised in Chap. 1,

we designed three novel artificial neural models for artificial cognitive systems

based on the investigations about feedback signals on biological systems. After
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having conducting experiments based on these models, we answer the questions

as follows,

• First, the feedback pathways in a hierarchical sensorimotor structure account

for the predictive functions in perception and action on each layer. Since

such prediction cannot only account for some phenomena such as flash-lag

effect and retina prediction, but also result in a smoother and robust sen-

sorimotor integration, we propose that the feedback signals deliver a prior

knowledge to mediate the neural activities. Some of the feedback path-

ways may come from representation of cognitive processes, such as memory

and expectation. These processes can be regarded as conceptualised repre-

sentation, or a symbolic representation, which is learnt during hierarchical

sensorimotor processes as prior knowledge. For instance, such a higher-level

symbolic representation can also be considered as an immature stage for

language acquisition.

• Second, the feedback signal can be modelled as a Bayesian inference within

the common coding framework. By implementing Elman recurrent connec-

tions to model feedback pathways, these models exhibit some of complemen-

tary cognitive functions seen in biological systems. Although the properties

of feedback pathways vary in the brain, various types of recurrent connec-

tions that are similar to Elman networks may also be able to form a Bayesian

inference from prior knowledge.

• Third, several sensorimotor functions which can be considered related to

the feedback pathways can be realised on cognitive robots by Elman con-

nections, such as sensory prediction, its corresponding action prediction and

pre-symbolic emergence. Experiments on real robots or in simulation demon-

strate that recurrent connections either improve the performance in adap-

tivity or provide cognitive capabilities such as pre-symbolic representation.

Feedback pathways are beneficial to artificial cognitive systems, also be-

cause they allow a flexible and fast sensorimotor integration to the cognitive

systems.
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