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Abstract

Inspired by the behaviour of humans talking in noisy environments, we pro-
pose an embodied embedded cognition approach to improve automatic speech
recognition (ASR) for robots under challenging conditions, such as high levels
of ego-noise, using binaural sound source localisation (SSL). We find that the
humanoid embodiment allows the generation of additional spatial cues that cover
the entire audible range, without additional computational costs. Furthermore,
by simplifying existing biomimetic models for the extraction of spatial cues in
sound, we are able to understand the principles that are important to perform
robustly in noisy environments. We test our approach by measuring the impact
of SSL with a humanoid robot head on the performance of an ASR system. More
specifically, the robot orients towards the angle where the signal-to-noise ratio
(SNR) of speech is maximised for one microphone and uses this signal as input
to the ASR system. In our first experiment, we make use of one humanoid plat-
form (Nao) to produce the spatial cues necessary for SSL. The embodiment of
the robot produces cues that are robust to interfering noise as they span a broad
range of sound frequencies. Then, we use spiking neural networks (SNN) to ex-
tract such spatial cues from the sound. The SNN are biomimetic models of regions
in the mammalian midbrain that are relevant for SSL. Next, a Bayesian model
integrates the spatial cues encoded by the biomimetic models and a feedforward
neural network is used to handle high levels of ego-noise and reverberation in
the signal. Once the robot determines the direction of the incoming sound, it
turns in the direction of the sound source, and the sound signal is fed into an
ASR system. For ASR, we use DOCKS, a system developed by the Knowledge
Technology Group of the University of Hamburg, and compare its performance
with and without support from the SSL system. In order to measure the quality
of the spatial cues created by different robot embodiments, we test our SSL and
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ASR systems on two humanoid platforms with different structural and material
properties (iCub and Soundman). With our approach, we halve the sentence
error rate in comparison to the standard approach of downmixing the input of
both channels. We find that ASR performs more than two times better when the
angle between the humanoid head and the sound source allows sound waves to
be reflected most intensely from the pinna to the ear microphone, rather than
when sound waves arrive perpendicularly to the membrane. In conclusion, our
work allows understanding in greater detail the advantages of using a humanoid
embodiment to produce spatial cues and of using biomimetic models to represent
such cues. Equally important, we also understand better the importance of robots
that use behaviour as a programmatic approach that converges in a sequence of
steps to the optimal configuration for performing ASR in noisy conditions.

Keywords: Automatic speech recognition, behavioural robotics, binaural
sound source localisation, bioinspired neural architectures.

Zusammenfassung

Menschen sind besonders gut darin, sich in geräuschvollen Umgebungen zu
unterhalten. Davon inspiriert, schlagen wir einen kognitiven, in körperliche Wahr-
nehmung eingebetteten Ansatz zur Verbesserung von automatischen Spracherken-
nungssystemen (ASR) vor. Dieser Ansatz ermöglicht die ASR auf Robotern unter
besonders schwierigen Bedingungen, beispielsweise unter Egogeräuschen, unter
Zuhilfenahme von binauraler Geräuschquellenlokalisierung (SSL). Wir überprüfen
unseren Ansatz, indem wir die Auswirkung von SSL in der Performanz eines ASR-
Systems mit einem humanoiden Roboterkopf bemessen. Insbesondere wird dem
Roboter ermöglicht, sich in die Richtung des Winkels zu orientieren, in welchem
das Signal-Rausch-Verhältnis (SNR) von natürlicher Sprache für ein Mikrophone
am Besten ist und dann dieses Signal als Eingabe für das ASR-System zu be-
nutzen. Zuerst machen wir uns dabei eine humanoide Plattform zu Nutze um
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räumliche Hinweise zu erzeugen, die notwendig für die SSL sind. Als nächstes be-
nutzen wir gepulste neuronale Netzwerke (SNN), um diese räumlichen Hinweise
aus dem Sound zu extrahieren. Die SSN sind bio-mimetische Modelle für Re-
gionen im Mittelhirn von Säugetieren, welche als besonders relevant für die SSL
angesehen werden. Schließlich integrieren wir mit einem Bayesischen Modell die
räumlichen Hinweise, welche von den bio-mimetischen Modellen enkodiert wer-
den, und benutzen ein neuronales Feedforward-Netzwerk um den hohen Grad an
Egogeräuschen und Widerhall des Sounds zu bewältigen. Nachdem der Roboter
die Richtung des eingehenden Sounds bestimmt hat, dreht sich dieser in die Rich-
tung der Soundquelle und speist das Sound-Signal in das ASR-System ein. Für
die ASR benutzen wir ein System, welches eigens in unsere Gruppe entwickelt
wurde und vergleichen damit die Performanz, sowohl mit als auch ohne die Un-
terstützung unseres SSL Ansatzes. Um die Qualität von räumlichen Hinweisen
zu bemessen, die sich aus eingebetteten Körperwahrnehmungen unterschiedlicher
Roboter ergeben, untersuchen wir unseren SSL- und ASR-Systeme auf zwei hu-
manoiden Roboterplattformen mit unterschiedlichen Struktur- und Materialein-
genschaften. Mit unserem Ansatz sind wir in der Lage, die Fehlerrate auf Sätzen
zu halbieren, verglichen mit dem Standardansatz, bei dem die Eingabe aus zwei
Kanälen heruntergemischt wird. Wir finden, dass das ASR-System mehr als
zweifach besser funktioniert, wenn der Winkel zwischen dem humanoiden Kopf
und der Soundquelle es ermöglicht, dass die Soundwellen am intensivsten von
der Ohrmuschel zum Mikrophon des Ohres reflektiert werden, anstatt wenn die
Soundwellen senkrecht auf die Membran auftreffen. Zusammengefasst, ermöglicht
unsere Arbeit sowohl ein tieferes Verständnis über die Möglichkeiten, wie wir
humanoide eingebettete Körperwahrnehmung nutzen können, um räumliche Hin-
weise zu erzeugen, als auch, wie wir bio-mimetische Modelle zur deren Repräsen-
tation einsetzen können. Gleichermaßen wichtig ist auch unser verbessertes Ver-
ständnis über die Wichtigkeit für Roboter, ein Verhalten als programmatische
Annäherung zu nutzen, welches in einer Abfolge von Schritten zur optimalen
Konfiguration konvergiert, um ASR unter geräuschvollen Bedingungen zu leisten.

Keywords: Automatische Spracherkennung, Verhaltensrobotik, binaurale
Schallquellenlokalisierung, bioinspirierte neurale Strukturen.
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Glossary

S Capital letters indicate sets.

∈ Set membership.

| . . . | Cardinality of a set.

M Boldface capital letters indicate 2D arrays.

� Element-wise array multiplication.

∀ Universal quantification.

∧ Logical conjunction.

∨ Logical disjunction.

¬ Logical negation.

[, ] Closed interval.

∼ Same order of magnitude.

� Of greater order than.

| Conditional event.

O() Computational complexity.
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Chapter 1

Introduction

Sound conveys information that is crucial for our interaction with the environ-
ment. This information is particularly useful when the environment obstructs
visual information, e.g., when the light is scarce or in environments cluttered
by the presence of dense vegetation, fog, etc. Sound not only conveys informa-
tion about the occurrence of a given event in time and space (Griffiths & Warren,
2004) but also about its context (Hengel & Andringa, 2007), the relation between
different events and the physical properties of materials (Sinapov et al., 2011).
Therefore, audition allows us to create a more accurate and dynamic representa-
tion of the world, which is essential for the emergence of intelligence (McCarthy,
1960; Minsky, 1961; Newell et al., 1972; McCarthy & Hayes, 1981; Samsonovich,
2012). Audition is a broad field of study, and in the present work we focus on the
extraction of spatial information contained in sound. This subfield of auditory
perception is known as sound source localisation (SSL). SSL is an essential ability
for animals to survive, as the continuous spatial localisation of a sound source
can inform the listener about the dynamics of the world, e.g., the direction and
speed of multiple sound sources. SSL can be useful in a wide range of behaviours
in nature, including competition strategies like the detection of predators and the
accurate targeting of prey (Kim, 2006). Localising sounds in space can also be
crucial for mating, communication and in general for survival.

More specifically, we are interested in the auditory system of humans (Wright
& Zhang, 2006). People routinely display behaviours that are important for in-
teracting with dynamic environments. This range of conducts is made possible
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1. INTRODUCTION

by our internal representation of the world acquired through our senses and inte-
grated by our brains (Bowers, 2009; Kourtzi & Connor, 2011; West et al., 2018).
This integrative process is called perception, and it is a complex cognitive function
that allows humans to create such representations and find meaning in them.

Even though the information we receive is subject to noise from several
sources, the integration of different sensory modalities can provide the necessary
redundancy to perceive the environment with consistency (Stein & Meredith,
1993a; Dosher & Lu, 1998; Ernst & Bülthoff, 2004; Hartmann et al., 2005). In
the case of auditory perception, our brain extracts various types of information
contained in sound. The first layers in our auditory pathway extract low-level
features of sound. These initial stages of auditory processing allow us to segre-
gate individual sound components from noisy backgrounds, localise them in space
and detect their motion patterns (Lopez-Poveda et al., 2010; Ruggles et al., 2011;
Moore, 2012; Grothe, 2000; Grothe et al., 2010). In later stages, our brain ex-
tracts high-level auditory features to perform tasks such as understanding natural
language (Schnupp et al., 2011; Golumbic et al., 2013).

For all the previous reasons, audition is also crucial for autonomous robotic
systems (van der Zant & Iocchi, 2011; Stramadinoli et al., 2011; Andersson et al.,
2004). Notably, the ability to pinpoint sound sources is essential for the safe
interaction of robots with the environment and for improving communication
with humans (Roman et al., 2003). Its azimuth, elevation and depth specify the
location of a sound source in space. However, it is only possible for a listener to
estimate the distance to a sound source when the nature of the sound is familiar
to the listener (Nakashima & Mukai, 2005; Schenkman & Nilsson, 2011). For
example, we can estimate how far is our dog when it barks, because it always does
it with the same intensity. In this project, we focus on sound source localisation
on the frontal 180◦ along the azimuth plane, as our focus is on Human-Robot
Interaction, i.e., on tracking the voice of the speaker that the robot is facing.
Furthermore, we also investigate the use of spatial cues in sound to improve
automatic speech recognition (ASR), as the spatial localisation of a speaker on
the azimuth can increase the signal-to-noise ratio in Cocktail Party scenarios
and support high-level cognitive tasks (Roman et al., 2003; Delcroix et al., 2011;

2



a) b)

Figure 1.1: a) Interaction of a head structure and low-frequency components
in sound. b) Interaction of a head structure and high-frequency components in
sound. Notice that the head produces a considerable shadowing effect only with
high frequencies (Blauert, 1997, Ch. 2.2.2).

Hurmalainen et al., 2011; Marti et al., 2012; Hill et al., 2012; Spille et al., 2013;
Jiang & Liu, 2014).

As with any other perceptual capability, a meta-objective of artificial SSL
systems is their portability between different robotic platforms (Yamamoto et al.,
2004). This meta-objective partly explains the broad range of approaches that
scientific literature has documented, including complex microphone arrays fitted
to specific rooms and robotic platforms. An alternative paradigm to multiple
microphone arrays is binaural SSL, as humans are a clear example that it is
possible to achieve accurate sound source localisation using only two sound sensors
or ears. Humans rely on the effect produced by the pinnae, head and torso on
the sound frequency components (FC), and on the capacity to move our head
for performing SSL (Middlebrooks & Green, 1991). Similarly, with only one pair
of microphones separated by a head-like structure, an SSL system can estimate
interaural time differences (ITD) and interaural level differences (ILD). Both
spatial cues are fundamental, as ITDs convey more accurate information in low
FCs and ILDs in high FCs. All these neurophysiological findings of sound source
localisation in mammals inspired the scientific community to design novel systems
for SSL during the last decade.
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1. INTRODUCTION

Figure 1.2: Anatomy of the entire human ear. Image from Wikimedia Commons.

Freely distributed under the Creative Commons Attribution-Share Alike 3.0 Unported li-

cense.

1.1 Embodiment and Neural Correlates

In this section, we present an overview of the biological principles found by neu-
roanatomical studies of the mammalian auditory pathway (King & Palmer, 1983;
Masterton & Imig, 1984; Jenkins & Merzenich, 1984; Kayser et al., 2005; Good-
man & Brette, 2010; Brette, 2012). More specifically, we describe the interaction
between the body of the human listener and the approaching sound waves, the
transduction of mechanical vibrations in the inner ear to neural spikes and the
spatial encoding of information contained in sound that takes place at subsequent
layers in our brain (Panchev & Wermter, 2006).

1.1.1 Torso and Pinnae

Sound waves are affected when they interact with our bodies. This interaction
modifies the frequency spectrum of sound reaching our ear canal in different

4



1.1 Embodiment and Neural Correlates

ways, depending on the spatial location of the sound source around our body.
Low FCs, with a wavelength at least twice as long as the interaural distance, can
produce ITDs that indicate the angle of incoming sound unambiguously (Schnupp
et al., 2011; Lund et al., 1998). However, the ITD for high frequencies in sounds
starts becoming ambiguous once the wavelength of high-frequency components
is less than twice the interaural distance. For example, in human adults, ITDs
become ambiguous at frequencies above 1600 Hz (Middlebrooks & Green, 1991).
The torso and pinnae reflect with different intensities high FCs, and the head
does not diffract them around the head, reducing the sound pressure level at the
contralateral ear. Such influence on the sound waves has a “shadowing” effect that
generates specific ILDs for different angles along the azimuth. Figure 1.1 shows
the interaction between a head-like structure and different frequency components
in sound. ITDs and ILDs are complementary cues, as they contain information
from both extremes of the audible frequencies range. As ILDs and ITDs allow the
localisation of a sound source in space, their integration is known as the Duplex
Theory of sound source localisation (Middlebrooks & Green, 1991).

Figure 1.2 shows the anatomy of the human ear. The geometry and material
of the pinna affect the intensity of individual frequencies in the sound spectra
due to reflection and absorption (Hofman et al., 1998; Pujol et al., 2019). This
effect allows the front-back disambiguation of sound sources. After the sound
reaches the eardrum, the middle ear ossicles transfer the air pressure waves into
the cochlear fluid. Figure 1.3 shows the anatomy of the middle ear. There, the
surface ratio between the eardrum and the oval window is around 20:1. Together
with the mechanical amplification produced by the ossicles, the total pressure
increase can reach up to 26 dB, varying with different frequencies and individ-
uals. Afterwards, the middle ear behaves as an impedance adapter; it transfers
efficiently mechanical waves from gas (air) to liquid (cochlear fluid). Without it,
our ears would reflect in the environment approximately 98% of the sound waves
(Pujol et al., 2019). Together, the influence of the pinna and ossicles on the sound
spectra provides essential monaural clues that allow us to determine the location
of sound sources on the elevation plane.
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1. INTRODUCTION

Figure 1.3: Anatomy of the human middle ear. Image from Wikimedia Commons.

Freely distributed under the Creative Commons Attribution-Share Alike 3.0 Unported li-

cense.

1.1.2 Inner Ear

Figure 1.4 shows the anatomy of the inner ear. Once sound waves reach our
inner ear, they produce vibrations inside the cochlea. The organ of Corti then
encodes the information contained in these oscillation patterns by transducing
mechanical vibrations on the basilar membrane (BM) into neural spikes (Richter
et al., 1998). Inside the cochlea, the BM functions like a mechanical filter that
decomposes the sound wave in its fundamental frequencies. Such filtering is a
clear example of the advantages of Embodied Embedded Cognition (Krichmar,
2012; Pfeifer et al., 2007; Pulvermüller, 2013), as the passive mechanism of the
BM performs this computation efficiently without the need for metabolism. Also
inside the cochlea, the hair-cells (HC) transduce the mechanical vibrations along

6
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Figure 1.4: Anatomy of the human inner ear. Image from Wikimedia Commons.

Freely distributed under the Creative Commons Attribution-Share Alike 3.0 Unported li-

cense.

the BM into neural spikes. These spikes are phase-locked to the section of the
BM most sensitive to a particular frequency. The neural topology of the auditory
pathway shows the same spatial distribution of FCs from the BM up to the
auditory cortex Schnupp et al. (2011). Figures 1.6 and 1.7 show in detail the
anatomy of the Cochlea and the Organ of Corti.

An HC has the highest probability of producing a spike when the local wave
amplitude in the BM is maximal. As HCs are attached only to one side of the
BM, they behave like a half-wave rectifier. Figure 1.5 shows waves representing
vibrations in the left (L) and right (R) basilar membranes at a section resonant
to a given sound frequency component f . The markers above the maximum am-
plitudes of the waves represent the point in time with the maximum probability

7
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Figure 1.5: The waves represent vibrations on the left (L) and right (R) basilar
membranes at sections that resonate with a given sound frequency component f .
The markers above the maximum amplitudes of the waves represent the point in
time with the maximum probability of a neural spike to be produced by the HCs
in the organ of Corti.

Figure 1.6: Cross section of the human Cochlea. Image from Wikimedia Commons.

Freely distributed under the Creative Commons Attribution-Share Alike 3.0 Unported li-

cense.
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1.1 Embodiment and Neural Correlates

Figure 1.7: Anatomy of the Organ of Corti. Image from Wikimedia Commons. Freely

distributed under the Creative Commons Attribution-Share Alike 3.0 Unported license.

of a neural spike to be produced by the HCs in the organ of Corti. Once stimu-
lated, HCs release neurotransmitters to their corresponding fibres in the auditory
nerve (AN). Each fibre of the AN has bifurcations to all the subdivisions of the
cochlear nucleus (CN), the first relay station in the auditory pathway (Schnupp
et al., 2011). From the CN, different cell types convey temporal and spectral
information to the medial superior olive (MSO) (Grothe, 2000; Oliver et al.,
2003; Roberts & Golding, 2012) and the lateral superior olive (LSO) respectively
(Guinan et al., 1972a,b; Park et al., 2004). We are particularly interested in the
MSO and LSO regions, as they extract ITDs and ILDs respectively.

1.1.3 Superior Olives and Inferior Colliculus

The MSO performs the task of a coincidence detector, where different neurones
represent spatially different ITDs (Smith et al., 1993; Biologie, 2007). Neurones
in the MSO encode ITDs more effectively from the low-frequency components
of sounds. Different delay mechanisms accomplished this representation, such as
the different thickness of the axon myelin-sheaths, or different axon lengths from
the excitatory neurones in the ipsilateral and contralateral cochlear nucleus (Joris
et al., 1998). Figure 1.8 presents the principle behind these mechanisms. In the
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1. INTRODUCTION

case of level differences, different neurones in the LSO represent spatially different
ILDs (Glendenning & Masterton, 1983; Thompson & Dau, 2008; Brette, 2012).
Due to the shadowing effect of the head, the LSO encodes ILDs more effectively
from the high-frequency components of sound (Irvine et al., 2001). The mecha-
nism underlying the extraction of ILDs is not clearly understood in comparison to
the mechanism of ITDs. Nevertheless, we know that LSO neurones receive excita-
tory input from the ipsilateral ear and inhibitory input from the contralateral ear.
From this input, different neurones in the LSO display a typical spiking rate for
sound sources located at specific angles along the azimuthal plane(Schnupp et al.,
2011). Precise inhibition is essential for microsecond interaural time difference
(Brand et al., 2002; Grothe, 2003; Vasilkov & Tikidji-Hamburyan, 2012).

In the following station in the auditory pathway, the inferior colliculus (IC)
integrates the output of the MSO and LSO layers (Chase & Young, 2008; Escabi
& Schreiner, 2002) and directs its output to cortical areas (Salminen et al., 2010;
Atencio et al., 2012). Even though the IC receives forward connections from the
peripheral areas and recurrent connections from the higher-level areas (thalamic
and cortical), one of its main tasks is the integration of ITDs and ILDs into
a coherent spatial representation of sound sources Recanzone & Sutter (2008);
Andersson et al. (2004). We can think of the combination of both spatial cues
as a multimodal integration process Stein (1967); Stein & Meredith (1993b),
where ITDs and ILDs are the modalities to be integrated in order to sharpen the
neural representation of sound sources in the environment. Finally, the scientific
literature shows that thalamocortical areas can be relevant for SSL (Recanzone
& Sutter, 2008; Huo & Murray, 2009). However, the exact dynamics of such
influence remain unclear, and therefore we do not consider it in this work.

1.2 Research Objectives

From a global perspective, we consider the objectives of the research framework
of the International Graduate Research Group on Cross-Modal Interaction in
Natural and Artificial Cognitive Systems (CINACS)1 to provide a framework for

1https://cinacs.informatik.uni-hamburg.de/about-cinacs
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Left side spike trains

Right side spike trains
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Figure 1.8: Diagram of the MSO modelled as a Jeffress coincidence detector for
representing ITDs (Jeffress, 1948). This model compares spikes produced by the
same frequency components f when the time difference δt between spikes is smaller
than half a period. This is, when 2f · δt < 1.

the present work. Our guiding hypothesis, is that embodiment and cross-modal
integration provide the necessary basis to develop the next generation of artifi-
cial cognitive systems (Krichmar, 2012; Stork, 2012; Hiatt et al., 2012; Winston,
2012; Kelso et al., 2013). The importance of these two principles resides in the
extraction of information from the environment through embodiment, and in the
integration diverse sources of information to facilitate a more robust representa-
tion of the world (Koch, 1993; Wilson, 2002; Metta et al., 2008; Pulvermüller,
2013). With the integration of biological and engineering approaches, we in-
tend to generate complementary knowledge in both fields in a continuous cycle
(Wermter et al., 2005), rather than only focusing in the direction of reverse-
engineering (Schierwagen, 2012). CINACS promoted the continuous interaction
between research groups in diverse disciplines including us, the Knowledge Tech-
nology Group. During such exchanges, specific research questions provided a
framework for our discussions around cross-modal interactions and defined our
approach to understand spatial cognition, e.g., in some cases, what seems to be
purely visual phenomena can be better understood with the involvement of au-
ditory phenomena, and vice versa (Shinn-Cunningham, 2008). It is important
to clarify that, although our system only works with one sensory input, we treat
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the multiple spatial cues as information encoded in sound (Shannon, 1948) as
separate modalities that can be integrated to provide a richer and more accurate
representation of the world. Hence, we try to answer the following questions:

• Which architectures are suitable for certain types of cross-modal tasks?

• How to transform between modalities?

• What are the mechanisms of cross-modal perceptual phenomena?

• What are the general principles for resolving cross-modal conflicts?

• How are multimodal percepts generated and represented?

• How can cross-modal integration be realised in technical systems?

From a concrete perspective, the objective of this work is to gain insights
about the bottom-up and top-down influence of embodiment for spatial audition
in natural and artificial systems. As documented in this thesis, we have designed
an architecture to improve robot speech recognition, based on the principles of
biomimetic computation and embodied embedded cognition. In this context, we
have adapted some of the CINACS objectives1 to determine the guidelines that
directed our experimental work:

1. To improve our understanding of acoustic localisation through cross-modal
integration.

2. To understand acoustic localisation from an integrated view of spatial au-
dition at multiple scales.

3. To introduce biological principles into artificial intelligent systems for acous-
tic localisation.

Our first objective, is to increase our understanding of the influence of hu-
manoid embodiment on bottom-up cognitive tasks for sound perception (Koch,
1993; Hofman et al., 1998; Horimoto et al., 2012), such as static and dynamic
SSL. The first step is the selection of the robotic platforms for our experimental
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setup. If the best interface for a human is another human (Wilson, 2002), we
should exploit the computational advantages that embodiment brings “for free”.
In the present work we use three robotic platforms: Nao (Gouaillier et al., 2009),
iCub (Beira et al., 2006) and Soundman (Salb & Duhr, 2009). Both, Nao and
iCub, are humanoid robots designed for research in academia, and Soundman is a
platform designed for binaural recordings that maximise the generation of sound
spatial cues. As the design of the iCub robot is intended for research in Cognitive
Developmental Robotics (Metta et al., 2008), it approaches the physiognomy of
humans and allows to measure more precisely the influence of a humanoid em-
bodiment on our models of the auditory system. In the present work, we are not
interested in the design of a generic SSL or ASR system with higher accuracy
than existing systems.

Our second objective, is to increase our understanding about the influence
of embodiment on top-down cognitive tasks (Koch, 1993; Zhao et al., 2018) like
ASR, when using biomimetic models of bottom-up cognition like SSL (Singheiser
et al., 2012). There is ample literature about robotic ASR, including systems that
perform SSL with large microphone arrays to improve ASR. However, we are one
of the first and few groups working on SSL and ASR inside the framework of
embodied embedded cognition (Finger & Liu, 2011). This circumstance reduces
the amount of scientific literature available for a comparison of different method-
ologies (Wilson, 2002; Nguyen et al., 2018), but at the same time, it highlights the
need to expand our understanding in this direction. Once the behaviour of the
robot corresponds to the behaviour of animals (Noë & Regan, 2000; Nodal et al.,
2010; Greene et al., 2012), we can observe the activity of the neural models under
new conditions and produce new hypothesis to guide further studies in biological
systems, such as studies in human speech recognition (HSR).

Our third objective, is to close the loop by using the experimental results ob-
tained with artificial systems to guide further research in natural systems (van
Hateren, 1992; Barrès et al., 2013; Famulare & Fairhall, 2010). As pointed out
by Scharenborg (2007), further research is necessary to understand better the
auditory cues used by human listeners, and that possibly are being overlooked
in current artificial systems. Once these features (acoustic or from other sen-
sory modalities) are recognised, researchers can readily integrate them into the
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design of novel multimodal architectures (Benoit et al., 2000; Schauer & Gross,
2003; Goertzel et al., 2010). More specifically, Scharenborg asks how can such
knowledge about child language acquisition be used to improve ASR systems and
computational models of HSR? He proceeds then to conjecture that understand-
ing how infants acquire language could lead to the design of new paradigms for
ASR, well beyond the probabilistic pattern recognition techniques that modern
systems commonly use. One example being when children acquire language. At
this developmental stage the units for the segmentation of acoustic signals are
not pre-specified, as is nowadays the case for ASR systems and computational
models of HSR. In order to achieve such flexibility, it is necessary to develop novel
architectures that make use of emergent units of recognition, instead of constrain-
ing the systems to use the linguistic units present in current ASR systems and
computational models.

1.3 Novel Contribution to the Field

The objectives defined in Section 1.2 are tightly coupled; therefore our experi-
ments have not addressed each of them separately, but conjunctly. Concerning
objective 1, we have improved our understanding of the neural mechanisms used
for the integration of sound spatial cues in mammalian brains (Glackin et al.,
2010; Fischer & Peña, 2011; Fontaine & Brette, 2011). More specifically, it has
become clear that the topology of connections between layers in the auditory
pathway can improve the signal-to-noise ratio of information transmitted to the
higher layers (See Section 2.2). As we can interpret the topological constraints
found in natural systems as hyperparameters in computational models, it is then
possible to implement such constraints in biomimetic architectures. We can then
proceed to measure their accuracy by replicating ethological experiments with
robots, and measure their predictive power by observing their behaviour in pre-
viously unseen scenarios. For this particular purpose we have designed a virtual
reality experimental setup designed for audio-visual integration (Bauer et al.,
2012). This setup allows us to measure the response of the system to controlled
stimuli, at the neural and behavioural levels, with high precision. These accom-
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plishments are in line with objectives 1 and 2. We provide a detailed description
of the virtual reality setup in Section 5.1.1.

The biological principles that we have introduced into an artificially intelligent
system (objective 3) range from the computation performed by the embodiment of
the robot itself, to the biomimetic computational models used to filter and encode
the signals sensed by the robot. Particularly after our last experiment (Chapter
5.3), we gained insights into the computation performed by the asymmetrical
absorption of sound frequencies with the humanoid pinnae. Another important
insight is the benefit of the efficient computation performed in the inner ear.
There, the Organ of Corti performs the mechanical transduction of vibrations
in the basilar membrane without requiring additional metabolism, i.e., without
the need for consuming additional energy resources for quasi-instantaneous com-
putation. The results of the experiments presented in this work have increased
our understanding of the improvements achieved by the generation of spatial
cues with a humanoid head, and the benefits of constraining the search space of
hyperparameters by following anatomical guidelines found in biological systems
(Chapter 3).

1.3.1 Publications Originating from this Thesis

The present work produced the following publications during its development:

(I) Journals:

(1) J. Bauer, J. Davila-Chacon, S. Wermter. Modelling the development
of natural multi-sensory integration using neural self-organisation and
probabilistic population codes. Connection Science, 2014.

(2) J. Davila-Chacon, J. Liu, S. Wermter. Enhanced Robot Speech Recog-
nition Using Biomimetic Binaural Sound Source Localisation. IEEE
Transactions on Neural Networks and Learning Systems, 2018.

(II) Conferences:

(3) J. Bauer, J. Davila-Chacon, E. Strahl, S. Wermter. Smoke and Mir-
rors—Virtual Realities for Sensor Fusion Experiments in Biomimetic
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Robotics. IEEE International Conference on Multisensor Fusion and
Information Integration (ICMF), Hamburg, Germany, 2012.

(4) J. Davila-Chacon, S. Heinrich, J. Liu, S. Wermter. Biomimetic Binau-
ral Sound Source Localisation with Ego-Noise Cancellation. Interna-
tional Conference on Artificial Neural Networks (ICANN), Lausanne,
Switzerland, 2012.

(5) J. Davila-Chacon, S. Magg, J. Liu, S. Wermter. Neural and Statistical
Processing of Spatial Cues for Sound Source Localisation. Interna-
tional Joint Conference on Neural Networks (IJCNN), Dallas, USA,
2013.

(6) J. Davila-Chacon, J. Twiefel, J. Liu, S. Wermter. Improving Humanoid
Robot Speech Recognition with Sound Source Localisation. Interna-
tional Conference on Artificial Neural Networks (ICANN), Hamburg,
Germany, 2014.

(III) Abstracts:

(7) J. Davila-Chacon. Neural Sound Source Localisation for Speech Pro-
cessing Based on the Inferior Colliculus. In Proceedings of the Joint
Workshop of the German Research Training Groups in Computer Sci-
ence, 2012, 2013 and 2014.

1.4 Thesis Organisation

Chapter 1 introduces the topics from animal neurophysiology that are relevant to
the biomimetic computational model that we use for SSL and Chapter 2 provides
an overview of the evolution of artificial SSL systems. It starts with an overview
of the initial approaches using large microphone arrays, followed by the second
generation robotic approaches and concluding with an overview of the more recent
bioinspired architectures. In particular, section 2.2 explains how we adapted this
knowledge to the context of robots producing ego-noise. Such adaptations include
a simplified version of the spiking neural network and the Bayesian model that
we use as a starting point to integrate multiple spatial cues.
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Then the following chapters then introduce our experimental work. Chapter
3 details the importance of optimising the hyperparameters that determine the
measurement of interaural level differences and explains how they are dependent
on the geometry of the robotic head. Chapter 4 reflects one of the most significant
contributions of the present work, as it explores the advantages of combining
neural and statistical methods to achieve the required balance between life-long
learning and computational costs. Chapter 5 integrates our work in SSL with the
field of automatic speech recognition (ASR). As mentioned before, a pervasive
challenge in the field of robotics is the addition of high levels of ego-noise produced
by the cooling systems. Our objective in the two experiments that we present in
the last chapter is to measure the improvement of ASR when we combine it SSL.
Interestingly, ASR performs best when the angle between the humanoid head and
the sound source allows sound waves to be reflected most intensely from the pinna
to the ear microphone, rather than when sound waves arrive perpendicularly to
the membrane. The first experiment in Section 5.1.2 explores the effect of the
embodiment of two robotic platforms. The second experiment in Section 5.3
concludes our journey by studying the interaction between the robotic platform
and the sound source, i.e., we analyse the effect on ASR of turning towards a
human speaker in different locations inside and outside of the visual field of view.
Finally, Chapter 6 summarises the results that we obtain in our empirical studies
and elaborates on the answers that they provide to our research objectives.
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Chapter 2

Development of Computational
Methods

During the last decade, plenty of neurophysiological findings related to sound
source localisation in mammals inspired the scientific community to design bioin-
spired systems for SSL. In order to contextualise the contribution of the present
work, this chapter outlines the most representative methods used for robotic SSL
in the past three decades. The objective is to understand the importance of SSL
as a technology that can support complex devices, such as robots, but also to un-
derstand its importance as a window for observing some fundamental aspects of
human cognition. A historical perspective also reveals the most significant chal-
lenges that SSL systems have faced and the techniques that were introduced since
the first designs appeared (Rascon & Meza, 2017). This overview is necessary, as
understanding the magnitude of different contributions can be counterintuitive.

2.1 Robotic Sound Source Localisation

As one can imagine, the first methods introduced for robotic SSL looked at nat-
ural systems and provided the basis of modern spatial localisation techniques
(Lyon, 1983). Firstly, engineers around the globe developed efficient methods
for representing spatial cues. After a couple of years they understood the lim-
itations of their initial approaches, as some of their assumptions did not hold
in more dynamic, common environments (Berglund & Sitte, 2005; Besson et al.,
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2011). Researchers then started searching for different approaches and, as it is
often the case, natural systems provided powerful metaphors that translated into
the creation of more effective systems. More specifically, neuroscientific theories
about SSL in animals opened the doors to a large family of bioinspired methods
(Liu & Meng, 2007). In the following subsections we will travel from the initial
systems using fixed microphone arrays to the most recent binaural biomimetic
approaches.

2.1.1 First Generation: Static Microphone Arrays

Several approaches were taken during the 1990’s to perform sound source locali-
sation. Two spatial cues used since the first approaches are the Time-Difference-
Of-Arrival (TDOA) between two or more microphones, and the variation of sound
intensity or sound pressure level (SPL). As computing power was relatively scarce
during this time, some implementations were optimised at the hardware level. In
this way, Bhadkamkar (1994) designed customised hardware micro-components,
to detect the TDOA between two microphones with a known interaural distance.
The system of Bhadkamkar’s CMOS chip for sound localisation utilises the TDOA
between both microphones and can perform accurate SSL using low-frequency
components of sound. However, the system does not compute SPL differences
and is not able to localise sound sources when using high-frequency components
that are part of the human audible range.

Another perspective could involve the integration of visual and auditory sig-
nals to disambiguate simultaneous sound sources (Nakadai et al., 2000; Siracusa
et al., 2003; Nakadai et al., 2010; Nakamura et al., 2011). Interestingly, this ap-
proach was considered already in the mid-1990’s. The system devised by Irie
(1995) is an example of an early attempt to achieve multimodal sound localisa-
tion. He intended to support the localisation of sound sources in unconstrained
environments with visual information. For this purpose, he implemented a feed-
forward multi-layer perceptron. Unfortunately, the available computing resources
at the time only made possible the classification of sound sources in three cate-
gories: left, right and centre. An interesting part of this implementation is that
the network output has to be exactly zero to localise sources in front of the robot.
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Figure 2.1: Array of 3 microphones in a ring. Array proposed by Huang et al.
(1997a).

Hence, considerably lowering the localisation accuracy of sounds coming from the
centre.

Huang et al. (1995) implemented zero-crossing algorithms to detect the sound
source angle of incidence (Huang et al., 1999). This method allowed him to
estimate the difference in TDOA between three microphones in a ring (See figure
2.1). The system showed an excellent localisation performance for sounds coming
from 360 degrees around the robot. However, the system importantly relied on
the detection of sound onsets and was only tested in an anechoic chamber. Later
on, they included an echo-estimation algorithm that facilitated the deployment
of the system in reverberant environments (Huang et al., 1997b,a). The system
could satisfactorily detect the location of pure tones and claps. Onset detection
is a promising approach to SSL (Newton & Smith, 2011), although a drawback
from this approach was its poor performance for the detection of speech, as the
onset of each frequency component dramatically varies. Finally, Huang et al.
(1997a) successfully implemented a robotic system capable of detecting the spatial
location of two concurrent speech signals in both, anechoic and reverberant rooms.
A notable constraint of this system is the inability of dealing with frequency
components above 2520 Hz. As a point of reference for the reader, the human
audition can cope with frequencies up to 20000 Hz.

In order to increase the confidence of the TDOA estimations, researchers
started increasing the number of microphones. Guentchev & Weng (1998) pre-
sented another kind of microphone array consisting of four sensors distributed
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Figure 2.2: Array of 4 microphones in a pyramidal structure. Array proposed by
Guentchev & Weng (1998).

in a pyramid-like structure (See figure 2.2). This system is very accurate and
can perform 3D localisation, i.e., it can also estimate the distance to the sound
source. It performs with an angle estimation error of ± 3◦ and a distance esti-
mation error of ± 20%. Asono et al. (1999) implemented a near-field microphone
array to localise sounds closer than 2 meters. The array consists of 8 microphones
equally spaced in a ring. The main idea was to use information about the spatial
location of a speaker to increase the Signal-to-Noise-Ratio (SNR) of the speech.
The testing sounds included reverberation and an SNR of 20 dB. The authors
tested the accuracy of the system with an automated speech recognition system
using a vocabulary consisting of 492 words. With this system, it was possible
to localise speech signals with an accuracy of 95-99%. The accuracy rate of the
speech recognition system varied between 62-73%. As the sound localisation sys-
tem relied only on TDOAs, the authors did not test it with frequency components
higher than 3000 Hz, although the fundamental frequencies of human voice range
between 60-7000 Hz.

The algorithms described so far have different weaknesses:

• They could not cope with SNRs lower than 20 dB, whereas natural systems
can perform well with as low as 1 dB SNR (Guentchev & Weng, 1998).

• The presence of multiple sound sources would affect tracking any of them.

• Moving sounds were indistinguishable from a wider sound source.
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Figure 2.3: 8 microphones in a cubic array. Array proposed by Valin et al. (2003).

• The spectral content of the sound source could be a problem, as “sounds
produced with a wide open mouth would yield a higher error value”.

• It was difficult for the systems to perform well in places different to the
environment in which the authors trained them.

• The absolute distance from the microphones to the sound source was a
limitation, as 5 to 10 meters would already pose a serious problem.

As these problems are not present in natural systems, what can we learn from
the physiological findings in animals? In the following subsection, we provide
an overview of artificial SSL systems based on theories of sound localisation in
humans, cats and guinea pigs.

2.1.2 Second Generation: Robotic Microphone Arrays

The systems described in subsection 2.1.1 achieved reasonably high accuracy for
the localisation of sounds using the lower frequencies in the audible spectrum.
Some of them were capable of performing accurately in partially reverberant envi-
ronments, performing 3D sound source localisation or even localising two sources
simultaneously. Those systems performed well in constrained environments, and
even though such constraints varied among different approaches, none of them
was capable of performing in diverse daily-life scenarios. For an SSL system
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Figure 2.4: 32 microphones in a 4 rings array. Array proposed by Tamai et al.
(2005).

to be reliable, it should be capable of handling SNRs present in everyday envi-
ronments, reverberation, dynamic sources and simultaneous speakers (Hu et al.,
2006; Sasaki et al., 2012). What was missing? Where did researchers find a need
for improvement?

The available computational power continued growing exponentially and about
a decade after the initial trials SSL systems adopted more sophisticated methods
and increased the number of microphones. Valin et al. (2003) explored the per-
formance of new spectral methods using an array of 8 microphones (See figure
2.3). The system could perform with an angular precision of 3◦ in the horizontal
and vertical plane. In simulations, the array showed to be capable of estimating
accurately the distance of a sound source up to 2 m away. Concerning the number
of concurrent sources, the system could track only one source at a time. Tamai
et al. (2005) designed an array of 32 microphones that could perform 3D SSL and
the separation of simultaneous sound sources (See figure 2.4). They perform SSL
with the delay and sum beamforming (DSBF) method and, in the following step,
sound separation by integrating the DSBF method and frequency band selection
(FBS). In this approach, the accuracy of the system reached up to 5◦ on the
azimuth and elevation. The system can estimate the sound source distance with
an error of less than 300 mm, but only when sound sources were closer than 1
m. This system can separate frequencies below 3300 Hz even when background
noise is present.
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High frequencies also contain useful spatial information and can improve sound
source localisation and sound separation. However, none of the approaches using
large microphone arrays takes advantage of the level differences produced by
the shadowing of a head-like structure (Geng et al., 2008; Cobos et al., 2011;
Nunes et al., 2014). Here is where bioinspired approaches can offer guidance
for integrating the information of such sound frequencies to develop more robust
systems. In the following subsection, we introduce the advantages of bioinspired
approaches by comparing some of the most representative methods.

2.1.3 Third Generation: Bioinspired Computation

The following biologically-inspired algorithms for sound source localisation and
separation aim to apply neurophysiological theories to robotic systems. None
of the described approaches pursues a complete emulation of the mammalian
auditory pathway, as such a system would demand an amount of parallel com-
putation that is not available in current hardware. Nevertheless, some natural
principles have proven to be valuable paradigms for artificial sound source locali-
sation (Agnes et al., 2012; Amari, 2013; Chan et al., 2010, 2012; Choudhary et al.,
2012). Artificial spiking neural networks (Maass, 1997) are of special interest for
us, as this class of models share a common language that facilitates the represen-
tation of time-dependent information and its integration with additional sensory
modalities (Maeder et al., 2001; Karmarkar & Buonomano, 2007). Such common
language between modalities is a fundamental property to create autonomous
robots, as rich representations of the environment are essential to navigate in the
real world (Hafting et al., 2005; McNaughton et al., 2006; Milford et al., 2004;
Milford & Wyeth, 2009).

Voutsas & Adamy (2007) created a model with multiple delay-lines using ar-
tificial spiking neural networks (Maass & Bishop, 2001; Maass et al., 2002). After
decomposing the sound in a set of fundamental frequencies, different delay val-
ues added to the sound waves allowed the estimation of ITDs. Their system
only takes into account the ITDs and can localise broadband, and low-frequency
sounds with 30◦ accuracy. However, the system performance decreases signifi-
cantly for sounds with high fundamental frequencies, which is a common effect
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Figure 2.5: Sound source localisation architecture. Sound pre-processing consists
of decomposing the sound input in several frequency components with the Gamma-
tone filterbank emulating the human cochlea Slaney (1993). Afterwards, the MSO
and LSO models represent ITDs and ILDs respectively. The IC model integrates
output from the MSO and LSO while performing dimensionality-reduction. Finally,
the classification layer produces an output angle that directs motor control (Rokni
& Sompolinsky, 2012).

in systems relying only on temporal cues. The accuracy for localisation remains
high with broadband signals, so their system performs better when it integrates
information across a broader range of frequencies.

It is also possible to represent spatial information with more than two cues
(Heckmann et al., 2006; Rodemann, 2010). Rodemann et al. (2006) developed
a model based on ITDs, ILDs and interaural envelop difference (IED). It can
localise sound sources with a resolution of 10◦, that is, with three times finer
granularity than the system in Voutsas & Adamy (2007) using only one spatial
cue. Nevertheless, the model in Rodemann et al. (2006) shows high sensitivity to
the ego-noise produced by the robotic platform. The system computes the differ-
ent localisation cues in parallel, and a weak winner-takes-all strategy defines the
integration of the different cues. In all the testing conditions, higher frequencies
lead to higher error rates estimating the sound source angle. A possibility for
improvement could be to merge spatial cues with a non-linear model, as in the
IC.

The systems from Willert et al. (2006) and Nix & Hohmann (2006) include
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probabilistic models of the MSO, the LSO and the IC that can perform SSL with
a resolution of 15◦. In both cases, Bayesian statistics were used to estimate the
connections between the layers and the systems perform robustly for simulated
sound sources in real environments. A possible extension of this research is their
implementation with ASNNs in order to explore the dynamics of neural popula-
tions and to exploit their robustness against noise (Ma et al., 2006). Nevertheless,
the results from these studies provide valuable insights precisely for the design
of such biomimetic systems. Only Willert et al. (2006) mention multi-source
tracking as part of their future work.

Murray et al. (2009) proposed an algorithm that relies mainly on the TDOA
between a pair of microphones. He extracts the TDOA with a cross-correlation
of both signals (Murray et al., 2004). Afterwards, a recurrent neural network was
capable of predicting the dynamics of the movement of a speaker. This approach
demonstrates the benefits of motion prediction for continuous sound source lo-
calisation. The implementation of a head related transfer function (HRTF) was
part of the future work for this project and would allow for SSL on the azimuth
plane (Hornstein et al., 2006; Keyrouz & Saleh, 2007).

Liu et al. (2010) proposes a biomimetic supervised learning algorithm for
binaural SSL, where the MSO, LSO and IC are modelled using ASNNs and the
connection weights are calculated using Bayesian inference (Futagi & Kitano,
2012). This system performs SSL with a resolution of 30◦ under reverberant
and low noise conditions, and can also be used to track multiple moving sources.
Dávila-Chacón et al. (2012) adapt the approach of Liu et al. (2010) to the Nao
robotic platform (Gouaillier et al., 2009) that produces ∼40dB of ego-noise. This
neural model is capable of handling such levels of ego-noise and even increases
the resolution of SSL to 15◦.

In more recent work, Davila-Chacon et al. (2013) compare several neural and
statistical methods for the representation, dimensionality-reduction, clustering
and classification of auditory spatial cues. The evaluation of these neural and sta-
tistical methods follows a trade-off between computational performance, training
time and suitability for life-long learning. However, the results of this compar-
ison show that simpler architectures achieve the same accuracy as architectures
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with an additional clustering layer. Figure 2.5 shows an overview of the best-
performing SSL architecture. Davila-Chacon et al. (2013) found that a neural
classifier on the top layer of our architecture is important to increase the robust-
ness of the system against reverberation and ∼60dB of ego-noise produced by the
humanoid iCub (Beira et al., 2006). For this purpose, they include a feedforward
neural network to handle the remaining non-linearities in the output from the IC
model. Finally, in order to improve the robustness of the system to data outliers,
they extended the architecture with softmax layers on the output of the IC model
and the final layer of the SSL architecture.

More recently, research groups have developed novel SSL systems that can
perform robustly under a variety of noise and reverberation Liu & Shen (2010a);
Ren & Zou (2012); Pavlidi et al. (2013). The architecture introduced in Pavlidi
et al. (2013) is particularly interesting, as it can estimate the number of sound
sources present in the environment. Part of their suggested future work includes
an adaptive width for the window analysing the input signals, as counting sound
sources at low signal-to-noise ratio (SNR) requires different parameters than at
high SNR. As a downside, these systems also neglect the spatial information
encoded in high frequencies of sound sources. In the following section we introduce
the biomimetic approach of Liu & Shen (2010a) and then describe the evolution of
our computational model; from the simplifications to the spiking neural networks
and the Bayesian model, to the extension of the model with additional neural
and statistical layers.

2.2 Biomimetic Computational Model

This section describes in full detail our final biomimetic sound source localisation
architecture. It has been designed from an embodied embedded cognition per-
spective to take advantage of the embodiment of the humanoid platforms used
to test it. This approach reduces computational costs by using the embodiment
of the robot as a passive sound filter, and helps to define the value of hyper-
parameters in our models. For example, the biomimetic foundation constrains
the topology of the connections between layers in our architecture (Oliver et al.,
2003).
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Figure 2.6: Topology of the connections between the MSO and LSO models to
the IC model. The MSO has excitatory connections to the IC in f between 200 Hz
and 4000 Hz, whereas the LSO has excitatory and inhibitory connections to the IC
only in f ≥ fτ between 1400 Hz and 4000 Hz.

2.2.1 Cochlea Model

The first stage of our SSL architecture, shown in Figure 2.5, consists of a Gam-
matone filterbank modelling the frequency decomposition performed by the hu-
man cochlea Slaney (1993). This is, the signals produced by the microphones
in the robot’s ears are decomposed in a set of frequency components fi ∈ F =

{f1, f2, . . . , fI}. All the subsequent layers in our SSL architecture preserve the
same tonotopic arrangement. In healthy young people, all consecutive fi are log-
arithmically separated and respond to frequencies between ∼20 Hz and ∼20000
Hz Middlebrooks & Green (1991). We are primarily concerned with the localisa-
tion of speech signals; therefore we constrain the elements in F to the frequencies
containing where most speech harmonics, i.e., between 200 Hz and 4000 Hz. Once
the system decomposes both signals into I components, each wave of frequency fi
is used to generate spikes mimicking the phase-locking mechanism of the Organ of
Corti, i.e., the model produces a spike when the positive side of the wave reaches
its maximal amplitude.
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Figure 2.7: Activation of the MSO model for a sound consisting of white noise,
presented to the robot at 15◦. Notice that lower frequencies (blue) are more in-
formative, as they produce a larger concentration of neural firing in the neurones
sensitive to sounds produced around 15◦, which is the real sound source angle,
whereas higher frequencies (red) trigger the firing of neurones sensitive to sounds
produced at the wrong angles.

2.2.2 Medial Superior Olive Model

Figure 2.6 depicts the biomimetic computational model that we designed following
the neuroanatomy of the connections between the MSO and LSO layers to the
IC layer. The MSO has excitatory connections to the IC in f between 200 Hz
and 4000 Hz, whereas the LSO has excitatory and inhibitory connections to the
IC only in f ≥ fτ between 1400 Hz and 4000 Hz.

In the following layer of the SSL architecture, we model the MSO as a mech-
anism to represent ITDs. As depicted in Figure 1.8, the computational principle
observed in the MSO is modelled as a Jeffress coincidence detector Jeffress (1948)
for each fi. The MSO model has mj ∈M = {m1,m2, . . . ,mJ} neurones for each
fi. The robot’s interaural distance and the audio sampling rate constrains the
value of mJ . Each neurone mi,j ∈ N0 is maximally sensitive to sounds produced
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Figure 2.8: Activation of the LSO model for a sound consisting of white noise,
presented to the robot at 15◦. Notice that higher frequencies (red) are more in-
formative, as they produce a larger concentration of neural firing in the neurones
sensitive to sounds produced around 15◦, which is the real sound source angle,
whereas lower frequencies (blue) trigger the firing of neurones sensitive to sounds
produced at the wrong angles.

at angle αj. Therefore, SMSO is the array of spikes produced by the MSO model
for a given sound window of length ∆T . The mammalian auditory system re-
lies mainly on delays smaller than half a period of each fi for the localisation of
sound sources (Schnupp et al., 2011, Ch. 5.3.3). For this reason, the MSO model
only computes ITDs when the time difference δt between two incoming spikes is
smaller than half a period. This is, when 2fi · δt < 1. Inspired by the mammalian
neuroanatomy, the MSO model projects excitatory input to all fi ∈ F of the IC
model (Meddis et al., 2010, Ch. 4, 6.).

2.2.3 Lateral Superior Olive Model

At the same level of the SSL architecture, the LSO model represents ILDs. The
system computes level differences by comparing the L and R waves from each
fi at the same points in time used for computing ITDs. The auditory system is
known to compare the timing of neural spikes when the time delay between them
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is less than half a period (Schnupp et al., 2011, Ch. 5.3.3). Therefore, our MSO
model considers the time difference ∆t between t1 and t2 for the computation of
ITDs, but not the ∆t between t2 and t3. In order to determine the neurone that
will fire, the LSO model computes ILDs as the logarithmic ratio of the vibration
amplitudes at t1 and t2 as log(A1/A2) at times t1 and t2. The LSO model has
lj ∈ L = {l1, l2, . . . , lJ} neurones for each fi. As the bit-depth of the sound data
limits the value of lJ , it is possible to have many more neurones in the LSO
than in the MSO. For the sake of simplicity, we chose to have the same number of
neurones in the MSO and LSO models by setting lJ = mJ . Each neurone li,j ∈ N0

is maximally sensitive to sounds produced at angle αj. Therefore, SLSO is the
array of spikes produced by the MSO model for a given sound window of length
∆T . Also inspired by the mammalian neuroanatomy, the LSO model projects
excitatory and inhibitory input only to the highest frequencies fi ∈ F | fi ≥ fτ

of the IC model (Meddis et al., 2010, Ch. 4, 6.).

2.2.4 Inferior Colliculus Model

Then we arrive at the layer modelling the IC, where ITDs and ILDs are integrated.
Figure 2.6 shows the topology of the connections between the MSO and LSO
models to the IC model. Bayesian classifiers allow the continuous update of
probability estimations and are known to have good performance even under
strong independence assumptions (Rao, 2004). Furthermore, Bayesian classifiers
allow fast computation as they can extract information from large dimensional
data in a single batch step. For this reason, we estimate the connection weights
assigned to the excitatory and inhibitory output of the MSO and LSO layer using
Bayesian inference Liu et al. (2010). The IC model has ck ∈ C = {c1, c2, . . . , cK}
neurones for each fi. Each neurone ci,k ∈ R is maximally sensitive to sounds
produced at angle θk ∈ ΘK = {θ1, θ2, . . . , θK}, where K is the total number of
angles around the robot where sounds were presented for training. EMSO and
ELSO are the ipsilateral MSO and LSO excitatory connection weights to the
IC, and ILSO are the contralateral LSO inhibitory connection weights to the IC.
Therefore, SIC is the array of spikes produced by the IC model for a given sound
window of length ∆T . More precisely, SIC is computed as follows:
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2.2 Biomimetic Computational Model

Figure 2.9: Activation of the IC model for a sound consisting of white noise,
presented to the robot at 15◦. Higher frequencies are represented in red and lower in
blue. Notice that in comparison to the MSO and LSO models, the IC model has a
more coherent spatial representation across all frequencies as a larger concentration
of neural firing is found in the neurones sensitive to sounds produced around 15◦,
which is the real sound source angle. The IC model has fewer neurones than the
MSO and LSO models to perform dimensionality reduction, and shows negative
values as the inhibitory input is greater than the excitatory input from previous
layers.

SIC = SMSO � EMSO + SLSO � ELSO − SLSO � ILSO. (2.1)

Where � indicates element-wise multiplication between the activation arrays.
In order to estimate the connection weights EMSO, ELSO and ILSO, we perform
Bayesian inference on the spiking activity SMSO and SLSO for the known sound
source angles ΘK .

We define the set of training matrices obtained for each θk as sn ∈ S =

{s1, s2, . . . , sN}, where N is the total number of training instances. We describe
first the Bayesian process used to estimate the connection weights between the
MSO and the IC, where sn = SMSO

n . Let p(SMSO|θk) be the likelihood that a
sound that occurs at angle θk produces the spiking matrix SMSO. As we assume
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Poisson-distributed noise in the activity of neurones mi,j in the MSO model,

p
(
SMSO|θk

)
=
λSMSO

k e−λk

SMSO!
, ∀k ∈ ΘK . (2.2)

Where λk is a matrix containing the expected value and variance of each neurone
mij in SMSO, and it is computed from the training set S for each θk. In a Poisson
distribution, the maximum likelihood estimation of λk is equal to the sample
mean, and we compute it as

λk =
1

N

N∑
n=1

SMSO
n , ∀sn ∈ S | θk. (2.3)

As we assume a uniform distribution over all angles in ΘK , we assign the same
prior p (θk) = 1/K to each θk. In order to normalise the probabilities to the
interval [0, 1], we compute the evidence p(SMSO) as:

p
(
SMSO

)
=

K∑
k=1

p
(
SMSO|θk

)
p (θk) . (2.4)

Afterwards, the posterior p
(
θk|SMSO

)
is computed using Bayes rule:

p
(
θk|SMSO

)
=
p
(
SMSO|θk

)
p (θk)

p
(
SMSO

) = PMSO
k . (2.5)

The same Bayesian inference process described so far is used for computing the
LSO inhibitory and excitatory connections to the IC. Finally, the connection
weights for each neurone mi,j in PMSO

k and li,j in PLSO
k to neurone ci,k in the IC,

are set according to the following functions:

EMSO =


PMSO
k , if PMSO

k >(
ωMSO
E . arg maxθk

(
PMSO
k

))
0 otherwise

, (2.6)

ELSO =


PLSO
k , if PLSO

k >(
ωLSOE . arg maxθk

(
PLSO
k

))∧
fi ≥ fτ

0 otherwise

, (2.7)
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Figure 2.10: Output of all the layers in the SSL architecture for white noise
presented in front of the robot (90◦). Higher frequencies are represented in red and
lower in blue. Notice that for this angle most of the IC frequency components agree
on the sound source angle and the MLP correctly classifies the IC output.

ILSO =


1−PLSO

k , if PLSO
k <(

ωLSOI . arg maxθk
(
PLSO
k

))∧
fi ≥ fτ

0 otherwise

. (2.8)

Where thresholds ωMSO
E

∧
ωLSOE

∧
ωLSOI : R ∈ [0, 1], determine which connec-

tions will be pruned. Following known neuroanatomy, such pruning avoids the
interaction between neurones sensitive to distant angles (Liu et al., 2008, 2009).
The value of fτ marks the transition between the lower and higher frequency spec-
trum. Figures 2.7, 2.8 and 2.9 show activation examples of the first version of
MSO, LSO and IC models. This initial implementation did not assume Poisson-
distributed noise in the activity of neurones, and it did not have the MLP and
softmax layers described in subsection 2.2.5.
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Figure 2.11: Output of all the layers in the SSL architecture for white noise
presented on the right side of the robot (180◦). Higher frequencies are represented
in red and lower in blue. Notice that for this angle most of the IC frequency
components disagree on the sound source angle; however, the MLP can cope with
these non-linearities and correctly classifies the IC output.

2.2.5 Non-Linear Probabilistic Model

Finally, we use a feedforward neural network in the last layer of our SSL system for
the classification of SIC . This layer increases the robustness of the system against
ego-noise and reverberation. The output of the IC layer still shows non-linearities
that reflect the complex interaction between the robot’s embodiment and sound in
the environment. Some of the elements that influence this interaction include the
sound source angle relative to the robot’s face, the head material and geometry,
and intense levels of noise produced by the cooling system inside the robot’s head.
In previous work, we compare several neural and statistical methods Davila-
Chacon et al. (2013) and found that a multilayer perceptron (MLP) was the
most robust method for representing the non-linearities in SIC . The hidden layer
of the MLP performs compression of its input as it has |SIC |/2 neurones, and
similar to the IC neurones analysing a single fi, the output layer of the MLP has
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ck ∈ C neurones. In order to improve the robustness the system against data
outliers, we perform softmax normalisation on SIC before training the MLP:

SIC =

(
eS

IC
i∑I′

i′=1 e
SIC
i′

)
, ∀fi ∈ F, (2.9)

and also on the output SMLP of the MLP:

SMLP = max
k

(
eS

MLP
k∑K′

k′=1 e
SMLP
k′

)
, ∀ck ∈ C. (2.10)

Figure 2.10 shows the output of all layers in our SSL architecture after training
it with a subset of utterances from the TIMIT speech dataset Garofolo et al.
(1993). The figures show the spiking matrices produced by with white noise in
order to depict more clearly the stereotypical patterns of each fi. Notice that
the hypotheses generated by most neurones in the IC layer agree on the sound
source angle, irrespective of the frequency component fi from which they receive
input. In this case, it is not surprising that the MLP classifies correctly SIC

since a voting mechanism applying the winner-takes-all rule along each fi would
suffice for a correct classification. However, this is not always the case. Figure
2.11 shows an example of a more complex IC output. Notice that even when the
hypothesis of most fi in the IC layer disagrees, the MLP is capable of classifying
correctly SIC .

2.3 Robotic Speech Recognition

The final step in this work is to explore the use of sound source localisation
for improving the performance of Automatic Speech Recognition (ASR) in the
context of robotic platforms (Weintraub, 1986; Sagi et al., 2001; Rouat et al.,
2011). Here is where the biomimetic computation paradigm of this work meets
with the embodied embedded cognition approach. As detailed in the following
paragraphs, existing approaches can perform entirely accurate ASR with robotic
platforms that support speech segregation with SSL (Maas et al., 2011; Guo et al.,
2016; Zhang & Wang, 2017). However, there is still room for improvement, as
often these methods are constrained by assumptions about the number of sound
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Figure 2.12: Experimental setup designed for research in cognitive robotics (Bauer
et al., 2012).

sources present in the environment, the amount of ego-noise and reverberation
that they are capable of handling or the nature of the sounds that these sys-
tems are designed to localise (Ince et al., 2011a,b; Wang et al., 2018). All these
systems have strengths that can complement each other and, hence, define the
characteristics of the systems that we design afterwards.

Roman et al. (2003) present a system integrating SSL and ASR where speech
recognition improves with the support of sound a source localisation system. They
generated ITD-ILD binary masks that increased the SNR of the incoming speech
signal, although the handling of moving speakers and reverberation remains open
in their approach. Two other interesting examples in this direction are presented
by Asano et al. (2001) and Fréchette et al. (2012). Both approaches make use
of microphone arrays to localise speech sources in the environment. Afterwards,
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they use information about the sound source to separate speech signals from
noise in the background. The drawback of these methods is that they require
prior knowledge about the presence and number of sound sources. Cong-qing
et al. (2009) and Deleforge & Horaud (2012) present two alternative approaches
that make use of binaural robotic platforms. However, both systems suffer from
the same limitations of the binaural SSL methods discussed before as they mostly
rely on the information contained in low-frequencies for SSL.

Woodruff & Wang (2013) present an architecture employing ITDs and ILDs
for SSL and can perform segregation of an unknown number of sources. Never-
theless, the reported results consider at most two sound sources and segregation
is performed offline due to the time required for computation. The approaches
mentioned above rely on the construction of ideal binary masks for segregating
speech from a discrete set of sound source angles. This approach presents an addi-
tional challenge because these methods are considerably affected when the sound
source differs from the set of trained angles. Therefore, such approaches rely on
an SSL system capable of tracking a human speaker almost instantly and with
high accuracy. Our approach in the current work focuses on increasing the SNR of
speech by continuously localising the most intense sound source and re-orienting
the robot towards the speaker. In other words, we replace the use of ideal binary
masks with a perception-action loop that maximises the SNR of sound arriving
from the direction of the speaker. This sequential approach is feasible, given that
our ASR system can recognise full sentences even if utterances have lower SNR
at the beginning Twiefel et al. (2014); Heinrich & Wermter (2011a). In order
to compare more clearly the performance of ASR with and without the support
of SSL, we constrain the domain-independent output of an ASR system to a
domain-dependent set of sentences. The experimental setup that we designed for
research in multimodal integration for humanoid robots (Lim et al., 2007), hence
ideal for SSL and ASR, can be seen in Figure 2.12.

2.4 Conclusion

The development of SSL methods presented in this chapter provides a context for
the development of our proposed method. It is interesting to see the increments in
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the complexity of the hardware, going from arrays with a couple of microphones
to arrays with several dozens of microphones and back to bioinspired binaural
approaches. Also interesting, is the use of static platforms a few decades ago
and the development of robotic systems that dynamically improve their accuracy
by adapting their orientation to the sound source. Underlying this evolution, we
find an increase in the available computing power and an improvement in the
algorithmic approaches. Earlier systems made use of one spatial cue, whereas
modern systems make use of multiple spatial cues that extract information from
all the audible spectrum of sound. Finally, we approach systems that make use
of the robot embodiment and use biomimetic computation that perform SSL
more efficiently and is robust to noise and reverberation (Devore et al., 2009).
In the following chapters, we present the experiments that detail the evolution
of our architecture and its application to the improvement of automatic speech
recognition under high levels of ego-noise.
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Chapter 3

Noise-Robust Sound Source
Localisation

In this chapter, we introduce the first version of a spiking neural network (SNN)
used for binaural sound source localisation (SSL) integrated with a robotic plat-
form with ego-noise. This SNN is based on the architecture developed by Liu
et al. (2010) and has two main developments that differentiate it from the orig-
inal model. The first improvement on the architecture is a simplification of the
spiking model that replaces the leaky integrate-and-fire neurones (Stein, 1967), for
linear inhibitory and excitatory neurones that always fire when stimulated. This
simplification reduces the computational and memory cost, and interestingly, it
improved the localisation accuracy. The second improvement is the determina-
tion of the maximum interaural level difference (ILD) produced by the geometry
of the robot head used in the experiments. We determined the maximum ILD
empirically by measuring the accuracy of sound source localisation while testing
a range of different dB values.

3.1 Anechoic Room and Robot Nao

The experimental setup can be seen in figures 3.1a and 3.1b. The location was
a room conditioned with heavy curtains that partially absorb the reverberation
produced by the stimuli presented to the robot. The room reverberation time is
f ∼ 0.4 s and the sound pressure level f ∼ 25 dB, what provides a recording
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(a)

(b)

Figure 3.1: Sounds were played around the Nao in half circle ∅2m, from 0◦ to
180◦ in 15◦ steps. 13 recordings were made in a room with reverberation damped
by curtains.
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environment quality close to the industry standards for music studios. In this
room, we presented auditory stimuli from a semi-circle around the robot with a
diameter of ∅2 m. The sound used for this experiment consists of white noise as it
contains on average the same amount of energy across all frequency components.
Along the semi-circle, we reproduced the stimuli from 13 positions between 0◦ and
180◦ in 15◦ steps. At this point in our research, we were interested in testing the
SSL performance with standardised signals; therefore, we did not include more
complex stimuli like human speech or sum-of-ripples (Klein et al., 2000).

For the experiments detailed in the current chapter, we used the robot Nao
(Gouaillier et al., 2009). This robotic platform has been designed to help re-
searchers in the field of humanoid robots, what fulfils our requirements of having
a torso and a head-like structure between the ears. However, the head of the
robot includes a fan for the cooling system that produces a background noise of
44.6 dBA at the right microphone and 41.6 dBA at the left microphone. In the
original architecture of Liu et al. (2010), the experiments were carried out with
a human-shaped head that did not produce internal or ego-noise; hence, our first
objective is to find out if the SSL architecture is robust against the interference
of high levels of stationary noise. According to specifications, Nao’s distance be-
tween the left and right microphones is ∼0.12m. Therefore, the highest frequency
that does not generate interaural time difference (ITD) ambiguities is fτ ≈ 1400

Hz.

3.2 Biomimetic Computation

As explained in Chapter 2.2, the spatial cues that we used for SSL were the ITDs
and the ILDs. We extract these cues with the simplified models of the medial
superior olive (MSO) and the lateral superior olive (LSO) and integrate their
output with the Bayesian model of the inferior colliculus (IC). We estimate using
Bayesian inference the weights of the connections from the MSO and LSO layers
to the IC layer. However, in this first experiment we compute such connection
weights with a simplified version of the model detailed in Section 2.2.4, as initially
we do not include the assumption of Poisson-distributed noise in the activity of
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neurones. Figure 3.2 details the resulting connectivity scheme between the MSO,
LSO and IC models used in this first experiment.

f

ITD

f

f

ILD

θ 180°0°

200Hz

4000Hz4000Hz
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τf

τf

Inhibitory connection
Excitatory connection

0° 180°
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200Hz
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Figure 3.2: Multiple delay lines deliver spike-trains to MSO cells according to
the Jeffress model (Schnupp et al., 2011). MSO neurones respond to frequencies
between 200 Hz and 4000 Hz. The difference of the wave amplitudes that produced
a spike in the MSO is used to generate a spike in the LSO. LSO neurones respond
to frequencies between ∼1000 and 4000 Hz. The MSO has excitatory connections
to the IC in all frequencies. The LSO has excitatory and inhibitory connections to
the IC in frequencies between ∼1000 Hz and 4000 Hz.

Willert et al. (2006) inspired this statistical inference, as the procedure is the
same for computing the MSO excitatory connections, and the LSO excitatory
and inhibitory connections. In the following paragraphs, we detail the method
for estimating the MSO connections to the IC. First, we record one second of white
noise with the left and right robot microphones at each of the θICj angles. A single
loudspeaker produces the recordings at one meter from the robot. Afterwards,
the recorded sounds are decomposed in nf frequency components. The value of
each frequency component f , for f = 1...nf , is given by the gamma tone filter
bank. Such filter simulates the mechanical filtering of the human cochlea. The
MSO model analyses separately each of the nf frequency components of sounds.

The IC model will have a total of nIC neurones sensitive to each of the nf
frequency components. Let us define:

θICj =
180

nIC − 1
∗ j, for j = 0, 1...nIC − 1 (3.1)
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θICj is the angle of a sound source for which the IC neurone j, f is maximally
sensitive, SICj,f is the number of spikes produced at the IC neurone j, f by a given
sound and nIC equals the total number of azimuth angles, in a half circle in front
of the robot, where we place the sound sources for training.

The MSO model will have a total of nMSO neurones sensitive each of the nf
frequency components. Let us define:

θMSO
i =

180

nMSO − 1
∗ i, for i = 0, 1...nMSO − 1 (3.2)

θMSO
i is the angle of a sound source for which the MSO neurone i, f is maxi-

mally sensitive and SMSO
i,f is the number of spikes produced at the MSO neurone

i, f by a given sound. The value of nMSO depends mainly on the distance between
the robot microphones, and the sample rate of the sound card used for recording
the sounds defines its upper limit.

Now, lets define p
(
SMSO
i,f |θICj , f

)
, as the likelihood probability of a spike being

produced at neurone i, f , given that a sound is being produced at angle θICj .
p
(
θICj |f

)
represents the prior probability of a sound being produced at angle θICj ,

given that frequency component f is being analysed. Finally, p
(
SMSO
i,f |f

)
is the

evidence of spikes being produced at neurone i, f .
Finally, from the previous definitions of likelihood, prior and evidence proba-

bilities, the posterior probability can be computed with the Bayes rule:

p
(
θICj |SMSO

i,f , f
)

=
p
(
SMSO
i,f |θICj , f

)
p
(
θICj |f

)
p
(
SMSO
i,f |f

) (3.3)

Each of the nIC training sounds recorded with the robot is analysed. First, the
MSO model compares the wave from the left and right channels of a recording. It
selects the first positive peak of the left channel wave as the reference peak. Then
it selects as comparison peaks, all the positive peaks on the right channel located
around one period after the reference peak. Depending on the time difference
between the reference peak and each of the comparison peaks, the MSO model
generates a spike in the corresponding MSO neurone i, f . Afterwards, the MSO
model repeats the same procedure with the sides inverted and selects the first
positive peak of the right channel wave as the reference peak. Finally, both
reference peaks are shifted to the maximum peaks around one period further,
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and both comparison processes repeated. The reference peaks stop being shifted
forward when two periods are left before the sound wave finishes.

At the end of the analysis, an activation matrix AMSO
j is generated for every

training sound θICj . The system corrects the activation matrices by a proportion
factor tprop, relative to the size of the listening window that the robot will use
under normal operation.

tprop =
ttraining
tlistening

(3.4)

ttraining is the time length of the training sounds and tlistening is the time length
of the listening window that the system uses under normal operation.

Each activation matrix AMSO
j is composed by nf activation vectors

−−−→
SMSO
j,f .

The connection weights are computed for every MSO neurone i, f in the acti-
vation vector

−−−→
SMSO
j,f , to the single IC neurone j, f . There are no connections

between neurones sensitive to different frequencies. The connection weights are
thresholded according to the following function:

Ej,f
i,f =

{
p
(
θICj |SMSO

i,f , f
)
if p
(
θICj |SMSO

i,f , f
)
> τMSO maxf

(
p
(
θICj |SMSO

i,f , f
))

0 otherwise
(3.5)

Ej,f
i,f is the excitatory connection from neurone i, f to neurone j, f and τMSO

is the real number from the closed interval [01] that determines the minimum
value of a posterior probability in order to be kept as a connection. A value of 0
represents no connection.

The likelihood probability is computed as follows:

p
(
SMSO
i,f |θICj , f

)
=

SMSO
i,f∑
i S

MSO
i,f

(3.6)

The system sums the spikes count in the activation matrix AMSO
j over all the

MSO neurones sensitive to the sound frequency component f .
The prior probability is the same for all neurones, as every angle θICj was

trained once. Therefore, each angle has the same probability of producing a
sound:
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p
(
θICj |f

)
=

1

nIC
(3.7)

nIC equals the total number of sound source angles used during the training
of the system.

The evidence probability is computed as follows:

p
(
SMSO
i,f |f

)
= p

(
SMSO
i,f |θICj , f

)
p
(
θICj |f

)
+

p
(
SMSO
i,f |¬θICj , f

)
p
(
¬θICj |f

) (3.8)

where

p
(
SMSO
i,f |¬θICj , f

)
p
(
¬θICj |f

)
=∑

¬j

SMSO
i,f∑
i S

MSO
i,f

for all AMSO
¬j

(3.9)

This simplification concludes the modifications made to the IC model from
Liu et al. (2010).

3.2.1 Multi-Array Preliminary Study

In order to have a reference for the performance that is possible to achieve with
the Nao platform, we performed a preliminary study using standard statistical
methods for the extraction of time-difference-of-arrival (TDOA) between 3 micro-
phone pairs in Nao’s head (Li & Levinson, 2002). More specifically, we computed
the cross-correlation between the signal of two microphone pairs: left-front and
right-front. The system computed the TDOAs with a cross-correlation for a
moving window, and the resulting TDOAs were concatenated to produce the in-
put to a standard multilayer perceptron neural network (MLP). The MLP had
|II |= 2 input neurones, was tested with |IH |= 6 . . . 72 hidden neurones, and had
|IO|= 24 output neurones. The network was trained with 4 speech recordings
from 24 directions equally spaced around the robot.
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Figure 3.3: Cross correlation of ITD pairs.

3.2.2 Determination of Robot Interaural Level Difference

We hypothesise that the SSL architecture is robust enough to perform accurately
under ∼40 dB of ego-noise. A crucial step to achieve this robustness is to de-
termine the maximum ILD produced by the robot head. The maximum ILD
resolution maxILD that can be achieved by a robot depends on the geometry of
its head, and it is necessary to estimate its value to extract ILDs from the high-
frequency components of sounds. For SSL with humanoid dummy heads (Liu
et al., 2010) it is possible to determine the value of maxILD from the scientific
literature. However, for Nao’s head, it was necessary to estimate the maxILD

by analysing the performance of the LSO model for SSL with different groups of
frequencies.

3.2.3 Biomimetic Computation

We performed two experiments with the biomimetic SNN model. In the first one,
we trained the robot with 1 s of uniform white noise (WN), and in the second
one with a longer speech sequence. The speech sequence consisted of 4 instances
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of the words hello, look, fish, coffee and tea, each pronounced by male and female
speakers. We chose the words to contain tonal sound from vowels as well as frica-
tive and plosive sound from consonants. In this way, we could observe the effect
these phonological subclasses may have on the system accuracy if any. While
performing SSL, the recordings made by the robot were split into 16 frequency
components between 200-4000 Hz as shown in Figure 3.2. We chose the range of
frequencies to contain most the harmonics produced in speech (Titze & Martin,
1998; Baken & Orlikoff, 2000) and determined the frequency components by ap-
plying the Patterson-Holdsworth filter bank algorithm (Holdsworth et al., 1988;
Slaney, 1993). In both experiments, the testing sounds consisted of instances of
the same words not used during training and of 0.25 s samples of white noise.

Figure 3.4: Confusion matrix of the MLP output.

3.3 Experimental Results

In order to get insights into the TDOAs produced between the two pairs of
microphones, we computed the phase shifts producing the highest correlation
for stimuli presented 360◦ around the robot. In this experiment, the extension
to the full circle was straightforward as we were using 3 microphones. Figure 3.3
shows the results of the cross-correlations between the left and front microphones.
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Figure 3.5: Localisation error of the LSO model when using the winner-takes-all
strategy. Solid lines represent higher frequency components, and dotted lines repre-
sent lower frequency components. The average error for high-frequency components
is lower than the average error for low-frequency components, which is consistent
with the results obtained in neurophysiological experiments with animals. Even
between high-frequency components, the average error tends to decrease around a
small range of interaural level differences close to 1 dB. This shows that customi-
sation of the maxILD value can reduce by half the average localisation error, even
between the best performing frequency components.

The results of this first experiment show that the system can perform multi-aural
SSL using the robot Nao, independently of the ego-noise produced by the cooling
system. As can be seen in Figure 3.4, the network classified the location of the
sound source for most of the source angles correctly, and when the classification
was erroneous, the magnitude of the error was minimum. Overall, the MLP
classified the sound source angles with an accuracy of 91%.

Using more than two microphones was avoided in the following experiments
for the sake of biological plausibility. Therefore, the question remained whether
the binaural approach was going to perform as accurately as the approach with
3 microphones. The second experiment was related to the customisation of the
maxILD. Once determined, the maxILD value remained fixed in the following
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experiments. We estimated the best LSO performance for all –and each– of the
nf frequency components from a range of maxILD values between 0.1 dB and 3.0
dB at 0.1 dB steps. Figures 3.5 and 3.6 show the MSO and LSO output errors
plotted against all the tested maxILD values.

Figure 3.6: MSO and LSO output errors estimated from their best frequency
components (dotted lines), and average error from all frequencies (solid lines). In
both cases the MSO error (blue lines) is constant for all maxILD values and the
best performance was reached at ∼0.8 dB.

Finally, we needed to analyse in more detail the behaviour of the system with
the maxILD value that provided the best performance. The third experiment
is related to SSL with only two microphones using a biomimetic spiking neural
network. The results showed that the system was capable of differentiating sounds
with a granularity of 15◦, but with higher error rates than the array of three
microphones. The confusion matrices can be seen in Figure 3.7. More specifically,
the system has better performance when training with speech and testing with
WN, but the accuracy diminishes when the system is trained with WN and tested
with speech. These results are somehow unexpected, as training with WN has
yielded good results in previous versions of the architecture.

Figures 3.8 and 3.9 compare the localisation error of the MSO, the LSO and
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(a) Trained with S and tested
with S.

(b) Trained with S and tested
with WN.

(c) Trained with WN and tested
with WN.

(d) Trained with WN and
tested with S.

Figure 3.7: IC output confusion matrices when the system was trained or tested
with uniform white noise (WN) or speech (S). The speech output is for the word
fish. Lighter areas indicate higher values.

the IC models. In this case, the output of each model was chosen using an
average of the winner-takes-all strategy applied to each frequency component.
As expected, the system achieves the best localisation performance when tested
with WN. Except for 0◦ and 180◦, the IC lower boundaries in Figure 3.8 show no
deviation from the ground truth values when localising WN stimuli. Figure 3.9
details further the output of the IC alone. In general, for all angles and all sound
classes, the IC performance highly improves in comparison to the classification
accuracy of the MSO and the LSO models alone as the localisation error drops
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to zero between 60◦ and 120◦.

Figure 3.8: MSO, LSO and IC average errors when training with speech and
testing with WN and speech. The errors are averaged over all sound classes. Notice
that the IC has higher accuracy than the MSO and LSO.

Figure 3.9: IC average errors when training with speech and testing with white
noise or speech. Notice that the localisation error for white noise is zero for most
angles. It is interesting to notice that training with speech produces a system that
performs better than the common practice of training with white noise.
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3.4 Conclusion

In this chapter, we confirmed the robustness of a biomimetic approach to SSL,
even though the architecture consisting of 3 microphones performed more ro-
bustly. The integration of auditory cues in the IC showed higher performance
than the MSO and the LSO alone. The IC model made no error in the 60◦ in
front of the robot and had near perfect localisation accuracy for WN. The opti-
mised algorithm proved to be capable of segregating sound sources with similar
precision to state-of-the-art algorithms (Nix & Hohmann, 2006; Willert et al.,
2006; Voutsas & Adamy, 2007).

Estimating the optimal maxILD value for Nao’s head, allows the system to
double the resolution for the localisation of sound sources in comparison to Liu et
al. (Liu et al., 2010), where the system performs SSL with a granularity of 30◦. We
found the maxILD through an analysis of the LSO activation across all frequency
components, but it was clear that high-frequency components are better suited for
the extraction of ILDs. Furthermore, the frequency decomposition of the input
signals opens the possibility of localising concurrent and dynamic sound sources
(Liu et al., 2010) that have different harmonic components. Such an advantage
is missing in networks that extract ITD pairs from the cross-correlation of the
sound wave.

The Bayesian inference process allowed the system to perform more robustly
under high levels of ego-noise. When the MSO and LSO models were presented
only with the robot’s ego-noise, their output was a fixed angle. However, such
ego-noise activation is distributed evenly among the IC neurones, and as expected
their overall output cancels out. Equally important, the IC regularised the output
of the system in a way that makes it more suitable to human interpretation and
varies more linearly than the output of either the MSO and the LSO models.
The IC output can be designed with a reduced number of neurones, making it
useful as a dimensionality reduction model. This reduction helps to speed up the
training of layers added in subsequent extensions of our architecture.

The processes underlying spatial hearing can be used for the segregation of
speech and increase its signal-to-noise-ratio in this way (Roman et al., 2003).
In the following experiments, we go further in this direction, as we explore the
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3.4 Conclusion

potential of using SSL for the enhancement of automatic speech recognition.
Ultimately, we pursue a multimodal approach to the long-standing Cocktail Party
Problem, and SSL is an essential ingredient in such enterprise (Even et al., 2011;
Li et al., 2012; Kim et al., 2015).
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Chapter 4

Static Sound Source Localisation

When deploying binaural sound source localisation (SSL) algorithms in different
environments and robotic platforms, it is crucial to use methods that are robust
against diverse sources of noise and reverberation. In order to asses this chal-
lenge, in this chapter we compare the performance of various methods that could
fulfil the same function at each stage of the SSL system that we propose. The
architecture has three degrees of freedom, i.e. each tested architecture employs a
different combination of representation of binaural cues, clustering and classifi-
cation algorithms. The heuristic for the selection of methods is the same at each
degree of freedom: to compare the impact of traditional statistical techniques ver-
sus machine learning algorithms with different degrees of biological inspiration.
We evaluate the overall performance in the analysis of each system, including
the accuracy of its output, training time and adequateness for life-long learn-
ing. The results support the use of hybrid systems, consisting of diverse kinds
of artificial neural networks, as they present a practical compromise between the
characteristics evaluated.

4.1 VR Room and Robot iCub

Figure 4.1 depicts our experimental setup. It consists of a humanoid robotic head
immersed in a virtual reality (VR) setup designed for audio-visual integration
(Bauer et al., 2012). This setup can help tremendously to test neural architectures
inspired in natural systems (Rucci et al., 1997) with robotic platforms (Rucci
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Figure 4.1: Audio-visual VR experimental setup. The grid shows the curvature
of the projection screen surrounding the iCub humanoid robot head and the dots
represent the location of the sound sources behind the screen.

et al., 2000). The iCub is a platform designed for studies in embodied cognition
and cognitive developmental robotics (Beira et al., 2006). The iCub head has a
geometry similar to the average 3 to 4 years old child and is equipped with a pair
of microphones surrounded by pinnae.

The position of the head remains fixed during the experiments, what we de-
nominate static SSL. The iCub head produces ∼60 Hz of ego-noise, which is one
of the most common challenges in humanoid platforms. In order to reduce the
influence of additional variables, we reduce the reverberation in the room with
damping curtains. The stimuli that we present to the robot consist of 0.25ms seg-
ments of white noise (WN) and the words hello, look, fish, coffee and tea recorded
from male and female subjects. The WN class consisted of 12 instances, and the
speech class consisted of 40 instances of each word. Each instance of both sound
classes is presented once to the iCub between 0◦ and 180◦ at 15◦ steps along the
azimuth plane. We present stimuli at the same elevation angle and a distance of
∼1.3m.
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The system is tested with four training / testing configurations: Speech /
Speech, WN / WN, WN / Speech and Speech / WN. As expected, we obtained
the highest performance when training and testing with different instances of the
same class of sounds, i.e. with the Speech / Speech, WN / WN configurations.
The lowest performance came from the WN / Speech configuration. However,
some architectures were able to generalise between classes in the Speech / WN
configuration. For this reason, we focus in this chapter on the results obtained
with the Speech / WN configuration as it is interesting to analyse the generali-
sation achieved by the learning process.

4.2 Neural and Statistical Processing of Spatial
Cues

We implement an architecture with three degrees of freedom in order to compare
different SSL systems. The architecture is depicted in Figure 4.2. Each degree
of freedom represents a layer, or processing step, that can be accomplished by
alternative methods. The architecture layers consist of preprocessing, representa-
tion, clustering and classification of binaural sound input. Within these layers,
the system performs the preprocessing step with a fixed algorithm; therefore, we
do not consider it as a degree of freedom. During this step, the sound input is
decomposed in several FCs with the Patterson-Holdsworth filter bank (PHFB)
(Slaney, 1993).

The representation layer is in charge of characterising ITDs and ILDs numer-
ically. The clustering layer is an intermediate step that can potentially improve
the performance of classifiers, as it can distribute a large number of prototype
vectors similarly to the underlying distribution of the training data. The clus-
tering layer is not present in some of the tested systems, as it is also possible
to directly classify the output of the representation layer. Finally, the classifica-
tion layer generates an output angle that can we use for motor control (Rokni &
Sompolinsky, 2012). In the following subsections, we detail further each of the
processing layers in the architecture.
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4.2.1 Preprocessing of Sound Signals

The first stage in our SSL system is the PHFB. This filter decomposes the left
(L) and right (R) sound recordings in frequency components f ∈ {1, 2 . . . F},
where F = 20. The filterbank separates the extracted f on a logarithmic scale
between 200 Hz and 4000 Hz, i.e., with an increase in bandwidth that resembles
the response of the human cochlea. Afterwards, the subsequent layers compare
the corresponding f from L-R signals for the extraction of spatial cues. All the
classification methods that we describe in this chapter use this step (see Figure
4.2).

4.2.2 Representation of Spatial Cues

The basis of SSL algorithms is the set of localisation cues chosen as input. As the
method used to represent spatial cues can influence the accuracy of the system’s
output, we want to compare the performance of our SSL system when represent-
ing spatial cues with traditional signal processing techniques against bioinspired
methods. For this reason, we choose two of the most representative methods in
binaural SSL research for representing ITDs: Cross-correlation (CCR) (Benesty
et al., 2007) and MSO Jeffress coincidence detector (Liu et al., 2010; Joris et al.,
1998). We also make use of ILD cue and represent it with an LSO model previ-
ously presented by the authors (Liu et al., 2010). Furthermore, we compare two
integration methods for the MSO and LSO outputs. The first method (MSO-
LSO) appends the output of the MSO and LSO models, and the second method
(Bayes IC) integrates the output of both models using Bayesian inference. In
Figure 3.2 are shown further details on the MSO, LSO and IC models. In the
following sub-subsections we detail each of the representation methods.

4.2.2.1 Cross-Correlation

The Cross-Correlation (CCR) technique is used to estimate the cross-correlation
sequence CCRL,R between L and R input signals, assuming them to be random
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Figure 4.2: Testing architecture. Solid lines represent fixed steps, and dotted
lines represent different systems that assembled for motor control. The shadowed
brackets indicate the layers that the testing meta-architecture combines to define
different architectures. The preprocessing consists on decomposing the sound input
in several FCs with the Patterson-Holdsworth Filter Bank (PHFB) (Slaney, 1993).
Then, the representation layer numerically characterises different spatial cues. Al-
ternatively, the representation provided by the Bayes IC integrates output from
the MSO and LSO in vectors with reduced dimensionality. The clustering layer
distributes a larger amount of prototype vectors in the space of represented cues in
order to test for a possible improvement in SSL accuracy. All systems were tested
with and without this intermediate layer. Finally, the classification layer produces
an output angle that can be used for motor control.

stationary processes sampled from time window ∆t.

CCRL,R(j, f,∆t) =
J−1∑
i=0

Li,f,∆t ·Ri−j,f,∆t, for 0 ≤ j ≤ J

CCRL,R(−j, f,∆t), for − J ≤ j < 0

,
(4.1)

where i represents sampled values from the input signals, j are the ITD shifts
made when computing the correlation sequence and J is the length of the input
signals.
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We use the correlation sequences of all f as input to the clustering or the
classification algorithms. However, the output angle Θ can also be estimated
directly from the j that maximises the correlation over all f with the winner-
takes-all (WTA) rule:

ITDwin = arg max
j

(∑
f

CCRL,R(j, f,∆t)

)
. (4.2)

We are interested in using WTA for benchmarking, as it is the classification
technique the authors previously used in the MSO, LSO and IC models (Liu
et al., 2010; Dávila-Chacón et al., 2012). Due to the geometry of the head, ITDs
vary non-linearly as a sound source moves around us. Therefore, the output angle
is computed as follows:

Θ = sin−1

(
ITDwin − ITDmax + 1

ITDmax

)
, (4.3)

where ITDmax is the maximum possible ITD that occurs when the sound source
is aligned with the interaural axis.

4.2.2.2 Medial Superior Olive

One of the methods we use for extracting ITDs is Liu et al. (Liu et al., 2010)
SNN model of the MSO. This method takes inspiration from neurophysiological
theories describing the underlying mechanisms of the MSO (Ashida & Carr, 2011),
including the Jeffress Coincidence Detector model. After decomposing the sound
signals with the PHFB, each frequency component f is phase-locked to its positive
values. This locking means that hair cells in the organ of Corti reach the highest
probability of producing a spike when the amplitude of vibrations in the basilar
membrane is maximal (Richter et al., 1998).

Afterwards, the system compares the maximum positive values in time window
∆t, and the phase shift between these maximums is used to estimate the ITD.
In the last step, neurones k ∈ {1, 2 . . . K} in the MSO respond to different ITDs
and for every time window ∆t generate a spikes matrix SMSO

∆t of size F ×K.
We can feed the classification algorithms with SMSO

∆t , or directly compute the
output angle Θ from the k with maximal neural activity among all the f . For
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the latter case, ITDwin could be estimated using the WTA rule as in eq. (4.4)
and Θ as in eq. (4.3).

ITDwin = arg max
k

(∑
f

SMSO
∆t

)
. (4.4)

4.2.2.3 Lateral Superior Olive

For estimating ILDs we use Liu et al. (Liu et al., 2010) SNN model of the LSO. It
also was developed by some of the authors and our current objective is to test it
in a different anthropomorphic head with ego-noise. In the LSO model neurones
k ∈ {1, 2 . . . K} fire depending on differences in L-R amplitudes for each f . Using
the same pairs of L-R values from which ITDs are measured, ILDs are computed
as log(Lf,t/Rf,t). Therefore, at every time step ∆t a spikes matrix SLSO

∆t of size
F ×K is generated. Afterwards, we obtain the output angles following the same
procedure applied to SMSO

∆t .

4.2.2.4 Inferior Colliculus

Reducing the dimensionality of input vectors can decrease the amount of data
and time required for training machine learning algorithms. For this reason, we
also test the clustering and classification algorithms with an integrated version
of the MSO and LSO output vectors. Such integrated vectors are constructed
using Bayesian inference in a model of the inferior colliculus (IC) (Liu et al.,
2010). A significant computational advantage comes from the IC dimensionality
reduction, as IC output vectors are more than six times smaller than the MSO
and LSO output vectors together. More details of the IC integration architecture
are shown in Figure 3.2.

An additional benefit from this integration process comes from the overlap
of MSO excitatory connections and LSO inhibitory connections. The LSO cap-
tures the useful information for SSL contained in high frequencies but generates
ambiguous information from low-frequencies. The MSO captures the useful in-
formation for SSL contained in all frequencies, but also generates ambiguous
information from high-frequencies. For this reason, LSO inhibitory connections
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can help to remove misleading information generated by the MSO at high fre-
quencies. Therefore, the IC provides a more accurate representation of auditory
cues along all f .

Similar to the previous cues, the IC model generates a spikes matrix SIC
∆t at

every time step ∆t. Again, output angles can be computed with the same proce-
dures applied to SMSO

∆t . Chapter 2.2 provides further details on the architecture
of the MSO, LSO and IC models. Now we proceed to introduce and justify the
selection of clustering methods.

4.2.3 Clustering of Spatial Cues

Clustering algorithms can be used directly for classification when having the same
number of prototypes p ∈ {1, 2 . . . P} and target classes c ∈ {1, 2 . . . C}. However,
with a larger P it is possible to cover more closely the distribution underlying
the training data, hence, improving the overall performance of the system. In the
case of SSL, the distribution of auditory cues in each representation space can be
highly convoluted. Therefore, using P � C can spread the trained prototypes
closer to the distribution of the characterised cue.

Since several p can belong to a single c, an additional requirement is the in-
clusion of another layer in the architecture for classifying the winning c. Again,
the criteria for selecting clustering algorithms is to compare a standard statistical
technique against a neural method, for which we choose K-Means (KM) (Mac-
Queen, 1967), Learning Vector Quantisation (LVQ) (Lloyd, 1982; Kohonen, 1995)
and Self Organising Feature Maps (SOM) (Kohonen, 1982, 2013).

4.2.3.1 K-Means Clustering

Due to its simplicity and speed relative to other clustering techniques, K-Means
Clustering (KM) (MacQueen, 1967; Lee & Choi, 2010) is included as a benchmark
against the more sophisticated SOM. The best results are achieved with K = 26

and using a randomly chosen sample of the training data as starting positions
for the prototypes. K = 26 comes from the set of multiples of the total number
of target classes C (sound source angles used during training), i.e., K ∈ {C ×
1, C × 2, C × 3, C × 4, C × 5}. All analytical procedures described in this chapter
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Value Variable Comments

K 26 {13, 26, 39, 52, 65}
Distance Squared Euclidean {Squared Euclidean, City Block,

Cosine, Correlation, Hamming}
Empty action Singleton {Error, Drop: Remove alone pro-

totypes, Singleton: Create single
instance cluster}

Online phase On {On: guarantees local minima,
Off: slower}

Replicates 10 Times to repeat the clustering
with new initial prototype posi-
tions. Take the solution with
the lowest value for within-cluster
sums of point-to-centroid dis-
tances.

Starting positions Sample {Sample: From data, Uniform:
From data range, Cluster: Pre-
liminary clustering with 10% of
data}

Table 4.1: K-Means Clustering (KM)

use the Euclidean distance as the standard metric. For further details on the
hyper-parameters see Table 4.1.

4.2.3.2 Learning Vector Quantisation

The Learning Vector Quantisation (LVQ) (Lloyd, 1982) classification method rep-
resents a step between K-Nearest Neighbours and Self-Organising Maps. In our
experiments, we used the LVQ-2 variant, where the presented instance attracts
the winning prototype and repels the second winner.
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Value Variable Comments

Hidden units 26 {13, 26, 39, 52, 65}
Learning rate 0.01 {0.1, 0.01, 0.001, 0.0001}
Learn function LV2 {LV1: Attracts winner, LV2: Attracts win-

ner and repels second winner}
Train epochs 1000 {10, 100, 1000, 10000}
Train time Inf. Maximum training time.

Goal 0 Desired error.

Table 4.2: Learning Vector Quantisation (LVQ)

Value Variable Comments

X prototypes 13 {13, 26, 39, 52, 65}
Y prototypes 13 {13, 26, 39, 52, 65}

Map dimensions 2D Map is projected on a 2D space.
Topology function Hexagonal {Square grid, Hexagonal, Triangular,

Random}
Train epochs 1000 {10, 100, 1000, 10000}
Train time Inf. Maximum training time.

Table 4.3: Self Organising Map (SOM)

4.2.3.3 Self Organising Map

Due to its topology-preserving property, Self Organising Maps (SOM) (Kohonen,
1982) facilitate visualisation of the data structure in lower dimensions. We use a
2D SOM in two different configurations. In the first one P = C and its output
can be directly used for motor control. In the second configuration P = C2

and a classification layer is added on top of it. In both cases the ordering phase
consists of 1000 steps, has a learning rate η = 0.9 and the neighbourhood distance
(ND) decreases from the furthest neurone to 1. The tuning phase consists of
additional 4000 steps where η = 0.02 and ND = 1. For further details on the
hyper-parameters see Table 4.3.
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4.2.4 Classification of Spatial Cues

In our testing architecture, the classification layer receives input from the repre-
sentation layer or an intermediate clustering layer. Following the same heuristic,
we compare a standard statistical technique for benchmarking against a pair of
artificial neural networks (ANN). K-Nearest Neighbours (KNN) (Cover & Hart,
1967) is the chosen statistical technique and the selected ANNs are the Radial
Basis Functions network (RBF) (Park & Sandberg, 1991) and the Multilayer
Perceptron (MLP) (Rosenblatt, 1958).

4.2.4.1 K-Nearest Neighbours

K-Nearest Neighbours (KNN) (Cover & Hart, 1967) is a relatively simple, yet
powerful, classification technique. Instead of exhaustive search, we use a KD-Tree
to reduce the cost of finding the nearest neighbour from O(N2), to O(NlogN) for
N data points (Bentley, 1975). We obtained the best performance with K = 4.

4.2.4.2 Radial Basis Functions Network

A significant advantage of Radial Basis Functions Networks (RBF) (Park & Sand-
berg, 1991) over other ANNs is their much faster training procedure. The number
of neurones in the hidden layer is equal to the number of training instances, and
the network shows the best overall performance with a spread σ = 10.

4.2.4.3 Multilayer Perceptron

The Multilayer Perceptron (MLP) (Rosenblatt, 1958) is a universal function-
approximator robust to noise, whose internal dynamics are one of the best un-
derstood in the field of ANNs. During training we use the following data ratios:
training = 0.8, validation = 0.1 and testing = 0.1. We use hyperbolic tangent as
activation function and, due to its increased speed for large networks, we use the
scaled conjugate gradient (Møller, 1993) method for backpropagation. The opti-
misation parameters are set to the standard values σ = 5×10−5 and λ = 5×10−7

according to Møller (1993).
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Value Variable Comments

Hidden units 26 {13, 26, 39, 52, 65}
Train ratio 0.8 Proportion of data for training.
Valid ratio 0.1 Proportion of data for crossvalidation.
Test ratio 0.1 Proportion of data for testing.

Train function SCG Scaled conjugate gradient.
Train epochs 1000
Train time Inf.

Goal 0 Desired error.
Min gradient 1e-60 Desired gradient in error landscape.
Max fails 500 Maximum epochs with lower performance.
Sigma 5e-05 Determines the change in the weight for the

second derivative approximation. Optimisa-
tion value recommended by Møller (1993).

Lambda 5e-07 Regulates the indefiniteness of the Hessian.
Optimisation value recommended by Møller
(1993).

Table 4.4: Multilayer Perceptron (MLP)

The number of hidden neurones (HN ) changes depending on the architecture
being tested. When the MLP receives input from the representation layer HN
= bvdim/2e, where vdim is the dimensionality of input vector v. When the MLP
receives input from the clustering layer HN = C × 2. For further details on the
hyper-parameters see Table 4.4.

4.2.5 System Performance

The system performance is analysed using measures from information retrieval
theory (Van Rijsbergen, 1979): recall (Re), precision (Pr), specificity (Sp), ac-
curacy (Ac) and F-measure (Fm). We compute the value of each measure from
the confusion matrices of the output angles. Specifically from the true positives
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Figure 4.3: Recall - Precision. The markers show the performance of the best
representation methods. For clarity, the area where the performance of the non-
winning classifiers falls is represented by shaded squares in the top five plots. In
all representations the best performance is achieved by the training / testing con-
figuration Speech / WN. Three representation methods showed significantly better
performance: MSO, MSO-LSO and IC. Within these representations, three clas-
sification algorithms obtain best results with a recall Re > 0.98 and precision
Pr ≥ 0.89: KNN, MLP and RBF.

(TP ), true negatives (TN), false positives (FP ) and false negatives (FN):

Pr =
TP

TP + FP
, (4.5a)

Re =
TP

TP + FN
, (4.5b)

Sp =
TN

TN + FP
, (4.5c)

Ac =
TP + TN

TP + TN + FP + FN
, (4.5d)

Fm = 2× Pr ×Re
Pr +Re

. (4.5e)
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Table 4.5: K-NN - Classification performance with each representation method.
Best results are highlighted in bold.

Pr Re Sp Ac Fm

CCR 0.21 0.75 0.59 0.61 0.33
MSO 0.96 1.00 0.96 0.98 0.98
LSO 0.15 0.65 0.54 0.55 0.25

MSO-LSO 0.89 0.99 0.90 0.94 0.93
Bayes IC 0.18 0.75 0.53 0.56 0.29

Table 4.6: MLP - Classification performance with each representation method.
Best results are highlighted in bold.

Pr Re Sp Ac Fm

CCR 0.55 0.89 0.75 0.79 0.68
MSO 0.98 1.00 0.98 0.99 0.99
LSO 0.21 0.76 0.56 0.59 0.33

MSO-LSO 0.95 0.99 0.95 0.97 0.97
Bayes IC 0.93 0.99 0.94 0.96 0.96

4.3 Experimental Results

Appendix A contains detailed results for each variant defined by the testing ar-
chitecture. The performance of all representation and classification algorithms
is displayed in recall-precision plots in Figure 4.3. In all representations the top
performance is achieved when training / testing with Speech / WN. From all the
tested representation methods, three lead to much more accurate results: MSO,
MSO-LSO and Bayes IC. Furthermore, within those three representations, three
classification algorithms perform significantly better than the rest with Re > 0.98

and Pr ≥ 0.89: KNN, MLP and RBF.
The performance measures of the three best, or winning, classifiers is shown

in Tables 4.5, 4.6 and 4.7. In order to show the considerable increase in perfor-
mance of the winning classifiers, Table 4.8 shows the performance results of the
second best classifiers with Pr > 0.7. These second best systems achieved higher
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Table 4.7: RBF - Classification performance with each representation method.
Best results are highlighted in bold.

Pr Re Sp Ac Fm

CCR 0.20 0.75 0.56 0.58 0.32
MSO 0.97 1.00 0.97 0.98 0.98
LSO 0.42 0.83 0.70 0.73 0.56

MSO-LSO 0.93 0.99 0.93 0.96 0.96
Bayes IC 0.27 0.73 0.68 0.68 0.40

Table 4.8: Performance of the second best systems with Pr > 0.7. The same
classifier has better performance when clustering input from the MSO.

Pr Re Sp Ac Fm

MSO: KM-RBF 0.75 0.94 0.85 0.88 0.84
MSO: SOM-RBF 0.75 0.94 0.85 0.88 0.83

performance when clustering and classifying input from the MSO representation.
In the following subsections we detail the performance of the best classifiers

with each of the cue representations, and compare them against the WTA clas-
sification rule we applied in our previous work with a different robotic platform
(Dávila-Chacón et al., 2012). In all cases the training / testing configuration is
Speech / WN.

4.3.1 Cross Correlation

This statistical method shows lower performance than the MSO model, its bioin-
spired counterpart. However, the confusion matrices in Figure 4.4 show that the
angle deviation from the ground truth of KNN and RBF outputs is small for
practical purposes when using CCR as input. It remains an open possibility to
improve the performance of this method when adding a noise cancelling layer
to the system. This enhancement is desirable for online applications as CCR
provides a faster characterisation of ITDs than the MSO.
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Figure 4.4: Confusion matrices when using CCR representation as input for WTA
and the winning classification methods.
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Figure 4.5: Confusion matrices when using MSO representation as input for WTA
and the winning classification methods.

4.3.2 Medial Superior Olive Model

The MSO allows the system to reach the highest accuracy relative to all other
representations. Also, it is the only representation that allows the three winning
classification methods to perform almost flawlessly. Figure 4.5 shows the im-
provement of the winning classifiers over the baseline method of WTA. The MSO
performed robustly under high levels of ego-noise, even when the noise frequency
components were overlapping with the f provided by the PHFB.

4.3.3 Lateral Superior Olive Model

This bioinspired method is the only one we used for representing ILDs, as there
are no standard statistical techniques for benchmarking. The extraction of ILDs
is affected by the geometrical and material properties of the robotic head. In
previous work the authors successfully used ILDs for SSL (Liu et al., 2010) with
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Figure 4.6: Confusion matrices when using LSO representation as input for WTA
and the winning classification methods.
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Figure 4.7: Confusion matrices when using MSO and LSO representations as
input for WTA and the winning classification methods.
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Figure 4.8: Confusion matrices when using Bayes IC representation as input for
WTA and the winning classification methods.

a styrofoam humanoid head. Nevertheless, Figure 4.6 shows that the classifica-
tion techniques can not infer correctly the location of sound sources from ILDs
extracted with the iCub head.

One possible reason for this low performance is the presence of high levels
of ego-noise. After inspecting a spectrogram of the iCub’s ego-noise, we found
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4. STATIC SOUND SOURCE LOCALISATION

that the spectral region with the most intense ego-noise contains15 of the 20
frequency components f defined by the PHFB cochlear model. Therefore, noise
in these frequencies can significantly reduce the SNR of incoming stimuli and
impede the use of ILDs for SSL. Subsection 4.2.1 provides more details on the
PHFB preprocessing step.

Another possibility is that the inaccuracy of the system when using ILDs is
due to the material properties of the robotic head. A difference from the platform
used by (Liu et al., 2010) is that the iCub head is hollow and has openings in
the back, reducing in this way the shadowing effect needed to use ILDs for SSL
effectively.

4.3.4 Linear Integration of Time and Level Differences

This integration of ITDs and ILDs, represented by the MSO and LSO models, is
much simpler than the IC Bayesian integration. In this case, the MSO and LSO
activation matrices for ∆t are merely appended and used as input for the next
system layer. It is interesting to see in Figure 4.7 that the performance of the three
winning algorithms dramatically increase in comparison to the IC method, even
though the complexity of the characterisation procedure decreases. However, it
is also important to keep in mind that the training procedure also becomes more
demanding as the dimensionality of the input vectors to the classification layer
grows by a factor of ∼7.

4.3.5 Bayesian Integration of Time and Level Differences

This representation is the most biologically plausible from the set we describe in
this chapter, but it is also the most computationally expensive. On the other
hand, the dimensionality reduction provided by this method speeds up consider-
ably the training procedure of the classification algorithms.

Figure 4.8 shows the confusion matrices when using WTA for classification,
versus the performance of the three winning classifiers. The output of WTA is
strongly biased towards a small range of angles on the 0◦ quadrant, possibly due
to the non-linear encoding of information across the IC neurones. Also, KNN
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Figure 4.9: Sound source localisation testing architecture. The red path indi-
cates the best performing system. Sound pre-processing consists in decomposing
the sound input in several frequency components with the Gammatone filterbank
emulating the human cochlea Slaney (1993). Afterwards, the MSO and LSO models
represent ITDs and ILDs respectively. The IC model integrates output from the
MSO and LSO while performing dimensionality-reduction. Finally, the classifica-
tion layer produces an output angle that is used for motor control.

and RBF show a bias, albeit smaller, towards the same region. In contrast, the
MLP is capable of correctly encoding the spiking activity of the IC.

4.4 Conclusion

After our extensive comparison of architectures, we found the winning variant
that Figure 4.9 indicates with the red path. The increase in performance is better
understood when we analyse the advantages of the components that performed
better at each stage. In principle, it is possible to extract ITDs from any pair
of microphones separated by a known distance. Such a configuration can work
with or without a humanoid head between the microphones. However, for the
estimation of ILDs, it is necessary to measure the shadowing effect produced by
a head-like structure. The results of the static SSL experiments show that the
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4. STATIC SOUND SOURCE LOCALISATION

iCub’s head produces a similar shadowing to the Soundman’s head, independently
of their structural and material differences. Soundman is specifically designed
for the generation of spatial effects in binaural recordings; hence, these results
support the use of iCub for experiments in spatial audition. In this chapter,
we compare different methods for the representation and classification of spatial
cues for SSL. We found three best representation methods: MSO, MSO-LSO and
Bayes IC. There are also three winners from our set of classifiers: KNN, MLP
and RBF.

The fastest method for representation of ITDs is the MSO model alone. Nev-
ertheless, MSO-LSO and Bayes IC methods can be more robust when classifying
sounds richer in high-frequency components. We have shown that the LSO model
performs well under lower levels of ego-noise (Dávila-Chacón et al., 2012). More
precisely, with levels of ∼40 Hz instead of ∼60 Hz. An interesting direction for fu-
ture work is to test the system using ILDs in combination with a noise cancelling
module, as we expect this configuration will improve the accuracy of SSL with
the iCub head. Concerning training speed, the fastest classification method is
KNN. However, for life-long learning, the standard KNN method would become
computationally expensive, i.e. slow, as the system would need to store a vast
number of prototypes from possibly several environments. Therefore, the MLP
and RBF networks represent a more practical option regarding online speed.

Finally, an exciting extension of the system is to include the propagation of
probabilities through time and to increase the confidence of the sound source
angle by integrating vision (Natale et al., 2002; Lv & Zhang, 2008). We expect
that both additions will improve the confidence of the classification algorithms
and their robustness against higher levels of reverberation.
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Chapter 5

Dynamic Automatic Speech
Recognition

In the previous chapters, we have dived into sound source localisation, starting
with the biological principles and ending with the design of a biomimetic system
for humanoid robots. At this point our focus shifts to the application of our
increased understanding of SSL towards the improvement of automatic speech
recognition under the same noisy conditions. In Section 5.2 we detail an exper-
iment where we test the performance of ASR with two humanoid robots. We
assume that the combination of SSL and ASR can lead to increased accuracy
when the robot orients its face at an optimal angle from the sound source. In
Section 5.3 we present an experiment whose objective is to find how many SSL
iterations it takes the system to face a sound source when the robot starts from
a range of different angles between the sound source and the direction faced by
the robot. Once the robot is facing directly at the sound source, we can measure
the stability of the SSL system for locking on the speech target. We refer to this
scenario as dynamic SSL, and it is an essential test in real-world situations, where
potential outliers in SSL can disrupt the effect of engaged communication with a
human subject.
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5. DYNAMIC AUTOMATIC SPEECH RECOGNITION

Figure 5.1: Scaffold of the audio-visual VR experimental setup surrounding the
subject. Reprinted with permission from Bauer et al. (2012) (Copyright c© 2012,
IEEE).

5.1 Smoke and Mirrors

In the following subsections, we introduce the robotic platforms that we use. We
compare the performance of ASR with the robot iCub and a dummy head de-
signed to perform binaural recordings that maximise the spatial effect for human
listeners. Taking advantage of the versatility of the virtual reality setup that we
designed for our previous experiments in SSL, we place both platforms inside a
semi-circle of loudspeakers from where we reproduce the auditory stimuli (Klein
et al., 2000). Our experiments are designed to measure the effect that the ma-
terials and geometry of both platforms may have on the performance of ASR;
hence, we repeat the experiment with each platform.

5.1.1 Virtual Reality Setup

The virtual reality (VR) setup that our group designed is equipped to test
multimodal-integration architectures and to present visual and auditory stim-
uli to robotic and human subjects. The VR setup allows the user to control the
spatial and temporal production of images and sounds in a semi-circular projec-
tion screen. Figure 5.1 shows the structure surrounding the subject and Figure
5.2 the setup of the image projectors. In our first experiments, we focus on what
we call static ASR, as both the speech source and the robot orientation remain
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5.1 Smoke and Mirrors

Figure 5.2: Setup of the projectors in the audio-visual VR experimental setup.
Reprinted with permission from Bauer et al. (2012) (Copyright c© 2012, IEEE).

fixed during the entire experiment. This constraint intends to avoid the interfer-
ence of additional sources of ego-noise that can affect the performance of ASR
while performing SSL (Perisa et al., 2004; Barker et al., 2005).

The primary objective is to measure the effect that the incidence angle of
sound waves has on ASR. As the face and pinnae of the robot obstruct and
reflect the sound waves differently, depending on the incidence angle of the sound
stimuli, this may enhance or reduce the SNR of speech signals. When we run the
experiments, we place the humanoid at the radial centre of a projection screen
shaped as a half cylinder. As we see in Figure 5.3, the humanoid is located at
the radial centre of a projection screen shaped as a half cylinder and the noise
produced by the projectors is below 30 dB at the location of the robot. This
setup allows us to test the system performance down to a granularity of 0◦, as
behind the screen there are 13 speakers evenly distributed on the azimuth plane
at angles θlspk ∈ {0◦, 15◦, . . . , 180◦}. The loudspeakers lay on a circumference
with a radius of ∼1.6 m around the robot. Corrugated curtains partially damp
the room acoustics in order to approach a reverberation time (0.25−0.5 s) and an
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Figure 5.3: Setup of the loudspeakers in the audio-visual VR experimental setup.
The dots represent the location of sound sources behind the screen.

inner sound pressure level (20−40 dB) with studio quality. We provide a detailed
description of this setup and the principles behind its design can in Bauer et al.
(2012).

5.1.2 Humanoid Robotic Platforms

The humanoid platforms used in our experiments are the iCub robotic head (Beira
et al., 2006) and the Soundman wooden head1 modified by our group to rotate
on the azimuth plane with the help of an electric motor installed in its base. The
iCub is a humanoid robot designed for research in embodied embedded cogni-
tion (Metta et al., 2008) and in cognitive developmental robotics (Asada et al.,

1http://www.soundman.de/en/dummy-head/
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5.1 Smoke and Mirrors

(a) iCub (b) Soundman

Figure 5.4: Humanoid heads used in our experiments.

2001). Soundman is a commercial device, with the geometry and dimensions of
a human head, designed for the production of binaural recordings that maximise
the perception of spatial effects. Both platforms offer the possibility of extract-
ing spatial cues from binaural sound, as the geometric and material properties
of both humanoid heads (Hwang et al., 2006) produce interaural time and level
differences. Our goal is to find out if the resonance of the iCub head, from the
skull and interior components, has an impact on the performance of ASR. When
we perform ASR experiments with the iCub Off or when we use Soundman, we
mount the same pair of balanced microphones on either head and control the
sound stimuli to have an intensity of ∼60 dB. When we perform SSL experiments
with the iCub On, we increase the intensity of the sound stimuli to ∼80 dB due
to the high levels of ego-noise produced by the robot. Both platforms can be
seen in Figure 5.4 and their respective pinnae is shown in Figure 5.5. Notice that
the pinnae differ considerably between each other. Nevertheless, the functional
aspect of such artificial shapes is the creation of asymmetries that can create a
unique imprint by absorbing in different magnitudes the frequency components
of incoming sound waves (Hofman et al., 1998; Finger et al., 2010).
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(a) iCub (b) Soundman

Figure 5.5: The robots ears consist of microphones perpendicular to the sagittal
plane, surrounded by asymmetrical pinnae made of plastic (iCub) or symmetrical
pinnae made of wood (Soundman).

5.2 Robot Speech Recognition

In this first experiment of the chapter, we test this hypothesis with experiments to
find the orientation that increases the accuracy of ASR and measure the magni-
tude of the improvement in comparison to other angles, if any. More formally, we
present an embodied embedded cognition approach to ASR, where the humanoid
robot adjusts its orientation to the angle that increases the signal-to-noise ratio
of speech. In other words, the robot turns its face to ’hear’ better the speaker in
a similar way as some elders or people with auditory deficiencies do.

5.2.1 Speech Recognition and Phonetic Post-Processing

We use a system developed by our group for automatic speech recognition Twiefel
et al. (2014): Domain- and Cloud-based Knowledge for Speech Recognition (DOCKS).
The DOCKS system has two main components: 1) A domain-independent speech
recognition module and 2) a domain-dependent phonetic post-processing module.
The need for domain-dependent ASR arises from the intense noise of the cooling
system in humanoid platforms commonly used for research in academia (Nao,
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Table 5.1: Performance of ASR systems.

System WER in % SER in %

Go 50.230 97.804

Sp + NG 60.462 95.101

Sp + FSG 65.346 85.980

Sp + DoSe 65.346 85.980

Go + Sp-HMM + NG 7.962 27.703

Go + Sp-HMM + FSG 6.038 19.257

Go + Sp-HMM + DoSe 5.846 18.581

Go + WoLi 23.231 57.432

Go + SeLi (DOCKS) 3.077 11.993

Best results are marked in boldface.

Terminology can be found in the text.

iCub). In such conditions, sentences are more easily recognisable than words,
which is analogous to the RAF alphabet used in aviation to communicate under
low SNR conditions. The domain-dependent output of the DOCKS system does
not impede generalisation from our experimental results, as our objective is not
to develop a novel ASR system. Our goal is to compare the performance of any
existing ASR system with and without the support of SSL.

To test the DOCKS ASR system Heinrich and Wermter created a corpus that
contains 592 utterances produced from a predefined grammar Heinrich &Wermter
(2011b). The corpus was recorded by female and male non-native speakers using
headset microphones, and it is especially useful as the grammar for parsing the
utterances is available. They use two commercial ASR platforms as the domain-
independent component of the DOCKS system: Google ASR Schalkwyk et al.
(2010) and Sphinx Walker et al. (2004). Afterwards, they measure the word
(WER) and sentence (SER) error rates under four different configurations. In
Table 5.1 we compare the performance of 1) the raw output of Google ASR (Go),
2) Sphinx ASR (Sp) with an N-Gram language model (NG), with the corpus
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finite state grammar (FSG) and with the domain sentences (DoSe), 3) Go plus
the Sphinx Hidden Markov Model (Sp-HMM) with NG, with FSG and with DoSe,
and 4) Go with the domain word list (WoLi) and with the domain sentence list
(SeLi).

During the domain-independent speech recognition, the DOCKS system uses
Go as in previous work Rubruck et al. (2013a) it has shown better performance
than Sp. In our experiments, we use the TIMIT core-test-set (TIMIT-CTS) Garo-
folo et al. (1993) as speech stimuli. The TIMIT-CTS is formed by the smallest
TIMIT subset that contains all existing phonemes in the English language. It
consists of 192 sentences spoken by 24 different speakers: 16 male and 8 female
pronouncing 8 sentences each. Further details about the DOCKS architecture
can be found in Twiefel et al. (2014) and Davila-Chacon et al. (2013).

During the domain-dependent phonetic post-processing, the DOCKS system
maps the output of Go to the sentences in the TIMIT-CTS. When the system
sends a sound file to Go, it returns the 10 most plausible sentences (G10). First,
the system transforms the G10 and the TIMIT-CTS from grapheme representa-
tion to phoneme representation Bisani & Ney (2008). Then the system computes
the Levenshtein distance Levenshtein (1966) between each of the phoneme se-
quences in the G10 and the TIMIT-CTS. Finally, the phoneme sequence in the
TIMIT-CTS with the smallest distance to any of the phoneme sequences in the
G10 is considered the winning result. We consider correct the sentence corre-
sponding to the winning phoneme sequence when it matches the ground truth
sentence presented to the robot.

In general, the Levenshtein distance L(a,b) refers to the minimum num-
ber of deletions, insertions and substitutions required to convert string a =

a1, . . . , ai, . . . , am into string b = b1, . . . , bj, . . . , bn. We compute the distance
L (a,b) = D(m,n) as follows:

D(i, j) =



i for 0 ≤ i ≤ m and j = 0,

j for 0 ≤ j ≤ n and i = 0,

min


D(i− 1, j) + 1

D(i, j − 1) + 1 for 1 ≤ i ≤ m and 1 ≤ j ≤ n.

D(i− 1, j − 1) + κ
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Where κ = 0 if ai = bj and κ = 1 if ai 6= bj.

5.2.2 Experimental Results

In the experiments, we present the speech stimuli around the robotic heads from
the loudspeakers at angles θlspk at ∼1.6 m from the robot and measure the accu-
racy of the DASR system. Let θneck be the angle faced by the robot at any given
time, and δdiff be the angular difference between θlspk and θneck. We hypothesise
that there is an angle -or set of angles- δbest for which the signal-to-noise ratio
(SNR) is highest and hence, for which the DASR system performs better. For this
purpose, we measure the performance of the DASR system after reproducing 10
times the CTS utterances from the loudspeaker at angle θlspk. The performance
is measured as the average success rate at the sentence-level for the entire CTS
corpus over the 10 trials. We refer to success rate as to what sentence accuracy
is in the ASR domain, i.e., the ratio of correct recognitions over the total number
of trials. It is also desirable to visualise the results of this binary evaluation in
a continuous domain (Liu & Shen, 2010b). We compute such transformation by
measuring the average Levenshtein distance between the output of the DASR
system and the ground truth sentences.

It is important to remember that the sounds recorded through the robotic
heads contain 2 channels, i.e. the audio waves from the left and right micro-
phones. As the DASR system requires monaural files as input, there are 3 possible
reduction procedures: Using the sound wave from the left channel only (LCh),
using the sound wave from the right channel only (RCh) or averaging the sound
waves from both channels (LRCh). The average success rates of the 3 reduction
procedures on the recordings obtained with both heads are shown in figure 5.6
and the average Levenshtein distances in figure 5.7. It is clear that the perfor-
mance curves obtained from the recordings of both robotic heads follow the same
patterns. Notice that the performance of the DASR system improves with the
Soundman head on the most favourable angles δbest. However, the difference is
not significant enough to conclude that the resonance of the iCub head reduces
the performance of the DASR system.
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Figure 5.6: Average success rates of the DASR system. Results obtained with
both robotic heads for the frontal 180◦ on the azimuth plane.

Even though we control the volume of each loudspeaker to output the same
intensity level (∼75 dB), the smoothness of the performance curves is affected
by the difference in fidelity from each of the loudspeakers. Nevertheless, the
graphs clearly show a set of angles δbest where the DASR system considerably
improves its performance. For all reduction procedures with both robotic heads
performance is best near δbest ∈ {45◦, 150◦}, where the robotic heads reduce the
SNR of incoming speech minimally.

In the LRCh reduction, most sound source angles θlspk produce recordings
where one channel has higher SNR than the other. Therefore, when we average
both signals the speech SNR diminishes. The exceptions are sound sources at 90◦,
45◦ and 150◦. We conjecture that the moderate SNR that both channels have
in the case of 90◦, and the high and low SNR in the ipsilateral and contralateral
signals in the case of 45◦ and 150◦ explain this discrepancy. It is also important
to notice the magnitude of this effect, as the highest success rates from the LCh
and RCh reductions are two times better than the highest success rates from the
LRCh reduction. This difference can be related to the strong shadowing from the
geometry and material of the humanoid heads. The same effect appears in the
LCh and RCh reductions alone. We expected that the SNR of speech increases
when the sound source is in front of the robot or parallel to the interaural axis,
and when the input to the ASR system comes only from the channel closest to
the sound source. However, the angles found to be optimal for our DASR system
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Figure 5.7: Average Levenshtein distances between the DASR output and the
ground truth. Results obtained with both robotic heads for the frontal 180◦ on the
azimuth plane.

are counter-intuitive, and the difference between the lowest and highest values in
the LCh and RCh reductions is unexpectedly large.

The effect of the round shape of the heads and the position of the microphones
explain the periodical shape in the LCh and RCh plots. The pinnae are placed
slightly behind the coronal plane. Therefore, the distance travelled by the sound
waves from the sound source to the contralateral ear is maximal at approximately
45◦ and 135◦ instead of 0◦ and 180◦. This asymmetry explains the increase in
performance before 135◦ for LCh and after 45◦ for RCh. On the other hand, the
shadowing of the pinnae and reverberation from the metal structure on the sides
of the VR setup could produce the decrease in performance before 45◦ for LCh
and after 135◦ for RCh. Once the results of the first experiment are ready, we
proceed to analyse the convergence of our system to the sound source after a
sequence of localisation steps.

5.3 Acquisition Time and Source Locking

In this second experiment of the chapter, we test the hypothesis that our SSL
system converges to the correct sound source angle in a short sequence of localisa-
tion steps. It is well understood the benefit of a humanoid appearance to enhance
the human-robot interaction (HRI) (Mori, 1970; Minato et al., 2004) and partic-
ularly the advantages of SSL for HRI (Lee et al., 2009). but there are additional
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metrics that have been proposed to asses the effectiveness of HRI (Goodrich &
Schultz, 2007). A particularly relevant metric to asses the quality of engagement
in a dialogue, is the effect of capturing the attention of both parties (acquisition
time) and holding the interest of the human and the robot (duration) (Steinfeld
et al., 2006). When we say that SSL can help to improve the performance of
automatic speech recognition, we assume that the robot will turn to the optimal
listening angle in a small number of SSL iterations, what reflects the HRI metric
of acquisition time. Once the robot is optimally oriented, it should remain stable
in such position or proceed to track the speech source closely as soon as the source
moves around the robot. We refer to this behaviour as locking, what reflects the
HRI metric of duration.

5.3.1 Compound Stimuli and Convergence to Source

During the experiment, we measure the SSL locking on each of the 13 loud-
speakers in the VR setup, at angles θlspk, in order to verify that the SSL system
is robust to the reverberation produced in different room locations around the
robot. As stimuli, we present the robot with a sound composed of utterances from
24 different speakers: 16 males and 8 females. More specifically, we append the
longest sentence from each speaker in the TIMIT-CTS corpus in a single sequence
of utterances to form a compound sound with a duration of 106 seconds. Once
we form a compound sound, we move the last two sentences of the sequence of
utterances to the beginning, creating in this way a set of compound sounds. By
repeating this procedure, we create a total of 12 compound sounds. The objective
of this method is to discard the possibility that the voice of a particular speaker
systematically affects the SSL system at the same point in time.

At the beginning of each trial, the robot turns to a starting neck angle θneck ∈
{45◦, 15◦, . . . , 135◦} on the azimuth plane. The turning limits of the yaw joint
in the robot’s neck constrain the set of starting angles θneck. Once the robot
orients itself in the first θneck, we reproduce the first compound sound from the
loudspeaker at angle θlspk and the robot starts tracking the sound source. The trial
ends when the sound finishes. Then the robot returns its head to the same angle
θneck, and we reproduce the same compound sound from the next loudspeaker.
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Figure 5.8: Dynamic SSL using the iCub head. a) SSL performance in consec-
utive iterations. The dotted curves display the performance for different angular
differences at the beginning of each trial presenting a composed speech sound to the
robot. The solid line shows the average of all dotted curves with the bars indicating
the standard deviation. Note the small number of steps required for the robot to
reach near 0 error, i.e. to face the correct sound source angle. b) Accumulated
angular error from all iterations in all SSL trials. Note that the accuracy of the
SSL system is higher when the angle difference between the sound source and the
direction faced by the robot is 0, i.e. when the robot is facing the sound source.

We repeat this procedure until we cover all angles θlspk. Afterwards, we repeat
the same routine over all angles θlspk for each starting angle θneck. Finally, we
replicate the entire process for each of the 12 compound sounds.

5.3.2 Experimental Results

The results of the dynamic localisation task are summarised in Figure 5.8a for
iCub and in Figure 5.9a for Soundman. The figures show the performance of
the SSL system in consecutive iterations and from a range of starting angular
differences between θneck and θlspk, where δstart ∈ {0◦, 15◦, . . . , 90◦}. The dotted
lines in both figures show the average SSL performance of trials with the same
starting angular difference δstart. The continuous lines show the average and
standard deviations of all starting angular differences δstart. In both figures, we
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Figure 5.9: Dynamic SSL using the Soundman wooden head. a) SSL performance
in consecutive iterations. The dotted curves display the performance for different
angular differences at the beginning of each trial presenting a composed speech
sound to the robot. The solid line shows the average of all dotted curves with
the bars indicating the standard deviation. b) Accumulated angular error from all
iterations in all SSL trials.

can see that the localisation error decreases as δstart decreases from 90◦ to 0◦. The
curves show that the system converges to the sound source angle in 3 iterations
or less. Afterwards, localisation errors are close to zero with almost no variance.
In other words, the SSL system is more robust for localising sounds closer to the
front of the head. As localisation errors are smaller in the frontal angles, the SSL
system converges to the sound source angle after successive localisation steps.
Once the robot is facing the sound source it continues facing that direction,
i.e. the SSL system successfully locks the auditory target. These results are
consistent with our previous work on static SSL discussed in chapter 5 and with
the performance observed in humans (Middlebrooks & Green, 1991).

Figure 5.8b and Figure 5.9b show the angular error accumulated from all SSL
iterations. During the experiments many more data points were produced for
angles δdiff close to 0◦. However, the variance of the accumulated errors also
indicates better SSL performance when the sound source is close to the frontal
angles. Importantly, this improvement applies to all angles θlspk. This consistency
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in performance shows the robustness of our architecture against the changes in
reverberation produced by presenting auditory stimuli from different room loca-
tions. Therefore, we conclude that the proposed SSL architecture successfully
avoids overfitting to the training data from static sound sources and does not
stagnate in poor local minima. It is also important to note that the magnitude of
localisation errors is related to the size of the chosen localisation bins (15◦ of an-
gular granularity). Nevertheless, some preliminary studies show that our system
is capable of 1◦ angular resolution in the frontal 40◦. We could access this poten-
tial by performing SSL in a continuous space, using the last layer for regression
instead of classification. Verifying this hypothesis is part of our following work
with the SSL architecture.

5.4 Conclusion

In the first experiment in this chapter, about robot speech recognition, we found
that using information from SSL can improve the accuracy of speech recognition
considerably. As the humanoid platform provides signals from the left and right
channels, SSL can indicate how to orient the robot and then select the appropriate
channel as input to an ASR system. This approach is in contrast to related
approaches that always average the signals from both channels before being using
them as input for ASR. Our proposed method is capable of doubling the highest
recognition rates at the sentence level when compared to the common averaging
method. Interestingly, the performance of the ASR system is not highest when
the sound source is facing directly to the microphone in one of the humanoid’s
ears, but at the angle where the pinna reflects most intensely the sound waves
to the microphone. It is possible to measure the magnitude of this improvement
by repeating the ASR experiment with the pinnae removed from the heads or
even with active pinnae (Kumon & Noda, 2011). A natural extension of the
first experiment is to make the robot focus its attention on a single source of
information from a possible multitude of concurrent stimuli. It is in this extended
scenario, where the input from other sensory modalities comes into play. Vision
can be used to disambiguate the location of the speaker in a crowd addressing
the robot by observing the orientation of the torso, gaze and lips movement of
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every individual detected. Afterwards, this information can be used to perform
auditory grouping in time and frequency domains in order to perform speech
segregation in noisy environments (Ruggles et al., 2011; Zion Golumbic et al.,
2013).

The results of the second experiment in this chapter, about acquisition time
and source locking, show that the architecture is capable of handling different
kinds of reverberation. These results are a significant extension from our previ-
ous work in static SSL that support the robustness of the system to the sound
dynamics in real-world environments. As another extension considering the dy-
namics of real-world scenarios, we plan to embed the SSL architecture into a
probabilistic framework. In this approach, we can integrate time into the esti-
mation of sound source angles, by using calculations from previous time steps
to increase the confidence of the system estimations. This probabilistic model
will also benefit from a parallelised version of the MSO and LSO spiking neural
layers. In a preliminary GPU implementation, we have already reached 12 times
more SSL iterations in the same amount of time than the current CPU version.
A fundamental advantage of the neural representation of spatial cues is that we
can integrate it directly with visual information for audio-visual spatial attention
(Ruesch et al., 2008; Bauer & Wermter, 2013). In this scenario, vision can be used
to disambiguate the location of a sound source of interest in a cluttered auditory
landscape. As each frequency component generates a spatial hypothesis in our IC
model, vision can be used to perform auditory grouping in the time and frequency
domains (Zion Golumbic et al., 2013; Lakatos et al., 2013). Furthermore, we can
also use vision as a bootstrapping mechanism for training the neural layers in an
online fashion. In this way, we can train the entire architecture with an unsuper-
vised learning approach (Nakashima et al., 2002). This unsupervised approach
is the main direction of our current research on life-long learning in multimodal
speech recognition.
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Chapter 6

Conclusions

In this work, we started by reviewing the development of sound localisation meth-
ods in the past two decades. Traditional sound source localisation (SSL) tech-
niques can be relatively expensive from a computational point of view, and the
required processing units become small enough to be placed on robotic platforms
until the 90’s decade. This increase in computational power could explain why the
first attempts to perform robotic sound localisation appeared around the same
years. Such an increase in available computing power in time also justify the evo-
lution of algorithmic approaches in the past decades (Russell & Norvig, 2009).
In parallel, neuroscientific theories about perception kept evolving and providing
computer scientists with powerful metaphors (Ghahramani, 1995; Kennedy & De-
hay, 2012). Many advances in artificial neural networks have taken inspiration
from these biological studies to the extent that now we understand better the
potential benefits of biomimetic computation. One example of particular interest
for us is the inclusion of bioinspired models for interaural time and level differ-
ences in the 2000’s (Irvine et al., 2001). More specifically, modelling the human
auditory pathway with spiking neural networks has proven a robust approach to
reverberation and speaker tracking (Dávila-Chacón et al., 2012) as deeper neural
architectures appear to be necessary for analysing temporal properties of sound
(Christianson et al., 2011; Costa-Faidella et al., 2011).

The latest approaches to sound localisation vary in strengths and weaknesses.
Some of the most common challenges include adaptation to changing types of
reverberation, segregation of multiple speakers and targets moving around the
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array of sensors. Here is where more dynamic approaches can provide an in-
crease in performance. Robots can exploit their capacity to rotate and traverse
their environment to increase the confidence in their estimations. Furthermore,
embodied embedded cognition has also started to appear in the scene (Metta
et al., 2008), for example, humanoid robots can help to produce interaural time
(ITDs) and level differences (ILDs) for the estimation of sound sources on the az-
imuth plane and artificial pinnae have proven to be powerful mechanical filters for
the estimation of sound sources on the elevation plane. Finally, state-of-the-art
robotic perception points to multimodal integration (Bauer & Wermter, 2013).
Different perceptual modalities can benefit from each other, sometimes in fasci-
nating and unexpected manners (Alais & Burr, 2004). Sound source localisation
is not the exception and its integration with visual information could improve ex-
isting approaches to automatic speech recognition, navigation and scene analysis
in daily-life environments (Trifa et al., 2007; Okuno et al., 2007; Liu et al., 2011;
Rubruck et al., 2013b).

6.1 Embodied Embedded Cognition
and Biomimetic Computation

As stated in our research objectives 1, 2 and 3, our aim has been to improve our
understanding of cross-modal integration for acoustic localisation, to understand
acoustic localisation from an integrated view of spatial audition at multiple scales
and to introduce biological principles into artificial intelligent systems for acous-
tic localisation. Such guidelines directed our experimental work and led us to
interesting conclusions in our three main research objectives.

Our first objective, was to increase our understanding of the influence of hu-
manoid embodiment on bottom-up cognitive tasks for sound perception (Koch,
1993), such as static and dynamic SSL. For this reason, we do not focus our
research on the design of an SSL or an ASR system that performs better than
other systems designed in the past, but our primary objective is to improve on
our understanding of the influence of the body on bottom-up cognitive tasks. If
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and Biomimetic Computation

the best interface for a human, is another human, we should also exploit the com-
putational advantages that this embodiment brings for free, if any (Asada et al.,
2001; Kanda et al., 2004). With the iCub, we can approach the physiognomy
of humans and measure the influence that it has on our models of the auditory
system. Here is where we aim to provide a clear answer based on our results,
and hence, we compare the effect of the embodiment of the iCub against the
effect of the silent dummy head. Ultimately, the idea is to find the advantages
for top-down cognition when using biomimetic models of bottom-up cognition.
Once the behaviour of the robot corresponds to the behaviour of animals, we can
observe the activity of the neural models under new conditions and produce new
hypotheses to guide further studies in biological systems.

Our second objective, was to increase our understanding about the influence
of embodiment on top-down cognitive tasks (Koch, 1993; Zhao et al., 2018) like
ASR, when using biomimetic models of bottom-up cognition like SSL. This ob-
jective led us to measure the capacity of different robotic platforms to produce
the necessary spatial cues for SSL under increasingly difficult conditions. Now,
building on the premise that we can integrate different auditory cues in the same
way as multisensory information, we focused on the design of an SSL system that
could take advantage of the spatial cues produced by the interaction between
sound waves and the embodiment of humanoid robots. We represent such cues
with biomimetic models of regions in the auditory pathway that convert them
into spatial representations embedded in the topology of neural populations. Our
architecture then integrates these cues with a Bayesian model of the inferior col-
liculus (IC) that performs dimensionality reduction and finally a multilayer per-
ceptron with a probabilistic layer converted the output of the IC into commands
for motor control of the robot (Rokni & Sompolinsky, 2012). This architecture
proved to be robust to high levels of noise and led us to explore its potential for
supporting automatic speech recognition (ASR) in robotic platforms with ego-
noise. Our last experiments show that such humanoid platforms improved the
performance of ASR considerably when they adapt their orientation to increase
the signal-to-noise ratio of the speech signal. Interestingly, this angle lies around
45◦ from the sagittal plane, rather than when facing the speaker. The following
subsection dives more deeply into the technical lessons learned in our journey.
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Our third objective, was to close the loop by using the experimental results
obtained with artificial systems to guide further research in natural systems. One
of the first observations that we had on the activation patterns of the spiking
neural networks in our system, was that both spatial cues are complementary
as they represent information in opposite ends of the auditive spectrum. More
specifically, the importance of integrating ITDs and ILDs can be understood
further by observing the overlap of excitatory connections from the model of
the medial superior olive (MSO), and excitatory and inhibitory connections from
the model of the lateral superior olive (LSO). On the one hand, neurones in
the MSO model have informative activity in all frequencies but also potentially
misleading activity in higher frequencies. On the other hand, neurones in the LSO
model have informative activity only in higher frequencies. For this reason, LSO
excitatory connections to the IC reinforce useful activity from high frequencies
in the MSO, while LSO inhibitory connections to the IC remove the misleading
activity from high frequencies in the MSO (Dávila-Chacón et al., 2012; de Queiroz
et al., 2006). An interesting application of the activation patterns that emerge in
our models of the MSO, LSO and IC, could be to predict the neural activity in the
respective layers in the mammalian brainstem when presenting different types of
stimuli. Having a model that correctly predicts such activation patterns in natural
systems could potentially speed up the development of medical applications.

Having these learnings from our time researching the impact of embodied em-
bedded cognition and biomimetic computation on automatic speech recognition,
we feel confident that the iCub platform is capable of representing spatial cues
close enough to human bodies, independently of the difference in internal struc-
ture, in materials and the high levels of ego-noise. This conclusion arises from
the similarity of activation patterns in the spiking neural networks used to repre-
sent different spatial cues, and the localisation accuracy achieved by the overall
system. What can be done next to increment our understanding of the higher
levels of cognition in the human auditory system?
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6.2 Future Work

Continuous life-long learning in neural models is an open topic where SSL can offer
useful insights from our current knowledge in natural systems (Block & Bastian,
2011; Phillips et al., 2011; Wagner & Dobkins, 2011). It is an ongoing research
topic to understand how top-down connections in the auditory pathway influence
the neural activity in the very first stages of processing, i.e., all the way to the
cochlea (Nodal et al., 2010). What is known, nevertheless, is that the auditory
nerve also has neural pathways descending from the medial olivocochlear system
to the cochlea (Andéol et al., 2011). These projections are known to affect the
neural representations of direction-dependent spectral features, which are crucial
for accurate localisation in the elevation plane and front/back disambiguation.
We found that many of the state-of-the-art methods for SSL consist of deep neural
networks that lack descending connections and therefore have ample possibilities
for research, such as remapping relative to motion (Teramoto et al., 2012) and
development (Sinapov et al., 2011).

Along the chapters detailing our experiments we consistently suggest the po-
tential benefits of extending our current SSL architecture with multimodal in-
tegration (Battaglia et al., 2003; Bauer et al., 2012, to appear). This work has
already been started by Bauer &Wermter (2013), and shows promising extensions
over preceeding approaches to SSL (Kim et al., 2007, 2011). In this direction, it is
possible to integrate input from vision to define the required processing to handle
the type of reverberation present in a given environment (Liu & Yang, 2014).
Similarly, ASR could update the relevant Markov model to fit with statistical
correlation for specific rooms, people and other cues from vision (Martinson &
Schultz, 2007; Harrison & De Kamps, 2011). An exciting extension of this research
could be to test generative adversarial networks (Goodfellow et al., 2014) for the
dynamic inference of masks for SSL and domain dependent language models for
ASR (Julian et al., 2017; Liu et al., 2017).

Also, due to the sequential nature of sound, the task of SSL can be seen learned
by a reward function dependent on feedback from vision. Reinforcement learning
(RL) architectures (Sutton & Barto, 1998) have made considerable progress in
recent years to cope with large state and action spaces (Silver et al., 2014; Lillicrap
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et al., 2015). When using top-down attention mechanisms that follow bottom-up
salient features such as primary colours, motion and sound intensity, RL could act
as a bootstrap mechanism to guide the development of spatial maps. Such maps
can represent auditory cues with a topology corresponding to spatial locations
around a robotic platform and would help to test theories of neural development
in children (Greene & Oliva, 2009; Boes et al., 2012). Furthermore, unsupervised
methods are particularly relevant for life-long learning and several works offer
a sound starting point to extend our approach (Nakashima et al., 2002; Kim &
Choi, 2009; Kitani et al., 2012).

As noted so far, there is ample potential for the further development of our
biomimetic SSL models and its extension into a multimodal integration system.
Particularly, their implementation with asynchronous computation would allow
us to test their performance in real time (Igarashi et al., 2011). Our group has
all the necessary equipment and testing facilities (Bauer et al., 2012) to monitor
such experiments under tight control, and also to compare the results obtained
with the computational models against the behaviour of human subjects. We
are in an inspiring time for exploiting the new possibilities brought by the avail-
ability of large amounts of computing power and novel algorithmic approaches.
The current work has made a modest contribution in our understanding of the
interaction between embodied embedded cognition and biomimetic computation
for humanoid robots, and now it is the right time to build further towards a more
general architecture of human cognition.
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Appendix A

Supplementary Experimental
Results

The global results from all experiments carried out in this chapter are shown in
the following subsections. The best results are discussed in section 4.3.

A.0.1 Winner Takes All

This subsection contains the confusion matrices and performance tables when
using Winner Takes All (WTA) for classification. The results after training with
white noise and testing with speech can be seen in Figure A.1 and Table A.1.
The results after training with speech and testing with white noise can be seen
in Figure A.2 and Table A.2.
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Figure A.1: WTA: Training with White Noise / Testing with Speech.
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Precision Recall True Negative Accuracy F-Measure

CCR 0.05 0.26 0.61 0.59 0.08
MSO 0.11 0.60 0.51 0.52 0.19
LSO 0.02 0.11 0.64 0.60 0.03

MSO-LSO 0.07 0.36 0.62 0.60 0.12
Bayes 0.05 0.19 0.72 0.68 0.07

Table A.1: WTA: Training with White Noise / Testing with Speech.
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Figure A.2: WTA: Training with Speech / Testing with White Noise.

Precision Recall True Negative Accuracy F-Measure

CCR 0.06 0.25 0.68 0.65 0.10
MSO 0.06 0.44 0.50 0.49 0.11
LSO 0.08 0.41 0.62 0.61 0.13

MSO-LSO 0.06 0.44 0.50 0.49 0.11
Bayes 0.01 0.05 0.71 0.67 0.02

Table A.2: WTA: Training with Speech / Testing with White Noise.

A.0.2 K Nearest Neighbours

This subsection contains the confusion matrices and performance tables when
using K Nearest Neighbours (KNN) for classification. The results after training
with white noise and testing with speech can be seen in Figure A.3 and Table
A.3. The results after training with speech and testing with white noise can be
seen in Figure A.4 and Table A.4.
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Figure A.3: KNN: Training with White Noise / Testing with Speech.

Precision Recall True Neg Accuracy F-Measure

CCR 0.26 0.79 0.58 0.61 0.39
MSO 0.69 0.93 0.78 0.83 0.79
LSO 0.11 0.57 0.55 0.55 0.18

MSO-LSO 0.63 0.92 0.74 0.80 0.75
Bayes 0.10 0.56 0.53 0.53 0.17

Table A.3: KNN: Training with White Noise / Testing with Speech.
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Figure A.4: KNN: Training with Speech / Testing with White Noise.

Precision Recall True Negative Accuracy F-Measure

CCR 0.21 0.75 0.59 0.61 0.33
MSO 0.96 1.00 0.96 0.98 0.98
LSO 0.15 0.65 0.54 0.55 0.25

MSO-LSO 0.89 0.99 0.90 0.94 0.93
Bayes 0.18 0.75 0.53 0.56 0.29

Table A.4: KNN: Training with Speech / Testing with White Noise.

A.0.3 Learning Vector Quantisation

This subsection contains the confusion matrices and performance tables when
using Learning Vector Quantisation (LVQ) for classification. The results after
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A. SUPPLEMENTARY EXPERIMENTAL RESULTS

training with white noise and testing with speech can be seen in Figure A.5 and
Table A.5. The results after training with speech and testing with white noise
can be seen in Figure A.6 and Table A.6.

Output angle (deg)

S
o

u
n

d
 s

o
u

rc
e

 a
n

g
le

 (
d

e
g

)

0 30 60 90 120 150 180

0

30

60

90

120

150

180

(a) CCR

Output angle (deg)

S
o

u
n

d
 s

o
u

rc
e

 a
n

g
le

 (
d

e
g

)

0 30 60 90 120 150 180

0

30

60

90

120

150

180

(b) MSO

Output angle (deg)

S
o

u
n

d
 s

o
u

rc
e

 a
n

g
le

 (
d

e
g

)

0 30 60 90 120 150 180

0

30

60

90

120

150

180

(c) LSO

Output angle (deg)

S
o

u
n

d
 s

o
u

rc
e

 a
n

g
le

 (
d

e
g

)

0 30 60 90 120 150 180

0

30

60

90

120

150

180

(d) MSO-LSO

Output angle (deg)

S
o

u
n

d
 s

o
u

rc
e

 a
n

g
le

 (
d

e
g

)

0 30 60 90 120 150 180

0

30

60

90

120

150

180

(e) Bayes

Figure A.5: LVQ: Training with White Noise / Testing with Speech.

Precision Recall True Neg Accuracy F-Measure

CCR 0.22 0.73 0.61 0.63 0.34
MSO 0.67 0.93 0.76 0.82 0.78
LSO 0.08 0.37 0.65 0.63 0.13

MSO-LSO 0.68 0.90 0.81 0.84 0.77
Bayes 0.22 0.75 0.54 0.57 0.34

Table A.5: LVQ: Training with White Noise / Testing with Speech.
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Figure A.6: LVQ: Training with Speech / Testing with White Noise.

A.0.4 Self Organising Map

This subsection contains the confusion matrices and performance tables when
using Self Organising Map (SOM) for classification. The results after training
with white noise and testing with speech can be seen in Figure A.7 and Table
A.7. The results after training with speech and testing with white noise can be
seen in Figure A.8 and Table A.8.
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Precision Recall True Negative Accuracy F-Measure

CCR 0.08 0.08 0.92 0.86 0.08
MSO 0.73 0.94 0.85 0.88 0.82
LSO 0.16 0.62 0.62 0.62 0.26

MSO-LSO 0.68 0.94 0.81 0.85 0.79
Bayes 0.08 0.08 0.92 0.86 0.08

Table A.6: LVQ: Training with Speech / Testing with White Noise.
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Figure A.7: SOM: Training with White Noise / Testing with Speech.

Precision Recall True Neg Accuracy F-Measure

CCR 0.19 0.71 0.58 0.59 0.30
MSO 0.02 0.14 0.55 0.53 0.03
LSO 0.17 0.44 0.79 0.75 0.25

MSO-LSO 0.12 0.59 0.53 0.54 0.19
Bayes 0.09 0.47 0.60 0.59 0.16

Table A.7: SOM: Training with White Noise / Testing with Speech.
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Figure A.8: SOM: Training with Speech / Testing with White Noise.

A.0.5 Multilayer Perceptron

This subsection contains the confusion matrices and performance tables when
using Multilayer Perceptron (MLP) for classification. The results after training
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A. SUPPLEMENTARY EXPERIMENTAL RESULTS

Precision Recall True Negative Accuracy F-Measure

CCR 0.30 0.79 0.64 0.66 0.43
MSO 0.00 0.00 0.57 0.54 NaN
LSO 0.14 0.47 0.70 0.68 0.22

MSO-LSO 0.14 0.47 0.70 0.68 0.22
Bayes 0.05 0.37 0.54 0.53 0.09

Table A.8: SOM: Training with Speech / Testing with White Noise.

with white noise and testing with speech can be seen in Figure A.9 and Table
A.9. The results after training with speech and testing with white noise can be
seen in Figure A.10 and Table A.10.
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Figure A.9: MLP: Training with White Noise / Testing with Speech.

Precision Recall True Neg Accuracy F-Measure

CCR 0.36 0.83 0.63 0.67 0.50
MSO 0.75 0.94 0.82 0.86 0.83
LSO 0.08 0.48 0.54 0.54 0.14

MSO-LSO 0.62 0.85 0.82 0.83 0.72
Bayes 0.71 0.92 0.79 0.84 0.80

Table A.9: MLP: Training with White Noise / Testing with Speech.

A.0.6 Radial Basis Functions

This subsection contains the confusion matrices and performance tables when
using Radial Basis Functions (RBF) for classification. The results after training
with white noise and testing with speech can be seen in Figure A.11 and Table

106



Output angle (deg)

S
o

u
n

d
 s

o
u

rc
e

 a
n

g
le

 (
d

e
g

)

0 30 60 90 120 150 180

0

30

60

90

120

150

180

(a) CCR

Output angle (deg)
S

o
u

n
d

 s
o

u
rc

e
 a

n
g

le
 (

d
e

g
)

0 30 60 90 120 150 180

0

30

60

90

120

150

180

(b) MSO

Output angle (deg)

S
o

u
n

d
 s

o
u

rc
e

 a
n

g
le

 (
d

e
g

)

0 30 60 90 120 150 180

0

30

60

90

120

150

180

(c) LSO

Output angle (deg)

S
o

u
n

d
 s

o
u

rc
e

 a
n

g
le

 (
d

e
g

)

0 30 60 90 120 150 180

0

30

60

90

120

150

180

(d) MSO-LSO

Output angle (deg)

S
o

u
n

d
 s

o
u

rc
e

 a
n

g
le

 (
d

e
g

)

0 30 60 90 120 150 180

0

30

60

90

120

150

180

(e) Bayes

Figure A.10: MLP: Training with Speech / Testing with White Noise.

Precision Recall True Negative Accuracy F-Measure

CCR 0.55 0.89 0.75 0.79 0.68
MSO 0.98 1.00 0.98 0.99 0.99
LSO 0.21 0.76 0.56 0.59 0.33

MSO-LSO 0.95 0.99 0.95 0.97 0.97
Bayes 0.93 0.99 0.94 0.96 0.96

Table A.10: MLP: Training with Speech / Testing with White Noise.

A.11. The results after training with speech and testing with white noise can be
seen in Figure A.12 and Table A.12.
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Figure A.11: RBF: Training with White Noise / Testing with Speech.

Precision Recall True Neg Accuracy F-Measure

CCR 0.24 0.76 0.59 0.62 0.37
MSO 0.71 0.94 0.78 0.84 0.81
LSO 0.17 0.58 0.68 0.67 0.26

MSO-LSO 0.69 0.93 0.77 0.83 0.79
Bayes 0.33 0.83 0.58 0.63 0.48

Table A.11: RBF: Training with White Noise / Testing with Speech.

107



A. SUPPLEMENTARY EXPERIMENTAL RESULTS

Output angle (deg)

S
o

u
n

d
 s

o
u

rc
e

 a
n

g
le

 (
d

e
g

)

0 30 60 90 120 150 180

0

30

60

90

120

150

180

(a) CCR

Output angle (deg)

S
o

u
n

d
 s

o
u

rc
e

 a
n

g
le

 (
d

e
g

)

0 30 60 90 120 150 180

0

30

60

90

120

150

180

(b) MSO

Output angle (deg)

S
o

u
n

d
 s

o
u

rc
e

 a
n

g
le

 (
d

e
g

)

0 30 60 90 120 150 180

0

30

60

90

120

150

180

(c) LSO

Output angle (deg)

S
o

u
n

d
 s

o
u

rc
e

 a
n

g
le

 (
d

e
g

)

0 30 60 90 120 150 180

0

30

60

90

120

150

180

(d) MSO-LSO

Output angle (deg)

S
o

u
n

d
 s

o
u

rc
e

 a
n

g
le

 (
d

e
g

)

0 30 60 90 120 150 180

0

30

60

90

120

150

180

(e) Bayes

Figure A.12: RBF: Training with Speech / Testing with White Noise.

Precision Recall True Negative Accuracy F-Measure

CCR 0.20 0.75 0.56 0.58 0.32
MSO 0.97 1.00 0.97 0.98 0.98
LSO 0.42 0.83 0.70 0.73 0.56

MSO-LSO 0.93 0.99 0.93 0.96 0.96
Bayes 0.27 0.73 0.68 0.68 0.40

Table A.12: RBF: Training with Speech / Testing with White Noise.

A.0.7 Clustering with K-Means and Classification with Mul-
tilayer Perceptron

This subsection contains the confusion matrices and performance tables when
clustering with K-Means and classifying with Multilayer Perceptron (KM +
MLP). The results after training with white noise and testing with speech can be
seen in Figure A.13 and Table A.13. The results after training with speech and
testing with white noise can be seen in Figure A.14 and Table A.14.
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Figure A.13: KM + MLP: Training with White Noise / Testing with Speech.
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Precision Recall True Neg Accuracy F-Measure

CCR 0.18 0.72 0.55 0.57 0.29
MSO 0.70 0.93 0.79 0.84 0.80
LSO 0.13 0.48 0.66 0.65 0.20

MSO-LSO 0.69 0.93 0.77 0.83 0.79
Bayes 0.15 0.61 0.59 0.59 0.24

Table A.13: KM + MLP: Training with White Noise / Testing with Speech.
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Figure A.14: KM + MLP: Training with Speech / Testing with White Noise.

Precision Recall True Negative Accuracy F-Measure

CCR 0.20 0.75 0.56 0.59 0.32
MSO 0.64 0.93 0.79 0.83 0.76
LSO 0.10 0.36 0.73 0.70 0.16

MSO-LSO 0.53 0.89 0.75 0.78 0.67
Bayes 0.20 0.68 0.63 0.63 0.31

Table A.14: KM + MLP: Training with Speech / Testing with White Noise.

A.0.8 Clustering with K-Means and Classification with Ra-
dial Basis Functions

This subsection contains the confusion matrices and performance tables when
using clustering with K-Means and classifying with Radial Basis Functions (KM
+ RBF). The results after training with white noise and testing with speech can
be seen in Figure A.15 and Table A.15. The results after training with speech
and testing with white noise can be seen in Figure A.16 and Table A.16.
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Figure A.15: KM + RBF: Training with White Noise / Testing with Speech.

Precision Recall True Neg Accuracy F-Measure

CCR 0.24 0.76 0.59 0.62 0.36
MSO 0.71 0.94 0.78 0.84 0.81
LSO 0.20 0.66 0.66 0.66 0.31

MSO-LSO 0.59 0.91 0.73 0.78 0.71
Bayes 0.16 0.68 0.52 0.54 0.26

Table A.15: KM + RBF: Training with White Noise / Testing with Speech.
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Figure A.16: KM + RBF: Training with Speech / Testing with White Noise.

Precision Recall True Negative Accuracy F-Measure

CCR 0.27 0.74 0.68 0.68 0.39
MSO 0.75 0.94 0.85 0.88 0.84
LSO 0.21 0.72 0.61 0.62 0.33

MSO-LSO 0.57 0.92 0.72 0.78 0.70
Bayes 0.12 0.56 0.58 0.58 0.20

Table A.16: KM + RBF: Training with Speech / Testing with White Noise.

110



A.0.9 Clustering with Self Organising Map and Classifica-
tion with Multilayer Perceptron

This subsection contains the confusion matrices and performance tables when
clustering with Self Organising Map and classifying with Multilayer Perceptron
(SOM + MLP). The results after training with white noise and testing with
speech can be seen in Figure A.17 and Table A.17. The results after training
with speech and testing with white noise can be seen in Figure A.18 and Table
A.18.
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Figure A.17: SOM + MLP: Training with White Noise / Testing with Speech.

Precision Recall True Neg Accuracy F-Measure

CCR 0.20 0.74 0.54 0.57 0.32
MSO 0.08 0.08 0.92 0.86 0.08
LSO 0.08 0.08 0.92 0.86 0.08

MSO-LSO 0.08 0.08 0.92 0.86 0.08
Bayes 0.12 0.56 0.58 0.58 0.20

Table A.17: SOM + MLP: Training with White Noise / Testing with Speech.
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Figure A.18: SOM + MLP: Training with Speech / Testing with White Noise.
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Precision Recall True Negative Accuracy F-Measure

CCR 0.22 0.76 0.56 0.59 0.34
MSO 0.66 0.91 0.82 0.84 0.76
LSO 0.15 0.39 0.78 0.74 0.21

MSO-LSO 0.41 0.76 0.77 0.77 0.53
Bayes 0.15 0.64 0.56 0.57 0.25

Table A.18: SOM + MLP: Training with Speech / Testing with White Noise.

A.0.10 Clustering with Self Organising Map and Classifi-
cation with Radial Basis Functions

This subsection contains the confusion matrices and performance tables when
clustering with Self Organising Map and classifying with Radial Basis Functions
(SOM + RBF). The results after training with white noise and testing with speech
can be seen in Figure A.19 and Table A.19. The results after training with speech
and testing with white noise can be seen in Figure A.20 and Table A.20.
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Figure A.19: SOM + RBF: Training with White Noise / Testing with Speech.

Precision Recall True Neg Accuracy F-Measure

CCR 0.27 0.77 0.60 0.63 0.40
MSO 0.08 0.08 0.92 0.86 0.08
LSO 0.08 0.08 0.92 0.86 0.08

MSO-LSO 0.08 0.08 0.92 0.86 0.08
Bayes 0.12 0.56 0.58 0.58 0.20

Table A.19: SOM + RBF: Training with White Noise / Testing with Speech.
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Figure A.20: SOM + RBF: Training with Speech / Testing with White Noise.

Precision Recall True Negative Accuracy F-Measure

CCR 0.23 0.78 0.57 0.60 0.36
MSO 0.75 0.94 0.85 0.88 0.83
LSO 0.06 0.23 0.72 0.68 0.10

MSO-LSO 0.40 0.76 0.77 0.77 0.53
Bayes 0.25 0.80 0.56 0.59 0.39

Table A.20: SOM + RBF: Training with Speech / Testing with White Noise.
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