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Abstract

The active nature of perception and the intimate relation of action and cognition
has been emphasized in philosophy and cognitive science for a long time. However,
most of the current approaches do not consider the fundamental role of action for
perception. Inspired by theories rooted in the research field of embodied cognition
we have designed artificial neural architectures for the learning of sensorimotor laws.
All our models have in common that the agent actually needs to act to perceive.
This core principle is exploited for the design of a series of computational studies,
including simulations and real-world robot experiments. In a first experiment,
a virtual robot learns to navigate towards a target region. For this purpose, it
learns sensorimotor laws and visual features simultaneously, using the world as an
outside memory. The control laws are trained using a two-layer network consisting
of a feature (sensory) layer that feeds into an action (reinforcement learning)
layer. The prediction error modulates the learning of both layers. In a second
experiment, we introduce a novel bio-inspired neural architecture that combines
reinforcement learning and Sigma-Pi neurons. In a simulation we verify that a
virtual agent successfully learns to reach for an object while discovering invariant
hand-object relations simultaneously. Again, the prediction error of the action
layer is used to modulate all the weights in the network. In a third experiment
we extend a recurrent architecture with an adaptive learning regime and use this
algorithm for an object categorization task with a real humanoid robot. Based
on self-organized dynamic multi-modal sensory perceptions, the robot is able to
‘feel’ different objects and discriminate them with a very low error rate. All these
experiments are inspired by the same sensorimotor design principles. Further, they
are united by the idea that actively acquired sensorimotor knowledge enhances
perception and results in goal-directed behavior.
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Zusammenfassung

In der Philosophie und in den Kognitionswissenschaften wird schon seit längerer
Zeit auf die besonders enge Verknüpfung, die Handlungen und kognitive Prozesse
haben, hingewiesen. Leider berücksichtigen die meisten der gegenwärtigen Studien
aus dem Bereich der Robotik diesen fundamentalen Einfluss von Handlungen
auf die Wahrnehmung nicht. Inspiriert durch Theorien, die ihren Ursprung in
einem Forschungsfeld haben, das unter dem Begriff des Embodiments zusam-
mengefasst wird, einer These nach der Intelligenz die physikalische Interaktion
des Körpers voraussetzt, haben wir verschiedene künstliche neuronale Netzwerkar-
chitekturen entwickelt, die in der Lage sind, sensomotorische Zusammenhänge zu
erlernen. Allen unseren Modellen ist gemein, dass der Agent handeln muss, um
überhaupt etwas wahrzunehmen. Dieses Kernprinzip nutzen wir für verschiedene
Computerexperimente aus, die Simulationen sowie Studien mit echten Robotern
umfassen.
Die erste Studie befasst sich mit der Navigation zu einer Zielregion. Ein

virtueller Roboter erlernt sensomotorische Gesetzmäßigkeiten und extrahiert dabei
gleichzeitig visuelle Merkmale aus seiner Umwelt. Hierfür ist der Agent mit
einem zwei-schichtigen künstlichen neuronalen Netz ausgerüstet, das aus einer
sensorischen und einer Handlungs-Schicht besteht. Der Vorhersagefehler der
Handlungs-Schicht, realisiert durch verstärkendes Lernen, dient hierbei nicht nur
zur Anpassung der Synapsen dieser Schicht, sondern moduliert gleichzeitig auch
noch die Synapsen der sensorischen Neuronen.

In einem zweiten Experiment stellen wir eine neu entwickelte bio-inspirierte Net-
zwerkarchitektur vor, die verstärkendes Lernen mit Sigma-Pi Neuronen verbindet.
Es wird in einer Simulation gezeigt, dass ein virtueller Agent mit Hilfe dieser
Architektur in der Lage ist, invariante Situationen zu erkennen. Gleichzeitig
erlernt er auch noch das erfolgreiche Greifen nach Objekten. Auch in diesem Fall
beeinflusst der Vorhersagefehler der Handlungs-Schicht alle synaptischen Gewichte
des Netzwerks.
In der dritten Studie erlernt ein echter humanoider Roboter, Bauklötze durch

multisensorische Wahrnehmung zu kategorisieren. Zu diesem Zweck haben wir den
Algorithmus einer speziellen rekurrenten Netzwerkarchitektur um eine adaptive
Lernregel erweitert. Das rekurrente Netz speichert und gruppiert die multi-
sensorischen Eindrücke, die durch die Interaktion mit den Objekten entstehen.
Hierdurch ist der Roboter später in der Lage, verschiedene Objekte zu ‘erfühlen’
und erfolgreich voneinander zu diskriminieren.
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Alle drei Studien sind durch die selben sensomotorischen Design-Prinzipien
motiviert. Außerdem verbindet sie die Idee, dass aktiv erworbene sensomotorische
Zusammenhänge die Wahrnehmung erweitern und dadurch zu zielgerichtetem und
erfolgreichem Handeln führen können.
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We must perceive in order to move,
but we must also move in order to
perceive.

James J. Gibson

1 Chapter

Introduction

This thesis is the result of interdisciplinary work in the field of computer science
and neuroscience. The main focus of the presented projects is on artificial neural
networks that exploit an action-driven perception paradigm for the learning of
sensorimotor laws.
To clarify the meaning of action-driven perception and to embed the research

theme in the field of embodied cognition (EC), results from philosophy, psychol-
ogy, neuroscience, cybernetics, computer science and robotics are presented and
integrated in Ch. 2. Insights of historic as well as state-of-the-art approaches are
critically discussed, pointing out shortcomings and inconsistencies of the current
theories. This survey tries to establish a coherent picture of this developing
research field, which has yet to define itself.

Establishing a methodology in this way allows one to understand the motivation
and inspiration that led to the design and implementation of the presented
experiments. Furthermore, this knowledge is important for the critical discussion
of the computational models (Ch. 6).

1.1 Sensorimotor Laws

Within this thesis the term sensorimotor laws reflects the intertwined relationship
of action and perception. Especially, those regularities that are acquired during
learning, connecting motor commands to sensory impression in a lawful manner
(and vice versa), are summarized with this expression. The usage of the term
law was chosen in homage to Helmholtz (1867), who also used this expression
to characterize the learned relationship between actions and perceptions (cf.
Ch. 2.2.1). While enacting our world we can rely on this relationship and use

1



2 Introduction

it for goal-directed behaviors. In the first two experiments (Ch. 3 and 4) we1

examine two-layer neural architectures that combine reinforcement learning (RL)
with sensory feature extraction. During learning, actions shape the receptive fields
(RFs) of the sensory layer, establishing the sensorimotor laws that allow successful
mastery of the given task. Later on, confronted with a sensory stimulus the agent
can immediately link it to an appropriate action. In the third experiment (Ch. 5)
a real-world robot interacts with objects, thereby eliciting multi-modal sensory
impressions. These sensory sequences are learned by a recurrent neural network
(RNN) that self-organizes them into clusters. In this experiment, those clusters
reflect the sensorimotor laws, which can be called on during object categorization.

1.2 Research Agenda and Sensorimotor Principles
The idea of learning and exploiting sensorimotor laws for goal-directed behavior
unites all the experiments that will be presented in the following chapters. In
general, the purpose of our three studies is to capture the intertwined relationship
of action and perception while pursuing the research question: is it possible to
rely on the same sensorimotor design principles for the development
of different artificial neural architectures and experiments? To answer
this question, differing connectionist neural architectures have been devised or
refined and their potential has been evaluated in simulations and real-world robot
experiments.
The scope of this thesis is not to prove that actions are fundamental for

perception. This fact is taken for granted and theories and experiments supporting
this notion are presented in Ch. 2. Instead, we demonstrate that paying attention
to a common set of sensorimotor design principles during the development of
artificial neural architectures, as well as during the planning of robotic experiments,
is indeed sufficient to obtain robots that are able to master a given task successfully.
Primarily, the following sensorimotor principles have been employed to realize the
action-driven perception paradigm of our experiments:

• perceiving is a way of acting a.k.a.
perception as a sensorimotor experience,

• open channel perception a.k.a.
the world serves as an outside memory,

• information self-structuring.

Perceiving is a way of acting stresses the importance of organism-world interac-
tions for perception. The theme the world serves as an outside memory describes
a (constant) interaction between the world and the neural system that contributes
to the cognitive process as a whole. Information self-structuring summarizes the

1Throughout the thesis the ‘scientific’ we is used, even if personal opinions and ideas are
expressed.



Scientific Contributions 3

principle that actions enable an agent to structure the (sensory) information,
which is readily available in its environment. For further details and additional
sensorimotor principles please refer to Ch. 2.

1.3 Scientific Contributions
The main scientific contributions of this thesis comprise the following achievements.
The sensorimotor design principles described in the previous section can readily be
found in all the experiments. Hence, the agent actually needs to act to perceive,
mimicking the principle perceiving is a way of acting. First, we introduce an
innovative navigation paradigm that is independent of a world model. Instead, the
world itself serves as an outside memory. Second, we propose a novel bio-inspired
neural architecture that combines reinforcement learning and Sigma-Pi neurons.
This allows the given reaching task to be successfully mastered and invariant
hand-object relations simultaneously to be discovered. Again, the world itself
serves as an outside memory. Third, we extend a recurrent architecture with
an adaptive learning regime, leading to a significantly reduced training time.
This novel training method is used for an active object categorization task of a
humanoid robot. Based on information self-structuring of multi-modal sensory
perceptions, the robot is able to ‘feel’ different objects and discriminate them
with a very low error rate. In addition, several future experiments are suggested
that can be conducted based on the theoretical and methodological framework
established within this thesis. Most parts of the thesis (text and figures) have
been published. Please see appendix B for a complete list of the publications.

1.4 Structure of the Thesis
Ch. 2 gives an introduction to the fascinating research field of embodied cognition
and points out thoughts and ideas that influenced the design of the neural archi-
tectures and experiments of this thesis. In Ch. 3 – 5 results of the computational
studies, including simulations and real-world robot experiments, are described.
The experiments comprise an entire sequence of related tasks. In the first exper-
iment, a virtual robot learns to navigate towards a target region (Ch. 3). This
is followed by a reaching study (Ch. 4) and a dynamic object recognition task
where a real humanoid robot moves objects up and down and rotates them back
and forth, while holding them in its hand (Ch. 5). In Ch. 6 the outcome of
the individual experiments, as well as their joint relevance for the action-driven
perception paradigm within the research field of embodied cognition, is discussed.

In addition to being a sequence of related tasks, the conducted experiments are
also related by (at least) two additional meta levels. As stated above, they are
all inspired and governed by the same sensorimotor design principles. Further,
they also represent the evolutionary process of finding suitable artificial neural
architectures and appropriate experiments for action-driven learning based on



4 Introduction

sensorimotor principles. In the first study (Ch. 3), the focus lay on the methodology
of the artificial neural architecture, i.e. becoming acquainted with these types
of two-layer neural networks. This paved the way for the development of the
novel bio-inspired architecture presented in Ch. 4. Due to scaling issues of the
feedforward networks employed in the first two studies and a known superior
generalization potential of recurrent neural networks, we moved to these types of
connectionist architectures for the final experiment (Ch. 5). Again, the knowledge
gained previously helped the design of the experiment and the improvement of
the learning algorithm.



If you desire to see,
learn how to act.

Heinz von Foerster

2 Chapter

Action-Driven Perception

2.1 Introduction
What is action-driven perception? The aim of this chapter is to buttress the funda-
mental role of action for perception and to introduce the concept of sensorimotor
laws. For this purpose, the notions are embedded in the framework of embodied
cognition.

Consider the sayings ‘taking a perspective on a problem’ or ‘grasping a concept’.
Taking these utterances literally immediately illustrates the entanglement of action
and perception, their enactive nature. However, there is more to it. To explain
the role of action and perception for cognition1, we have to dig deeper into this
“extremely active and diverse research area” (Anderson, 2003).

Trying to identify a common ground, we follow the categorization of Lakoff and
Johnson (1999). They distinguish between first and second-generation cognitive
science, entitling them disembodied and embodied mind, respectively. Like in Carte-
sian dualism, disembodied cognitive science maintains a mind-body dichotomy
at its core, whereas second-generation cognitive science sees a necessity for an
intimate interaction of the mind and the body.

Despite the seemingly trivial influence of action on perception, the conception of
this relation in general, and of the embodiment paradigm in particular, is –within
and across disciplines– far from uniform. Furthermore, it is an ongoing debate if
EC resembles a “Copernican revolution” (Lindblom and Ziemke, 2006) or if it is
rather a modest shift in emphasis. Also Froese (2010) is aware of this “ambiguity
about whether the enactive paradigm entails another minor reformation or a
major revolution of the cognitive sciences.” As a potential explanation he spots

1The mental action or process of acquiring knowledge and understanding through thought,
experience, and the senses (Oxford dictionary, http://oxforddictionaries.com).

5

http://oxforddictionaries.com
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the parallel and apparent unnoticed development of this paradigm in different
disciplines, like for instance cybernetics and cognitive science.
Looking at the historic roots reveals that for a long time attempts have been

made to “anchor research to the real world poles of sensing and acting”(Clark,
1995), resulting in the appearance of “world and body [. . . ] as significant players
in the cognitive arena”(ibid.). This, of course, raises the question “[h]ow could we
ever have forgotten them?” (ibid.).

2.2 Historic Overview
The 18th century scientific revolution, which was triggered by Cartesian dualism,
paved the way for scientific exploration and technological domination. Nevertheless,
at the same time it established a mysterious relationship between observer and
the observed (Froese, 2010), which has kept scientists busy until today.

Reducing the body to a mere representation in the mind is an inherent procedure
of the empirical sciences, especially when considering the fact that experiments are
by definition conducted in controlled environments. However, this reductionism
does not suffice to explain e.g. qualia2. Different scientific traditions try to overcome
this “explanatory gap” (Levine, 1983) with the tools they have at hand. A current
trend that can be witnessed in the cognitive sciences, also referred to as the
“pragmatic turn” (Engel, 2010, cf. Ch. 2.4.5 ), tries to resolve this “hard problem”
(Chalmers, 1995) via an embodied approach.

In this section different schools of thought will be presented that are, according
to our view, important forerunners for the contemporary EC paradigm. This
enumeration, however, is not intended to be a comprehensive historical overview,
which would be far beyond the scope of this thesis.

2.2.1 Von Helmholtz
Hermann von Helmholtz (1821 – 1894) was a polymath contributing to various
fields of research, including physics and physiology. His far-reaching achievements
are realized in a book review of Helmholtz on Perception: Its Physiology and
Development (Warren and Warren, 1968), stating “that understanding of a sur-
prising number of problems discussed by Helmholtz has been little advanced in
the intervening decades” (Mueller, 1968). For the present discussion exactly those
epistemological attainments that relate perception (“Sinneswahrnehmungen”)
to action (“Bewegung”) by the means of sensorimotor3 laws (“Gesetze”) are of
primary importance4.

2Subjective conscious experiences; the what it’s like. For a detailed account see Tye (2009).
3Von Helmholtz does not use the expression sensorimotor.
4Relevant excerpts of von Helmholtz’ book Handbuch der physiologischen Optik, written in
German, can be found in Appendix C. These are summarized in the following paragraphs.
Please note that at the time of publication (1867) no unified grammatical and spelling norms
existed. The quotations are taken ‘as is’, resembling the original typesetting.
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Of utter significance for cognition, he notes, are voluntary movements, explicitly
contrasting them to merely passive observations.5 Sensation and action are linked
by a causal nexus, a law of causation, which does not develop if we do not practice
it and constantly exercise our skills. This relationship is dependent on the physical
properties, the nature (“der Natur”) of our body, the world and the interplay of
both. He suggests that our perceptions (“Vorstellungen”) have to be ‘hands-on’
(“praktisch”) and he realizes that they, instead of being images (“Abbilder”), must
be signs6 (“Zeichen”). An image, he continues, is supposed to share some kind of
equality with its original source. A sign, on the other hand, does not have to meet
this requirement. It only has to be constant, i.e. the same object, given identical
conditions, has to elicit the same sign. Thus, the relationship (“Geschehen”) is
captured by a law, which, once learned, helps us to identify the object. The
dynamic process of sensation is further stressed by the following quote taken from
The Facts of Perception (von Helmholtz and Kahl, 1971 [1878]):

“Let us assume that the man at first finds himself to be just one
object in a region of stationary objects. As long as he initiates no
motor impulses, his sensations will remain unchanged. However, if he
makes some movement (if he moves his eyes or his hands, for example,
or moves forward), his sensations will change. And if he returns (in
memory or by another movement) to his initial state, all his sensations
will again be the same as they were earlier. [. . . ]
It is easy to see that by moving our fingers over an object, we can
learn the sequences in which impressions of it present themselves and
that these sequences are unchanging, regardless which finger we use.
It is thus that our knowledge of the spatial arrangement of objects is
attained. Judgments concerning their size result from observations of
the congruence of our hand with parts or points of an object’s surface,
or from the congruence of the retina with parts or points of the retinal
image. A strange consequence, characteristic of the ideas in the minds
of individuals with at least some experience, follows from the fact that
the perceived spatial ordering of things originates in the sequences in
which the qualities of sensations are presented by our moving sense
organs: the objects in the space around us appear to possess the

5He conjectures that if objects were only moved passively, by an external force, through our
field of vision, we would not be able to learn ‘seeing’ (cf. experiments by Held and Hein,
Ch. 2.4.1).

6Zeichen could also be translated with symbol. But it does not have the meaning of symbolic
representation here, it is rather a signal from the outside world, which is able to capture
the laws of the real world (“die Abbildung der Gesetzmä Jsigkeit in den Vorgängen der
wirklichen Welt”). Peirce (cf. Pragmatism, Ch. 2.2.2) “define[s] a sign as anything which is so
determined by something else, called its Object, and so determines an effect upon a person,
which effect [he] call[s] its interpretant, that the latter is thereby mediately determined by the
former” (1998). Hence, “[a] sign [. . . ] is something which stands to somebody for something
in some respect or capacity” (Peirce, 1950 [1897]). For a further distinction of signs please
also see Millikan (2004).
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qualities of our sensations. They appear to be red or green, cold or
warm, to have an odour or a taste, and so on. Yet these qualities of
sensations belong only to our nervous system and do not extend at
all into the space around us. Even when we know this, however, the
illusion does not cease, for it is the primary and fundamental truth.
The illusion is quite simply the sensations which are given to us in
spatial order to begin with.”

Once we have learnt the sensorimotor laws, we can use actions (“Handlungen”) to
trigger specific sensations. For instance, we are able to guide our gaze purposefully
over an object that we already know. Thus, von Helmholtz concludes that the
holistic perception of an object’s shape is identical to the sequence of motor
commands needed to examine it with our eyes7, i.e. its sensorimotor laws. Further-
more, the lively imagination of these laws sufficiently constitutes our perception
of objects8.
But how do we acquire such knowledge? For this purpose, von Helmholtz

vividly describes the interaction of infants with (toy) objects (cf. development of
sensorimotor skills, Ch. 2.4.1). They touch the toys, look at them for hours, stick
them into their mouth, pound them onto the ground, repeating this procedure day
by day, over and over again. Hence, von Helmholtz infers that the sensorimotor
skills have to be exercised, they are not connate.
Several concepts proposed by von Helmholtz will reappear in the following

sections and, as it will be seen, are still state-of-the-art in the research field
of embodied cognition. Needless to say, they had a significant impact on the
performed experiments, e.g. the dynamic nature of action-driven perception,
voluntary movements and lifelong exercising of the obtained sensorimotor laws
can readily be found (cf. experiments, Ch. 3 – 5).

2.2.2 Pragmatism
Pragmatism as a philosophical notion originated in the United States around the
1870’s. The most important advocates of the ‘classical’ pragmatists were Charles
Sanders Peirce (1839 – 1914), William James (1842 – 1910) and John Dewey (1859 –
1952). In essence, pragmatism links practice and theory. Theoretical knowledge
obtained from experiments is in turn used to redefine the experiments and to
clarify the practical consequences of the hypothesis. This implies that if a theory
is making correct predictions, i.e. it is practical, it ought to be true. On the other
hand, impractical ideas, which do not reflect observations, have to be rejected.
All three of the traditional protagonists have emphasized the active nature of

perception and the intertwined relationship of action and cognition. John Dewey
7“Hier bewährt sich also in der That die Gesammtauffassung der Körperform gleich als die
Regel für die Vorstellung, nach welcher man die beiden Blicklinien zu führen hat, [. . . ]”(von
Helmholtz and König, 1896).

8“[Der Begriff eines Objekts wird] nur durch die lebendige Vorstellug des Gesetzes, nach dem
seine perspektivischen Bilder einander folgen, zusammengehalten”(ibid.).
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aptly summarizes this relationship and points out the unconditional necessity of
action for perception:

“Upon analysis, we find that we begin not with a sensory stimulus.
but with a sensori-motor coordination, the optical-ocular, and that in
a certain sense it is the movement which is primary, and the sensation
which is secondary, the movement of body, head and eye muscles
determining the quality of what is experienced. In other words, the
real beginning is with the act of seeing; it is looking, and not a
sensation of light. The sensory quale gives the value of the act, just as
the movement furnishes its mechanism and control, but both sensation
and movement lie inside, not outside the act.” (Dewey, 1896)9

As noted above, these ‘action-guided’ concepts have been rediscovered in con-
temporary research projects summarized under the term embodied cognition,
including disciplines like robotics, psychology and more recently also neuroscience
(Engel, 2010). The contributions of William James to the ideomotor theory (IM)
are discussed in the next section.

2.2.3 Ideomotor Theory
Ideomotor10 theory is a framework for action planning, suggesting that actions
are represented by their perceptual effects. Usage of the term in the literature
is not uniform. Most often, induced actions that are triggered endogenously
or exogenously by perceptual phenomena are meant (Shin et al., 2010). This
perceptual impact on actions is often expressed by the term ideomotor action.
Nevertheless, the opposite direction, ideomotor perception, where a perception is
influenced by an action is conceivable as well.
Historically, IM originated in the 19th century from two different roots11, a

German and a British one. Carpenter (1813 – 1885), belonging to the British root,
originally coined the term ‘ideomotor’ (Carpenter, 1852). Accompanied by Laycock
(1812 – 1876), they sought to explain ideomotor phenomena by means of cerebral
reflex actions. The older German root was pursued by Herbart (1776 – 1841), Lotze
(1817 – 1881) and Harleß (1820 – 1862). They regarded the ideomotor principle as
a core mechanism for all human intentional behaviour. Both roots coalesced in
James’ magnum opus The Principles of Psychology (1890).

During learning, actions are linked to their perceptual effects. According to
James, this association can also be reversed (James, 1950 [1890], p. 526). A known
(previously learned) sensation may evoke a corresponding action. This makes IM
akin to the notion of forward and reverse models of computational motor control
(Wolpert and Ghahramani, 2004). Indeed, ideomotor theory supports the sensory

9The article can be obtained from http://psychclassics.yorku.ca/Dewey/reflex.htm .
10Not reflex but motivated by an idea (Merriam Webster, http://www.merriam-webster.com).
11For a detailed review of the historical roots please refer to Stock and Stock (2004).

http://psychclassics.yorku.ca/Dewey/reflex.htm
http://www.merriam-webster.com
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prediction of a performed or imagined action, as well as the selection of an action
leading to a certain anticipated perceptual experience.
The artificial neural architectures presented in Ch. 3 and 4 contain similar

properties. The combination of reinforcement learning and a sensory layer allows
for triggering of suitable actions based on sensations, once the relations of actions
and perceptions have been learned, i.e. the sensorimotor laws relevant for the
given task have been acquired.
IM fell into oblivion with the advent of behaviorism and has only recently

reappeared. Its contemporary successor, the theory of event coding (TEC), will
be presented briefly in Ch. 2.4.6 .

2.2.4 Phenomenology
Phenomenology was founded in the early 20th century by the mathematician and
philosopher Edmund Husserl (1859 – 1938). In a nutshell, phenomenology studies
the structures of conscious experience from a first-person perspective. In this
process, intentionality is the central structure of an experience. It is defined by
Husserl as directedness of experience towards things in the world, the property of
consciousness that it is a consciousness of or about something. This notion can
also be inverted. That is to say, phenomenology can be used to identify conditions
of conscious experiences, like perception, (embodied) action, bodily awareness,
thought, memory, imagination, emotion, desire, social activity, etc. , and to use
them to give experiences their intentionality. Husserl intended phenomenology to
be a method of philosophical inquiry, which replaces the rationalist bias dominating
Western thought since Plato with reflective attentiveness, thereby revealing the
“lived experience” of the individuals (Husserl, 1970).

Two of Husserl’s students, Martin Heidegger (1889 – 1976) and Maurice Merleau-
Ponty (1908 – 1961), are important for the present discussion, which emphasizes
that action is mandatory for perception and cognition.
Heidegger (1975; 1977) developed the concept of ‘being-in-the-world’ (“In-der-

Welt-Sein”) to abolish Cartesian dualism, the dichotomy of mind and body, and to
establish a foundation for the intentionality concept proposed by his mentor. He
realized that a cognitive agent has to be situated in its world and that a practical
understanding of the world arises by virtue of its own body, i.e. it needs to be
embodied. The embodied cognitive agent and the world are merged to form a
holistic structure comprising all components of the situation, leading to a concept
denoted as Bewandtnisganzheit (Heidegger, 1975).
Similarly, Merleau-Ponty comprehends the perceptual world as inseparably

intertwined with the body of the cognitive agent:

“Visible and mobile, my body is a thing among things; it’s caught
in the fabric of the world, and its cohesion is that of a thing. But,
because it moves itself and sees, it holds things in a circle around itself.
Things are an annex or prolongation of itself; they are incrusted into
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its flesh, they are part of its full definition; the world is made of the
same stuff as the body” (Merleau-Ponty, 1974, p. 284)

This coalescence of body and world, Merleau-Ponty suggests, leads to cognition
and self-awareness:

“The world is [. . . ] the natural setting of, and field for, all my thoughts
and all my explicit perceptions. Truth does not ‘inhabit’ only ‘the
inner man’, or more accurately, there is no inner man, man is in the
world, and only in the world does he know himself.” (Merleau-Ponty,
1962, Preface)

Further, this view of embodied cognition is grounded in sensorimotor activity. He
emphasizes the fundamental role of action for perception; without action there is
no perception, there is no cognition:

“Since all the movements of the organism are always conditioned by
external influences, one can, if one wishes, readily treat behaviour as
an effect of the milieu. But in the same way, since all the stimulations
which the organism receives have in turn been possible only by its
preceding movements which have culminated in exposing the receptor
organ to external influences, one could also say that behavior is the
first cause of all stimulations. Thus the form of the excitant is created
by the organism itself.” (Merleau-Ponty, 1963, p. 13)

Due to the striking resemblance to the thoughts of von Helmholtz (cf. Ch. 2.2.1)
and Dewey (cf. Ch. 2.2.2), it is not surprising that the experiments presented in
Ch. 3 – 5 are also reminiscent of the thoughts presented in this section.

2.2.5 Cybernetics
The research field of cybernetics was founded by Norbert Wiener (1894 – 1964)
who published a book with the very same title in the 1950s12. Originally, as defined
in Wiener’s book, cybernetics studied control and communication in animals and
machines. Since then, the research field has been expanded to an interdisciplinary
science investigating the structure of information flow in regulatory systems in
general, ranging from “stars to brains”13.

Like the cognitive sciences, this research field can be subdivided into two phases.
Traditional first-generation cybernetics was strongly influenced by the work of
William Ross Ashby (1903 – 1972). According to Froese (2010), he can be regarded
as the ‘culprit’ who triggered a series of historical developments that caused the
transformation to second-order cybernetics. Von Foerster (1911 – 2002), being one
of the leading scientists of the second phase, realized that
12For a detailed review of the early American cybernetics tradition please refer to Dupuy (2009).
13This expression is adopted from http://en.wikipedia.org/wiki/Cybernetics.

http://en.wikipedia.org/wiki/Cybernetics
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“a brain is required to write a theory of a brain. From this follows that
a theory of the brain, that has any aspirations for completeness, has
to account for the writing of this theory. And even more fascinating,
the writer of this theory has to account for her or himself. Translated
into the domain of cybernetics; the cybernetician, by entering his own
domain, has to account for his or her own activity. Cybernetics then
becomes cybernetics of cybernetics, or second-order cybernetics.”(von
Foerster, 2003)

Hence, the researcher cannot find out how a system, e.g. the brain, works from the
outside. He will always be affected and, more importantly, affect the functioning
of the system himself (cf. anthropomorphic bias, Ch. 2.4.9).

Second-order cybernetics and the distinct scientific traditions computationalism
and connectionism, which developed in parallel, jointly culminated in the enactive
paradigm14 (Froese, 2010).
Aware of the importance of actions for perception, von Foerster (1984) stated

that “[i]f you desire to see, learn how to act”. This proclamation can be seen as
the red thread of this thesis (cf. experiments, Ch. 3 – 5).

2.2.6 Symbol Grounding Problem
According to computationalism and Good Old-Fashioned Artificial Intelligence15

(GOFAI), cognition (intelligence) is merely a matter of abstract symbol manip-
ulation. For this purpose, a set of symbols and syntactic rules that relate them
to each other is defined (Newell and Simon, 1976). This is no problem as long
as a human interpreter is involved who is capable of relating the result of the
symbol manipulation to the outside world, i.e. the symbol processing is grounded
in the experience of the human interpreter. But how does meaning arise? This
cannot be mediated by an external observer because this would lead to an infinite
regress, just like the Rosetta stone would never have been deciphered if none of
the symbols (words) on it had been known.

The philosophical debate on how concepts and ideas obtain their meaning and
how they are grounded was fueled by Searle’s (1980) Chinese room argument16.
Briefly, in this Gedankenexperiment a solely English speaking person is located in
a sealed room, surrounded by Chinese speakers. The only contact to the outside
world is mediated via a slot through which papers containing symbols, presumably
Chinese, are handed to the inhabitant of the room. An instruction manual,
written in English, tells him which symbols to write on the paper in response
to the incoming messages, not knowing the meaning behind them. Nevertheless,
to the Chinese speakers outside, the ‘room’ seems to be able to understand and
speak Chinese. Interpreting the thought experiment suggests that a system merely
14Froese (2009) considers Hume (1711 – 1776) as yet another forerunner of the enactive paradigm.
15This term was coined by the American philosopher John Haugeland (1985).
16For a recent debate on a potential logical hole in this argument, please see (Shaffer, 2009;

Nute, 2011).
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operating on syntactic processes, i.e. algorithms (recipes for transforming input
into output), cannot acquire any meaning or intentionality.
So, how can we design (artificial) cognitive agents, for instance robots, that

are autonomous, in such a way that they are aware of the meaning of things and
therefore independent of an external human interpreter? Harnad (1990) argues
that this problem can be solved if the symbols are grounded in the sensorimotor
system. In this way, internal manipulations, as well as sensorimotor activities, are
constrained by the same laws.

2.2.7 Gibson’s Ecological Theory of Perception
James Jerome Gibson (1904 – 1979), an American psychologist, was the founder
of ecological psychology. According to his account, perception is an active process
that requires an organism to move around in its environment. He realized that,
in contrast to passive observations, motion provides a much deeper source of
information. “The changes come from the locomotion, and the nonchanges come
from the rigid layout of environmental surfaces”(Gibson, 1979, p. 73). In addition,
sensory information typically does not come to the organism by itself, but instead
it must be actively acquired. This is achieved by the perceptual system in
conjunction with the whole body.

“Each perceptual system orients itself in appropriate ways for the
pickup of environmental information, and depends on the general
orienting system of the whole body. Head movements, ear movements
and eye movements are part and parcel of the perceptual system they
serve. [. . . ] They serve to explore the information available in sound,
mechanical contact, chemical contact and light.”(Gibson, 1966)

Consequently, “we must perceive in order to move, but we must also move
in order to perceive”(Gibson, 1979, p. 223). Gibson (1966) further points out
that the stimulation, which is received by the organism, is structured. The
ambient optic array, i.e. the light that converges on a point of observation, has a
structure due to diffusion and reflections caused by the surrounding environmental
surfaces. This information can readily be used to discover invariances in the
visual stimulation, namely those features that stay constant during movement-
induced transformations. In the opinion of Gibson, learning these invariances in
combination with their causing counterparts of the body and the environment
contributes, at least partially, to the understanding of vision.

Due to the richness of information included in visual stimulation per se, Gibson
believed, it does not need to be processed any further. Alternatively, he takes up
an idea previously proposed by Donald Hebb (1904 – 1985) in his famous book The
Organization of Behavior: A Neuropsychological Theory (1949). Hebb proposed
that the brain resonates or reverberates to stimulation17. In a similar manner,
Gibson concludes:
17The idea of reverberation is also taken up by Humphrey (2006).
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“Instead of postulating that the brain constructs information from
the input of a sensory nerve, we can suppose that the centers of the
nervous system, including the brain, resonate to information. [. . . ]
The ‘resonating’ or ‘tuning’ of a system suggests the analogy of a
radio receiver. This model is inadequate because there would have
to be a little man to twiddle the knobs. A perceiver is a self-tuning
system. What makes it resonating to the interesting broadcasts that
are available instead of to all the trash that fills the air? The answer
might be that the pickup of information is reinforcing.” (Gibson, 1966)

The neural architectures presented within this thesis (cf. Ch. 3 – 5) can be inter-
preted in the light of these thoughts. The first two experiments use reinforcement
learning to ‘carve out’ invariant perceptual stimuli. The third experiment aims
at action-driven object perception containing a recurrent neural network with
parametric bias (PB) units at its core. The values of the PB units emerge un-
supervised (‘self-tuned’) and can be regarded as fixed-points of this dynamical
system that ‘resonate’ to object-specific perceptual stimuli.

Affordances

Within his framework of ecological psychology, Gibson is especially well known
for his theory of affordances18 (1977; 1979). “The affordances of the environment
are what it offers the animal, what it provides or furnishes, either for good or
ill”(ibid., p. 127). Thus, affordances are defined as ‘action possibilities’ that are
available in the environment. They are dependent on the (evolutionary) historical
interaction and effected by the needs and properties of an organism. As a result,
the recognition of affordances influences how an organism perceives its world.
Previously, in the early twentieth century, Jakob von Uexküll (1980 [1920])

had already suggested a comparable concept, according to which objects have a
functional coloring (funktionale Tönung). Additionally, Gibson was aware of the
demanding character of an object as introduced by Koffka (1935) in his Principles
of Gestalt Psychology. However, he pointed out a crucial difference.

“The affordance of something does not change as the need of the
observer changes. An affordance is not bestowed upon an object by
a need of an observer and his act of perceiving it. The object offers
what it does because it is what it is.” (Gibson, 1979, pp. 138-139)

This quote emphasizes again the core matter of Gibson’s theory, the inseparability
of action and perception, clearly qualifying it as an antecedent of the embodied
cognition framework.

There are several studies in the computer vision (CV) and robotics community
that make use of the affordance concept. For instance, Stark et al. (2008) proposed
18The noun was made up by Gibson, derived from the verb to afford, meaning ‘to make available’

and ‘to provide naturally or inevitably’ (http://www.merriam-webster.com).

http://www.merriam-webster.com
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using affordance cues, i.e. distinct visual features that suggest performing an action
in a specific way, to facilitate the detection of (novel) functional objects categories.
In another experiment, Ugur and Sahin (2010) presented a mobile robot equipped
with range sensing ability that, by interacting with its environment, is able to
learn to perceive a specific (traversability) affordance. Weiller et al. (2010) used
a robot to model adaptive goal-directed navigational behavior. It learned the
reflexive and action-based affordances of its environment in an unsupervised way,
based on acquired knowledge that relates motor actions to sensory outcome.

2.3 Disembodied Cognitive Science
The intellectual origins of classical first-generation cognitive science, or the disem-
bodied mind (Lakoff and Johnson, 1999), date back to the mid-1950s. The still
valid core suppositions that characterize this classical cognitivist thinking were
influenced by the work of Newell and Simon (1972), Fodor (1981) and others. For
a comprehensive historical review, please refer to Boden (2006).

The central hypothesis of this very interdisciplinary field assumes that cognition
can be understood best as computation over mental representational structures19.
Subjects are conceived as passive recipients of stimulation20, which is algorithmi-
cally processed in their brains. All ‘actions’ are located within the brain – the
cause of the inputs and the effect of the outputs on the world are irrelevant for
the computational process and, thus, also irrelevant for the understanding of
cognition. In that sense, cognition, like computational processes, can be regarded
as (methodologically) solipsistic (Fodor, 1980), i.e. mental states solely depend on
the input and other internal states without the need to take the physical world
in which the organism is embedded into account. Holyoak (1999) shares this
opinion and states that “[t]he central focus of psychology concerns the information
processing that intervenes between sensory inputs and motoric outputs”.
On the other hand, as a proponent of externalism, Hurley questions this view

by summarizing its core assertion.

“If perception is input from the world to the mind and action is output
from the mind to the world, then the mind as distinct from the world
is what the input is to and the output is from. So, despite the web of
causal relations between organisms and environments, we suppose the
mind must be in a separate place, within some boundary that sets it
apart from the world.” (Hurley, 1998, pp. 1 – 2)

Classical cognitive science, as described above, has many proponents, see e.g.
Thagard (2005; 2010), and still coexists with the embodied second-generation
cognitive science that is presented in the remainder of this chapter.
19While there is much agreement within traditional cognitive science on the computational

nature of cognition, the exact composition of the representational structures is heavily
debated.

20This is actually the case for many carefully controlled studies in psychology and neuroscience.
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(a) (b)

Figure 2.1: Interaction of the brain, the body and the world. (a) Embodiment
involves the interplay of the brain and the environment, mediated by the body. Drawing
taken from Pfeifer et al. (2007). (b) Embedded view of a situated and embodied agent
proposed by Beer (2003). All subsystems are in constant dynamic interaction.

2.4 Embodied Cognitive Science
Embodied cognitive science21 postulates that the body is not a mere container for
the brain. Instead, it is an integral part and cognition arises from “a dynamic
dance in which body, perception and world guide each other’s steps” (Shapiro,
2011, p. 61). Rather than being a computer that simply processes information, the
brain is now conceived as a controller, embedded in the body (embodied) and the
environment (situated), guiding movements (enacting) that lead to information
(Fig. 2.1). In essence, cognitive processes are grounded in their sensorimotor
experiences (Lakoff and Johnson, 1980; Feldman and Narayanan, 2004; Barsalou,
2008).
Unfortunately, the term embodiment is not defined uniformly in the literature.

Rohrer (2007) describes a dozen different uses and also Shapiro notes incongruities:

“Claims about the meaning of embodiment [. . . ] are far from uniform
in the commitments they entail. More troubling still is that the claims
often step far beyond the evidence or argument made in their support.”
(Shapiro, 2011)

To get a deeper understanding of the multiple facets of embodied cognition and its
fundamental role for action-driven perception, experimental studies and different
theories from various disciplines, along with their interpretations, will be reviewed.
21Whereas in principle, embodied cognitive science can be distinguished from both other forms

of situated cognition (Clark, 2008; Rupert, 2009; Shapiro, 2011), i.e. embedded and extended
cognition, these views are considered jointly in the present discussion.
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2.4.1 Experimental Studies
Various experimental studies in psychology, neuroscience and related fields exist
that support the notion of embodied cognition. Here we will focus on insights
from infant development, the concept of efference copy and two classical studies
that emphasize the fundamental role of action for perception.

Infant Development

The neuroanatomic pathways linking action and perception have recently been
reviewed by Guillery (2005). During early post-natal development, dorsal root
afferents feed into lower premotor and motor centers of the brainstem and may
already innervate the thalamus as well. In contrast, thalamocortical connections
are still immature at this time and, thus, are of subordinate importance for
this first stage in the development of sensorimotor contingencies22. At this stage
the infant learns that, for instance, certain hand movements produce particular
proprioceptive, tactile, and visual responses. As development proceeds, more and
more primary cortical areas become involved. The maturation of the intrinsic
circuitry is thereby mediated by the previously established lower sensorimotor
contingencies. Subsequently, higher cortical components become part of the
circuitry, now comprising learned associations between different sensory and motor
areas. The cortex has an impact on the thalamus and also sends an efference copy
(see below) to lower brainstem areas. During this development of the sensorimotor
contingencies, the higher order corticothalamic circuits maintain their plasticity
for a longer time period than the ‘lower’ first order circuits do.

The psychologist Jean Piaget (1896 – 1980) emphasized the role of sensorimotor
activity for the cognitive development, which can be subdivided into a number
of developmental stages. Like von Helmholtz (cf. Ch. 2.2.1), he described that
young infants repeatedly perform the same actions (Piaget, 1952). It has also
been observed that newborns, while awake, spend up to 20% of their time
touching their face (Korner and Kraemer, 1972). This behavior, in analogy to
vocal babbling, has been termed motor or body babbling (Meltzoff et al., 1997)
or visual-proprioceptive calibration (Rochat and Hespos, 1997; Rochat, 1998).
Through babbling, intermodal redundancies, temporal contingencies and spatial
congruences can be acquired. It also allows self to be discriminated from external
(environmental) stimulation and movement (Rochat and Hespos, 1997; Rochat,
1998). This is possible because infants do not only passively observe, but actively
bring in their motor apparatus to obtain a body representation and to establish
a relation between actions and sensory consequences (Bushnell and Boudreau,
1993). While their sensorimotor skills mature, their action skills develop in parallel,
enhancing jointly their cognitive capacities (Rosenbaum et al., 2001).

22Guillery adopts this expression from O’Regan and Noë (2001, cf. Ch. 2.4.4), but uses it in a
much narrower sense than intended by the original authors. Namely, to denote “perception
[that is] closely related to activity in the motor pathways” (Guillery, 2005).
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Efference Copy

Together with the acquisition of a body representation, infants develop a sense of
agency, i.e. (in this context) knowing that they are responsible for the generation
of an action23. This sense of agency becomes impaired when an organism is
confronted with a sensorimotor mismatch, becoming evident if the predicted
sensory feedback is not in agreement with the actual sensory feedback. Research
on the underlying neural mechanisms thus deals with the question: how can an
organism distinguish sensory changes resulting from its own movements from
those which are not caused by its own actions?

It was probably Descartes who first documented the fact that passive movements
of the eye result in the impression of the world ‘moving’, whereas voluntary
movements do not (Grüsser, 1995). Purkyně and von Helmholtz suggested that
this might be due to an internally copied motor command interfering with the
sensory input; the knowledge of the voluntary eye movement already predicts the
upcoming sensory change. This idea was then captured by von Uexküll and Mach
in the form of feedback diagrams (ibid.). The underlying concept was eventually
formalized, independently and simultaneously, by von Holst and Mittelstaedt
(1950) and Sperry (1950). Von Holst and Mittelstaedt denoted it as efference
copy, a copy of the efferent motor command, that is sent to the sensory system.
Comparing it to the reafference signal, i.e. the real sensory feedback, allows
ambiguities present in sensory information to be resolved that in turn can be
exploited to control behavior. On the other hand, Sperry focused more on the
anticipatory prediction of input, denoting his concept corollary discharge. These
motor-to-sensory signals may influence the sensory processing stream at various
levels24.
The fundamental question, not addressed by either, is how the (copy of) the

motor command can be transformed so that it can be readily compared to sensory
information. In technical terms the underlying principle is often denoted as forward
models (Jordan and Rumelhart, 1992; Kawato, 1999; Davidson and Wolpert, 2005).
Here, the problem is solved implicitly by the terminology used. Usually, the term
efference copy refers to the input to the forward model, also known as the predictor,
whereas the resulting prediction is considered as the corollary discharge25.

In general, the research associated with the notion of efference copy stresses the
importance that action-driven predictions of sensory outcome have for perception.
This, for instance, has been shown for saccades (Sommer and Wurtz, 2006) and
reaching movements (Desmurget and Grafton, 2000).

Two Classical Studies

Next to introducing the concept of corollary discharge, Nobel Prize winner Sperry
repeatedly emphasized the role of the motor system for sensory processing.
23For a more detailed account of the ‘sense of agency’, please refer to David et al. (2008).
24For a recent review, please see Crapse and Sommer (2008).
25This term is actually rarely used in the technical literature.
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“An analysis of our current thinking will show that it tends to suffer
generally from a failure to view mental activities in their proper relation,
or even in any relation, to motor behaviour. The remedy lies in further
insight into the relationship between the sensori-associative functions
of the brain on the one hand and its motor activity on the other.
In order to achieve this insight, our present one-sided preoccupation
with the sensory avenues to the study of mental processes will need to
be supplemented by increased attention to the motor patterns, and
especially to what can be inferred from these regarding the nature of
the associative and sensory functions.” (Sperry, 1952, p. 296)

Since Sperry suggested paying more attention to the motor system when inves-
tigating mental processes, many studies have been conducted considering this
advice. In the following, a brief overview of some classical, as well as some recent
experimental findings will be given.
The importance of self-actuated movements for the development of the visual

system has been shown by Held and Hein (1963) in their famous experiment. Two
kittens were harnessed to the same carousel, one of them being able to actively
walk on the circular path constrained by the attachment, the other one sitting in
a basket and thus only exposed to indirect passive stimulation. Due to this setup,
both animals received the same visual stimulation, but only the actively moving
one had ‘access’ to the motor commands. As a result, only the self-moving kitten
developed normal depth perception and an unimpaired paw-eye coordination.

Further support for the essential role of action for perception has been obtained
in sensory substitution experiments. In sensory substitution a (possibly impaired)
modality is replaced by another ‘sense’. Bach-y-Rita (1972) performed ground-
breaking experiments where visual information captured from a video camera was
transformed in tactile stimulation that was applied subsequently on the back of
blind and normal sighted subjects. With some training, blind subjects managed
to use this transformed stimulation for purposeful and goal-directed behavior.
They were actually able to perceive objects in the external space instead of merely
feeling them on their skin (Bach-y-Rita and Kercel, 2003), providing they were
allowed to actively manipulate the camera and thus take the associated dynamics
into account (Bach-y-Rita, 1972; Bach-y-Rita, 2004).

2.4.2 Enactivism – Varela, Thompson & Rosch
Many themes from the seminal work The Embodied Mind by Varela et al. (1991)
have become central dogmas in the field of embodied cognition. In this book
the authors query the pure computational subject matter of classical cognitive
science, stress the importance of a Gibsonian (cf. Ch. 2.2.7) approach to cognition
and challenge the concept of representations for explaining cognition. Most
importantly, they emphasize that perception and cognition are inevitably linked
with action.
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“By using the term embodied we mean to highlight two points: first,
that cognition depends upon the kinds of experience that come from
having a body with various sensorimotor capacities, and second, that
these individual sensorimotor capacities are themselves embedded in
a more encompassing biological, psychological, and cultural context.
By using the term action we mean to emphasize once again that
sensory and motor processes, perception and action, are fundamentally
inseparable in lived cognition. Indeed, they are not merely contingently
linked in individuals; they have also evolved together.” (Varela et al.,
1991, pp. 172–173)

To define the meaning of embodied action, they call for a new approach which
they term enactive and ask “[. . . ] how the perceiver can guide his actions in his
local situation”, thereby identifying the laws linking sensory and motor systems
(ibid., p. 173). Instead of accepting a pre-given world, the world is now conceived
as “perceiver-dependent”. The sensorimotor interaction of organisms with their
environment, which “appears to be filled with regularities” resulting from past
experiences (Maturana and Varela, 1992), is required to bring forth26 a world
(Varela et al., 1991). As highlighted by Varela et al., this approach to perception
is rooted in the work of Merleau-Ponty (cf. Ch. 2.2.4). For a more detailed review
of enactivism, please see the special issue of the Journal Phenomenology and the
Cognitive Sciences with an informative introduction by Torrance (2005).

2.4.3 The Extended Mind – Andy Clark
Andy Clark contributed to the discussion of embodied cognition with several books
and essays. At the core of his deliberations is the question of how the body and the
brain symbiotically simplify ‘work’, which traditionally is believed to be exclusively
handled by the brain. According to his view, mental activity includes not only
the brain, but also the body, the world and the interplay of both. Clark tries to
identify the constituents, comprising likewise objects and properties not located
within the brain, which extend the mind and thus asks the question: “Where does
the mind stop and the rest of the world begin?” (Clark and Chalmers, 1998).
To demarcate work in embodied cognition from standard cognitive science he

defines six ingredients that subserve to capture the general spirit of an embodied
approach: Nontrivial Causal Spread, Principle of Ecological Assembly, Open
Channel Perception, Information Self-Structuring, Perception as Sensorimotor
Experience and Dynamic-Computational Complementarity (Clark, 2008). Lists
also covering six (why exactly six?27) topics have been reported in the literature
by Wilson (2002), Ziemke (2003b) and Engel (2010). Surprisingly, these four
different listings are rather distinct than showing a common overlap.
26This term is adapted from the hermeneutic tradition of Martin Heidegger and his student

Hans Gadamer.
27This question has also been raised by Rolf Pfeifer in his talk “The Emergence of Cognition from

the Interaction of Brain, Body, and Environment” at the 4th EUCogII Members Conference.

https://cast.switch.ch/vod/clips/1s1b6s3isf
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Because several of the themes put forward by Clark can be readily attributed
to the neural computational architectures presented in this thesis, they deserve
further elucidation.
Nontrivial Causal Spread refers to a phenomenon that at first glimpse seems

to be caused by complicated internal mechanisms. A more careful look, however,
reveals an (almost) passive explanation, e.g. bipedal robots based on passive-
dynamic walkers (Collins et al., 2005).

The Principle of Ecological Assembly is based on the observation that a human
being “tends to recruit [. . . ] whatever mix of problem-solving resources will yield
an acceptable result with a minimum effort” (Clark, 2008). Studies investigating
the costs associated with performing intended actions indeed reveal that the
geometry of the world is combined with behavioral goals, as well as with the costs
associated with achieving these goals (Proffitt, 2006).
Open Channel Perception assumes that the perceptual channel between the

world and the neural system is constantly ‘online’. Accordingly, the world serves
as an outside memory (O’Regan, 1992; a similar idea was proposed by Dennett,
1991 and Minsky, 1988) which can be called upon, for instance, during navigation.
In contrast to classical approaches that solve the navigation task using a world
model, i.e. the robot has a map of the surrounding area available or builds it on
the fly during exploration of the environment (SLAM, Thrun et al., 2005), we only
rely on the world as an external memory to simultaneously learn sensorimotor
laws and visual features essential for navigation (cf. experiment Ch. 3).
The principal of Information Self-Structuring uses “the presence of an active,

self-controlled, sensing body [that] allows an agent to create or elicit appropriate
inputs, generating good data” (Clark, 2008). This underpins the central statement
of this thesis: robots (agents) should rely on active perception to structure the
information readily available in their environment. Use of the interplay of action
and perception can be found in all of the presented experiments. Adequate
actions for a given situation, e.g. reflecting the affordances of an object (cf. Gibson
Ch. 2.2.7), can significantly enhance the perceptual experience and take away
ambiguities that might be present otherwise. This can, for instance, be exploited
for object classification (cf. experiment Ch. 5).
The theme Perception as Sensorimotor Experience also runs like a red thread

throughout this work. It is closely related to the theory of sensorimotor contin-
gencies (SMCs) proposed by O’Regan and Noë, 2001 (cf. Ch. 2.4.4). For Clark
(2008), the SMCs account of perceptual experience suggests that the locus of
perceiving is not restricted to the brain only but involves cycles of organism-world
interactions.
Dynamic-Computational Complementarity aims at retaining explanatory con-

cepts, like computation and representation, from canonical cognitive science,
because in Clark’s view these are vital for understanding certain aspects of cogni-
tion.

Together with Robert Wilson, Clark defines the notion of wide computationalism
(Wilson and Clark, 2006). This concept considers cognitive processes to be com-
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putational and, at the same time, asserts that they (may) comprise constituents
which extend outside the cranium. This leads inevitably to the question of whether
an (external) process has merely a causal influence on cognition or if it indeed
is a constituent of it. When trying to clarify one or the other conception, it has
to be heeded that “the dispute over constitution at times threatens to dissolve
into nothing more than a linguistic issue” (Shapiro, 2011). Nevertheless, there are
proponents for both views. To substantiate the claim that an external event is
actually constituent for cognition, Clark and Chalmers (1998) introduced what
has become known as the parity principle (Clark, 2008):

“If, as we confront some task, a part of the world functions as a
process which, were it done in the head, we would have no hesitation in
recognizing as part of the cognitive process, then that part of the world
is (so we claim) part of the cognitive process. Cognitive processes
ain’t (all) in the head!”

The meaning of this principle is figuratively clarified by the famous example of
Otto and Inga (Clark and Chalmers, 1998). In short, both protagonists want to
see an exhibition at the Museum of Modern Art. Inga has normal capacities
for memory and, hence, she can simply call upon those to obtain the address.
In contrast, Otto suffers from Alzheimer’s disease and therefore has to consult
his notebook to retrieve the same information, i.e. “his notebook plays the role
usually played by a biological memory” (Clark, 2008, p. 227). In this example,
parity states that the location of the memory is irrelevant but what matters is
how it is integrated and used.
Critics of extended cognition state several objections. One of them being the

coupling-constitution fallacy (Adams and Aizawa, 2008; 2009; 2010). Schematically,
the fallacy becomes evident when the observation of a given process X – that is
somehow causally coupled to another process Y – leads to the conclusion that
X is actually part of Y (Adams and Aizawa, 2009, p. 81). As a reply, it is often
noted that constituents of a cognitive process are not (necessarily) themselves
engaged in this cognitive process. This, of course, can easily lead to the previously
mentioned verbal dispute. Another frequent argument against the constitution
hypothesis is that their supporters have not yet managed to define the marks of
the cognitive (Adams and Aizawa, 2010). “[W]hile transcranial cognition may be
both a logical and nomological possibility, no case has been made for its current
existence” (Adams and Aizawa, 2001). This stance is also referred to as contingent
intracranialism. Further, it is argued that extended cognitive systems are not
well-formed and consequently not amenable to methods from the classical sciences
(Adams and Aizawa, 2010).

“Tools do not constitute a natural kind; tools are, after all, artifacts.
It is for this reason that, a would-be brain-tool science would have
to cover more than just a multiplicity of causal processes. It would
have to cover a genuine motley. A brain-tool science would not have
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to cover a mere disjunction of things; it would have to cover an open
disjunction.”

The second explanatory concept from cognitive science Clark holds on to is
the notion of representations. In his view, representations are “local and action-
oriented rather than objective and action-independent” (Clark, 1997a, p. 149).
Representations are not an “objective world model”, but they are “already geared
toward the production of appropriate action” (ibid., p. 152). He distinguishes weak
and strong internal representations (Clark, 1997b). The weak instance merely
has the function of carrying information about an object that is in contact with
the sensory organs and “control[s] immediate environmental interactions” (ibid.,
p. 464). According to Ward and Ward (2009), weak representations are those
that neuroscientists would consider to be the receptive field of a neuron. On the
other hand, strong representations refer to internal states that are used offline for
planning or mental simulation of action.

Considering the symbiotic division of tasks between the brain and the body, as
well as the parity principle of the extended mind hypothesis, one is immediately
tempted to establish a link to tool use experiments performed with primates (Berti
and Frassinetti, 2000; Johnson-Frey, 2003; Maravita et al., 2003; Maravita and
Iriki, 2004; Holmes et al., 2004). These studies show that tools, e.g. a rake, are
readily incorporated in the body representation of the primate brain. Retrieving
food with the help of the tool extends the visual receptive field of so-called distal-
type neurons, coding previously only for the hand, to include the entire length of
the rake. The receptive field of another type of neurons, termed the proximal-type,
also expands to match the newly acquired space within reach, i.e. the peripersonal
space. However, this only happens when the monkey actively makes use of the
rake and not if it only holds the tool passively in its hand; again stressing the
fundamental role of action for perception. Recently, tools have been developed
that are taped into the brain of a rat. In order to achieve the best possible match
between the intention of the animal and the action performed with the artifact,
reinforcement learning is used to actively (and in addition to the internal natural
adjustment) adapt the parameters of the artificial body extension (DiGiovanna
et al., 2009; Sanchez et al., 2009).

2.4.4 Sensorimotor Contingencies – O’Regan and Noë
In contrast to many traditional beliefs that rest on the idea that the brain stores
an internal representation of the world, sometimes referred to as the orthodox
internalist view, O’Regan and Noë (2001) propose a theory where the world
itself serves as an external memory (cf. Open Channel Perception, Ch. 2.4.3).
The perceptual experience is a result of the learned mastery of what they call
sensorimotor contingencies. These SMCs comprise actions, physical properties of
the environment and characteristics stemming from the sensory systems. This
approach naturally accounts for the differences in the perceived quality of sensory
experience across modalities (e.g. seeing or touching) and stresses the necessity of
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(a) (b)

Figure 2.2: Sensorimotor contingencies illustration and the Cartesian the-
ater (a) The spongeman (name given by O’Regan) exercising sensorimotor skills.
According to the sensorimotor contingencies theory of O’Regan and Noë, this is the
only ‘ingredient’ necessary to give rise to a perceptual experience (see text for details).
Drawing courtesy of Kevin O’Regan28. (b) Illustration of Descartes demonstrating the
dualism of mind and body, later termed the ‘Cartesian theater’ by Dennett (1991). The
epiphysis looks at an internal cinema screen to yield the perceptual experience of seeing.

the interplay between actions and perception which has already been suggested
by von Helmholtz (cf. Ch. 2.2.1).

We seem to have a rich, detailed impression of any given ordinary visual scene.
This is despite experimental findings about the blind spot, change blindness,
saccadic smears and an impoverished peripheral (color) vision. So where does
this paramount resolution come from that we are obviously experiencing? A
trivial, albeit not very convincing, explanation is called the grand illusion view,
stating that this rich and detailed visual experience is simply an illusion our
brain generates. This claim, as well as the orthodox internalist view, is denied
by O’Regan and Noë. Instead, they suggest that “seeing is a way of acting”
(Fig. 2.2 a). Perceiving agents learn to acquire (motor) skills that allow to pick
up all the details needed, which are readily available in their environment, to
obtain a rich and detailed sensory impression. Thus, it is not internally generated
neural activity which is responsible for perceptual presence, but rather the mastery
and the access to our sensorimotor skills that enables us to see (O’Regan and
Noë, 2001; Bompas and O’Regan, 2006), smell (Cooke and Myin, in press), hear
(Aytekin et al., 2008) and touch (Myin and O’Regan, 2009; O’Regan, 2011). It
is important to note that the authors emphasize that their approach does not
only explain (visual) cognition but at the same time it is supposed to account for
(visual) consciousness (O’Regan and Noë, 2001; O’Regan, 2011).

28http://nivea.psycho.univ-paris5.fr

http://nivea.psycho.univ-paris5.fr
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Despite stating that the active engagement in a sensory manipulation is sufficient
to give rise to a perceptual experience, O’Regan (2011) does not deny that the
brain is somehow involved in this process and he also admits the “usefulness of
representations” (ibid., p. 68). The words representation, activate and generate,
however, should be used with caution (ibid.).
Critics of this account put forward several arguments. There must be some-

thing more than just the “knowledge of the relevant sensorimotor contingencies”
(O’Regan and Noë, 2001, p. 943) for perception. Simply by stating that there
is no explanatory gap (Levine, 1983) does not compensate for the lack of under-
standing how and why we feel (perceive) the way we do (see also comments of
e.g. Kurthen, Oberauer, Manzotti and Sandini, on O’Regan and Noë, 2001). This
objection is reminiscent of the Cartesian theater analogy suggested by Dennett
(1991). Descartes assumed that the ‘mind’, materialized in the pineal gland, looks
at a cinema screen in order to ‘see’ (Fig. 2.2 b). Of course, this leads to an
infinite regress. Still, assuming that the knowledge of sensorimotor contingencies
are constituents of the perceptual experience and “there is nothing more to it”
(personal communication with Kevin O’Regan) does not provide a satisfying
explanation. Another tripping hazard of the SMCs account lies in the level of
interpretation. If the claim that perceptual experience is to be equated with
skillful sensorimotor activity is taken literally, as is suggested for instance by the
statement “seeing involves testing the changes that occur through eye, body, and
attention movements” (O’Regan and Noë, 2001, p. 947), we would actually need
to be engaged actively in the process of perceiving each time. On the other hand,
if only the potential to perform certain actions is required, e.g. as suggested by
“seeing a stationary object consists in the knowledge that if you were to move
your eye slightly leftwards, the object would shift one way on your retina, but
if you were to move your eye rightwards, the object would shift the other way”
(ibid., p. 949), then a brain in a vat29 could do the job as well. This, however,
contradicts the hypothesis that “it is not the brain process that generates the feel,
but the mode of interaction that constitutes the feel” (O’Regan, 2011, p. 113).

Only few computational studies30, either with real or virtual robots, exist that
explicitly relate their implementation to the SMCs framework (Philipona et al.,
2003; Philipona et al., 2004; Olsson et al., 2006; Aytekin et al., 2008; Maye and
Engel, 2011). Interestingly, there are more studies that do not explicitly establish
this relation but do qualify at least to the same extend (Fitzpatrick and Metta,
2003; Metta and Fitzpatrick, 2003; Roy, 2005a; Roy, 2005b; Bovet and Pfeifer,
2005; Natale et al., 2005; Maillard et al., 2005; Hoffmann, 2007). Because these
experiments picture a general access to sensorimotor learning they will be discussed
in the cognitive robotics section (Ch. 2.4.9).

29Well known thought experiment: the brain is located in a vat sending exactly the same motor
commands and receiving exactly the same sensory stimuli as if it were in a skull. If this is
the only way for the brain to interact with its environment, then it is not possible for it to
tell whether it is located in a skull or a vat.

30We are aware of.
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Philipona et al. (2003; 2004) addressed the question of whether it is possible
for an agent with an unknown body to infer that the body is located in a 3-D
Euclidean space. Indeed, their algorithm detected the dimensionality of the world
via deducing sensorimotor laws that link actions to perceptions. Further, this
method enabled a virtual rat to control its head in a rigid fashion, despite an
initially unknown body and the unknown structure of the world it was embedded
in.
Using an approach rooted in information theory, Olsson et al. (2006) showed

that it is possible for a real robot to learn a model of its own sensors and actuators.
Initially, the robot performed random movements (cf. motor babbling, Ch. 2.4.1)
to create an informational map of its sensors, which was subsequently exploited
to acquire knowledge about the effects that different actions have on those. In
the end, the robot was able to perform basic visually guided movements.

Aytekin et al. (2008) proposed a computational method for learning of auditory
space based solely on acoustic inputs and their relation to motor outputs. By
means of manifold learning methods it was demonstrated that organisms like
humans and bats can learn to localize sound sources. This requires neither any a
priori neural representation of their head-related transfer function nor any prior
experience with auditory spatial information.
In another experiment, sensorimotor contingencies have been realized using

conditional probabilities that were represented as a set of Markov models (Maye
and Engel, 2011). Implemented on a real robot platform, the experience-dependent
probability distributions allowed two different objects to be distinguished. De-
pending on the object, a characterizing SMC was triggered, which in turn led to
an action that signaled the classification result.

2.4.5 Directive Minds – Andreas K. Engel

As previously noted, Engel (2010) describes the rethinking that is currently taking
place in the cognitive sciences as a pragmatic turn (cf. Ch. 2.2) away from the
static representation-centered framework towards an action-centered paradigm
that is concerned with understanding of the intimate relation between action
and cognition. At first, this ‘action-driven’ paradigm found its way into robotics
and has only recently begun to have a notable impact on research in cognitive
psychology and neuroscience.
Several challenges have to be met by the emerging ‘pragmatic neuroscience’

framework that aims at explaining how brains function as ‘vehicles of world-
making’, rather then just being world-mirroring devices (cf. enactivism, Ch. 2.4.2).
The experimenter, aware of the dynamic nature of cognition, has to maintain
a holistic perspective during design, carry-out and analysis of an experiment.
Not the neural activation patterns in relation to stimuli alone are of primary
importance, instead the action the subject is currently engaged in, as well as the
environment they are embedded in, have to be focused on. Further, the cognitive
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system as a whole, including interactions within and across neural assemblies of
several subsystems (e.g. top-down influences), has to be investigated.

Because neural activation patterns do not carry ‘images’ or symbolic represen-
tations of the external world, but rather “support the capacity of structuring
situations through action”, Engel (ibid.) suggests getting rid of the “cognitivist
burden” carried on with the word representation and replace it with the expression
directive. He stresses that directive is not just a different term for ‘action-oriented
representation’, which is merely located in the head. Instead, the dynamics of
directives extend beyond the brain through the entire cognitive system, including
body and environment (cf. extended mind, Ch. 2.4.3 and SMCs, Ch. 2.4.4). An-
other characteristic of directives, which can readily be attributed to the artificial
neural architecture developed within this thesis (cf. Ch. 3 and 4), is based on the
description that “directives are immediately related to action selection. Activating
directives directly controls the respective action” (ibid.). Further, “[t]he concept of
an object corresponds to ‘nothing but’ the set of possible actions relating to this
object; there is no context-neutral ‘description’ above and beyond the directives”
(ibid., cf. affordances, Ch. 2.2.7).

Directives are not isolated neural activation patterns. They are the dynamic
interactions between highly distributed neural populations across numerous brain
regions (ibid.). These distributed processes comprising activity in sensory, motor,
limbic and memory regions have to be coordinated via a dynamic ‘binding principle’.
A potential mechanism that makes a (temporal) coordination possible is called
neural synchrony (Engel et al., 1992; Singer and Gray, 1995; Engel and Singer, 2001;
Engel et al., 2001; Fries, 2005). Synchrony is often associated with oscillatory
activity that, at least over larger distances, enables neuronal communication.
However, experimental evidence relating neural synchrony to the generation of
actions is thus far only supported by few studies (Engel, 2010).
It is arguable whether the introduction of a new word (directives) helps to

resolve the ambiguities and (logical) problems the notion of representations causes
(Press, 2008). In any case, due to a pervasive relation of the directive minds to
the theory of sensorimotor contingencies this stance is, of course, susceptible to
similar critical objections (Ch. 2.4.4).

2.4.6 The Theory of Event Coding
The historic roots of the theory of event coding (Hommel et al., 2001; Hommel,
2009) have been presented in Ch. 2.2.3. TEC is a general framework explaining
how perceived and produced events (stimuli and responses) are represented in
common domain and how this common coding generates action and perception.
This is in contrast to traditional views that regard sensory, motor and cognitive
processes as distinct entities and, hence, require a transduction of modal (sensory)
codes to amodal symbols, which in turn are processed to generate actions (Newell
and Simon, 1972). Unfortunately, TEC is underspecified at present and some of
its core concepts, such as an event, have been defined only loosely. This is realized
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by the authors, admitting that “TEC’s main mission at this point is to stimulate
deliberations and discussions about basic principles of perception/action archi-
tectures” (Hommel et al., 2001, p. 914). For a detailed recent review comprising
multiple facets of ideomotor theory in general, and TEC in particular, please see
Shin et al. (2010).

2.4.7 Dynamical Systems Theory
The behavior, how a system changes over time, can be formalized using dynamical
systems theory (DST), an area of applied mathematics. Usually differential
equations are used to describe how the dynamical system changes over time,
but also a recurrent neural network can be considered (cf. experiment 3, Ch. 5).
Dynamical systems have some intriguing properties. They are self-organizing, also
referred to as emergent, they can be coupled and can have fixed-points functioning
as attractor states. Due to the general description – a system that changes over
time – almost any system is a dynamical system and so is the brain. This was
already realized by Turing (1950):

“The nervous system is certainly not a discrete-state machine. A small
error in the information about the size of a nervous impulse impinging
on a neuron, may make a large difference to the size of the outgoing
impulse. It may be argued that, this being so, one cannot expect to be
able to mimic the behaviour of the nervous system with a discrete-state
system.”

This reasoning is actually shared by the proponents of DST. They argue that
“cognition should be described in terms of agent-environment dynamics rather
than in terms of computation and representation” (Radical Embodied Cognition,
Chemero, 2009). What could be more appropriate than describing a dynamical
system with DST? The continuous flow of information among brain areas and
the environment establishes a complex and inseparable dynamical system. Hence,
there is no need to draw artificial boundaries between action and cognition. Yet,
it should be considered that “the foundational aspects of a ‘dynamicist’ cognitive
science should be clarified before it can really offer itself as a novel candidate
paradigm” (Spivey, 2007). In the following paragraphs several hallmarks of DST
that are important for the embodied cognition ‘movement’ will be introduced.

Dynamical Hypothesis – van Gelder

The dynamical hypothesis proposed by van Gelder (1998) focuses on two elements.
The first part specifies the nature of cognitive agents, stating that they are
dynamical systems. The second part, denoted as the knowledge hypothesis, claims
“that we can and should understand cognition dynamically” (ibid., p. 619).

To strengthen his hypothesis, van Gelder (1995) presents Watt’s centrifugal
governor31 as an example (Fig. 2.3). Prior to this invention steam engines were not
31Named after its Scottish inventor James Watt (1736 – 1819).
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Figure 2.3: Watt’s centrifugal governor. Example utilized by van Gelder to
strengthen his dynamical hypothesis32.

able to maintain a constant output speed, leading to a fluctuating performance
that possibly affected the quality of the product (e.g. in cotton mills). The
governor regulates the flow of steam, and thus the output speed, via a throttle
valve. Once the flywheel slows down, the valve opening increases, compensating
for the loss of power. However, if the speed of the flywheel is too high, the opening
of the throttle-valve decreases, thereby slowing down the flywheel.
Van Gelder (ibid.) offers two possible solutions for how this system could

function. The first is rooted in cybernetics (cf. Ch. 2.2.5). Measuring the actual
value of the flywheel speed and comparing it to the desired value allows an error
to be calculated, which in turn can be used to adjust the throttle-valve and
thus regulate the output speed (proportional controller). This computational
process happens in discrete time steps and successively. Further, it requires a
representation and a memory. In contrast, the second explanation is based on
the embodiment of the device. During rotation of the flywheel, a centrifugal force
causes the flyballs to rise, simultaneously altering the opening of the throttle valve.
This mechanism can be formalized using differential equations. In the continuous
interaction of the flywheel and the throttle valve there is no need to maintain a
representation. According to van Gelder (ibid.), for two reasons – continuity and
lack of representations – the second dynamical explanation has to be preferred
over the computational one. Despite being a dedicated anti-representationalist,
he admits that there might be a situation where representations could be useful
for the understanding of some dynamical systems (ibid.; 1998).
The reasons presented by van Gelder for preferring one approach over the other are
certainly debatable. The governor is a dynamical system, but is it also a cognitive
system (comparable to the brain)? What do the two offered solutions tell us about
the functioning of cognitive systems in general? The computational explanation
32Drawing adopted from http://commons.wikimedia.org.

http://commons.wikimedia.org
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seems to be the more general one, a feature often requested for cognitive systems
because it does not contain a detailed description of how certain parts of the
‘body’ relate to each other (e.g. the differential equation contains the arm angle as
a function of engine speed). On the other hand, being a coupled system suggests
that all parts, despite the fact that they are causally linked, are at the same time
constituents of the (cognitive?) process.

Dynamic Field Theory – Thelen

The computational modeling study of Thelen et al. (2001) is often mentioned
as the prime example of successful application of DST in the field of embodied
cognition.

“To say that cognition is embodied means that it arises from bodily
interactions with the world. From this point of view, cognition de-
pends on the kinds of experiences that come from having a body with
particular perceptual and motor capacities that are inseparably linked
[. . . ]” (ibid.)

They modeled Piaget’s A-not-B error experiment (1954) using dynamic field
theory (Amari, 1977). Facing an about six to seven month old infant with a simple
reaching task elicits perseverative behaviour. On the table in front of the infant
two identical containers, one denoted as box A the other as box B, are arranged.
The experimenter presents a (toy) object to the toddler and places it beneath
container A, so it is no longer visual. This results in reaching of the child toward
container A. After repeating this several times the experimenter alters suddenly
its strategy and places the object of desire, as the infant watches, under container
B. Instead of reaching toward the new location B the toddler continuous to reach
toward A, perserving the original activeness. This effect vanishes again at an age
of about one year. According to Piaget this is due to a not yet matured concept
of object permanence which develops accompanied by increasingly more complex
representations. Interestingly, the infant succeeds in reaching toward B when
for this action a change of its motor plan is necessary, e.g. it has to bypass an
obstacle or springs are attached to its arms thereby increasing the resistance of
the movement.
Thelen et al. (2001) deliver an explanation completely getting by without an

object concept. “Indeed the cornerstone of our dynamic model is that ‘knowing’ is
perceiving, moving, and remembering as they evolve over time, and that the error
can be understood simply and completely in terms of these coupled processes.”
Thus, their model explains the complete behavioral range of the A-not-B error
effect by combining evidence of the visual modality, the reaching and remembering
in a single motor decision field that yields as an outcome ‘knowing’ or ‘not-knowing’
about the proper target location.
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Dynamic Categorical Perception – Beer

A central dogma of the dynamicist view is that interactions between brain, body
and world contribute to the emergence of cognition. In this context, the dynamical
interaction between the brain and the body is referred to as embodied. At the same
time, the body is embedded (situated) in the environment. All three components,
each by itself a dynamical system, are jointly engaged in a coupled relationship
(Fig. 2.1 b). “Because all of the individual components are described in the same
mathematical language, it is much easier to approach questions involving their
interaction” (Beer, 2003).
In his well-known study, Beer (ibid.) investigated categorical perception in a

simulated agent. As the agent moved left and right it had to discriminate circles
from diamonds falling down from above. If it encountered a circle it had to catch
it, i.e. center itself beneath it, whereas if it was confronted with a diamond it was
supposed to avoid it. To accomplish its goal the agent was equipped with seven
sensors, each having a single line of sight. These sensors served as the input nodes
to a continuous time recurrent neural network (CTRNN). In addition to the seven
input nodes the network had five hidden nodes, as well as two output nodes that
acted as motor neurons. Evolutionary algorithms were used to evolve the ‘nervous
system’ of this special type of connectionist network. Based on performance in the
task, a successful agent was chosen and subjected to further dynamical systems
analysis. As it turned out, it was not possible to clearly identify neural correlates
for either of the two categories. Instead, the agent had learned to actively scan
the falling object. Thus, rather than actually representing externally defined
category labels, the categories are reflected by the behaviors of the agent, which
in turn is guided by complex brain, body and environment interactions. Similar
work with CTRNNs and simple simulated agents, summarized with the term
minimal cognition, has been conducted by Di Paolo and co-workers (Di Paolo,
2000; Izquierdo-Torres and Di Paolo, 2005; Fine et al., 2007).
Next to acknowledging that connectionist recurrent neural networks can ap-

proximate arbitrary dynamical systems, Beer (in press) points out that

“the connectionist framework emphasizes the network architecture,
the learning algorithm, the training protocol and the intermediate
distributed representations that are developed. In this sense, many con-
nectionist models are still disembodied, unsituated, and computational
(albeit distributed) in nature.”

This, however, suggests that only the dynamic interpretation, not the dynamics
itself, leads to an embodied and situated cognitive system and it confirms the
objections expressed by Spivey (2007), namely, that the ‘dynamicist’ cognitive
science paradigm has yet to be defined (see above).
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2.4.8 Virtual Reality
The notion of embodied interaction was introduced to human-computer interaction
early this century (Dourish, 2001). It aims at incorporating phenomenological
concepts (Ch. 2.2.4) and emphasizes the importance of our body for the social
and physical interaction with the world we are embedded in. This world, however,
does not need to be the real physical world – it can also be a computer-generated
virtual environment (VE). A variety of design and research projects are specifically
concerned with embodied metaphors, tangible user interfaces and wearables in
virtual reality (VR) systems. One of the primary goals of such systems is to fully
immerse the user, leading to the experience of really being there. This conscious
experience has also been denoted as presence, the subjective feeling of being in a
virtual environment while being temporarily unaware of one’s real location and
the technology responsible for the virtual input to the senses. Sanchez-Vives and
Slater (2005) stress the constitutive role of actions needed for the experience of
presence to come into existence33. “The key to this approach is that the sense of
‘being there’ in a VE is grounded on the ability to ‘do’ there” (ibid.).

It has also been suggested that intuitive interaction methods for VR are rooted
in embodied skills (Beckhaus and Kleesiek, 2011). In particular, it is important for
an intuitive interaction device that it signals appropriate and inherent affordances
(cf. Gibson, Ch. 2.2.7) that integrate well in the current setting. Next, motor skills
and knowledge about the usage of the device either have to be known in advance
or can be achieved rapidly, immediately leading to a tool that extends our body
(Ch. 2.4.3). As a further potential neuroscientific explanation the authors refer to
the concept of efference copy (Ch. 2.4.1). If voluntary movements performed with
a user interface lead to virtual sensory feedback (e.g. visual flow) that is (almost)
identical to the predicted sensory experience and, thus, matches the embodied
concepts and expectations of the user, then the usage of this device is indeed
intuitive.

2.4.9 Cognitive Robotics
Cognitive robotics is a broad research area comprising several sub-fields, e.g. de-
velopmental robotics, that aim at grounding cognition in sensorimotor experiences.
One common goal is to build autonomous robots that can operate in complex,
open-ended real-world scenarios, possibly interacting with humans. Another fre-
quent objective is to use robots to evaluate neuroscientific hypotheses. Ideally,
this should result in a fruitful cross-fertilization where the implementation of
principles and constraints derived from animal and human cognition lead to better
performing robots and the confirmation of hypotheses.
Robots are embodied. Their body, however, is usually drastically different to

the human body. Taking embodiment claims literally could, thus, suggest that
robots, given their current technical development, cannot be good models for
33Premotor cortex is part of the network proposed for the experience of presence. For a detailed

review of the underlying neural mechanisms, please see Jäncke et al. (2009).
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human cognition because “to conceive of the world as a human being does require
having a body like a human being” (Shapiro, 2011, p. 71)34. Another criticism
can be summarized by the term anthropomorphic bias. It is very hard, if not
impossible, to imagine how the body of a robot ‘feels’ and how, due to these
morphological differences, the world is conceived from a robot’s perspective. Yet,
this is hardly ever considered when devising algorithms for robots.

On the other hand, if a robot explores the possible actions by itself and learns the
sensory consequences, both objections can be relaxed. Self-acquired sensorimotor
laws, relating actuators and sensors, are shaped by the embodiment, i.e. the
morphological configuration, of the robot and the physical properties of the world
it is embedded in. Further, using a state-of-the-art humanoid robot leads to the
best possible result one can currently obtain (assuming that the allegation would
be true). As a matter of fact, for most of our experiments we use the Nao robot35,
a humanoid with 25 degrees of freedom.

Historic Roots

Some of the first electronic autonomous robots were constructed by Walter (1953).
Instead of viewing mental processes in terms of digital computation, Walter
stressed the importance of purely analog circuits. According to his working
hypothesis, the key element for the functioning of the brain is determined by the
relay of the neurons (how they are ‘wired up’). Despite having (rich) connections
between only few brain cells, the analog machines demonstrated complex behaviors,
e.g. phototaxis, which confirmed his belief.
Braitenberg vehicles are another form of simple agents based on embodied

cognition (Braitenberg, 1984). They display complex and dynamic behavior that
emerges from sensorimotor interaction between the agent and its environment,
without any need for an internal representation. In the simplest form, sensors
are directly connected to actuators. Depending on the connection, i.e. excitatory
or inhibitory, different (goal-directed) movements result. Yet, the agent operates
purely reactively without any information processing.

Another pioneer in the field of cognitive robotics is Rodney Brooks. He created
situated and embodied robots that “experience the world directly – their actions
are part of a dynamic with the world, and the actions have immediate feedback on
the robots’ own sensations” (Brooks, 1991a). To implement these behavior-guided
robots, Brooks proposed a subsumption architecture. Instead of establishing a
hierarchy of different modules, each performing computations on a representation
as suggested in GOFAI, he arranged the different components in parallel, directly
linking sensing with acting. In this way, the traditional sequence of sensing,
building up a representation, planning and acting no longer exist.

34This is not the opinion of Shapiro. He uses this extreme statement to clarify the concept of
embodiment. This has also been done in a similar manner by Pezzulo et al. (2011).

35Aldebaran Robotics

http://www.aldebaran-robotics.com/
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“Each activity producing layer connects perception to action directly.
It is only the observer of the Creature who imputes a central represen-
tation or central control. The Creature itself has none; it is a collection
of competing behaviors. Out of the local chaos of their interactions
there emerges, in the eye of an observer, a coherent pattern of behavior.”
(Brooks, 1991b)

According to Brooks, representations are – at least for very simple levels of
intelligence – not necessary, because the robot demonstrator “uses the world as
its own model”(ibid.). This, of course, shows a striking resemblance to the claim
that the world serves as an outside memory (cf. SMCs, Ch. 2.4.4). Furthermore,
the statement of Brooks points out another type of anthropomorphic bias, which
holds true for the work of Braitenberg, Walter and others. It might not be the
robot that is intelligent, but the human observer who attributes, based on own
experiences and expectations, intelligence to the behavior of the machine. Is the,
albeit complex, behavior we observe, really a trace of cognitive processing36?

Selected Publications

In this section selected contemporary publications from the vastly growing field of
cognitive robotics are presented. Due to the myriad of publications, no complete
list can be given; rather some, according to our view, representative publica-
tions are considered that highlight different possible approaches for modeling
embodied cognition on robotic systems, thereby exploiting the interaction with
the environment for the acquisition of sensorimotor laws.
Pfeifer and Scheier (1997) presented ‘sensory-motor coordination agents’ that

were located in an arena with small and big cylinders. In order to accomplish
their goal – picking up the small cylinders and ignoring the big ones – they needed
to be able to discriminate between the two kinds of objects. To tell apart the
two classes by visual means only is rather difficult. However, exploiting a built-in
reflex, which caused them to circle around an object, facilitated the classification.
While actively exploring a cylinder, the object diameter led to a distinct angular
velocity that could subsequently be used for discrimination.

In another study, Bovet and Pfeifer (2005) proposed a robot control architecture
for learning delayed rewards without memory. An artificial mouse, equipped with
sensors for vision, touch and reward was supposed to find food (i.e. an electric
reward) in a T-maze. At the entrance to the maze a tactile cue signaled on
which side the reward will be. However, the agent did not know this. For each
sensor and motor modality (e.g. intensity values of the camera or movement
direction) there was a set of neurons representing the current value and another
set of neurons indicating the change of these values. Additionally, there was
also a neuron whose activity reflected the reward. All groups of neurons were
interconnected and a simple Hebbian learning mechanism enforced the connections
that were simultaneously active, i.e. the connections were strengthened based on
36cf. definition of cognition in Ch. 2.1
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correlations. In this task, the world was used as an external memory (cf. SMCs,
Ch. 2.4.4). After a few trials the sensory impressions, which are readily available
in the environment, the movements and the reward displayed correlated activity,
leading to the desired behavior.
Roy (2005a) proposed a computational architecture in which the meaning of

spoken words and sentences is grounded in multi-modal sensorimotor experiences
of a robot. For instance, words that describe a color can be associated with the
expected sensory experience. Similarly, affordances (cf. Ch. 2.2.7) like reachable or
graspable are grounded in motor and sensor primitives, as well as in an expected
sensory outcome of a specific action chosen by a planner. For example, given
a word like ‘ball’ will result in a set of expected action outcomes the robot can
perform with the object.
Lungarella et al. (2005; 2006) investigated how different information theoretic

and statistical measures capture the information structure between sensor and
motor channels of a robot. In their experiments, they showed how actions of
an embodied agent lead to a structuring of the sensory input. The robot, while
performing saliency-based attentional behaviors, decreases the entropy of the
sensory information and increases the statistical dependencies between the sensors.
They demonstrated that the information flow in sensorimotor networks is spatially
and temporally specific and that it can be affected by learning and by changes in
body morphology.
Pitti et al. (2009) offered a computational model that monitors and simulates

the concordance between voluntary actions and their consequences. In their
study, body representations were encoded as spatio-temporal patterns in a spiking-
neural network. While a head-neck-eye robot interacted with its environment the
connections of the network were modulated via spike-timing-dependent plasticity.
Over time, the most congruent sensorimotor pairs were reinforced, anticipating
the ongoing sensorimotor activity and predicting the next state of the embodied
agent (cf. efference copy, Ch. 2.4.1). This led to a self-organization of sensorimotor
maps, enabling the robot to fixate salient objects as well as making saccades to
new locations. Further analysis of the neural activities of the network revealed
that the agent was able to discriminate between self-generated and externally
caused movements.
Hoffmann (2007) presented a mobile robot that combines action-based object

recognition and sensorimotor anticipation, i.e. expected sensory effects resulting
from a simulated motor command, for obstacle avoidance in a navigation task.
Initially, the robot learned to predict, using a multilayer perceptron, what effect
its movements have on the visual input. Later, this knowledge was exploited for
obstacle avoidance via a ‘mental’ simulation of movements. In turn, the outcome
of this simulation was used to avoid inappropriate actions.

Butko and Movellan (2010) proposed a generative model that allows autonomous
agents to learn intentional looking behavior without access to anything beyond
their own sensorimotor experiences. This was realized using a Bayesian framework
that combines two different sources of uncertainty. The robot only had access to
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its own motor commands and to the sensory information from its camera. Yet,
this was sufficient to discover how sensors and actuators relate and to use these
sensorimotor skills for purposeful looking at visual targets.

Natale et al. (2005) reported on a developmental sequence of a humanoid robot
that is able to learn about its body, the interaction with its environment and
eventually is able to exploit a learned affordance (graspable) for the search of
objects which offer the same affordance (cf. Ch. 2.2.7). Equipped with a basic
set of sensor and motor competencies, as well as a sophisticated visual attention
system, the robot was able to improve its sensorimotor coordination via the
interaction with its environment. First, it learned the weight of its arm and to
recognize its hand. Then it started reaching and grasping for objects and, if
successful, it acquired physical properties of the grasped objects. For this purpose,
the robot learned an internal model of its hand, which allowed it to be localized in
the visual scene and, at the same time, an inverse model that allowed an intended
position in space to be reached towards.
In a series of articles, Fitzpatrick and co-workers demonstrated a robot that

is able to acquire visual experience through simple experimental manipulations
(Fitzpatrick and Metta, 2002; Fitzpatrick and Metta, 2003; Fitzpatrick et al.,
2003; Metta and Fitzpatrick, 2003). While actively probing its environment, it
accumulated knowledge about which parts are physically connected and, thus,
move together and which parts are (more or less) independent entities that can
be moved separately. The authors stress that only the repeated ‘playing’ with
objects enabled the robot to acquire a sensorimotor mapping that links actions
to its visual consequences (cf. motor babbling Ch. 2.4.1). Next to this ‘discovery
mode’, the robot also had a ‘goal-directed mode’, which was obtained by the
inversion of the sensorimotor mapping. This allowed the robot to select an action
that will lead to a particular visual change. After ‘learning to act’, the robot was
able to segment, recognize and localize objects without any prior knowledge about
their visual experience. Further, the agent was able to utilize this information
to recognize the effect of an action performed by a human and to subsequently
imitate its teacher.

2.5 Active Perception in Computer Vision
In the period from 1986 – 2010, about 2000 research papers have been published
that are closely related to the topic of active vision perception in robotics (Chen
et al., 2011). The field emerged around 1988 with several influential articles coining
expressions like active vision (Aloimonos et al., 1988), active perception (Bajcsy,
1988), smart sensing (Burt, 1988) and animate vision (Ballard, 1991). Since
then, these terms have been commonly used, sometimes even interchangeably,
despite varying intentions pursued by the original authors. In her article on active
perception Ruzena Bajcsy suggested for machine vision and robotics that

“[. . . ] it should be axiomatic that perception is not passive, but active.
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Perceptual activity is exploratory, probing, searching; percepts do not
simply fall onto sensors as rain falls onto ground. We do not just see,
we look.” (Bajcsy, 1988)

Since this time the field has been prospering. Still, many of the current approaches
do not follow these insights.
Usually, active perception in computer vision refers to a sensor that can be

moved actively. This is done to narrow down the potential interpretations the
sensor values permit. Therefore, the robot has to decide ‘where to look’, it needs
the ability to actively place the sensor at different viewpoints through a planning
strategy. This procedure is called sensor planning and one of the main research
areas in active vision systems. In general, active vision research can be roughly
subdivided into two approaches: model-based and model-free. Clearly, the model-
free approaches, i.e. where the object model has yet to be learned, are more related
to the methods for learning of sensorimotor laws discussed above.

Next to moving a sensor, it is also possible for a robot to influence the orientation
of a camera by (voluntary) self-motion of its whole body or just parts of it. In
this way, the agent is able to increase its field of view and orient itself to a region
where it expects the most useful information.

It is often the case that a single perspective does not provide enough features
that allow for an unambiguous identification of an object (Byun and Nagata,
1996). Two objects may indeed have all views in common with respect to a given
feature set. Thus, the only way to distinguish these two objects is by considering
a sequence of views (Roy et al., 2000; 2005). For a review of sensor planning for
active recognition, please refer to Roy et al. (2004).
For a human, gaze and attention are important to purposefully explore the

environment. This is also mimicked in robots. Active gaze control allows the
limitations imposed by a monocular camera with a relatively small field of view
to be overcome. Frintrop and Jensfelt (2008b) extended the SLAM algorithm to
include active gaze control. Based on a biologically motivated visual attention
mechanism for salient feature detection their framework created and maintained a
sparse set of landmarks. The landmarks were actively tracked to get a better pose
estimation. Further, unknown regions of the environment were explored to get
a better distribution of landmarks. An analysis revealed that an active camera
control outperformed the passive approach (Frintrop and Jensfelt, 2008a).
Bjorkman and Kragic (2004) introduced an automatic real-time vision system

consisting of a four-camera stereo head. Based on disparity, one of the binocular
cameras is used to detect salient stimuli in the periphery. The other stereo camera
is used for the foveation of the identified focus of attention. In this way the
conflicting requirements – wide field of view vs. high resolution – can be overcome.
Combining appearance and geometric models, the system was successfully tested
in a realistic indoor environment (Rasolzadeh et al., 2009).

In an algorithm for automatic active segmentation of a visual scene, Mishra et al.
(2011) also relied on an attention mechanism. Initially, the artificial visual system
fixates a salient point in the scene. Assuming that this fixation point belongs to
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an object (or part of it), their method starts to segment this object by finding the
‘optimal’ closed contour around the identified fixation point in polar space. To find
this optimal contour, first, all visual cues of the scene are combined to generate
a probabilistic boundary edge map. Next, this edge map is used to search for a
connected set of boundary edge fragments. The segmentation is further refined via
a feedback mechanism between identified regions and low-level visual cues. The
primary difference between this algorithm and canonical approaches is that only
one object at a time is segmented and not the entire scene. To segment further
nested regions, the segmentation process is repeated for salient points lying inside
the object of interest.
In contrast to the approaches presented in the section on cognitive robotics

(Ch. 2.4.9), the methods summarized here do not explicitly include knowledge
about the actions of the robot into their algorithms. There is (usually) no forward
model that, based on the agent’s motor commands, is utilized to predict a sensory
change. Rather most methods in active vision benefit either from the dynamic
sequences leading to the extraction of better features or from the active focusing
on only specific elements currently present in the scene.

2.6 Synopsis
The overview of historic and state-of-the-art embodied theories has shown that
the research field is still developing (Pezzulo et al., 2011). At the current stage,
embodied cognition should be understood as an agenda or research theme, rather
than a well-defined theory or paradigm already in place (Engel, 2010; Shapiro,
2011). The meaning of various definitions and concepts is far from uniform,
sometimes even threatened to dissolve into a merely verbal dispute. Hence, the
identification of a common ground is far from being trivial. Considering the
historic insights gathered by von Helmholtz and others (cf. Ch. 2.2), EC should
rather be considered a minor reformation. However, knowing that these findings
have largely been ignored by the first-generation cognitive science and GOFAI
community, one is very tempted to accept that the changes are considered as
a “Copernican revolution” by some researchers (Lindblom and Ziemke, 2006).
Shapiro (2011) notes that the embodied view undoubtedly resolves some problems
but at the same time adds new ones. Due to this dilemma he sees a raison d’être
for both fields. Yet, other authors claim that all challenges can be met by simply
augmenting the long-established computational-representational framework of
classical cognitive science (Thagard, 2010).

It immediately becomes apparent that this discourse on embodied theories can-
not be resolved within this thesis (if ever). However, knowledge of the various views
helps to define the sensorimotor design principles that are of major importance
for the scope of this work, stressing the fundamental role of action for perception.
Various studies from different disciplines have been presented supporting this
notion. As a matter of fact, in the experiments that will be presented within
this thesis, the agent must act in order to perceive, mimicking the perceiving is
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a way of acting hypothesis put forward by the SMCs account (Ch. 2.4.4). Only
when performing movements, the agent is able to learn sensorimotor laws that
link action and perception. Further, to successfully master the given tasks the
agent will need to rely on the world as an outside memory. Also the principle
of information self-structuring (Ch. 2.4.3) can readily be found in the presented
experiments.

Regarding the elusive notion of representations we follow the suggestion of Clark
(cf. Ch. 2.4.3). If not otherwise noted, we refer to the “local and action-oriented”
weak instance (Clark, 1997a), denoting a receptive field of a neuron.
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Perception is something you do,
not something that happens to you.

Bruce Bridgeman

3 Chapter

Reward-Driven Learning of
Sensorimotor Laws for
Navigation

3.1 Introduction
A frequently re-occurring task for humans and robots is the autonomous navigation
towards a target location. In robotics, this is often realized using a world model,
i.e. the robot has a map of the surrounding area which allows it to do planning.
If this map is not ‘pre-given’ it can e.g. be acquired using the SLAM algorithm
(Thrun et al., 2005). This has severe limitations. Whenever located in an unknown
environment, the robot has to build up this map before it can perform goal-directed
actions. Inspired by nautical navigation we propose a different approach that
allows navigating to a target position, e.g. a harbor or a docking position, in an
unknown environment, once the robot has learned what visual features it has to
attend to and how those relate to its actions. Consider the nautical leading lights
shown in Fig. 3.1. The lower sign (U) is a triangle pointing upward, the upper sign
(O) a triangle pointing downward. They are placed in some distance from each
other to cause a perspective offset and usually signal the entryway to a harbor.
Moving the boat and simultaneously observing the leading lights immediately
illustrates, at least for a human, the mode of operation of this navigation aid.
If they are in line – the tips of the triangle point at each other – the tillerman
has to maintain his current bearing, i.e. move forward. On the other hand, if
the upper triangle is shifted to the left he has to bring the triangles in line again
by moving to the right and vice versa. In this way, the harbor can be reached
without knowing the point of the compass and the exact location.

To implement this novel robotic navigation paradigm we apply an algorithm
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Figure 3.1: Leading lights for nautical navigation. The lower (U) leading light
in conjunction with the upper (O) one can be exploited for navigation. Depending on
the observed relation the tillerman can deduce how to navigate to reach the destination.
Once the tips of the triangles point at each other he has to maintain the current bearing.
For further details please see the text. Picture taken from Schult (2008).

that is capable of doing both, extracting task-relevant visual features as well as
assigning adequate actions to those, all in a single-step procedure and within
one united architecture. The network with winner-take-all-like layers considers
goal-relevance of sensory input dimensions, and learns to neglect irrelevant parts
of the input. To achieve this, the prediction error δ of the top layer (RL) is
not only used to modulate learning of action weights that encode both, value
function and action strategy (Q-values), it is also used to adapt the weights of
the feature neurons of the lower layer, which are responsible for learning the
action-relevant input manifold associated to a specific action. Thus, by enacting
its world (cf. Ch. 2.4.2), the robot is able to identify the visual cues that are
relevant for successful navigation. Previously, this type of artificial neural network
has been successfully applied to learn action-relevant features of artificial stimuli
(Weber and Triesch, 2009). Now we demonstrate for the first time its applicability
to a realistic robot scenario.

3.1.1 Biological Inspiration
Evidence for long-term changes of sensorimotor neural representations has been
obtained during habit learning in the rat striatum (Jog et al., 1999). The striatum
receives direct cortical input and is part of the basal ganglia. Doya (1999) proposed
that unsupervised learning happens in the cortex and reinforcement learning in the
basal ganglia. Accordingly, the cortex preprocesses data to yield a representation
that is suitable for reinforcement learning by the basal ganglia (ibid.).
The seven deep brain nuclei of the basal ganglia are involved in a variety of
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crucial brain functions (for a recent review please see Chakravarthy et al., 2010)
and are tightly linked to the dopaminergic neuromodulatory system, which plays
a fundamental role in predicting future rewards and punishment (Schultz et al.,
1997; Schultz, 1998). More precisely, the dopamine signal seems to represent
the error between predicted future reward and actually received reward (Schultz
et al., 1997). This has a direct analogy to the temporal difference error, δ, in
reinforcement learning models (Sutton and Barto, 1998), where this error is used
to maximize future rewards and avoid punishment. The RL agent interacts with
its environment, initially guided by trial and error, seeking to find a mapping
between states and actions that will yield the maximal future reward. In other
words, it tries to find an optimal motor strategy which is adequate for the given
scenario.

However, it remains open how the relevant inputs from the cortex are determined,
i.e. which features are read from the cortical activation pattern that are relevant
for selecting actions and obtaining rewards. Experiments from Shuler and Bear
suggest that RL also occurs in early sensory areas like the primary visual cortex
of the rat (Shuler and Bear, 2006). This implies a link between RL and feature
learning.

3.2 Scenario
Docking, i.e. navigating towards a predefined position, of a mobile robot is the
initial problem that has to be solved before other applications, e.g. grasping, user
interaction or recharging can be performed. Therefore, we modeled a general
docking situation in a Webots (Michel, 2004) simulation environment (Fig. 3.2).
A 3-D geometric shape with several beneficial attributes serves as a landmark,
signaling the target region. First, depending on the perspective, it generates
a different visual impression (cf. Fig. 3.1). From this, the algorithm needs to
extract location-specific relevant features and assign them to an adequate action.
Next, it can be preprocessed easily. The raw camera image is simply cropped and
color-thresholded. After downsizing (32× 10 pixels) and a grayscale conversion, it
is then directly used as input to the network (Fig. 3.2C).

In the simulation the robot performs four actions – moving forward, backward,
right and left. In one trial a maximum of 25 steps are allowed for reaching the
goal. The robot is randomly initialized in a trapezoidal region in front of the
target. Two scenarios have been simulated. In the first experiment the robot is
only initialized in close proximity to the target, so that the resolution of the visual
input is optimal for the extraction of the visual features. It is a common practice
to start with easier situations and then gradually move towards more and more
difficult ones. Asada et al. coined the term “Learning from Easy Missions” (LEM)
for this procedure (Asada et al., 1996). Hence, in the second simulation the region
is incrementally enlarged during learning to finally span a distance of up to 1.5m.
At a larger distance the robot camera is not able to discriminate the geometrical
properties of the stimulus anymore.
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Figure 3.2: Nao robot in front of the docking position. (A) Webots simulation
environment representing a domestic situation. (B) Camera view from the robot. The
landmark (red) is located within a white dotted rectangle reflecting the region that
serves as an input to the network. (C) Input image I after preprocessing.

3.3 Theory

3.3.1 Neural Architecture and Algorithm
For the implementation of our novel robotic navigation paradigm we chose a
unified framework that is capable of extracting task-relevant visual features and
at the same time learns adequate actions. The model is a two-layer feedforward
network (schematically shown in Fig. 3.3) with full connectivity between adjacent
layers. The input layer (320 neurons) holds a sensory vector I, representing a
32× 10 pixel grayscale image (Fig. 3.2 C). A hidden feature layer (either 4 or
36 neurons) learns visual features within its weight matrix W and encodes this
information in a state vector s, which is governed by a softmax activation. In turn,
s is mapped via the action weights Q to the output layer (4 neurons) representing
the currently selected action a. The choice for the number of hidden feature
neurons has been influenced by pragmatic deliberations. To solve the navigation
task of the first experiment successfully at least four different states are necessary.
For the second, more challenging experiment the number of neurons was increased
to 36, governed by the constraint that the algorithm should still be able to run in
real-time. In this way, receptive fields are allowed to form that might not have
been foreseen by the human designer.
The learning algorithm, which inherits the top-level structure of the SARSA

algorithm (Sutton and Barto, 1998), can be summarized as follows (for details
and a derivation of the gradient descent learning rule see below, Ch. 3.3.2). At
the beginning of each trial, the agent is placed at a random position, with the
constraint that the landmark indicating the docking position is within its field of
view. The agent reads sensor values I to obtain the (internal) state activation sj
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Figure 3.3: Schematic overview of the network architecture. Only one example
connection between any two layers is shown.

of neuron j via softmax:
hj =

∑
n

WjnIn , (3.1)

sj = eβ
shj∑

k eβ
shk

(3.2)

We used a large βs = 100 for a winner-take-all-like behavior. Next, an action ai
for neuron i is chosen stochastically (via softmax):

hi =
∑
j

Qijsj , (3.3)

Prob(ai=1) = eβ
ahi∑

k eβ
ahk

. (3.4)

During training we used βa = 2 to make the agent explore. For testing βa = 100
was chosen to exploit the learned skills. Based on the state activation and on the
chosen action the value v is computed:

v =
∑
k,l

Qklaksl . (3.5)

The time-discounted (discount factor γ = 0.9) future value v′ and the current
value v are used to determine the prediction error δ. A reward r = 1 is assigned if
the goal position has been reached, otherwise r = 0.

δ = r + γv′ − v . (3.6)

Using a δ-modulated Hebbian rule with state s and action a as pre- and post-
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synaptic values, respectively, the action layer weights Q can be updated:

∆Qij ∝ δ aisj . (3.7)

In addition to the normal SARSA algorithm we use the δ signal not only to
modulate the learning of the action layer weights, but at the same time to update
the feature layer weights, even when no reward is given:

∆Wjn ∝ δsjIn(Qij −
∑
k

Qiksk) . (3.8)

In each phase of the learning algorithm the feature weights W are rectified to
be positive and normalized to length 1, which ensures that a unit that wins for
one data point will not also win for all others.

Through the softmax function (Eq. 3.2) the feature layer performs soft compet-
itive learning. Further, the learning progress of the feature weights is modulated
by the prediction error of the action layer. On average, only relevant visual stimuli
for the given task will contribute to learning. Irrelevant sensory information is
usually not correlated with successful actions and, hence, will not influence the
learning progress of the agent.

3.3.2 Gradient Descent Learning
To get a better understanding of the learning rules (Eq. 3.7 and 3.8) and to
justify their usage, they are derived by performing gradient descent on an energy
function1.
A SARSA agent interacts with its environment and updates its policy based

on the actions taken. Due to this interactive process the algorithm is rated as
an on-policy learning procedure in which the values v, that reflect the expected
utility of taking an action a in state s, are estimated. The value function increases
towards the goal state, i.e. in our task the final docking position where the agent
receives its reward r.
The network parameters can be summarized with θ = (Q,W ), where Q rep-

resents the action weights of the upper layer and W the feature weights of the
lower layer (Fig. 3.3). Following Sutton and Barto (1998, Chapter 8), the values
v = v(θ) will be adjusted to minimize the mean squared error (MSE) given by:

E(θ) = 1
2
∑
s,a

P π(s, a)(V π(s, a)− v(s, a))2 . (3.9)

V π(s, a) is the “true” value given an action policy π and v(s, a) is the current
estimate of the value function. The difference of the two value functions, the
prediction error δ (see Eq. 3.6), can be used to improve the estimate v. In practice,
the correct value of V π is unknown and we use the information of a better estimate

1This section follows Weber and Triesch (2009).



Theory 47

v′ obtained in the next time step to approximate it:

V π − v = r + γv′ − v = δ . (3.10)

Both, action and sensation, determine the probability distribution P π(s, a) that
weighs the prediction error (Eq. 3.9). Due to the vast number of possible states it
is usually not possible to obtain a prediction error δ = 0 for all situations. An
improved approximation of the value function for a certain state might come at
the cost of a worse estimation for other states. This trade-off is defined by the
probability distribution P π(s, a) reflecting the frequency with which states are
faced by the agent while it interacts with its environment.

Computing the derivative of the energy function E (Eq. 3.9) with respect to
the network parameters θ results in an online update regime:

∆θ ∝ −∂E
∂θ

= (V π − v) ∂

∂θ
v = δ

∂

∂θ
v . (3.11)

First, we compute the partial derivative with respect to the action layer weights Q.
Substituting v = ∑

k,lQklaksl, as given in Eq. 3.5, we yield:

∆Qij ∝ −
∂E

∂Qij

= δ ai sj . (3.12)

To compute the partial derivative of the energy function E with respect to the
feature weights W we need a differentiable transfer function on the feature layer.
For this purpose, we employ a softmax function (Eq. 3.2), which displays winner-
take-all-like behavior for large values of β. For a given activation of action unit i
and taking into account that Wjn influences the activation of all feature layer
units, we can state:

∆Wjn ∝ − ∂E

∂Wjn

= −
∑
k

∂E

∂sk

∂sk
∂hj

∂hj
∂Wjn

= δ
∑
k

Qik
∂sk
∂hj

In , (3.13)

Nguyen (2006) proposed the following identities for the softmax function:

∂sj
∂hj

= sj(1− sj) (3.14)

and
∂sj

∂hk,k 6=j
= −sksj . (3.15)

Utilizing those identities allows us to define the update rule for the action layer
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weights W as:

∆Wjn ∝ δQijsj(1− sj)In − δ
∑
k,k 6=j

Qiksk sjIn

= δQijsjIn − δ
∑
k

Qiksk sjIn

= δsjIn(Qij −
∑
k

Qiksk) . (3.16)

The first term in brackets, Qij , is a residual of the backpropagation procedure. It
encodes the strength of the effect of state neuron j on the output. Since all weights
tend to be non-negative when positive rewards are given, one might interpret this
factor as influencing learning speed, but not the final result. The second term
is a summation of the action weights Qik weighted by the state activations sk.
It can be interpreted as a competitive decay term: if a strong activation of a
feature neuron is paired with a large action weight, the learning process is slowed
down. Eventually, when a winning feature neuron is found, i.e. only a single unit
is active (sj = 1; sk,k 6=j = 0), the two terms cancel each other out and learning
has converged.

In contrast to the learning rule for the action weights (Eq. 3.12), the update of
the feature weights (Eq. 3.16) represents a non-local learning rule, because i) the
action layer weights Q are involved and ii) it is summed over all activations of
the feature layer. By omitting the non-local terms (aggregated in brackets in
Eq. 3.8), we yield a purely local learning rule. This biologically more realistic
approximation has been successfully applied to the first experimental scenario
presented below. However, for the more difficult task, the modulatory effect on
δsjIn via the non-local terms has been included, mostly because of the endeavor
to perform vanilla gradient descent.

3.4 Results

3.4.1 Experiment 1 – Simple Navigation Scenario

In the performed Webots simulations the Nao robot was trained to navigate
towards the docking position solely based on visual input. In the first experiment
it was placed in close proximity to the docking position and encountered visual
input similar to the one shown in the top of Fig. 3.4. After reaching its goal
position and receiving a reward about 25 times, the robot was already able to
master the simple task successfully in 100% of the trials. The bottom part of
Fig. 3.4 shows the receptive fields of the hidden neurons after 100 training steps.
The visual features relevant for determining its state and for performing effective
navigation have been extracted and stored in the weights connecting the input
with the hidden state neurons. In the receptive field depicted in the lower right
no structure has evolved. This is due to the fact that i) the state space can be
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Figure 3.4: Raw visual input (top), receptive fields of action neurons (mid-
dle) and hidden feature neurons (bottom) after 100 steps of training. The
raw camera image (top) shows three exemplary situations the robot might encounter
(corresponding to a robot position left, in front and to the right of the landmark). The
hidden neurons (bottom) code for a specific state, which is then mapped correctly via
the action weights Q (middle) to an adequate action, e. g. moving left (L), right (R),
forward (F) or backward (B). The action weights for the backward action show no
structure, because the backward action is hardly ever executed in this simple scenario.
Correspondingly, one hidden unit that is not used by any action unit has no structure.
Strong weights are displayed dark.

covered completely with the three states captured in the other RFs and ii) the
backward action is hardly ever executed in the simple scenario.

3.4.2 Experiment 2 – Complex Navigation Scenario
In the second simulation the possible initialization region of the robot was gradually
increased, and due to the vastly growing state space, a much harder problem
was preserved. Nevertheless, after training (2000 trials, ≈ 2 days2) the humanoid
robot was able to reach the goal position in 95% of the cases (690 out of 725
trials). Testing was performed on newly initialized simulation trials, stressing the
generalization potential of this approach. The network is capable of identifying
the relevant visual features, as shown by the evolved receptive fields (RFs) of the
feature and action layer in Fig. 3.5 and to generate task-specific sensorimotor
laws needed for navigation. However, these features do not clearly reflect the
shape of the landmark anymore. Due to the large variations of the landmark’s
position, scale and perceived shape, the network is not capable of representing all
combinations. Therefore, now not only a single state is linked to a specific action,
but a mixture of different ones (Fig. 3.5 top). This “population” coding might
be useful for resolving ambiguities. Note, the predominant visual feature for a
specific action can still be recognized in the receptive fields (Fig. 3.5 bottom, RFs
framed in red).

2The combination of the Webots simulator with the Aldebaran Nao API runs in real-time only.
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Figure 3.5: Receptive fields of hidden feature neurons (bottom) and action
neurons (top) after 2000 steps of training. The RFs of the action units correspond
to left (L), right (R), forward (F) and backward (B) movement. The RFs of the feature
neurons that have the strongest contribution on the action units for L,R & F are framed
in red. Strong weights are displayed dark.

In Fig. 3.6 sample trajectories of the robot are shown. Green trajectories were
successful trials, whereas the red ones represent failures. Note that an identical
initialization point can result in a completely different trajectory. This is mainly
due to noise in movements imposed by the Webots simulator to reflect real-world
robot behavior. Furthermore, this noise may lead to a rotation of the robot, which
is currently not compensated, because no rotation movements are implemented.
This is actually the reason for most of the unsuccessful trials (red trajectories,
Fig. 3.6).

After training, receptive fields are linked to specific actions, jointly composing
sensorimotor laws. These laws capture the relationship of actions and perceptions
that is necessary for goal-directed navigation behavior. If the robot is confronted
with a (previously unseen) input, the winning feature unit is the one where the
receptive field is most similar to the current input. Hence, the properties (e.g.
shape) of this input will trigger the movement embedded in the sensorimotor
law. Hence, the perceived shape reflects the robot position in relation to the goal
position.
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Figure 3.6: Sample trajectories of the robot. Different shades of green represent
successful trials and red failures. The yellow docking region measures 8× 20 cm.

3.5 Summary
We presented a Webots simulation of a Nao robot that learns to navigate towards
a virtual target. Instead of relying on a pre-given or acquired world model,
our approach allows a robot to navigate to a target position in an unknown
environment, once it has learned what visual features it has to attend to and how
those relate to its own actions. Learning of these sensorimotor laws is accomplished
using a two-layer network, integrating feature and motor learning, all in a single-
step procedure. A 3-D geometrical shape served as a landmark, which led to
perspective distortions depending on the robot’s position and locomotion. This
relationship is learned by the robot, enabling it to successfully reach its target in
95% of the trials. The results of this chapter have been published (Kleesiek et al.,
2011).

3.5.1 Connection to the Other Experiments of this Thesis
In this first experiment, the focus lay on the methodology of this special type
of artificial neural network. The two-layer architecture combines a sensory layer
with a reinforcement learning layer. This allows the robot to learn in a ‘top-down’
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action-driven way which visual features it has to attend to if it wants to master
the given navigation task successfully. The RL prediction error not only leads to
a state-action mapping; it is also essential for the receptive field development of
the sensory layer. In conjunction, the RFs and the state-action mapping represent
the sensorimotor laws that enable the agent to perform goal-directed behavior.
As in all the conducted studies, the choice of the architecture and the design

of the experiment have been influenced by sensorimotor principles rooted in
the research field of embodied cognition (Ch. 2). Perception is a sensorimotor
experience and the interaction of the robot with its world results in information
self-structuring. In this whole process, the world serves as an outside memory
and the agent just has to learn how its own actions relate to its own sensations.

The knowledge gained during the implementation of the two-layer architecture
of this experiment paved the way for the development of the novel bio-inspired
model presented in the next chapter.



We not only see, but we look for,
not only hear, but we listen to.

Robert S. Woodworth

4 Chapter

Sigma-Pi Reinforcement
Learning for Reaching

4.1 Introduction
Given an object at some location in space, how can we successfully reach for it?
We tackle this demanding problem and present a simulation of an artificial agent
that learns reaching for a target. The RL agent interacts with its environment,
initially guided by trial and error, trying to find an optimal (motor) strategy
which is adequate for the current situation. Often, the agent is confronted with
invariant situations, e.g. the same relative position between hand and object,
where an identical motor response is appropriate (at least in a servo-driven robot).
It is therefore desirable for the agent to identify those invariances and combine
them to a unique state. A natural way to achieve this is to use Sigma-Pi neurons
(Softky and Koch, 1995). By multiplying two inputs of a Sigma-Pi network, e.g.
hand and object positions, it is possible to detect co-activations of the input
units. An additional summing over these units results in a single output node
that responds to the manifold of co-activated input units, i.e. it captures the same
relative distance between hand and object.

Here we propose a novel architecture which is capable of learning both, invariant
hand-object relations and the movement of the hand towards the target, in a
single-step procedure. In this architecture the prediction error δ of the top layer
is not only used to modulate learning of action weights that encode both, value
function and action strategy (Q-values), it is also used to adapt the weights
of the Sigma-Pi neurons of the lower layer. In this way, the agent learns in an
action-driven approach the relevant sensory input manifold as well as an associated
action, i.e. the sensorimotor laws linking the situation to an appropriate movement.
Furthermore, the suggested model performs an implicit coordinate transformation

53
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combining inputs from the same or different sensory modalities. Previously, Weber
and Wermter (2007) were able to show that Sigma-Pi units can perform a frame
of reference transformation using unsupervised learning.

Next to the presentation and evaluation of this novel artificial neural architecture
we also compare it with two related learning methods devised to solve the given
reaching task. One of the models of comparison is an RL architecture with a cubic
Q-table that links all possible hand and object positions directly to an action.
The other model resembles the classical two-step approach usually used to tackle
such a task in the literature. First, an unsupervised method is employed that
self-organizes the possible hand-object invariances. Then, in a separate step, once
this unsupervised learning of the state space has been completed, an RL algorithm
follows.

4.1.1 Biological Inspiration
For successful reaching, coordinate transformations are necessary. Depending
on the orientation of the body, the arm and eyes, and their relation to each
other, the object falls on different locations on the retina. To cope with this
vexing problem, at least one stable frame of reference (FOR) is needed that is
invariant to changes in position of the other involved body parts. For reaching,
the upper body serves as such a stable FOR. The limb is physically connected
to it and, hence, all movements are constrained given this anatomical relation.
To facilitate the coordination of movements (Cohen and Andersen, 2002), hand
and object-coordinates have to be converted in a common FOR (Snyder, 2000;
Crawford et al., 2004).
Several brain areas have been identified that are involved in the process of

coordinate transformations. The ventral intraparietal area (VIP) encodes visual
and somatosensory information (Duhamel et al., 1998; Sereno and Huang, 2006).
This structure is highly interconnected with the lateral intraparietal area (LIP), the
parietal reach region (PRR), premotor areas (PMA) and the anterior intraparietal
area (AIP). AIP not only responds during the act of grasping but also during the
passive viewing of graspable objects (Valyear et al., 2007). The head movement is
influenced by PMA (Duhamel et al., 1997) and information about the preparation
for reaching is integrated in the PRR (Batista et al., 1999). LIP, on the contrary,
preferentially encodes information about an upcoming eye movement towards a
target (Andersen et al., 1990; Snyder et al., 1997).

It has been shown that different frames of reference can be represented within
a single area, apparently adjusted to the specific function of the particular region.
For instance, it is suggested that parts of VIP and LIP encode the position of a
visual target in both, head-centered as well as eye-centered, coordinate systems
(Duhamel et al., 1998; Mullette-Gillman et al., 2005). Further, it has been found
that neurons of the PRR not only represent the position of a visual target in
eye-centered coordinates (Batista et al., 1999), but also encode the distance of
this target to the current position of the hand (Chang et al., 2009). It has been
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Figure 4.1: Reaching Scenario. The 2-D world is discretized. Hand (H) and
object (O) are located at specific positions within this grid. The task for the simulated
agent is to reach for the object with a single movement. If hand and object are both
shifted by an identical displacement vector, their relative position with respect to each
other does not change. Hence, another goal of the agent is to identify those invariant
positions.

speculated whether this information serves as an error signal for the reaching
movement (ibid.). Neurons with a comparable function have also been found in
the posterior parietal cortex, an area adjacent to the PRR (Buneo et al., 2002).

Using gain modulation, the coordinate transformation can be computed implic-
itly (Blohm and Crawford, 2009; Chang et al., 2009). In short, gain modulation
is a way of combining several sources, e.g. sensor and motor information, in a
nonlinear way (Salinas and Abbott, 2001). Pouget et al. (2002) showed that this
combination can indeed be realized using a multiplication, encouraging us to use
Sigma-Pi neurons for our architecture.

4.2 Scenario
An overview of the simulated scenario can be seen in Fig. 4.1. The 2-D world is
modeled as a grid of size n×m. In this discretized situation, it is assumed that
the position of hand and object are known. However, it is not important from
which modality, e.g. visual or proprioceptive, this information comes. Also the
frame of reference, e.g. eye-centered or hand-centered coordinates, in which this
information is encoded in is irrelevant for the presented algorithms.
The agent can perform actions in this 2-D grid world. Its movements are

encoded as relative changes to the current position of the hand. This is inspired
by the control methods of the application programming interface (API) of the Nao
humanoid robot. The function changePosition() allows an end effector, e.g. the
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right hand, to be moved in Cartesian space relative to its current position. For
this purpose, a movement vector is required as input to the function. The agent is
able to perform actions corresponding to all possible movement vectors of a world
with a given size, i.e. it can move from its current position to any destination
within the grid.

During training the target object is placed at a random position and the agent
is allowed to perform movements until it successfully reaches the target. Of course,
this initially very frequently results in movements that cause the end effector to
leave the specified area. Consequently, to avoid this behavior a negative reward
penalizes those movements (see below) and thereafter the object and hand are
reinitialized at random positions. The task of the agent is to learn to reach for
the object with a single movement. In this context, it is confronted with invariant
situations where hand and object have the same relative distance to each other.
Thus, another goal for the agent is to identify those invariant situations during
learning.

4.3 Theory
In this section theories of three different architectures that are capable of solving
the given reaching task are presented. First, we introduce our novel unified
architecture and learning algorithm. Next, a reinforcement learning scheme based
on a cubic Q-table is elucidated. Those first two architectures are both suited
to learn the given task in a one-step procedure. In contrast, the last paradigm
that will be explained is a two-step approach. Initially, the possible hand-object
relations are self-organized using an unsupervised learning method (Weber and
Wermter, 2007). Afterwards RL is employed to link the obtained invariances to
suitable actions.

4.3.1 Unified Neural Architecture and Algorithm
The structure of this novel unified algorithm is similar to the one employed for
the navigational task of Ch. 3.3. Again, the model is a two-layer feedforward
network with full connectivity between adjacent layers (Fig. 4.2). In contrast to
the previous architecture the network now has two input layers H and O, each
consisting of a binary vector encoding the position of the hand and the object,
respectively. In principle, these vectors do not have to be equal in size. However,
for the experiments presented here their size was identical.

The two input vectors are combined to a hidden layer via the cubic weights of
the Sigma-Pi neurons. The size of the hidden layer, i.e. the number of invariant
situations (states), depends on the number of possible unique movements the
agent can perform, which in turn depend on the size of the world. For a world of
size n×m this can be determined by

Nstates,actions = (2n− 1)(2m− 1) . (4.1)
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Figure 4.2: Neural architecture consisting of Sigma-Pi neurons and RL layer.
The two-layer feedforward network architecture has two binary input layers, one rep-
resenting the position of the hand (H), the other the location of the object (O). This
information is combined using Sigma-Pi neurons to generate an activity in the hidden
state layer, signaling the relative position of hand and object. Using RL this state is
linked to an action. During training, the RL prediction error δ is not only used to
update the Q weights. Additionally, it also modulates the weights of the Sigma-Pi
neurons. Please see text for details. Only one example connection between any two
layers is shown.

Influenced by a softmax activation, the information of the hidden layer is encoded
in a state vector s that in turn is mapped via the action weights Q to an output
layer of size Nstates,actions, representing the currently selected action a.
The learning algorithm inherits the top-level structure of the Q-Learning al-

gorithm (Sutton and Barto, 1998) and can be summarized as follows (for the
derivation of the gradient descent learning rule, please refer to Ch. 3.3.2). At the
beginning of each trial, hand and object are placed at random positions. Based
on the sensor information H and O the state activation sj of neuron j can be
obtained via softmax:

hj =
∑
n,m

WjnmHnOm , (4.2)

sj = eβ
shj∑

k eβ
shk

(4.3)
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We used βs = 10 for training to facilitate the learning of similar states. Next, an
action ai for neuron i is chosen stochastically (via softmax):

hi =
∑
j

Qijsj , (4.4)

Prob(ai=1) = eβ
ahi∑

k eβ
ahk

. (4.5)

During training we used βa = 2 to make the agent explore. Based on the state
activation and on the chosen action the value v is computed:

v =
∑
k,l

Qklaksl . (4.6)

A reward r = 1 is assigned if the target has been reached. If an invalid action
has been performed, i.e. the hand has been moved outside the specified region,
the agent is punished with a slightly negative reward value r = −0.1. In all other
situations no reward is given (r = 0). The current value v and the reward r are
used to determine the prediction error δ.

δ = r − v . (4.7)

Using a δ-modulated Hebbian rule with state s and action a as pre- and post-
synaptic values, respectively, the action layer weights Q can be updated:

∆Qij ∝ δ aisj . (4.8)

In addition to this regular RL-update we use the δ signal to modulate the weights
of the Sigma-Pi layer. For this purpose, we first compute the outer product I of
the two sensory vectors:

I = HOT . (4.9)

This can be used subsequently to determine the weight update:

∆Wjnm ∝ δsjInm(Qij −
∑
k

Qiksk) . (4.10)

In any case (positive, no reward or punishment) the weights of both layers are
updated according to Eqs. 4.8 and 4.10. If the agent has been punished or it has
successfully reached for the object, the simulation is reinitialized after this update.
Otherwise the agent is allowed to continue with its movements until one of the
conditions (failure or success) is met. For testing, βa = βs = 100 was chosen to
exploit the learned skills.
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Figure 4.3: Single-layer neural architecture consisting of a cubic RL layer.
This single-layer RL architecture has two binary input layers, one representing the
position of the hand (H), the other the position of the object (O). This information is
combined and directly linked to an action using a cubic Q-table. During training, the
RL prediction error δ is used to adjust the weights of this Q-table. Please see text for
details. Only one example connection between any two layers is shown.

Adaptive Learning

Not only Eqs. 4.2, 4.7, 4.9 and 4.10 differ from the previous algorithm. Further,
an adaptive learning rate η is introduced for each individual neuron of the action
layer. This method is loosely inspired by the resilient propagation algorithm of
Riedmiller and Braun (1993). Based on the prediction error δ of the current
and the last time step the learning rate is either increased by a factor ξ+ > 1 or
decreased by a factor ξ− < 1:

ηij(t) =


max(ηij(t− 1) · ξ−, ηmin) if δ(t− 1) · δ(t) < 0,
min(ηij(t− 1) · ξ+, ηmax) if δ(t− 1) · δ(t) > 0,
ηij(t− 1) else.

(4.11)

For our experiments the values of the individual learning rates were allowed to be
in the interval [0.0001, 1.0]. Depending on the value of the prediction error they
were either increased with ξ+ = 1.05 or decreased by a factor ξ− = 0.95 .

4.3.2 RL Architecture with Cubic Q Weights
To compare the model presented in Ch. 4.3.1 to a vanilla RL architecture with
cubic Q weights (Fig. 4.3), the following algorithm that omits the Sigma-Pi layer
was designed. Based on the sensor information H and O the activation hk for
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neuron k can be obtained, which in turn directly allows an action ak to be chosen
stochastically (via softmax):

hk =
∑
ij

QijkHiOj , (4.12)

Prob(ak=1) = eβ
ahk∑

l eβ
ahl

. (4.13)

To facilitate exploration βa = 2 is used during training, while for exploitation
βa = 100 was chosen. Given the action ak the value v can than be selected directly
from the Q weights:

v = Qijak . (4.14)

The reward r is assigned as previously and in combination with v used to determine
the prediction error

δ = r − v . (4.15)

Using a δ-modulated Hebbian rule the action layer weights Q can be updated
according to:

∆Qijk ∝ δ HiOjak . (4.16)

4.3.3 Unsupervised Learning Followed by RL
Another possibility for learning this challenging reaching task is to subdivide the
learning procedure into two neural architectures that are trained consecutively
(Fig. 4.4). This is a common strategy in the literature (Legenstein et al., 2010).
Initially, the state space is acquired using an unsupervised learning method. This
procedure is than followed by canonical reinforcement learning (Sutton and Barto,
1998).

For unsupervised learning we employ an online algorithm with an incremental
weight update. While the agent explores the world it seeks for responses that
are invariant to variations of input pairs, i.e. hand and object locations, which
share the same relative position. In each learning step the algorithm needs two
input pairs that are supposed to have an identical output activation (because they
share the same relative distance and therefore should result in the same motor
response). The first pair is used to obtain an initial neural activation pattern and
serves during the weight update as a post-synaptic learning term. A winner unit
is determined on which a Gaussian-profile activation function is centered to realize
lateral competition and topographic relations between neighboring neurons. The
second pair of inputs acts as a pre-synaptic learning term by forming a difference
between the data and the weights that are supposed to be updated.

In each iteration of the training algorithm hand and object are placed at random
positions. Based on the sensor information H and O the activation hi of neuron i
can be computed:

hi =
∑
j,k

WijkHjOk . (4.17)
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Figure 4.4: Two separate neural architectures. First, unsupervised learning is
used to self-organize the state space of possible hand-object relations. Once this learning
has been completed, a second RL algorithm links the acquired knowledge of the first
procedure to suitable actions. Please see text for details. Only one example connection
between any two layers is shown.

Next, we determine the winning unit l:

l = argmax(h) , (4.18)

and its index m. A Gaussian-profile activation function is centered at this position
to subsequently weigh the activation of the unit itself and its surround. Next
to facilitating topographic relations of neighboring units this ruse also results in
lateral competition. The Gaussian function is given as:

N (i|m,σ) = 1∑
j

e−
(j−m)2

2σ2

· e−
(i−m)2

2σ2

= 1
Z
· e−

(i−m)2

2σ2 . (4.19)
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The partition function Z normalizes the Gaussian activation function to 1, thereby
assigning the highest value to the position of the winning unit determined in
Eq. 4.18. This weighted winner scheme is supposed to lead to a reduction of noise,
especially at boundaries (Luttrell, 1994). The interaction range of neighboring
units is governed by σ. Starting at 2.0 the value of σ is linearly reduced to 0.01
during learning. Next to a linear decay we experimented with other, mostly
exponential, forms of decay. None of them proved to be superior to the simple
linear regime eventually employed in our experiments.

Multiplying the Gaussian function (Eq. 4.19) centered on the winning unit with
the activated neurons h leads to a weighted neural activation:

si = hi · N (i|m,σ) . (4.20)

In the next step a second input pair, H̄ and Ō, is randomly chosen from the set
of all possible hand and object pairs that preserve the same relative distance as
the initial input pair. Having acquired the sensor readings of the new positions
allows the incremental weight update to be performed:

∆Wijk ∝ si(H̄jŌk − Wijk) . (4.21)

Note, we provide the algorithm with input pairs sharing the same relative distance.
However, this information is strictly used to generate input to the network and has
no influence on its output s, which self-organizes during this unsupervised learning
procedure. This implementation can be interpreted as a form of spatial coherence,
a phenomenon which is often exploited for learning in biological organisms.

Once the state space has been learned, regular reinforcement learning follows
in a separate procedure (Fig. 4.4). First, an action ai for neuron i is chosen
stochastically (via softmax):

hi =
∑
j

Qijsj , (4.22)

Prob(ai=1) = eβ
ahi∑

k eβ
ahk

. (4.23)

During training we use βa = 10 to make the agent explore. Based on the state
activation s and on the chosen action a the value v is computed:

v =
∑
k,l

Qklaksl . (4.24)

A reward r = 1 is assigned if the target has been reached. If an invalid action has
been performed, i.e. the hand has been moved outside the specified region, the
agent is punished using a slightly negative reward value r = −0.1. In all other
situations no reward is given (r = 0). The current value v and the reward r are
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Figure 4.5: Average (1000 runs) error for a 3×3 world. The network is trained
with the novel unified architecture (Ch. 4.3.1). The mean squared error decreases
monotonically. Only the errors of movements that actually reach the target are consid-
ered. Invalid actions, as well as unsuccessful ones, are left out. The gray shaded area
delineates ±1 STD.

used to determine the prediction error δ.

δ = r − v . (4.25)

Using a δ-modulated Hebbian rule with state s and action a as pre- and post-
synaptic values, respectively, the action layer weights Q can be updated:

∆Qij ∝ δ aisj . (4.26)

4.4 Results

4.4.1 Unified Neural Architecture and Algorithm
To test the general functioning of this novel biologically inspired reaching model
(Ch. 4.3.1), scenarios of different sizes have been evaluated. For an initial im-
pression of how the system behaves, a 3× 3 world has been trained 1,000 times.
The average mean squared error (MSE) of successful iterations, i.e. movements
reaching the target, is plotted in Fig. 4.5. It decreases monotonically.
Letting the weights of the system converge, always leads to perfect reaching

movements of the agent. Further, all invariances, identical relative positions of
hand and object, are identified flawlessly. As an example, the evolution of the
Sigma-Pi and Q weights of a 4× 4 world are shown at different time points (Fig.
4.6). Initially, no structure can be seen in the receptive fields of the Sigma-Pi
weights nor is any state-action mapping visible. As training goes on, invariant
sensory situations and corresponding actions evolve. Interestingly, the Q weights
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of the action-layer develop slightly faster. This stresses the importance of action-
driven ‘top-down’ guidance for sensory receptive field development. There is
no ‘bottom-up’ mechanism like temporal or spatial coherence, e.g. slowness or
topography (cf. unsupervised learning model, Ch. 4.3.3), for generating the sensory
invariances. Instead, actions shape the manifold of hand-object relations.
If hand and object are both shifted by an identical displacement vector, their

relative position with respect to each other does not change. This is displayed
in Fig. 4.7 for an exemplary invariant hand-object relation in a 4× 4 world after
training. No matter where the hand-object relation occurs it always leads to the
activity of the same neuron in the hidden layer. In turn, this state activation is
always linked to the same appropriate motor response.
In general, it has been shown that the novel unified neural architecture learns

the given task accurately. But how do changes of the algorithm or the parameters
influence the learning? For example, if no mild punishment is given, the model
is not able to capture all invariances. Especially the extreme movements, e.g.
the object is located in the lower left corner and the hand in the upper right
corner, are impaired. This is probably because they are more likely to result in a
movement that ends outside of the permitted region.

Omitting the non-local terms (aggregated in brackets in Eq. 4.10) leads to a pure
local learning rule. In contrast to the algorithm used to learn the navigational task
of Ch. 3.3, it is not possible this time to yield satisfying behavior when training
the network with this biologically more realistic approximation. This emphasizes
the non-local modulatory effects of the action layer weights Q on the sensory
learning.

Yet another result emphasizing the importance of actions for learning of percep-
tions comes from the augmentation of the algorithm with the adaptive learning
rate (Eq. 4.11). Using this modification for the update of the Q weights leads to
a 10-fold increase in speed. The described adaptive learning rate basically results
in a cautious learning in the beginning that allows the state-action mapping to
evolve slowly. A similar adaptive update regime was introduced for the lower
sensory-layer. However, no significant improvements in learning speed have been
observed and hence, to avoid the computational overhead (time and memory), it
was not included in the final version of the algorithm.

4.4.2 RL Architecture with Cubic Q Weights
Again, we start off looking at the MSE during training. For this purpose the
single-layer RL model with cubic weights (Ch. 4.3.2) has been trained on a 4× 4
world 1,000 times. The average error trace of movements that actually reach
the target is shown in Fig. 4.8. Although the world is one order of magnitude
larger than in the previous experiment (cf. Fig. 4.5), the error decreases more
rapidly. Further, the standard deviation, drawn in gray, is also smaller. On average
123,358 (±4,106) steps were necessary for the learning algorithm to converge. On
a contemporary desktop computer this takes about 70 s per training run.
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Figure 4.6: Development of Sigma-Pi RFs and Q weights at different time
points (0, 5, 10 and 15× 106 iterations). Strong weights are displayed dark.
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Figure 4.7: Invariant hand-object relations and the resulting movements
after learning with the unified architecture. For all shown invariances the identical
neurons of hidden and action layers are active. Strong activations are displayed dark.
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Figure 4.8: Average (1000 runs) error for a 4×4 world. The network is trained
using cubic RL (Ch. 4.3.2). The mean squared error decreases monotonically. Only the
errors of movements that actually reach the target are considered. Invalid actions, as
well as unsuccessful ones, are left out. The gray shaded area delineates ±1 STD.

Also with this cubic RL architecture the virtual agent is able to learn perfect
reaching behavior. As an example, the evolution of the cubic Q weights of a 4×4
world is shown at different time points (Fig. 4.9). Initially, no structure can be
seen in the receptive fields of the cubic Q weights. However, the structure evolves
swiftly. In contrast to the RFs of the unified architecture, the receptive fields
obtained during learning with cubic RL are ordered and symmetric. At the center
the RF of the state is located that represents the most invariances. This is actually
the state where the hand has successfully reached the object and, thus, no further
movement is required. Around this RF the other receptive fields are arranged
circularly, thereby decreasing with the number of invariant states. Due to the
properties of the world, this means at the same time that the distance of the
corresponding correct movements increases from the center to the outside. This
phenomenon can be explained by properties of the cubic RL architecture. Instead
of an action-driven ‘top-down’ guidance of sensory receptive field development,
as it has been seen by the unified architecture (Ch. 4.4.1), the structure of the
state space is implicitly incorporated in the learning algorithm. This is realized
by including the outer product between the two sensory vectors, encoding hand
and object position, during the update of the Q weights (Eq. 4.16).

4.4.3 RL Following Unsupervised Learning
The third algorithm we devised to solve the given reaching task consists of
two separate architectures. In a first step the state space, i.e. the hand-object
invariances, is self-organized using unsupervised learning. This procedure is
followed by classical reinforcement learning (cf. Ch. 4.3.3). As for the other two
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Figure 4.9: Development of the cubic Q weights during RL at different time
points (0, 1, 5 and 12× 104 iterations). Strong weights are displayed dark.
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Figure 4.10: Average (1000 runs) error for a 4×4 world. The network is trained
using unsupervised learning followed by RL (Ch. 4.3.3). Only the MSE during RL is
shown. The error decreases in two phases. This is probably due to the insufficient
acquisition of the state space during unsupervised learning. Only the errors of movements
that actually reach the target are considered. Invalid actions, as well as unsuccessful
ones, are left out. The gray shaded area delineates ±1 STD.

architectures, we initially examine the average MSE during RL. For this purpose
the model has been trained on a 4× 4 world 1,000 times. The resulting average
error trace of successful movements, i.e. movements that actually reached the
target, is shown in Fig. 4.10. In contrast to the other learning algorithms, the
average error trace shows a two-phasic time course. This is most likely due to
the insufficient acquisition of the state space during unsupervised learning. On
average it took 100,000 steps of unsupervised learning followed by 15,562 (±973)
steps of RL until the system converged. Combined, this two-step procedure then
requires about 200 s per training run on a contemporary desktop computer.
As a consequence of the incomplete acquisition of the state space during

unsupervised learning, it is not surprising that an agent using this learning scheme
is not able to learn perfect reaching movements. The self-organization of the
Sigma-Pi weights during unsupervised learning along with the corresponding
Gaussians is shown in Fig. 4.11. In the course of learning spatial coherence is
exploited for self-organization of the sensory input manifold (Ch. 4.3.3). The
neighborhood interactions of the neurons are gradually reduced using a weighted
Gaussian winner scheme. For illustration purposes the range influence of the
Gaussian-profile activation function is shown schematically for the different time
points of RF development. Due to the gradual reduction of the neighborhood
interactions the receptive fields developed slower as it was the case for the two
previous learning paradigms. In addition, the strength of the weights within a
single RF, i.e. all hand-object positions comprising a unique invariance, is not as
uniform as it has been for the other architectures.
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Figure 4.11: Unsupervised RF development and corresponding Gaussians
at different times (0, 3, 6 and 10× 104 iterations). Large values displayed dark.
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To further carve out the problems associated with the unsupervised learning
algorithm three different invariant hand-object relations of a 4×4 world are
displayed after training (Fig. 4.12). As a first example, two different invariances
are shown (Fig. 4.12 top and middle) that result in the activation of the same
state unit. Consequently, the resulting movement can only be correct for one of
them. Another example invariance (Fig. 4.12 bottom) leads to the activation of
two different state units. During RL this error was then compensated by linking
both states to a single, correct movement. Still, assigning two states to a single
invaricance has severe implications because, in turn, another state has to represent
two different hand-object relations (as for instance shown in the first example).
In general, these two errors reflect the most common problems of this learning
algorithm and clearly indicate that those errors are already introduced in the first,
unsupervised stage of this two-step learning paradigm.

4.4.4 Comparison of the Three Models
Tab. 4.1 shows how various parameters of the three different learning paradigms
scale depending on the size of the world. The number of movements, states
(invariances) and weights grows exponentially. Unfortunately, so does the training
time for all of the examined architectures.
Our novel unified architecture (Ch. 4.3.1) and cubic RL (Ch. 4.3.2) allow

the given reaching task to be learnt flawlessly. In contrast, a two-step learning
procedure, unsupervised learning followed by RL (Ch. 4.3.3), resulted in an average
behavioral error of 5–6%. It has been shown above (cf. Ch. 4.4.3) that this error is
already introduced during the unsupervised self-organization of the state space, i.e.
learning of the invariances. Then, the error propagates into the Q-table learned
with the RL algorithm. To make a direct comparison possible, we rearranged the
Q-tables learned with our novel unified architecture and the canonical two-step
learning procedure. It can be seen that every invariance is exactly linked to a single
adequate movement for the unified neural architecture (Fig. 4.13 left). However,
looking at the Q-table obtained with the two-step procedure (Fig. 4.13 right)
reveals a violation of this one-to-one relationship. Several states are connected to
a single movement. Further, the weights are not as strong as in the previous case.

Considering our unified architecture, already a world of size 5×5 with its roughly
57,000 weights becomes computationally intractable on contemporary desktop
computers. To compare our novel model to a one-layer RL architecture with a cubic
Q-table we removed the Sigma-Pi neurons and changed the algorithm accordingly.
This architecture scales better, but is still not computationally efficient and
therefore cannot handle real-world problems. No results for a world bigger than
7× 7 (405,769 weights) have been obtained in reasonable time. Furthermore, we
devised a two-step procedure, unsupervised learning followed by RL, to tackle this
demanding reaching task. This is a common approach found in the literature (e.g.
Legenstein et al., 2010). However, even with this separated learning procedure it
was not possible to handle the given task in reasonable time. To illustrate how
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Figure 4.12: Invariant hand-object relations and movements after unsuper-
vised learning followed by RL. Examples of three different invariances are shown.
Two different invariances (top and middle) result in the activation of the same state unit
and as a consequence the resulting movement is only correct for one of them. Another
invariance (bottom) leads to the activation of two different state units. However, during
RL both are linked to the correct movement. Strong activations are displayed dark.
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Table 4.1: Scaling of world, parameters and training steps.

Size of the world 2×2 3×3 4×4 5×5

Number of actions and states 9 25 49 81

Novel unified architecture
Weights 225 2,650 14,945 57,186
Iterations ∼3,000 ∼300,000 ∼13× 106 –
Avg. error (%) 0 0 0 –

Cubic RL
Weights 144 2,025 12,544 50,625
Iterations ∼2,500 ∼20,000 ∼120,000 ∼520,000
Avg. error (%) 0 0 0 0

Unsupervised followed by RL
Weights unsupervised 144 2,025 12,544 50,625
Weights RL 81 625 2,401 6,561
Weights total 225 2,650 14,945 57,186
Iterations unsupervised ∼2,000 ∼20,000 ∼100,000 ∼200,000
Iterations RL ∼2,000 ∼5,500 ∼15,000 ∼42,000
Iterations total ∼4,000 ∼25,500 ∼115,000 ∼242,000
Avg. error (%) 25 5 6 6

the number of training iterations depend on the size of the world, this relationship
is drawn in a semi-log plot (Fig. 4.14). The increase of iterations is most rapid
for the unified architecture. The scaling for the other two models is very similar,
unfortunately, still exponential.

All in all, the results suggest that yet another mechanism might be responsible for
the biological learning of reaching movements and for the identification of invariant
situations. It may also be the case that the proposed mechanism is correct and
that the learning can be accomplished more efficiently in the brain. Nevertheless,
if the proposed unified model really would be the biological mechanism for the
learning of reaching movements, it would take about 80 years to learn a 4 × 4
world when training with 450 examples per day.



74 Sigma-Pi Reinforcement Learning for Reaching

Figure 4.13: Comparison of rearranged Q tables. Every invariance (state) is
linked to a single adequate action after learning with the unified architecture (left).
However, this is not the case for RL following unsupervised learning (right). Some
state-action pairs are not correctly learned. Strong weights are displayed dark.

Figure 4.14: Semi-log plot depicting training iterations of the different archi-
tectures depending on the size of the world. Comparing the three models reveals
that the increase of iterations is much more rapid for the unified architecture. The
solid line shows the iterations of the unified architecture, the dashed line unsupervised
learning followed by RL and the dotted line cubic RL.
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4.5 Summary
We presented a novel unified neural architecture for the learning of invariant hand-
object relations and their corresponding movements. The network handles implicit
frame of reference transformations, thereby ignoring from which modality the
sensory information comes from and in what coordinate system this information
is encoded in. We confirmed its functioning with several simulation that all
were mastered flawlessly by the proposed learning algorithm. Furthermore, the
devised architecture has been compared to two related neural architectures. One
of them being a reinforcement learning scheme based on a cubic Q-table, the
other one a two-step paradigm, comprising unsupervised learning followed by RL.
Unfortunately, all models do not scale very well. The best scaling goes along
with the two-step method, i.e. RL following unsupervised learning. However, this
procedure leads at the same time to a solution with an average behavioral error
of 5–6%. The other two architectures are able to learn the given task perfectly.
Parts of the results of this chapter have been published (Kleesiek et al., 2010).

4.5.1 Connection to the Other Experiments of this Thesis
For the development of the architecture we relied on general sensorimotor design
principles adopted from the embodied cognition framework (Ch. 2) and the
knowledge obtained in Ch. 3. Performing gradient descent on an energy function
allows a learning rule to be defined for a network architecture that combines an
action (RL) layer with a sensory layer (Ch. 3.3.2). In the network presented in
this chapter the sensory layer consists of Sigma-Pi neurons, which can detect a
co-activations of input units. In this way, the network is able to detect invariances
and to perform a coordinate transformation between different sensory modalities.
Again, the agent learns in a ‘top-down’ action-driven way which sensory features
are relevant for the given task. The RL prediction error modulates the state-
action mapping and the receptive field development of the sensory layer, leading
to sensorimotor laws that enable the agent to perform goal-directed behavior.
Due to limited scaling properties of the two-layer architecture we extended it

with an adaptive learning regime. A modified version of this adaptive learning
mechanism is also used for the improvement of the learning algorithm for the
recurrent neural network with parametric bias that will be presented in the next
chapter. The reason for moving to a recurrent architecture was guided by several
deliberations, one of them being the scaling issues already mentioned. Further,
RNNs are known for their superior generalization potential. The most important
reason however, is given by the properties of the parametric bias units, which
allow to self-organize time series into clusters. In our experiments, these clusters
reflect sensorimotor laws that will be used for object categorization (Ch. 5).
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It should be axiomatic that perception is not
passive, but active. Perceptual activity is
exploratory, probing, searching; percepts do
not simply fall onto sensors as rain falls
onto ground. We do not just see, we look.

Ruzena Bajcsy

5 Chapter

Active Perception Using an
RNN with Parametric Bias

5.1 Introduction
Motor actions determine the sensory information that agents receive from their
environment. Combining sensory and motor processes dynamically facilitates
many tasks (cf. Ch. 2), one of those being object classification.
The intention of this experiment is to provide a neuroscientifically and philo-

sophically inspired model for what do objects feel like? For this purpose, we
stress the active nature of perception within and across modalities. According to
the theory of sensorimotor contingencies (cf. Ch. 2.4.4), actions are fundamental
for perception and help to distinguish the qualities of sensory experiences in
different sensory channels (e.g. ‘seeing’ or ‘touching’). O’Regan and Noë (2001)
actually suggest that “seeing is a way of acting”. Exactly this is mimicked in this
computational study.

It has been shown that if the fruit fly drosophila cannot recognize a pattern it
starts to move (Dill et al., 1993). It is also known that flies use motion to visually
determine the depth of perceived obstacles (Franceschini, 1997). Similarly, pigeons
bob their heads up and down to recover depth information (Steinman et al., 2000).
Not only living beings, but robots too are embodied, and they have the ability
to act and to perceive. In the presented experiments the robot actually needs to
act to perceive the objects it holds in its hand. The action-driven sensations are
guided by the physical properties of its body, the world and the interplay of both.
A humanoid robot moves toy bricks up and down and rotates them back

and forth, while holding them in its hand. The induced multi-modal sensory
impressions are used to train an improved version of a recurrent neural network
with parametric bias (RNNPB), originally developed by Tani and Ito (2003). As a
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result, the robot is able to self-organize the contextual information to sensorimotor
laws, which in turn can be used for object classification. Due to the overwhelming
generalization capabilities of the recurrent architecture, the robot is even able
to correctly classify unknown objects. Furthermore, we show that the proposed
model is very robust against noise.

5.2 Theory
Despite its intriguing properties, the recurrent neural network with parametric
bias has hardly been used by anybody other than the original authors. Mostly,
the architecture is utilized to model the mirror neuron system (Tani et al., 2004;
Cuijpers et al., 2009). Here we apply the variant proposed by Cuijpers et al. (2009)
using an Elman-type structure (Kolen and Kremer, 2001) at its core. Furthermore,
we modify the training algorithm to include adaptive learning rates for training of
the weights, as well as the PB values. This results in an improved architecture
that is more stable and converges faster (for an evaluation please see Ch. 5.4.1).

5.2.1 Storage of Time Series
The recurrent neural network with parametric bias (an overview of the architecture
unfolded in time can be seen in Fig. 5.1) can be used for the storage, retrieval
and recognition of sequences. For this purpose, the parametric bias (PB) vector
is learned simultaneously and unsupervised during normal training of the network.
The prediction error with respect to the desired output is determined and back-
propagated through time using the BPTT algorithm (ibid.). However, the error
is not only used to correct all the synaptic weights present in the Elman-type
network. Additionally, the error with respect to the PB nodes δPB is accumulated
over time and used for updating the PB values after an entire forward-backward
pass of a single time series, denoted as epoch e. In contrast to the synaptic
weights that are shared by all training patterns, a unique PB vector is assigned to
each individual training sequence. The update equations for the i-th unit of the
parametric bias pb for a time series of length T is given as:

ρi(e+ 1) = ρi(e) + γi
T∑
t=1

δPB
i,t , (5.1)

pbi(e) = sigmoid(ρi(e)) , (5.2)

where γ is the update rate for the PB values, which in contrast to the original
version is not constant during training and not identical for every PB unit. Instead,
it is scaled proportionally to the absolute mean value of prediction errors being
backpropagated to the i-th node over time T :

γi ∝
1
T

∥∥∥∥∥
T∑
t=1

δPB
i,t

∥∥∥∥∥ . (5.3)
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Figure 5.1: Network architecture. The Elman-type Recurrent Neural Network
with Parametric Bias (RNNPB) unfolded in time. Dashed arrows indicate a verbatim
copy of the activations (weight connections set equal to 1.0). All other adjacent layers
are fully connected. t is the current time step, T denotes the length of the time series.

The other adjustable weights of the network are updated via an adaptive
mechanism, inspired by the resilient propagation algorithm proposed by Riedmiller
and Braun (1993). However, there are decisive differences. First, the learning rate
of each neuron is adjusted after every epoch. Second, not the sign of the partial
derivative of the corresponding weight is used for changing its value, but instead
the partial derivative itself is taken.
To determine if the partial derivative of weight wij changes its sign we can

compute:
εij = ∂Eij

∂wij
(t− 1) · ∂Eij

∂wij
(t) (5.4)

If εij < 0, the last update was too big and the local minimum has been missed.
Therefore, the learning rate ηij has to be decreased by a factor ξ− < 1 . On the
other hand, a positive derivative indicates that the learning rate can be increased
by a factor ξ+ > 1 to speed up convergence. This update of the learning rate can
be formalized as:

ηij(t) =


max(ηij(t− 1) · ξ−, ηmin) if εij < 0,
min(ηij(t− 1) · ξ+, ηmax) if εij > 0,
ηij(t− 1) else.

(5.5)

The succeeding weight update ∆wij then obeys the following rule:

∆wij(t) =

 −∆wij(t− 1) if εij < 0,
ηij(t) · ∂Eij∂wij

(t) else.
(5.6)

In addition to reverting the previous weight change in the case of εij < 0 the
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partial derivative is also set to zero (∂Eij
∂wij

(t) = 0). This prevents changing of the
sign of the derivative once again in the succeeding step and thus a potential double
punishment.

We use a nonlinear activation function with parameters recommended by LeCun
et al. (1998) for all neurons in the network, as well as for the PB units (Eq. 5.2):

sigmoid(x) = 1.7159 · tanh
(2

3 · x
)
. (5.7)

5.2.2 Retrieval
The PB vector is usually low dimensional and resembles bifurcation parameters
of a nonlinear dynamical system, i.e. it characterizes fixed-point dynamics of the
RNN. During training the PB values are self-organized, thereby encoding each
time series and arranging it in PB space according to the properties of the training
pattern. This means that the values of similar sequences are clustered together,
whereas more distinguishable ones are located further apart. Once learned, the
PB values can be used for the generation of the time series previously stored. For
this purpose, the network is operated in closed-loop mode. The PB values are
‘clamped’ to a previously learned value and the forward pass of the network is
executed from an initial input I(0). In the next time steps, the output at time t
serves as an input at time t + 1. This leads to a reconstruction of the training
sequence with a very high accuracy (limited by the convergence threshold used
during learning, e.g. as shown in Fig. 5.12 on the left).

5.2.3 Recognition
A previously stored (time) sequence can also be recognized via its corresponding
PB value. Therefore, the observed sequence is fed into the network without
updating any connection weights. Only the PB values are accumulated according
to Eq. 5.1 and 5.2 using a constant learning rate γ this time. Once a stable PB
vector is reached (as shown in Fig. 5.13), it can be compared to the one obtained
during training.

5.2.4 Generalized Recognition and Generation
The network has substantial generalization potential. Not only previously stored
sequences can be reconstructed and recognized. But, (time) sequences apart from
the stored patterns can be generated. Since only the PB values but not the
synaptic weights are updated in recognition mode, a stable PB value can also be
assigned to an unknown sequence.

For instance, training the network with two sine waves of different frequencies
allows cyclic functions with intermediate frequencies to be generated simply by
operating the network in generation mode and varying the PB values within
the interval of the PB values obtained during training. Furthermore, the PB
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Figure 5.2: Artificial data to demonstrate generalization potential. The 2-D
sequences resulting from Eq. 5.8 for θ = 90 (top) and θ = 180 (bottom), respectively.
On the left, the two dimensions are plotted separately, whereas on the right x1 is plotted
against x2, leading to a figure-eight shape.

values obtained during recognition of a previously unseen sine function with an
intermediate frequency (w.r.t. the training sequences) will lie within the range of
the PB values acquired during learning. Hence, the network is able to capture a
reciprocal relationship between a time series and its associated PB value.
These generalized recognition and generation capabilities of the adaptive

RNNPB are demonstrated in a more complex example. For this purpose, consider
the 2-D sinusoidal sequences described by the following equation:x1

x2

 = 0.5
cos θ −sin θ
sin θ cos θ

sin π·t
6

cos π·t
12

 (5.8)

Plotting x1 vs. x2 results in a figure-eight shape that is rotated according to
the angular value specified by θ. Two 2-D time series of length t = 25 were
generated using θ = 90 and θ = 180, respectively. These sequences and the
resulting figure-eight shapes are shown in Fig. 5.2. The network was trained with
the parameters specified in Tab. 5.1. Note, in contrast to the robot experiments
presented below, the network only has a single PB unit.
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Table 5.1: Network and learning parameters for ‘rotating eight’ experiment.

Input neurons 2
Hidden neurons 32
Context neurons 32
Output neurons 2
PB units 1
Convergence threshold 3× 10−4

Training duration ∼14 h

After training, the network is able to recognize those sequences based on their
trained PB values (PBθ:90 = −0.01107 and PBθ:180 = −0.65604), which differ only
by a small amount (εθ:90 = 0.0005 and εθ:180 = 0.002) from the ones obtained
during storage. The PB values of the two trained sequences are plotted in Fig. 5.3
using white circular markers. Next to the trained sequences, the network is also
fed with novel, previously untrained, sequences. These are generated using Eq. 5.8
with varying θ values. The network also generates stable PB values for those
unknown sequences (gray and black dots in Fig. 5.3). It can be seen that the PB
values are ordered according to the angular value of the underlying time series.
For instance, this reciprocal relationship could be used to infer the angular value
of a sequence generated with an unknown θ value.
Moreover, using the intermediate PB values (gray markers) located in the

interval between the two PB values obtained during training (white markers)
allows 2-D sinusoidal functions to be generated. For this purpose, the ordered PB
values are ‘clamped’ to the network one after each other and the forward pass is
executed in closed-loop mode (cf. Ch. 5.2.2). This allows a 2-D sequence to be
generated for each PB value. Plotting x1 vs. x2 of these newly generated time series
in a row results in a figure-eight shape that rotates from 90 to 180 degrees (Fig. 5.4).
It shows that the architecture is indeed capable of learning the underlying principle
that generated the two training sequences. This generalization potential will be
exploited in the robot experiments for the categorization of unknown objects.

5.2.5 Evaluation of the Adaptive Learning Rate

To evaluate the adaptive learning rate proposed in Ch. 5.2.1, artificial 1-D test
data of length T = 11 in the interval [−π; π[ is generated using the following
equations:

x = sin(t) , (5.9)
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Figure 5.3: Generalized recognition of trained and untrained sequences. The
PB values of the two trained 2-D time series using Eq. 5.8 with θ = 90 and θ = 180,
respectively, are marked using white circles. In contrast, the PB values obtained by
feeding the network with untrained sequences generated with varying θ values are drawn
as gray and black dots. These values are arranged in a structured way, emphasizing the
self-organization of the PB space. In fact, the PB values can be used to generate time
series with intermediate θ values. This reciprocal relationship is shown in Fig. 5.4 for
the values marked in gray.

x = sin(3t) · sin(t)
2t2 − 0.5 . (5.10)

Eq. 5.9 is referred to as sin and Eq. 5.10 as sinc. Both time series are shown in
Fig. 5.5. Except for the following differences, the RNNPB network parameters
were identical to the parameters of the robot experiments (see below). The
architecture contained only one input and one output node, as well as only 1 PB
unit. The convergence criterion was set to 10−4.

5.2.6 Network Parameters for Robot Experiments
To quantify the number of principle components (PCs) actually needed for (almost)
lossless reconstruction of the PB space, we determined how many are necessary
to explain 99% of the variance. Increasing the number of PB values, given a
bi-modal time series of length T = 14, resulted in a constant number of two PCs.
Hence, we use a 2-D PB vector for our experiments.
Based on systematic empirical trials, the following parameters have been de-

termined for our experiments. The network contained two input and two output
nodes, 24 hidden and 24 context neurons as well as 2 PB units. The convergence
criterion for back propagation through time (BPTT) was set to 10−6 in the first,
and 10−5 in the second experiment. For recognition of a sequence, the update rate
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Figure 5.4: The 2-D sequences generated by the network using the PB values shown in
Fig. 5.3 as gray dots. The two dimensions are either plotted separately (left) or against
each other (right).
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Figure 5.4: Dots represent the function values that would be obtained when using
Eq. 5.8 with the angular values for θ shown in bold to the left of each row.
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Figure 5.5: Artificial test data for evaluation of the adaptive learning rate.
Eq. 5.9 is used to generate the sequence on the left (sin) and Eq. 5.10 for the sequence
on the right (sinc).

γ of the PB values was set to 0.1. The values for all other individual adaptive
learning rates (Eq. 5.5) during training of the synaptic weights were allowed to be
in the range of ηmin = 10−12 and ηmax = 50; depending on the gradient they were
either increased by ξ+ = 1.01 or decreased by a factor ξ− = 0.9.

5.3 Scenario
The humanoid robot Nao (Aldebaran Robotics) is programmed to conduct the
experiments (Fig. 5.6 a). The task for the robot is to identify which object
(toy brick) it holds in its hand. In total there are eight object categories that
have to be distinguished by the robot: the toy bricks have four different shapes
(circular-, star-, rectangular- and triangular-shaped), which each exist in two
different weight versions (light and heavy). Hence, for achieving a successful
classification multi-modal sensory impressions are required. Additionally, active
perception is necessary to induce sensory changes essential for discrimination of
–depending on the perspective– similar looking shapes (e.g. star- and circular-
shaped objects). For this purpose, the robot performs a predefined motor sequence
and simultaneously acquires visual and proprioceptive sensor values.

5.3.1 Data Acquisition
The recorded time series comprises 14 sensor values for each modality. In each
single trial the robot turns its wrist with the object between its fingers by 45.8 ◦
back and forth twice, followed by lifting the object up and down three times
(thereby altering the pitch of the shoulder joint by 11.5 ◦) and, finally, turning it
again twice.

After an action has been completed, the raw image of the lower camera of the
Nao robot is captured, whereas the electric current of the shoulder pitch servo

http://www.aldebaran-robotics.com
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Figure 5.6: Scenario. a) Toy bricks in front of the humanoid robot Nao. The toy
bricks exist in four different shapes, have an identical color and are either light-weight
(15 g) or heavy (50 g). This results in a total of eight categories that have to be
distinguished by the robot. b) Rotation movement with the star-shaped object captured
by the robot camera. In the upper row the raw camera image is shown, whereas the
bottom row depicts the preprocessed image that is used to compute the visual features.

motor is recorded constantly (sampling frequency 10Hz) over the entire movement
interval. For each object category 10 single trial time series are recorded in the
described way and processed in real-time. This yields 80 bi-modal time series in
total.

5.3.2 Data Processing
For the proprioceptive measurements only the mean values are computed for
the time intervals in between movements. The visual processing, on the other
hand, involves several steps (Fig. 5.6 b), which are accomplished using OpenCV
(Bradski, 2000). First, the raw color image is converted to a binary image using
a color threshold. Next, the convex hull is computed and, based on that, the
contour belonging to the toy brick is extracted (Suzuki and Be, 1985). For the
identified contour the first Hu moment is calculated (Hu, 1962). Finally, the visual
measurements are scaled to be within the interval [−0.5, 0.5].
We are aware that more discriminative geometrical features exist, e.g. the

orthogonal variant moments proposed by Martín H. et al. (2010). However, we
deliberately posed the problem this way to make it a challenging task and show
the potential of the approach.

5.3.3 Training and Test Data
For testing, the data of single trials are used, i.e. 10 2-D time series per object
category (one dimension for each modality). However, for training, a prototype
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Figure 5.7: Training data. The mean values of the two weight conditions (light
and heavy, top) and the four visual conditions (matching symbols, bottom) are shown.
These mean time series are used as prototypes for training the RNNPB. Gray shaded
areas represent the up and down movement, whereas back and forth movements are
unshaded. The red area surrounding the signals delineates two standard deviations
from the mean.
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is determined for each object category and modality (Fig. 5.7). To obtain this
subclass representative, the mean value of pooled single trials, with regard to
identical object properties, is computed. This means that, for instance, all circular-
shaped objects are combined (n = 20) and used to compute the visual prototype
for circular-shaped objects. To find the proprioceptive prototype for e.g. all heavy
objects, all individual measurements with this property (n = 40) are aggregated
and used to calculate the mean value at each time step. The subclass prototypes
are then combined to form a 2-D multi-modal time series that serves as an input
for the recurrent neural network during training.

5.4 Results

5.4.1 Evaluation of the Adaptive Learning Rate

To evaluate the improvements caused by introduction of the adaptive learning
rate as described in Ch. 5.2.1, an RNNPB was trained 1000 times with two 1-D
sequences (Eqs. 5.9 and 5.10, Fig. 5.5). The results are statistically evaluated
using a t-test. To compensate for the sample size bias, the optimal sample size
was determined based on the mean value and the standard deviation of the data1.
This optimal sample size was used to draw 10,000 random subsets of the data,
which were subsequently evaluated to obtain an average p-value for the t-test.
The results are summarized in Tab. 5.2. The modifications lead, on average,
to a 22-fold speedup of the training times (t-test, p = 0.0). Also the number
of recognition steps has improved significantly (t-test, p = 0.03). However, no
significant changes of the retrieval accuracy (MSE) can be found.
The PB values that were obtained for the first sequence (sin) are plotted

against the PB value of the second sequence (sinc). This is performed for both
algorithms (Fig. 5.8). Values belonging to the adaptive algorithm are depicted
in white, whereas the PB values obtained with the classical algorithm are shown
in gray. A symmetric relationship can be seen for both conditions, indicating a
constant relationship between the PB values of the two sequences despite random
initializations of the weights. This stresses the self-organization of the PB space
(cf. Ch. 5.2.2). Further, the PB values obtained using the adaptive algorithm are
on average smaller and display a higher standard deviation (Tab. 5.2). This might
be due to the drastically faster training.

Plotting the average MSE against the number of steps needed until convergence
further highlights the drastic improvement in speed (Fig. 5.9). The error, shown
separately for both sequences, decreases for both algorithms in a similar manner.
However, the adaptive version looks ‘compressed’ in comparison to the classical
algorithm. In addition, the fluctuations seem to be much less, indicating a more
stable behavior of the modified RNNPB.

1This was achieved using the DSS Research Web-toolkit.

http://www.dssresearch.com/KnowledgeCenter/toolkitcalculators/samplesizecalculators.aspx


90 Active Perception Using an RNN with Parametric Bias

Figure 5.8: Scatter plot of PB values for the two test sequences. The PB
values obtained for the first sequence (sin) are plotted against the PB value for the
second sequence (sinc). Gray dots represent values obtained with the classical and
white dots values obtained with the adaptive algorithm.

Figure 5.9: Error plot comparing classical (left) to adaptive (right) RNNPB.
The average MSE of the sin sequence is shown in black, whereas the average MSE of
the sinc sequence is drawn in gray.
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Table 5.2: Statistical evaluation of the adaptive learning rate. Mean values and
standard deviations are shown, significant changes (t-test, p < 0.05) are marked bold.

Modified Classical FactorRNNPB RNNPB

Total steps 5,520 (±1,713) 122,709 (±20,027) 22.2
Total time 34 s (±10) 751 s (±124) 22
MSE sin 4.3× 10−4 (±1.2× 10−3) 5.5× 10−4 (±3× 10−4) –
MSE sinc 4.7× 10−4 (±8.7× 10−4) 1.9× 10−4 (±1.9× 10−4) –
Recognition

192 (±85) 284 (±101) 1.48steps
PB sin ±0.59 (±0.22) ±0.92 (±0.11) –
PB sinc ±0.60 (±0.22) ±0.93 (±0.11) –

Looking at the number of average steps per epoch of the two algorithms reveals
that actually the total number of epochs does not seem to be much less in the
modified version of the algorithm. Nevertheless, the average steps per epoch are
about one order of magnitude smaller (semi-log plot Fig. 5.10). Furthermore,
the fluctuations of the trajectories obtained for the adaptive algorithm are again
smoother. Overall, the results suggest that the adaptive modifications resulted in
a more stable architecture that converges much faster.

5.4.2 Experiment 1 – Classification Using All Object
Categories for Training

In the first experiment the improved recurrent neural network with parametric bias
was trained with the bi-modal prototype time series of all eight object categories
(see Fig. 5.7 and Ch. 5.3.3). During training, the PB values for the respective
categories emerged in an unsupervised way. This means, the two-dimensional PB
space self-organizes based on the inherent properties of the sensory data that was
presented to the network. Hence, objects with similar dynamic sensory properties
are clustered together. This can be seen in Fig. 5.11. For instance, the learned PB
vectors representing star- and circular-shaped objects, either light-weight (light
gray) or heavy (dark gray), are located in close proximity, whereas the PB values
coding for the triangular-shaped objects are positioned more distantly. This is
due to the deviating visual sensory impression they generate (Fig. 5.7). The
experiment has been repeated several times with different random initializations
of the network weights. However, the obtained PB values of the different classes
always demonstrate a comparable geometric relation with respect to each other.
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Figure 5.10: Semi-log plot showing average steps per epoch comparing clas-
sical (left) to adaptive (right) RNNPB. The average number of steps per epoch
of the sin sequence are shown in black and for the sinc sequence in gray.

Figure 5.11: Experiment 1 – Classification using all object categories for
training. PB values of the class prototypes used for training are depicted in light and
dark gray and with a symbol matching the corresponding shape. Smaller symbols depict
PB values obtained during testing with bi-modal single trial data. If the objects have
been correctly classified, they are shown in light or dark blue, otherwise in red. Light
colors are used for light-weight, dark colors for heavy-weight objects.
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Figure 5.12: Retrieval and generation capabilities. Proprioceptive (green) and
visual (blue) dots represent the sampling points of the heavy star-shaped prototype time
series (Fig. 5.7). Dashed lines are the time series generated by the network operated
in closed-loop with ‘clamped’ PB values as the only input. The PB values have been
acquired unsupervised either during full training (left) or partial training (right). During
partial training (right) the network has only been trained with the prototype sequences
for the light-weight circle and the heavy triangle. Still, the network is able to generate
a fairly accurate sensory prediction for the (untrained) heavy star-shaped object.

To demonstrate the retrieval properties (Ch. 5.2.2) of the fully trained archi-
tecture, the PB values acquired during training were ‘clamped’ to the network.
Operating the network in closed-loop mode showed that the input sequences used
for training can be retrieved with a very high accuracy. As an example this is
shown in Fig. 5.12 (left) for the heavy star-shaped object.

The steps needed until stable PB values are reached, which in turn can be used
for recognition, are illustrated in Fig. 5.13. The bi-modal sensory sequences for all
light-weight and heavy objects were fed consecutively into the network. On average
it took less than 100 steps (about 200ms) until the PB values converged. The
convergence criterion was set to 20 consecutive iterations where the cumulative
change of both PB values was < 10−5. To assure that the PB values reached a
stable state, this number has been successfully increased to 100,000 consecutive
steps in preliminary experiments (not shown). Note, that the network and PB
values was not reinitialized when the next sensory sequence was presented to the
network. Thus, the robot can continuously interact with the toy bricks and is
able to immediately recognize an object based on its sensorimotor sequence.
For testing, the network was operated in generalized recognition mode (Ch.

5.2.4). Single trial bi-modal sensory sequences were presented to the network that
in turn provided an ‘identifying’ PB value. The class membership, i.e. which object
the robot holds in its hand and how heavy this object is, was then determined
based on the minimal Euclidean distance to the PB values of the class prototypes
(gray symbols). In Fig. 5.11 the PB values of all 80 single trial test patterns are
depicted.
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Figure 5.13: Steps until stable PB values are reached. Bi-modal sensory se-
quences for all light-weight and heavy objects (represented by matching symbols in light
and dark gray, respectively) are consecutively fed into the network. The time courses of
PB value 1 (solid line) and PB value 2 (dashed line) during the recognition process are
plotted.

Only 4 out of 80 objects are misclassified (shown in red), yielding an error
rate of 5%. Interestingly, only star- and circular-shaped objects are confused by
the network, which indeed generate very similar sensory impressions (Fig. 5.7).
To assess the meaning of the error rate and estimate how challenging the posed
problem is, we evaluated the data with two other commonly used techniques
in machine learning. First, we trained a multi-layer perceptron (28 input, 14
hidden and one output unit) with the prototype sequences. Testing with the
single trial data resulted in an error rate of 46.8%, reflecting weaker generalization
capabilities of the non-recurrent architecture. Next, we trained and evaluated our
data with a support vector classifier (SVC) using default parameters (Chang and
Lin, 2011). In contrast, this method is able to classify the data perfectly.

5.4.3 Experiment 2 – Classification Using Only the Light
Circular-Shaped and the Heavy Triangular-Shaped
Object for Training

In experiment 2, only the bi-modal prototypes for the light circular- and heavy
triangular-shaped objects were used to train the RNNPB. Although, the absolute
PB values obtained during training differ from the ones being determined in the



Results 95

Figure 5.14: Experiment 2 – Classification using only the light circular-
shaped and the heavy triangular-shaped object for training. PB values of the
class prototypes used for training are depicted in light and dark gray and with a symbol
matching the corresponding shape. The a posteriori computed cluster centers of the
untrained object categories are depicted using larger symbols in either light or dark
blue. Smaller symbols are used for PB values of sensory data of single trials. If the
objects have been classified correctly they are shown in light or dark blue, otherwise in
red. Light colors are used for light-weight, dark colors for heavy-weight objects.

previous experiment, their relative Euclidean distance in PB space is nearly the
same (1.39 vs. 1.35), stressing the data-driven self-organization of the parametric
bias space.
For testing, initially only the bi-modal sensory time series matching the two

training conditions were fed into the network, thereby determining their PB values.
Using the Euclidean distance subsequently to obtain the class membership resulted
in a flawless identification of the two categories.

Further evaluation of the single trial test data was performed in two stages. In
a primary step the remaining test data was presented to the network and the
respective PB values were computed (generalized recognition, Ch. 5.2.4). Despite
not having been trained with prototypes for the remaining six object categories,
the network is able to cluster PB values stemming from similar sensory situations,
i.e. identical object categories. In a succeeding step we computed the centroid for
each class (mean PB value) and classified again based on the Euclidean distance.
This time only two single trial time series were misclassified by the network (error
rate 2.5%). The results are shown in Fig. 5.14.
The generalization potential (Ch. 5.2.4) of the architecture is presented in
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Figure 5.15: Uni-modal noise tolerance. Uniformly distributed noise of increasing
levels (color coded) is only added to the visual prototype time series for the light-weight
circle and the heavy triangle. The PB values are determined and marked with a matching
symbol.The light gray circle and dark gray triangle show the PB values obtained during
training without noise.

Fig. 5.12 (right) for the heavy star-shaped object. For this purpose, the mean PB
values (centroid of the respective class) were clamped to the network, which was
operated in closed-loop mode. The network had only been trained with the light
circular- and the heavy triangular-shaped object. Still, it was possible to generate
sensory predictions for unseen objects, e.g. the heavy star-shaped toy brick, that
match the real sensory impressions fairly well.

5.4.4 Experiment 3 – Noise Tolerance Within and Across
Modalities

Based on the network weights that had been obtained in experiment 2 (training
the RNNPB only with the bi-modal prototypes for the light circular- and heavy
triangular-shaped objects), we evaluated the noise tolerance of the recurrent neural
architecture. For this purpose, uniformly distributed noise of increasing levels was
either added to the visual prototype time series only (Fig. 5.15) or to the time
series of both modalities (Fig. 5.16).
As it can be seen for both conditions, even high levels of noise allow for a

reliable linear discrimination of the two classes. Furthermore, the PB values
of increasing noise levels show commonalities and are clustered together, again
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Figure 5.16: Bi-modal noise tolerance. Uniformly distributed noise of increasing
levels (color coded) is added to both (visual and proprioceptive) prototype time series
for the light-weight circle and the heavy triangle. The PB values are determined and
marked with a matching symbol. The light gray circle and dark gray triangle show the
PB values obtained during training without noise.

providing evidence for a data-driven self-organization of the PB space. Thus,
determining the Euclidean distance of the PB values obtained from the noisy
signals to the class representatives enables not only the class membership to be
determined, it also allows the noise level to be estimated with respect to the
prototypical sensory impression.

5.5 Summary
We present active object categorization experiments with a real humanoid robot.
For this purpose, the training algorithm of a recurrent neural network with para-
metric bias has been extended with adaptive learning rates. This modification
leads to a 22-fold increase in training speed. After confirming the improved
operation of the new training algorithm we conducted three experiments aim-
ing at object categorization. While holding different objects in its hand, the
robot executes a motor sequence that induces multi-modal sensory changes. Dur-
ing learning, these high-dimensional perceptions are ‘engraved’ in the network.
Simultaneously, low-dimensional PB values emerge unsupervised, coding for a
sensorimotor sequence that characterizes the interplay of the robot with a spe-
cific object. These sequences can be stored and retrieved with a high accuracy.
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Further, the geometrical relation of the PB vectors of different objects can be
used to infer relations between the original high dimensional time series, e. g. the
sensation of a star-shaped object ‘feels’ more like a circular-shaped object than
a triangular-shaped one. Even sensations belonging to unknown objects can be
discriminated from known (learned) ones and kept apart from each other reliably.
Additionally, we have shown that the network tolerates both uni- and bi-modal
noise very well. The results of this chapter have been accepted for publication
(Kleesiek et al., 2012).

5.5.1 Connection to the Other Experiments of this Thesis
This chapter represents the final study in a sequence of related studies that build
upon each other. In the first experiment, the robot learns to navigate towards a
target region (Ch. 3). This is followed by a reaching study (Ch. 4) and the dynamic
object recognition task of this chapter. They all have in common that they are
inspired by sensorimotor principles originating from the research field of embodied
cognition (Ch. 2). According to those themes perceiving is a way of acting,
stressing the importance of organism-world interactions. Further, the notion that
the world serves as an outside memory and contributes to the cognitive process
as a whole has influenced the design of the experiments. Especially important for
this final experiment is the concept of information self-structuring, according to
which actions of an agent help to structure (sensory) information that is readily
available in its environment. This is reflected by the PB values of the recurrent
architecture that emerge unsupervised during the storage of the sensory sequences.
Next to those common sensorimotor design principles the studies also exhibit

a constant technical improvement. In the first study (Ch. 3), the focus lay
on the methodology of an artificial neural architecture that combines RL with
the learning of sensory features. This paved the way for the development of
the novel bio-inspired architecture presented in Ch. 4. Due to an excellent
generalization potential of recurrent neural networks and the intriguing properties
of the parametric bias units, we decided on this type of architecture for the third
study. Again, the knowledge gained previously helped the design of the experiment
and improvement of the learning algorithm.



Erst indem wir unsere Sinnesorgane nach
eigenem Willen in verschiedene
Beziehungen zu den Objekten bringen,
lernen wir sicher urteilen über die
Ursachen unserer Sinnesempfindungen.

Hermann von Helmholtz

6 Chapter

Discussion

6.1 Neural Architectures Based on Sensorimotor
Principles

Three computational neural architectures have been presented in Ch. 3 – 5. Despite
their different natures and the fact that they have been used to solve different
tasks, they do indeed have commonalities. All the architectures, as well as the
conducted experiments, are intended to substantiate the intertwined relationship
of action and perception. They are all inspired by sensorimotor principles put
forward by von Helmholtz, Dewey, Merleau-Ponty, Gibson, Clark, O’Regan and
others. These concepts and their importance for the research field of embodied
cognition have been presented in detail in Ch. 2.
In all our experiments, the agent actually needs to act to perceive. Based

on the hypothesis perceiving (seeing) is a way of acting , the agent explores its
environment. By doing so, it is able to learn sensorimotor laws which subsequently
can be exploited for goal-directed behavior. Importantly, the architectures do not
simply store an internal representation of the world. In contrast, the world itself
serves as an outside memory. Relying on this external memory enables the neural
architecture to learn how actions and perceptions relate to each other.
In the first part of the discussion the three different neural architectures and

their corresponding experiments will be discussed individually. In the second part,
their joint relevance for the action-driven perception approach will be elucidated.
Further, the general significance of computational architectures for the embodied
cognition paradigm will be critically examined.
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6.2 Reinforcement Learning Architectures

The first two experiments that have been conducted share related two-layer
architectures. In both cases, the top layers inherit their structure from classical
reinforcement learning algorithms (Sutton and Barto, 1998). However, the lower
sensory layers differ in their composition. In the docking experiment of Ch. 3
this layer consists of canonical artificial neurons. To obtain their activations the
sum of the products of all ingoing connections and the corresponding weights
is computed. In contrast, the lower layer of the reaching experiment presented
in Ch. 4 is composed of Sigma-Pi nodes (Softky and Koch, 1995; Weber and
Wermter, 2007). The activation of post-synaptic neurons in this model depends on
the weighted sum of a multiplicative term, representing the co-activation of input
units. For training, both models use a similar mechanism. The RL prediction
error δ of the top layer is not only used to modulate learning of action weights, but
at the same time to adapt the weights of the sensory neurons of the lower layer,
all in a single-step procedure (for details, please see Ch. 3.3 and 4.3, respectively).
In traditional cognitive science and GOFAI, perceptual learning is usually

defined as the problem of extracting useful features from passively received (visual)
stimuli. Subsequently, these features are manipulated to generate an output
(e.g. classification result or movement direction). Even in robotics, pre-given or
handcrafted features (cf. anthropomorphic bias Ch. 2.4.9) are often assumed that
are not customized to the motor repertoire of the machine (Pezzulo et al., 2011).
In contrast, the agent in our experiments shapes its receptive fields by enacting
its world. Depending on its embodiment, its situatedness and the interplay of
both it is able to identify the relevant perceptual stimuli and encode their relation
to its own movements within the neural architecture, i.e. it is able to identify
the sensorimotor laws. Furthermore, it can be compensated for wear and tear
of the robot by constantly adjusting the RFs to the current situation (lifelong
learning). Yet another advantage of our algorithms is their modality independence.
For the action-driven learning of the RFs it does not matter if visual, auditory,
proprioceptive or any other (sensory) information is given.
The information flow in our architectures during exploitation of the learned

skills is reminiscent of classical ideomotor theory (Ch. 2.2.3, James, 1950 [1890]).
During learning, actions are linked to their perceptual effects. If the agent is
later confronted with a known stimulation, this evokes the corresponding action.
This happens directly, showing similarities to the ‘directives’ of the pragmatic
neuroscience framework (Ch. 2.4.5). Admittedly, there is no dynamic interaction
between highly distributed neural populations in our model as suggested by Engel
(2010).

According to Gibson (1966), organisms seek to discover invariant features that
stay constant during movement-induced transformations. He speculates that the
acquisition of this information might act in a reinforcing manner (cf. Ch. 2.2.7).
In fact, the importance of RL for perception has previously been suggested by
Woodworth (1947). He claimed that the reinforcing occurs at two levels. First,



Reinforcement Learning Architectures 101

Figure 6.1: Reinforcement learning of sensory invariances. Implementation of
the algorithm proposed by Choe et al. (2008). The sensory states, i.e. the orientation of
the edges, are mapped on actions that keep the internal neural activity constant. At
initialization (left) no structure can be seen in the Q-table (top) and the gaze trajectories
do not follow edges in a lawful manner (bottom, red lines). After 100,000 steps of
training (right) a structure has evolved in the Q-table weights that links orientation and
movement direction in an expected way. Furthermore, the resulting gaze trajectories
(bottom, red lines) trace edges reliably.

successful gathering of information rewards the explanatory adjustments of the
sensory organs “hunting” for clarity. Next, the neural activity generated by the
sensory information flow is also reinforced.

Gibson’s theory, however, does not include how invariant information is discov-
ered and applied by an agent. Next to the proposed architectures of this thesis,
Choe et al. (2008) proposed another computational possibility for detecting in-
ternal state invariances without the necessity of an external observer. In their
scenario, the gaze of a virtual agent could be moved around natural images with
the goal of keeping the internal neural activation constant, i.e. of following edges
in the image. Employing RL allowed the learning of actions that correspond to
edges with a specific orientation (Fig. 6.1). At the same time receptive fields
(RF) evolved with competitive learning that showed a classical Gabor patch-like
structure. Furthermore, they showed an enhanced shape recognition based on
motor representations in their study.
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6.2.1 Reward-Driven Learning of Sensorimotor Laws for
Navigation

In the first experiment (Ch. 3) a Webots simulation for navigation and docking
towards a virtual target is presented. To solve this hard-delayed RL problem
(Gross et al., 1998) we applied a two-layer network, integrating feature and motor
learning in a single-step procedure (Weber and Triesch, 2009). As a landmark we
used a 3-D geometrical shape (Fig. 3.2), which leads to perspective distortions
depending on the robot’s position and locomotion (Fig. 3.4). The network learns
to exploit this for navigation.

In general, a robot should be aware of the effects of its own actions on objects in
the environment and consequently be able to use this knowledge for goal-directed
behavior. This is achieved by the presented architecture. The network discovers
relevant sensory features and stores this information in the weights of the hidden
layer (see receptive fields in Fig. 3.4 and 3.5). Simultaneously, sensorimotor laws
are learned which link the current state (comprising physical properties of the
object and the sensor, as well as the position of the robot) to a goal-directed
action.
Another restriction imposed on an autonomous agent is that noise (e.g. other

red objects within the visual field) should not affect performance. This criterion is
also fulfilled by our model (ibid.). The sensorimotor laws acquired during learning
are grounded in sensorimotor interactions, i.e. perception is, in fact, a sensorimotor
experience (cf. extended mind Ch. 2.4.3, Clark, 2008). The prediction error δ
modulates the learning in a top-down, action-driven way and allows relevant
and irrelevant sensory features to be distinguished, despite the fact that the
information stemming from the sensory apparatus of the agent can be ambiguous,
incomplete and noisy. To improve robustness, a memory layer could be added to
the network (Saeb et al., 2009), which would help to maintain focus on relevant
features in phases where they are masked by noise or incomplete.
A drawback results from the physical constraints of the robots’ camera. Due

to monocular vision and a lack of zoom control it is not possible to perform
navigation at a distance larger than 1.5m. The resolution of the camera simply
does not permit the geometrical properties of the target marker to be discriminated
anymore. Further, without depth information the robot cannot discriminate
between different situations stemming from a single line of sight. The perceptual
information is blended into a single state. This phenomenon can actually be seen
in Fig. 3.5. Including motor knowledge, i.e. parameters for zoom control, would
most likely resolve this problem and allow for the development of an increased
number of informative receptive fields.
It is conceivable that sensory information from other modalities, e.g. sonar

sensors or auditory cues, could be used for robot navigation with the presented
model. This could be done in addition, i.e. multi-modal, or separately. As a matter
of fact, the architecture should also be capable of learning without any landmark
at all, instead exploiting the geometrical shape of the surrounding area of the
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docking position. However, this is not feasible due to the narrow field-of-view of
the built-in camera. While getting closer, the target region is eventually too close
to be captured in toto.
The presented network learns goal-relevant features within a single united

framework. However, if one is willing to give up on training the network with
one energy function, a self-organizing map (Kohonen, 2001) could be used to first
learn the visual features. Then, this resulting map could represent the state space
for RL in a succeeding step. There are further methods of unsupervised learning,
e.g. exploiting a sparseness or slowness principle (Wiskott and Sejnowski, 2002),
that could also be used to learn the perceptual features. All these models have
in common that they do not discriminate between action-relevant and irrelevant
features, nor do they solve the delayed RL problem. Therefore, they would be
separate parts that would need to be linked ad hoc to the RL architecture.

Once the sensorimotor laws have been learned and the visual features needed for
navigation have been captured in the weights, the robot is able to navigate to any
position where a landmark with the same physical properties is located. This is a
clear advantage compared to algorithms that rely on a world model for navigation
(cf. Ch. 3.1). In our scenario, the landmark serves as an outside memory (O’Regan,
1992), a perceptual channel between the world and the neural system that is
constantly ‘online’ (cf. The Extended Mind Ch. 2.4.3). Thus, according to Clark’s
parity principle (2008) the landmark could be seen as a constituent for cognition,
just like Otto’s notebook.

Related work

From a technical point of view it is straightforward to first learn the state space,
i.e. extract features, with an unsupervised method and then use RL on top of
this to find the mapping between states and actions. This two stage learning
is a common approach in the literature. For instance, Legenstein et al. (2010)
trained a simple neural network based on rewards on top of features, which before
had been extracted with a hierarchical slow feature analysis network. In contrast,
the attention-gated reinforcement learning (AGREL) model of Roelfsema and
Ooyen (2005) represents a link between supervised and reinforcement learning.
The learning rules lead to the same average weight changes as supervised back-
propagation learning. However, learning is slower due to insufficient feedback
when the network guesses incorrectly and, hence, the temporal credit assignment
problem is not addressed with this model.
Faudzi and Shibata (2010) criticize the way that many researchers treat RL

and neural networks as separate modules, the former for learning actions and
the latter as non-linear function approximators for the state space. To overcome
this shortcoming they propose a method that they call Actor-Q learning. In
contrast to our method, their method is designed to have two neural networks,
called Q-net and Actor-net, respectively, in parallel. The Q-net is responsible
for choosing an action, whereas the Actor-net controls the movements. During
training each subnet generates and employs its own error signal. For a given
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task, i.e. camera motion for the identification of two patterns, they were not
able to achieve successful recognition within a reasonable number of trials when
training the network simultaneously. However, when first learning camera motion
(cf. motor babbling, Ch. 2.4.1) and then later on including training for pattern
recognition, they succeeded with their task.

Future work

Future work should address several issues. Most importantly, the action repertoire
of the agent should be augmented to include turning movements. In fact, most
of the 5% unsuccessful trials (red trajectories, Fig. 3.6) are caused by motion-
induced rotation which cannot currently be compensated by the robot. Further, an
implementation on a real robot, possibly including additional modalities, would be
desirable. However, it has to be considered that this might not be computationally
tractable given contemporary hardware.

6.2.2 Sigma-Pi Reinforcement Learning for Reaching
In Ch. 4 a novel two-layer architecture is proposed that is capable of learning
invariant hand-object relations and a corresponding movement of the hand towards
the target. The network handles implicit frame of reference transformations, unaf-
fected by which modality the sensory information comes from or what coordinate
system this information is encoded in. The biological inspiration is drawn from
neurons in the parietal reach region, which keep track of the distance between
a target and the current position of the hand, presumably to serve as an error
signal for reaching movements (Chang et al., 2009). The choice to utilize Sigma-Pi
neurons for the lower layer has been influenced by a mechanism called gain modu-
lation, a way to combine several sources in a non-linear way, e.g. a multiplication
(Pouget et al., 2002). For details regarding the biological inspiration, please refer
to Ch. 4.1.1.
The functioning of the method is demonstrated in a simulation of a 2-D grid

world. Given the position of the hand of a virtual agent, as well as the position of
the target object, all possible invariant hand-object relations and corresponding
movements can be learned perfectly (Fig. 4.6 and 4.7). Despite mastering the
given task flawlessly, the method has a major limitation. The number of weights
in the network grows exponentially (Tab. 4.1) and just for a world of size 5× 5
approximately 57,000 synapses have to be adjusted by the training algorithm. As
a matter of fact, this curse of dimensionality (Bellman, 1957) does not permit
the network to be trained on a world larger than 4× 4 on contemporary desktop
computers. Alternatively, we solved the reaching task with two related learning
methods and compared the results to our unified architecture. The first model of
comparison is a reinforcement learning scheme based on a cubic Q-table, the other
one a two-step paradigm where unsupervised learning of Sigma-Pi neurons (Weber
and Wermter, 2007) is followed by a canonical RL algorithm. Unfortunately, these
two alternative models do not scale very well either. The best scaling goes along
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with the two-step procedure. However, at the same time this procedure leads to
an average error rate of 5–6%. A potential explanation for this weaker outcome
could be the missing influence of actions during unsupervised learning, which is
based on the self-organization of sensory information only.
The analysis of our novel unified method reveals some interesting properties.

Indeed, the model captures law-like relations between motor actions and sensor
readings. A top-down action-driven mechanism structures the sensory information
that is readily available in the environment. Thus, the world serves again as an
outside memory. After learning, when confronted with a known stimulation, this
sensation is directly translated into an action, i.e. reaching for the target object,
reminding of ideomotor theory and the directive minds (see above, Ch. 6.2).
Interestingly, if illegal actions, i.e. movements that leave the specified area,

are not penalized, the reaching task is not learned perfectly. Similarly, if the
approximation to the learning rule of the lower sensory layer, which omits non-local
terms from the action layer, is used, the results are impaired as well. On the
contrary, including an adaptive learning scheme for the action layer (and not for
the sensory layer) leads to a 10-fold increase in learning speed. In fact, all these
observations might have a common cause: actions have a tremendous effect on the
learning of perceptual stimuli. This action-driven perception is also affirmed by
the development of the Q weights, which is slightly faster than the development
of the Sigma-Pi weights. All these findings stress the influence of actions for the
learning of perceptions and is, for instance, in agreement with the result of Faudzi
and Shibata (2010, cf. Ch. 6.2.1).

Related work

Kuperstein (1988) demonstrated that adaptive hand-eye coordination results in
successful reaching. He trained a neural model so that a multi-joint arm could
reach for a cylinder arbitrarily placed in space. For this purpose, self-generated
motor commands were used to explore many different arm positions while holding
a cylinder in the hand. During this process the associated topographic sensory
information was stored in maps. This knowledge later on allowed the system to
learn to reach for the object solely based on sensory and motor feedback. Similar
work has been presented by Andry et al. (2004). A robot learns associations
between vision and arm movements and stores this information in visuo-motor
maps, which are eventually exploited for reaching via a neural network control
mechanism. Recently, Rolf et al. (2011) modeled early goal-directed movements
of infants and showed that inverse models can actually be bootstrapped within
a few hundred movements. Using a simulated arm with up to 50 degrees of
freedom their statistical online algorithm could successfully reach in a 2-D plane.
However, employing the algorithm in a 3-D world had a severe impact on the
scaling (personal communication), emphasizing the challenging nature of the
problem.
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6.3 Recurrent Architecture
Recurrent neural networks can be conceived as dynamical systems (cf. Ch. 2.4.7).
A special type of such an architecture is called RNNPB, a canonical RNN extended
with so-called parametric bias units (Tani and Ito, 2003). We modified a variant
proposed by Cuijpers et al. (2009) with an adaptive weight update regime (Ch. 5.2)
and used this novel algorithm to solve a robotic object categorization task. The
PB units of the recurrent architecture emerge unsupervised (‘self-tuned’) during
training of the network and can be regarded as fixed-points of this dynamical
system that ‘resonate’ to object-specific perceptual stimuli. This self-tuning and
resonating is reminiscent of Gibson’s ecological theory of perception (cf. Ch. 2.2.7).
Gibson (1966) and others (Ch. 2) suggested that perception is indeed an active
process, requiring that an organism moves around in its environment to learn
about dynamic sensory structures. Depending on the morphology of the organism,
different kinds of actions might be adequate to unveil the necessary information
and to self-structure them (cf. Andy Clark’s six elements of EC research, Ch. 2.4.3).
This is exactly what is happening in our experiments. A humanoid robot moves
toy bricks up and down and rotates them back and forth, while holding them in
its hand. Visual and proprioceptive information of this process is structured using
an RNNPB. This helps to distinguish different sensory experiences and mimics
seeing is a way of acting (O’Regan and Noë, 2001).

6.3.1 Active Perception using an RNN with Parametric Bias
By introducing modifications to the learning algorithm of the RNNPB we were
able to achieve a significant 22-fold increase in speed (Tab. 5.2) for the storage
of the two 1-D signals shown in Fig. 5.5. It was also confirmed that the storage
and retrieval of those time series was stable and that learning converged in a well-
behaved manner (Fig. 5.9 and 5.10). Admittedly, the storage of other sequences
with e.g. a different dimensionality, length or dynamic, may well result in a
different increase in performance.
After confirming flawless operation of the training algorithm we conducted

three experiments aiming at object categorization, a fundamental cognitive abil-
ity (Shapiro, 2011). While holding different objects (Ch. 5.3) in its hand, the
robot executes a motor sequence that induces multi-modal sensory changes. Dur-
ing learning these high-dimensional perceptions are ‘engraved’ in the network.
Simultaneously, low-dimensional PB values emerge unsupervised, coding for a
sensorimotor sequence characterizing the interplay of the robot with an object.
We show that 2-D time series of length T = 14 can be reliably represented by a
2-D PB vector and that this vector allows learned sensory sequences to be recalled
with a high accuracy (Fig. 5.12 left). Furthermore, the geometrical relation of PB
vectors of different objects can be used to infer relations between the original high
dimensional time series, e. g. the sensation of a star-shaped object ‘feels’ more like
a circular-shaped object than a triangular-shaped one. Due to the experimental
noise of single trials, identical objects cause varying sensory impressions. Still,
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the RNNPB can be used to recognize those (Fig. 5.11). Additionally, sensations
belonging to unknown objects can be discriminated from known (learned) ones.
Moreover, sensations arising from different unknown objects can be kept apart
from each other reliably (Fig. 5.14).
Humans are able to immediately divide the perceived world into different

physical objects, seemingly without effort, even when they are confronted with
previously unseen objects. Indeed, it makes perfect sense that the discrimination
between different sensory qualia is possible without training (Ch. 5.4.3). However,
actively generating (retrieving) sensorimotor experiences does require training
and generalization capabilities. Similar findings have been reported recently for
humans (Held et al., 2011). Previously blind subjects, regaining sight after a
surgical procedure, were able to visually discriminate different objects right away.
Cross-modal mappings between seen and felt, however, had to be learned.

Comparing the classification results of the fully trained RNNPB with the SVC
reveals a superior performance of the support vector classifier. Nevertheless, it has
to be kept in mind that the maximum margin classifier cannot be used to generate
or retrieve time series. Interestingly, the error rate is lower if the recurrent network
is only trained with two object categories (Ch. 5.4.3). A potential explanation,
besides random fluctuations, could be that during training a common set of weights
has to be found for all object categories. This process presumably interferes, due
to the challenging input data, with the self-organization of the PB space.
A drawback of the presented model is that it currently operates on a fixed

motor sequence. It would be desirable if the robot performed motor babbling (cf.
Ch. 2.4.1) leading not only to a self-organization of the sensory space, but to a self-
organization of the sensorimotor space. A simple solution to this problem would
be to train the network additionally with the motor sequence most appropriate for
an object, i.e. reflecting its affordance (cf. Ch. 2.2.7, Gibson, 1977). This would
lead to an even better classification result because the motor sequences themselves
would help to distinguish the objects from each other and, thus, the emerging
PB values would be arranged further apart in PB space (conversely, this means
currently it does not make sense to train the network with the identical motor
sequences in addition). However, that does not address the fact that the robot
should identify the object affordances, the movements characterizing an object,
by itself. For a possible extension mechanism specifically addressing this issue,
please see the section on future work below.

De-noising

There are several potential applications of the presented model. As shown in
Fig. 5.15 and 5.16, the network tolerates noise very well. This fact can be exploited
for sensor de-noising. Despite receiving a noisy sensory signal, the robot still
will be able to determine the PB values of the class representative based on the
Euclidean distance. In turn, these values can be used to operate the RNNPB
in retrieval mode (Ch. 5.2.2), generating the noise-free sensory signal previously
stored, which then can be processed further. In fact, Körding and Wolpert (2004)
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suggested that the central nervous system combines, in nearly optimal fashion,
visual, proprioceptive and other sensory information to overcome sensory and
motor noise. Next to their Bayesian framework an RNNPB might also be a
possible way to model this ‘de-noising’ happening in the brain.

Sensorimotor Imagery

It is also conceivable that the network is used to model sensory (sensorimotor)
imagery. Due to the powerful generalization capabilities of the network, not only
the trained sensory perceptions can be recalled, but interpolated ‘feelings’ can
be generated (Fig. 5.12 right). For instance, setting (top-down modulated) a PB
value allows how an object feels and what actions are associated with it to be
imagined. It has been reported that visual and motor imagery share the same
neural circuits as actual perceptions and actions do (Jeannerod, 1995). Further,
they are conditional on the same constraints, e.g. timing and metric spatial
information. This blends in with the concept of simulators, which can be seen as
dynamical systems that generate experience depended context-specific simulations
(Barsalou, 1999; 2008; 2009). A simulation is “the re-enactment of perceptual,
motor, and introspective states acquired during experience with the world, body,
and mind” (Barsalou, 1999, pp. 618–619). Based on associative mechanisms among
modalities the concept of simulations might actually lead to the development of
categorical representations (ibid.). Indeed, one is tempted to claim that the PB
values of the presented experiments reflect such a development.

It is also known that the neural circuits underlying motor imagery and motor
preparation are tightly coupled (Cisek and Kalaska, 2005). This is important for
the planning of future actions and the prediction of their perceptual consequences.
Of course, this immediately reminds one of the notion of forward models and
the related efference copy principle (Ch. 2.4.1). Based on PB values a sensory
prediction can be generated. This prediction can be compared to the reafference
signal, i.e. the real sensory feedback, and in this way allows ambiguities to be
resolved that might be present in sensory information. In turn, this knowledge
can then be exploited to control behavior or to discriminate intrinsically from
extrinsically induced sensations. According to Clark and Grush (1999), forward
models (emulators) are a simple way to predict the next sensory and motor state of
a system. Decoupling of the forward model from reality leads back to the concept
of simulations (emulations). For instance, this principle has been exploited for
obstacle avoidance in a computational study of Hoffmann (2007, cf. Ch. 2.4.9).

Garbarini and Adenzato (2004) establish a link between simulation and mirror
neurons (Gallese et al., 1996). “In fact, a third term must be added to the relation
between action and perception, i.e. that of simulation. While observing an object,
the neural system is activated as-if the observer were interacting with it” (Garbarini
and Adenzato, 2004). This view, however, is discussed controversially (Hickok,
2009). Despite correlations that have been found in monkeys between the firing
of mirror neurons and the observation of actions, evidence that this may indeed
have influence on how an organism perceives actions is still very limited (Iacoboni,
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2009). Nevertheless, the RNNPB architecture has been used to model the mirror
neuron system previously (Tani et al., 2004; Cuijpers et al., 2009).

Related work

In related research, Ogata et al. (2005) also extract multi-modal dynamic features
of objects, while a humanoid robot interacts with them. However, there are
distinct differences. Despite using fewer objects in total, the problem posed in our
experiments is considerably harder. Our toy bricks have approximately the same
circumference and identical color. Furthermore, they exist in two weight classes
with an identical in-class weight that can only be discriminated via multi-modal
sensory information. We provide classification results, compare the results to other
methods (MLP and SVC) and evaluate the noise tolerance of the architecture. In
addition, only prototype time series are used for training (in contrast to using
all single-trial time series), resulting in a reduced training time. Further, it is
demonstrated that, if the network has already learned sensorimotor laws of certain
objects, it is able to generalize and provide fairly accurate sensory predictions for
unseen ones (Fig. 5.12 right).

The stimulus response compatibility effect establishes a clear link between visual
and motor processes (Ellis et al., 2007). In a series of psychological experiments
it is demonstrated that the visual categorization of humans is influenced by the
micro-affordances, e.g. precision grip vs. power grasp, associated with the objects.
This phenomenon has been implemented on a simulated iCub robot (Macura
et al., 2009) using a Jordan-type RNN (Kolen and Kremer, 2001) at its core. In
this study, four different objects have to be discriminated by the artificial agent,
specifically two big objects and two small objects have to be kept apart (ball
and cube in each case). During training the robot is trained to grasp the objects
with either a precision or power grip, depending on the size of the object. Based
on these different grips and the associated embodied knowledge acquired during
training the objects can be categorized successfully. Not surprisingly, the error of
trials for congruent conditions (categorization grip is in agreement with the grip
matching the size of the object) was lower than for incongruent ones (mismatch
between used and appropriate grip). This was interpreted to be in agreement with
psychological effects observed in human studies, where subjects showed shorter
reaction times in congruent than in incongruent trials.

Future work

As has been noted above, it would be desirable if the robot were able to identify
the actions by itself that correspond to the most discriminative features of the
objects. At the same time, the affordances of the objects should also be acquired
and utilized for the categorization task, giving the experiments a truly embodied
flavor. To accomplish this goal, the RNNPB could be combined with methods
used in sensor (view) planning. These methods deal with the problem where a
robot has to ‘look’ for an unambiguous identification of an object (cf. Ch. 2.5).
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The resulting sensorimotor sequence could then be stored in the RNNPB, leading
to representative PB values for the respective category. Due to the fantastic
generalization potential that has been demonstrated, the PB values of unknown
objects would probably cluster in proximity to the trained ones, reflecting similar
affordances and informative view sequences of unknown objects, which in turn
could not only be used for recognition but also for sensory and motor imagery as
well as for ‘offline’ movement planning (see above). Next to Bayesian methods, RL
is also conceivable for realizing this challenging task. For a review of additional
methods used for view planning, please see Roy et al. (2004).

Another study that could readily be conducted with the established framework
is the modeling of the experimental observation that actions alter shape categories
(Smith, 2005). Ross et al. (2007) investigated in a VR experiment the influence of
arbitrary actions during category learning on the recognition of objects. During
the recognition phase the subjects either performed consistent or inconsistent
movements (w.r.t. to the actions executed during training). It was shown that
consistent movements facilitated the categorization task, letting the authors con-
clude that arbitrary action information is incorporated into object representations.
Using the RNNPB to store different motor sequence in conjunction with the
sensory impressions of identical objects will result in distinct PB values. It would
be interesting to investigate if the number of recognition steps (and the Euclidean
distance) show similar effects to the ones obtained from the human experiments
when feeding the network with consistent and inconsistent sensorimotor sequences,
respectively.

6.4 Action-Driven Perception – A Critical
Assessment

6.4.1 Ingredients for Embodied Cognitive Systems
Are the presented architectures (Ch. 3 – 5) really (prime) examples for embodied
cognitive systems? Hardly anyone (not even a traditional cognitive scientist)
doubts the (causal) influence of action on perception and that the physical
properties of the world contribute to perception. Including a (learned) description
of the body properties in the mind’s symbol manipulation algorithm, makes it
possible for a traditional cognitive science approach to be compliant with an
embodied approach. It could also be argued that the contact area of the body
with the world generates symbols which in turn can be processed within the brain
(Shapiro, 2011). Thus, computational modeling seems to meet the requirements
of first-generation cognitive science in the sense of being a solipsistic solution to
a given problem. But how can it be shown that cognition of a computational
model with a clearly specified I/O interface extends beyond the boundaries of its
artificial (neural) architecture?
Andy Clark (2008) proposed six ingredients that capture the general spirit
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of an embodied approach (cf. Ch. 2.4.3). “[A] given research project may not
include all six of these elements, but its adoption of several should suffice to
distinguish it from research within more standard cognitive science, as well as to
ally it with other embodied approaches.” (Shapiro, 2011, p. 61). Interestingly, one
of Clark’s elements, the Dynamic-Computational Complementarity establishes
a bridge to canonical cognitive science, because in his view certain explanatory
concepts, like computation and representation, are vital for the understanding of
cognition1. Next, to this element our experiments are also in accordance with Open
Channel Perception, Information Self-Structuring and Perception as Sensorimotor
Experience. Thus, based on this classification they can be conceived as embodied
research projects.

And yet, other authors claim “to implement a truly embodied cognitive system,
multiple modalities are essential. In addition to sensory and motor modalities,
internal modalities, including affect, motivation, and reward, are essential from
the embodied perspective” (Pezzulo et al., 2011). In a qualified sense, these
characteristics are also in compliance with our experiments. The RL architectures
could easily be extended to include additional modalities and they already include
a reward system. On the other hand, the recurrent architecture comprises, next
to visual sensory impressions, also proprioceptive information and the proposed
extension, which is supposed to include sensor planning, aims at incorporating
further elements like attention and possibly reward.
Another counterargument suggesting that our architectures do not qualify

as embodied cognitive systems could be based on the point that some of our
experiments were only performed in simulation. However, even if simulations do
not cover the full complexity of real environments and their transferability is not
always granted it is still believed that they are very valuable for cognitive science
research (Ziemke, 2003a).

6.4.2 Robotics – A Valuable Tool for EC Research?
It has been argued that robots cannot be embodied. “The reason that Artificial
Intelligence originally adopted the view of a ‘disembodied brain’ is that a robot
‘is’ disembodied: it is just a container for a mind. Our bodies are not mere
containers of minds: our bodies have been shaped by evolution to be the natural
object and subject of the mind” (Scaruffi, 2006). Until now, self-evolving robots
are still dreams of the future. Therefore, to cope with this argument, we used a
state-of-the-art humanoid robot for our experiments. Further, we demonstrated
that due to the nature of our algorithms the processing, i.e. the cognitive abilities,
extend beyond the neural architectures and are general enough to adopt to the
physical properties of the body. Nevertheless, this ‘evolution’ argument and
another reasoning, namely “that machines act according to plans (their human
designers’), whereas living organisms are acting plans” (Ziemke, 2003b) are hard

1Also Shapiro (2011) thinks that “retaining [the traditional cognitive science] conceptual
apparatus, when possible, seems reasonable” (p. 205).
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to confute. Nevertheless, as it has been shown in our experiments, if a robot
self-acquires sensorimotor laws, i.e. relating its own actions to sensory impressions,
this anthropomorphic bias can be minimized, if not totally abandoned.
Cognitive robotics and theories for embodied cognitive systems should cross-

fertilize each other (Ch. 2.4.9). Indeed, it has been questioned “how designing
efficacious robots could be a convincing argument for psychologists and neuro-
scientists for or against a certain theory” (Pezzulo et al., 2011). Currently, it
seems that the focus in robotics research is on the design of better autonomous
machines rather than on trying to understand the neural mechanisms of the brain.
Biological-inspired theories help to improve robots (Wermter et al., 2005), but
reciprocal impact for refining neuroscientific hypotheses is rather scarce. This
might be due to the fact that “most current computational models are mere
proofs of concept and lack the adequate level of detail to start deriving precise
predictions, or to simply be considered as useful tools by psychologists and neuro-
scientists” (Pezzulo et al., 2011). This might be true, however there are several
ways where results from robotic experiments can be beneficial for EC theories.
Most importantly, converting theories into algorithms helps to think through
the proposed conjectures and, hence, it might point out shortcomings in one’s
reasoning. Further, robot demonstrators open up new avenues of research and
might help the research field of embodied cognition to become a well-defined
paradigm.

Considering our experiments, some of these advantages become apparent. Bear-
ing the core concepts of EC research in mind during the design of our algorithms,
we were able to obtain systems that ground perception in sensorimotor principles.
This paved the way for several lines of future research (see above). Furthermore,
the results of our bio-inspired reaching experiment (Ch. 4) have led to novel
insights. In principle, the agent learned to accomplish the given task perfectly.
However, the proposed algorithm is not computationally tractable. Thus, due
to the unrealistic number of training examples we are able to refine both the
proposed architecture and our theory.

6.4.3 Using Computational Architectures to Prove a Theory
We have demonstrated that our architectures realize two of the core concepts
proposed by the sensorimotor contingencies theory (cf. Ch. 2.4.4, O’Regan and
Noë, 2001): seeing is a way of acting and the world serves as an outside memory.
These concepts have indeed been helpful for the design of the computational
models and the robotics experiments, but does this suffice to prove that the SMCs
theory itself is correct? Even mimicking a phenomenon described as a prime
example of this theory, e.g. change blindness, does not allow this conclusion to be
drawn. In general, devising a novel mechanistic theory and then implementing it
on a machine will most certainly yield the desired phenomenological results. The
underlying reason for this has been summarized by Beer (in press):

“[W]e must recognize that computationalism, connectionism and dy-
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namicism are not really scientific theories at all, because they them-
selves do not make falsifiable predictions.”

Making the situation even worse, the cognitive subject who is doing the describ-
ing, implementing and interpretation of the experiment, influences the whole
process additionally (Froese, 2010). A scientific experiment cannot be an observer-
independent reality because “the environment as we perceive it is our invention”
(von Foerster, 1988).

6.4.4 Dynamical Systems
Van Gelders (1995) dynamical hypothesis and his example of the Watts governor
for steam machines has been presented in Ch. 2.4.7. This system can be formulated
and solved with differential equations. Being a coupled system suggests that all
parts of it are really constituents2 of the process and raises the question of whether
representations do exist at all in this model. Nevertheless, the same problem can
be formulated using representations leading to a solution rooted in cybernetics
(Ch. 2.2.5) that works equally well, and more importantly, also explains the
phenomenon, albeit differently3. Which solution should be taken for granted now?
How does the ‘brain’ of the steam machine work and “can we really benefit from
conceiving of cognitive processes as dynamical systems” (Shapiro, 2011, p. 123)?
Another dynamical concept, the free-energy principle, has been proposed in

order to account for action, perception and learning (Friston, 2010). According to
this theory, the brain seeks to minimize its free energy via optimization of value
(expected reward, expected utility) or its complement surprise (prediction error,
expected cost). This can be formulated with three sets of differential equations,
one set that describes how actions and neuronal representations of expected states
change with time, another set that reflects the agent’s model of how sensory
data are generated and, finally, a set that formalizes the prediction error of the
brain. Again, the coupled systems are fully described. For instance, if the agent’s
equations of motion for the mountain car problem are known, the principle works
very well (Friston et al., 2009). But can it be assumed that equations for the
complete environment and brain are given?
It is not only for these reasons that recurrent neural architectures, which can

either be learned or evolved, are an interesting dynamical alternative. Beer’s
(2003) categorical perception experiment that uses a CTRNN has been presented
in Ch. 2.4.7. In our experiments we also perform object categorization. For
this purpose, we employ an RNNPB to self-structure the information present in
multi-modal data. Both studies demonstrate in an impressive way how actions are
indeed fundamental for perception. If the agent did not move (itself or the object)
it would be insensate. Moreover, in our experiment passive movements are not

2cf. coupling-constitution fallacy Ch. 2.4.3
3Yet another example is Ashby’s homeostat, whose behavior appears to be intelligent to
an external observer but can potentially be realized by a simple mathematical system
(Ashby, 1947).
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sufficient to differentiate between heavy and light objects because proprioceptive
information necessary for successful categorization is missing.

6.4.5 Representations
In contrast to Beer’s categorical perception where the agent’s behavior is used for
object classification, the steady state (stable PB value representing a fixed-point)
is used to determine the object in our system. This might attribute a rather
representational approach to our experiment. According to van Gelder (1995),
representations in computational systems are discrete and deterministic states,
they stand in for something, which is used subsequently for computation. This
is not the case for his experiments, Beer (2003) claims. Both the object and
the agent always move and, thus, do not reach an equilibrium point. Does this
make our approach to object recognition less embodied, less cognitive? In fact,
observing the neural activation patterns in Beer’s experiments over time does
allow which object the agent is faced with to be determined, it represents the
state of the system. However, Beer (ibid.) would reply:

“Rather than assigning representational content to neuronal states, the
mathematical tools of dynamical systems theory are used to character-
ize the structure of the space of possible behavioral trajectories and the
internal and external forces that shape the particular trajectory that
unfolds. Indeed, a dynamical approach to situated action raises impor-
tant questions about the very necessity of notions of representation
and computation in cognitive theorizing.”

Admittedly, in both experiments (Beers and ours) the meaning of the categoriza-
tion, i.e. which object is ‘felt’ by the agent, is assigned by an external observer.
Without this, a self-structuring of the action-perception cycle of agent-world
interactions still happens. Nevertheless, to interpret the processes, representa-
tional vehicles are most certainly necessary. Also for higher cognitive functions,
e.g. transfer abilities in comparison to purely reactive behavior or sensory and
motor imagery of an object (see above), some sort of memory system is necessary.
Following the same notion, Shapiro (2011) states that the continuous interac-
tion between agent and object “without representation is useless”. Furthermore,
Ward and Ward (2009) claim to have found weak-substantive representations (cf.
Ch. 2.4.3, Clark, 1997b) after performing an extensive behavioral analysis of an
agent’s discrimination abilities, which was obtained by replicating Beer’s (2003)
experiments. In contrast, the PB values of our experiments rather reflect strong
representations (Clark, 1997b), which refer to internal states that can also be used
offline for planning or mental simulations (see above).
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6.5 Conclusion

We have presented three different artificial neural architectures and discussed
their relevance for an action-driven perception paradigm within the research field
of embodied cognition. Actions help to resolve ambiguities and enhance the
perceptual experience and, hence, considering their importance for perception,
contribute to the design of better robotic systems. Inspired by principles rooted in
various disciplines (cf. Ch. 2), we demonstrated that the concept of action-driven
perception can be used to operate control structures (cf. experiments Ch. 3 and
4) and to determine how objects ‘feel’ (cf. experiment Ch. 5).

In all our experiments the agent actually needs to act to perceive. Based on the
hypothesis perceiving (seeing) is a way of acting it interacts with its environment,
thereby learning sensorimotor laws that can be exploited for goal-directed behavior.
The agent relies on information that is readily available in the environment and,
thus, uses the world as an outside memory. Further, the concept of information
self-structuring, according to which actions help to structure (sensory) information,
can be found in all our studies.

But how can other researchers benefit from the underlying sensorimotor design
principles? The scope of this thesis was not to prove that actions are fundamental
for perception. Evidence for this hypothesis has been given in Ch. 2. Instead, we
used the sensorimotor principles listed in Ch. 1.2 as an inspiration for the design of
our architectures and experiments. We have shown, if one follows these guidelines
that indeed, artificial neural architectures can be devised or refined that allow
different robotic tasks to be solved successfully. However, this does not mean that
the proposed architectures and the underlying design principles are in general
better suited for all sorts of robotic tasks. The claim that the design principles are
superior to other approaches cannot be proven because computational theories (e.g.
modeling studies) themselves are not falsifiable. Just because a solution performs
better on a given test set does not mean that the theory itself is correct (w.r.t.
neuroscientific plausibility). In general, the intertwined relationship of action
and perception should be kept in mind by every researcher who designs (robotic)
experiments. However, if the goal is to make ‘better robots’, the method which
works best should be adopted, even if it is not biologically inspired. Especially
hybrid architectures, e.g. combining neural networks with a statistical method,
can be very helpful and may even scale better than the proposed methods.
The experiments comprise an entire sequence of several related tasks. In the

first experiment, the robot learns to navigate towards a target region (Ch. 3).
This is followed by a reaching study (Ch. 4) and a dynamic object recognition
task where a humanoid robot moved objects up and down and rotated them back
and forth, while holding them in its hand (Ch. 5).
Besides being a sequence of related tasks, the conducted experiments also

represent the evolutionary process of finding suitable artificial neural architectures
and appropriate experiments for action-driven learning based on sensorimotor
principles. In the first study (Ch. 3), the focus was on the methodology of
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this special type of artificial neural architecture. This paved the way for the
development of the novel bio-inspired architecture presented in Ch. 4. Due to an
excellent generalization potential of recurrent neural networks and the known self-
organization of the parametric bias units, we decided on the RNNPB architecture
for the final experiment (Ch. 5). Again, the knowledge gained previously helped
the design of the experiment and the improvement of the learning algorithm.
The main scientific contributions of this thesis can be summarized as follows.

First, we introduced an innovative navigation paradigm that is independent of a
world model, because the world itself serves as an outside memory. Second, we
proposed a novel bio-inspired neural architecture that combines reinforcement
learning and Sigma-Pi neurons. Third, we extended an RNNPB with an adaptive
learning regime, leading to a drastically reduced training time. In addition, several
future experiments have been suggested that can be conducted based on the
theoretical and methodological framework established within this thesis.
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Excerpts Handbuch der
physiologischen Optik

A scanned version of the book Handbuch der physiologischen Optik can be obtained
at http://books.google.com. Please note that at the time of publication (1867) no
unified grammatical and spelling norms existed. The quotations are taken ‘as is’,
resembling the original typesetting. Hence, for our contemporary understanding
the text may contain orthographic errors.

Eine zweite allgemeine Eigenthümlichkeit unserer Sinneswahrnehmungen
ist die, dass wir auf unsere Sinnesempfindungen nur so weit
le icht und genau aufmerksam werden, als wir sie für die
Erkenntniss äusserer Objecte verwerthen können, dass wir
dagegen von allen denjenigen Theilen der Sinnesempfindun-
gen zu abstrahiren gewöhnt sind, welche keine Bedeutung
für die äusseren Objecte haben, so dass meistentheils eine beson-
dere Unterstützung und Einübung für die Beobachtung dieser letzteren,
subjectiven Empfindungen nothwendig ist.
(Helmholtz, 1867, p. 430)

Unsere Anschauungen und Vorstellungen sind Wirkungen, welche die
angeschauten und vorgestellten Objecte auf unser Nervensystem und
unser Bewusstsein hervorgebracht haben. Jede Wirkung hängt ihrer
Natur nach ganz nothwendig ab sowohl von der Natur des Wirkenden,
als von der desjenigen, auf welches gewirkt wird. [. . . ]
Ich meine daher, dass es gar keinen möglichen Sinn haben kann, von
einer anderen Wahrheit unserer Vorstellungen zu sprechen, als von
einer praktischen. Unsere Vorstellungen von den Dingen können
gar nichts anderes sein, als Symbole, natürlich gegebene Zeichen für die
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Dinge, welche wir zur Regelung unserer Bewegungen und Handlungen
benutzen lernen. Wenn wir jene Symbole richtig zu lesen gelernt
haben, so sind wir im Stande, mit ihrer Hilfe unsere Handlungen so
einzurichten, dass dieselben den gewünschten Erfolg haben, d. h. dass
die erwarteten neuen Sinnesempfindungen eintreten.
(Helmholtz, 1867, 442 et seq.)

Von der größten Wichtigkeit endlich für die Festigkeit unserer Überzeu-
gung von der Richtigkeit unserer sinnlichen Wahrnehmung sind die
Prüfungen, welche wir mittels der willkürlichen Bewegungen unseres
Körpers anstellen. Es entsteht dadurch den blos passiven Beobach-
tungen gegenüber dieselbe Art festerer Ueberzeugung, welche wir bei
wissenschaftlichen Untersuchungen durch das experimentierende Ver-
fahren gewinnen. Der eigentliche letzte Grund, durch welchen alle
unsere bewusst vollzogenen Inductionen überzeugende Kraft erhalten,
ist das Causalgesetz. Wenn wir sehr häufig zwei Naturerscheinungen
verbunden haben auftreten sehen, z. B. den Donner immer dem Blitze
folgen, so erscheinen sie gesetzmässig aneinander gebunden, und wir
schliessen, dass ein gemeinsamer Grund für beide bestehen muss, und
wenn dieser Causalnexus bisher immer bewirkt hatte, dass Donner
und Blitz sich begleiteten, so werden gleiche Ursachen auch in Zukunft
gleiche Wirkungen hervorbringen müssen, und der Erfolg wird auch
in Zukunft derselbe sein müssen. So lange wir nun aber auf blosse
Beobachtung solcher Phänomene beschränkt sind, welche ohne unser
Zuthun von selbst eintreten, ohne Experimente anstellen zu können,
bei denen wir den Complex der Ursachen verändern, gewinnen wir
schwer die Überzeugung, dass wir alle Bedingungen, welche auf den
Erfolg Einfluss haben können, wirklich schon ermittelt haben. Es
muss schon eine ungeheuere Mannigfaltigkeit von Fällen existiren,
auf welche das Gesetz passt, und es muss das Gesetz den Erfolg mit
grosser Genauigkeit bestimmen, wenn wir uns in einem Falle blosser
Beobachtung beruhigen sollen.
(ibid., 450 et seq.)

Diesselbe grosse Bedeutung nun, welche das Experiment für die Sicher-
heit unserer wissenschaftlichen Ueberzeugungen hat, hat es auch für
die unbewussten Inductionen unserer sinnlichen Wahrnehmungen. Erst
indem wir unsere Sinnesorgane nach eigenem Willen in verschiedene
Beziehungen zu den Objecten bringen, lernen wir sicher urtheilen über
die Ursachen unserer Sinnesempfindungen, und solches Experimen-
tiren geschieht von frühester Jugend an ohne Unterbrechung das ganze
Leben hindurch.
Wenn die Gegenstände nur an unseren Augen vorbeigeführt würden
durch fremde Kraft, ohne dass wir selbst etwas dazu thun könnten,
würden wir uns in einer solchen optischen Phantasmagorie vielleicht
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nie zurecht gefunden haben, [. . . ]
(ibid., p. 452)
Unsere Empfindungen sind eben Wirkungen, welche durch äußere
Ursachen in unseren Organen hervorgebracht werden, und wie eine
solche Wirkung sich äußert, hängt natürlich ganz wesentlich von der
Art des Apparats ab, auf den gewirkt wird. Insofern die Qualität
unserer Empfindung uns von der Eigenthümlichkeit der äu Jseren Ein-
wirkung, durch welche sie erregt ist, eine Nachricht giebt, kann sie
als ein Zeichen derselben gelten, aber nicht als ein Abbild. Denn
vom Bilde verlangt man irgend eine Art der Gleichheit mit dem abge-
bildeten Gegenstande, von einer Statue Gleichheit der Form, von einer
Zeichnung Gleichheit der perspectivischen Projection im Gesichtsfelde,
von einem Gemälde auch noch Gleichheit der Farben. Ein Zeichen
aber braucht gar keine Art der Ähnlichkeit mit dem zu haben, dessen
Zeichen es ist. Die Beziehung zwischen beiden beschränkt sich darauf,
da Js das gleiche Object, unter gleichen Umständen zur Einwirkung
kommend, das gleiche Zeichen hervorruft, und da Js also ungleiche
Zeichen immer ungleicher Einwirkung entsprechen.
Der populären Meinung gegenüber, welche auf Treue und Glauben
die volle Wahrheit der Bilder annimmt, die uns unsere Sinne von den
Dingen liefern, mag dieser Rest von Ähnlichkeit, den wir anerkennen,
sehr geringfügig erscheinen. In Wahrheit ist er es nicht; denn damit
kann noch eine Sache von der allergrö Jsten Tragweite geleistet werden,
nämlich die Abbildung der Gesetzmä Jsigkeit in den Vorgängen der
wirklichen Welt. Jedes Naturgesetz sagt aus, da Js auf Vorbedingun-
gen, die in gewisser Beziehung gleich sind, immer Folgen eintreten,
die in gewisser anderer Beziehung gleich sind. Da Gleiches in un-
serer Empfindungswelt durch gleiche Zeichen angezeigt wird, so wird
der naturgesetzlichen Folge gleicher Wirkungen auf gleiche Ursachen
auch eine ebenso regelmä Jsige Folge im Gebiete unserer Empfindungen
entsprechen.
Wenn also unsere Sinnesempfindungen in ihrer Qualität auch nur
Zeichen sind, deren besondere Art ganz von unserer Organisation
abhängt, so sind sie doch nicht als leerer Schein zu verwerfen, son-
dern sie sind eben Zeichen von Etwas, sei es von etwas Bestehendem
oder Geschehendem, und was das Wichtigste ist, das Gesetz dieses
Geschehens können sie uns abbilden.
(Helmholtz and König, 1896, p. 586)
So wie diese [die richtige körperliche Vorstellung von dem dargestellten
Object] gefunden ist, wandern die beiden Blicklinien mit der grö Jsten
Sicherheit und Schnelligkeit über alle Theile der Figuren hin. Hier
bewährt sich also in der That die Gesammtauffassung der Körperform
gleich als die Regel für die Vorstellung, nach welcher man die bei-
den Blicklinien zu führen hat, um fortdauernd auf correspondirenden
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Punkten beider Zeichnungen zu bleiben.
In welcher Weise solche Kenntnisse der Bedeutung der Gesichts-
bi lder von jungen menschlichen Kindern zuerst gesammelt
werden, ergiebt sich leicht, wenn wir dieselben beobachten, während sie
mit den ihnen als Spielzeug dargebotenen Objecten sich beschäftigen,
wie sie dieselben betasten, stundenlang von allen Seiten betrachten,
herumwenden, sie in den Mund stecken u. s. w. , endlich sie herunter-
werfen oder zu zerschlagen suchen und dies jeden Tag wiederholen.
Man wird nicht daran zweifeln können, da Js dies die Schule ist, in der
sie das natürliche Verhalten der sie umgebenden Gegenstände kennen
lernen, dabei auch die perspectivischen Bilder verstehen, ihre Hände
gebrauchen lernen. Ebenso lehrt die Beobachtung jüngerer Kinder,
da Js sie in den ersten Wochen ihres Lebens diese Kenntnisse noch nicht
haben. Wenn ihnen irgend eine instinktmä Jsige Kenntni Js angeboren
wäre, so sollte man erwarten, da Js es in erster Linie die Kenntni Js
des Bildes der Mutterbrust sein mü Jste und die Kenntni Js derjeni-
gen Bewegung, durch welche sie sich diesem Gesichtsbilde zuwenden
könnten. Aber eine solche Kenntni Js fehlt ganz offenbar. Man sieht,
da Js das Kind lebhaft wird, wenn es in die Stellung für das Säugen
gebracht wird, und unruhig suchend den Kopf hin und her wendet,
um die Brust zu finden, aber es wendet sich in den ersten Tagen ebens
oft von der Brust ab, wie ihr zu, obgleich es diese frei erblicken kann.
Offenbar wei Js es in diesem frühen Alter weder das Gesichtsbild, noch
die Richtung seiner Bewegungen zu deuten. [. . . ]
Ich folgere daraus, da Js die Deutung auch einiger der einfachsten und
für das menschliebe Kind wichtigsten Gesichtsbilder von ihm erlernt
werden muß und nicht durch angeborene Organisation von vorneherein
ohne vorausgehende Erfahrung gegeben ist.[. . . ]
In diesem Sinne können wir behaupten, die Vorstellung der stere-
ometrischen Form eines körperlichen Objects spielt ganz die Rolle eines
aus einer gro Jsen Reihe sinnlicher Anschauungsbilder zusammengefa Jsten
Begriffs, der aber selbst nicht nothwendig durch in Worten ausdrück-
bare Definitionen, wie sie der Geometer sich construiren könnte, son-
dern nur durch die lebendige Vorstellug des Gesetzes, nach dem seine
perspektivischen Bilder einander folgen, zusammengehalten wird.
Da Js eine solche mühelose Anschauung der normalen Folge von geset-
zlich verküpften Wahrnehmungen durch hinreichend reiche Erfahrung
gewonnen werden kann, habe ich zu beweisen gesucht.
(Helmholtz and König, 1896, 599 et seq.)
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