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Abstract

Recurrent artificial neural networks can provide essen-
tial computational models and systems for bridging
the gap between neuroscience and cognitive science.
However, it is essential to understand better how a
recurrent network learns and what it represents after
learning. This paper describes new dynamic methods for
the interpretation of recurrent neural networks. While

most previous work on interpretation has focused on
interpreting the final state of non-recurrent networks,
we particularly focus on the process of learning as well
as the final state of recurrent networks. Analyzing the
dynamics of the learning of simple recurrent networks
we found a “lazy learning” strategy which led to neural
representations after learning which can be described as
symbolic transducers.

Introduction

‘The interpretation of recurrent networks is more difficult
than the interpretation of non-recurrent feedforward net-
works since the previous context in recurrent networks
has an important dynamic effect within these networks.
The internal states in recurrent networks do not only de-
pend on the input but also on the internal state of the
local memory [1, 2, 3]. Therefore, the focus has been
primarily on smaller recurrent networks and artificially
generated data. For instance, an interesting current ap-
proach interprets the training of a simple recurrent net-
work with two input, two output and two internal ele-
ments to learn the sequence a™b™ [6]. It has been found
that the network behaved like a spiral which moved to
and from a fix point. While this seems a plausible inter-
pretation of the behavior of recurrent networks trained
for learning the sequences a™b" different interpretations
have to be expected if we move to different tasks and
data sets closer to real-world scenarios.

In the past we have developed a large system for
spoken language analysis which makes extensive use of
simple recurrent networks (5, 4]. The spoken input is
recognized by a speech recognizer and analyzed at syn-
tactic, semantic and dialog levels. Furthermore, cognit-
ive constraints like incremental analysis, parallel syntax
and semantics, robust processing of corrections, etc are
part of the system. However, so far we did not focus on
the interpretation of the learning process and the inter-
pretation of the neural knowledge. Here we are primarily
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interested in a detailed interpretation of the learning be-
havior as well as a symbolic interpretation of the learned
knowledge after training.

In this paper we will focus on the analysis of the dy-
namic learning behavior of simple recurrent networks us-
Ing a syntactic transformation task. The task for the
network is to process sentences and associate their syn-
tactic categories at the phrasal level, e.g. noun phrase,
prepositional phrase etc. In order to interpret the be-
havior of recurrent networks it is not only essential that

they learn a certain task but it is also important how the
network reaches its performance.

Global Learning Behavior

Often, the interpretation of the learning behavior is just
demonstrated with the learning curve of the overall er-
ror reduction over time. We believe that this is just the
first step of a more detailed analysis although this learn-
ing curve provides first hints about the performance of
a network over the training time. In general within our
large spoken language system we have trained networks
with many sentences using a corpus of several thousand
words. For the sake of demonstrating the detailed learn-
ing behavior we will focus on the analysis of 15 of these
sentences with 76 words from a domain of meeting ar-
rangements. Here we concentrate on these sentences
with 76 words in order to demonstrate a detailed single
analysis of the underlying patterns.

The actually occurring syntactic basic categories are
noun (n), verb (v), adverb (a), adjective {j), preposi-
tion (p), determiner (d) and pronoun (u). The abstract
phrasal categories are noun group (ng), verb group (vg),
and prepositional group (pg). The task of the recurrent
network is to learn to assign phrasal categories based
on basic syntactic categories for supporting a robust flat
understanding of spontaneously spoken language. Below
we show some translated example utterances from the
original German meeting corpus [5] together with the
syntactic categories at the basic and the phrasal level.

e I (U — ng) thought (v — vg) in (r - pg) the (d —
pg) next {j = pg) week (n — pg)

¢ That {u — ng) is (v — vg) the (d — ng) Thursday (n
— ng) after (r — pg) Easter (n — pg)
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Based on these seven basic syntactic and three phrasal
syntactic categories we use a simple recurrent network
(SRN) [1] with seven input units, three internal units
and three output units (the networks in the actual sys-
tem contain more categories and have been trained with
several thousand words, but for illustration purposes we
restrict ourselves to this smaller network). The learn-
Ing rate was 0.05, momentum 0.9. The weight up-
dates were performed incrementally after each training
pattern. FEach training pattern consisted of the basic
syntactic category at the input layer and the abstract
phrasal category at the output layer. 200000 patterns
were presented to this simple recurrent network and fig-
ure 1 shows the learning curve with the overall sum
squared error over time.
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Figure 1: Learning curve for abstract syntactic categor-
1zation

The learning curve shows that the speed of learning is
quite different. Furthermore, we can see different steps
during the learning process. In the beginning, learning
proceeds quickly, but later learning is slower and it takes
longer times to make significant improvements. For in-
stance, between 70000 and 140000 it seems that learning
is about to finish before there is a final significant im-
provement. In the following subsection we will focus on
a more detailed analysis and the reasons of these various
learning steps.

Stepwise Dynamic Analysis of the
Learning Behavior

First, we will examine how the network reaches its per-
formance. We start the analysis directly after the ran-
dom initialization of the weights. This is the state before
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learning starts.
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Figure 2: Performance for individual patterns before
learning

We want to give an overview over the overall perform-
ance for all input patterns at different time steps. There-
fore we show the error for each of the 76 patterns of
the demonstration set at different time steps. Figure 2
shows the individual error of 76 patterns before training.
Based on the random initialization all patterns show a
relatively high error. For a random start initialization it
is to be expected that the values of an output element
differ from the desired value 0 or 1 by 0.5. Therefore the
expected error for an individual pattern for three output
elements is +/0.5%2 + 0.5% + 0.52 = 0.866. This expected
error value is confirmed in this figure.

1.000 other patterns
T EINTNTT
0.800}
J L 1 UL ' L
0.600F
NG patterns
0.400
0.2001
I 1 ] -1 i 1 I
0'0000 10 20 30 40 50 60 70

Individual patterns

Figure 3: Performance for individual patterns after 100
training patterns

As shown in figure 1 the error decreases quickly at the
start of the training. The state after 100 patterns of the



training set is shown in figure 3. First, we can observe
that after 100 patterns of training, the error for some
of the shown 76 patterns could be reduced significantly.
Other patterns still show a high error. Obviously, the
network has started to learn pattern selectively.

A more detailed analysis revealed that the patterns
with a lower error are exactly those patterns which be-
long to the noun group N(G. After only 100 patterns
the network has recognized that the global error can be
minimized significantly by focusing on the NG patterns
since these patterns occur more frequently than for in-
stance prepositional groups or verb groups. Therefore,
at first the network has learned a constant mapping of
all patterns to the noun group. That is, all patterns are
classified as noun groups since this reduces the overall
error most at this stage. This explains why certain pat-
terns in figure 3 still show a high error and others a low
error. Those are exactly the patterns which have been
classified correctly as noun groups.
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Figure 4: Performance for individual patterns after

150000 training patterns

After 150000 patterns all regularities have been
learned as shown in figure 4. In general the network
pursues a conservative learning strategy which we call
lazy learning. First simple and often occurring gener-
alizations of one category are learned. Only when the
network cannot minimize its error significantly other of-
ten occurring categories are integrated. And only when
all patterns have been learned which did not require pre-
vious local context those patterns are learned which re-
guire context to make correct category assignments for
otherwise ambiguous category assignments. Finally cer-
taln exceptions are learned. During this conservative
learning strategy it may be possible that the overall er-
ror increases briefly in order to reach a better overall
state later.

Symbolic Interpretation of Neural
Networks as Transducers

After we have analyzed how and why the network ar-
rived at its certain performance, we now turn to the in-
terpretation of the learned knowledge itself. A number
of techniques like hierarchical cluster analysis of activa-
tion values or weight representations as Hinton diagrams
have been used in the past to represent the knowledge
of trained neural networks. However these techniques
do not allow for a good representation of sequences of
pattern assignments. Furthermore, they do not support
a symbolic interpretation of the underlying knowledge.
Therefore, we show a different technique of describing
the knowledge within a recurrent network.

A symbolic transducer can be extracted from our re-
current network, which assigns to each input vector of
basic syntactic categories a new output vector of phrasal
categories depending on the previous context. In our
network the internal state and the context was repres-
ented by a three-dimensional vector. For simplicity each
strict symbolic interpretation of a three-dimensional vec-
tor can take 2°, that is 8 states.

For a symbolic interpretation of the network we
presented all patterns from the training set and stored
the internal state vectors at the hidden layer of the net-
work. Qur demonstration network and the used data
material was kept small enough in order to illustrate this
process although in practice we have used much larger
networks (e.g. several thousand patterns rather than 76
demonstration patterns). For each output vector and for
each state vector the next corner preference was determ-
ined using the Fuclidean distance metric. We assigned
a symbolic abstract syntactic phrase category to each
output vector and a symbolic number identifier to each
state vector.

Figure 5 shows the learned knowledge of the network
as an extracted strict symbolic transducer, sometimes
also called a Moore machine. The corner nodes repres-
ent the eight strict states, the center node represents the
start state of the transducer. At the edges we find the
symbols for the single transductions. Input and output
categories are separated by a colon, e.g. d : ng means
that - starting from the source state of this edge - a de-
terminer preference d is assigned to a noun group pref-
erence ng and the transduction is made to the end state
of this edge.

More detailed (less detailed) transducers can be
provided if the state and output vectors are mapped to
more (less) nodes. Therefore general abstraction level of
such a symbolic transducer can be quite flexible. The
symbolic transducer represents an abstraction of the de-
tailed network knowledge but this abstraction also hides
some of the numerical complexity and allows a symbolic
direct interpretation which provides a summary of the
network behavior.
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In the extracted transducer we can see some clear
regularities at certain states. For instance the trans-
ductions to state 100 are primarily responsible for the
assignments to the prepositional group (pg). Another
example are the transductions to state 010 and to state
000, which are primarily responsible for the verbal group
(vg) assignment. Furthermore, figure 5 shows the ex-
ample transductions for the sentence “I thought in the
next week”. Beginning with the start state at the center
we see the transduction v : ng for the word “I” which as-
signs the noun group ng to the pronoun u. Then, v : vg
assigns a verb group vg to the verb “thought”. Finally
the transductions r : pg d : pg j : pg n : pg assign the
prepositional group “pg”’ to the sequence “in the next
week” .

Figure 5: Symbolic interpretation of a recurrent network
for the translated sentence “I thought in the next week”.

In general there are no designated final states, since
the network - and the extracted symbolic transducer -
produce output as long as input is provided. This trans-
ducer behavior is therefore quite different from other ex-
traction procedures [2], which are based on acceptors for
artificial languages.

One advantage of this symbolic interpretation is the
higher abstraction level for the recurrent network which
makes it easier to understand. The original network con-
tains more detailed knowledge in the numerical weights
and activations, but it is not possible to see the declar-
ative sequential symbolic knowledge which this network
represents. The extraction of a symbolic transducer al-
lows a better understanding of the learned sequential
knowledge 1n a more explicit manner.

Conclusion

We have described new dynamic methods for the inter-
pretation of recurrent neural networks. For building lar-
ger models of spoken language processors we believe it
1s essential to understand better the process of learn-
ing in recurrent networks. We have demonstrated that
networks which have been used in large real world archi-
tectures of spoken language analysis show a conservative
learning strategy which also has been observed in differ-
ent other tasks in human performance. After learning,
this “conservative learning” strategy led to neural rep-
resentations which can be described as symbolic trans-
ducers. Furthermore, these transducers allow for a much
better interpretation of the sequential network know-
ledge compared to common analysis using hierarchical
clustering or Hinton diagrams. Finally this better sym-
bolic interpretation of a neural network also holds a lot

of potential for models which could bridge the large gap
between neural representations in the brain and symbolic

reasoning and processing in human behavior.
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