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1 Learning flat syntactic analysis

There are several key properties which have to be considered for dealing with
unrestricted language and speech processing, in particular, learning of regu-
larities, robustness against errors, and an appropriate interpretation level. We
argue that a flat analysis at the phrase group level supports these key properties
for real world speech/language processing and that i1t can be learned 1n connec-
tionist networks. A flat representation at the phrase group level structures an
utterance U with words w, to w, according to the properties of phrase groups,
e.g. according to the abstract syntactic categories like noun group and preposi-
tional group. While complete symbolic syntax trees have a certain potentially
incorrect preference, a flat representation only goes as far as possible using only
local syntactic knowledge from connectionist networks.

Flat syntactic analysis can be described as a function from basic syntactic
categories to abstract syntactic categories. The basic syntactic categories we
used were adjective, adverb, conjunction, determiner, noun, preposition, and
verb. The abstract syntactic categories were abstract groups, e.g. noun group,
prepositional group and verb group. For our experiments we used German and
English phrases taken from a real world library corpus. This corpus contained a
substantial number of phrases and was used as a representative precursor and
testbed for testing flat syntactic analysis for further experiments with unre-
stricted speech or unrestricted texts. Qur task is to train, learn and generalize
flat syntactic connectionist representations with abstract syntactic categories
based on basic syntactic categories. Flat syntactic analysis is an incremental
process where hypotheses about an abstract syntactic category are made based

on the previous words and their representation.

2 Evaluating different network architectures

For the training and test sets we computed a basic syntactic calegory represen-
tation for each word based on the plausibility of the basic categories for this
word. Each word was represented with a vector of seven units where each unit
stands for one basic syntactic category. The value of a unit represented the
normalized occurrence of this word across the basic syntactic categories in the
corpus. While most words have just one syntactic category 1n our corpus there
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are words which belong to several categories, for instance the word “alterna-
tive” occurs with the same frequency as an adjective and a noun so that this
word is represented with a vector of (0.5 00 0.5 0 0 0). The hypotheses about
the abstract syniactic category represenialion at the current word are repre-
sented based on the five abstract syntactic categories. Fach abstract syntactic
category is represented by a unit which is on (value 1} if the word belongs to
this abstract syntactic category and 0 otherwise.

The training and testing in three architectures was performed with a train-
ing set of 541 phrases; 277 phrases were used for training, 264 phrases whose
representations were different from the training set were used for testing the
generalization performance. Then for each of the three architectures we pre-
sented the training set 3000 times to the networks adapting the network states
according to the backpropagation learning rule [3]. Figure 1 gives an overview
about three different architectures for learning abstract syntactic representa-
tions.
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Figure 1: Network architectures: a) F-PN, b) R-PN, ¢} RAAM network

2.1 The bottom line: F-PN network

As a first architecture we used a simple Feedlorward version of Plausibility
Networks F-PN. Plausibility networks are general classification networks based
on real computed plausibility vectors [4]. The F-PN for syntactic analysis is
shown in figure 1 a). The input to the network is the basic syntactic category
representation (7 units), the output the abstract syntactic category representa-
tion (5 units) and there is one layer of hidden units (6 units). The best tested
learning rate was 0.01. The average of the correct word assignments over 3
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training runs was only 53.2% on the training set and 56.4% on the test set
since the network did not know about the context of preceding words.

2.2 Introducing input context: R-PN network

In a second battery of experiments we extended the F-PN network to a recurrent
R-PN by using an additional context layer CL (see figure 1 b))!. This context
allowed the network to form an internal representation at the hidden layer and
to use this context as input to the subsequent decision for an abstract syntactic
category. Since the values of the hidden layer are copied to the context layer
of the subsequent word the context layer has the same number of six units as
the hidden layer. The average performance in the R-PN architecture after 3000
epochs of training was 95.3% on the training set and 90.4% on the unknown
test set. This experiment clearly shows the improvement of the performance
using additional context and experimentally verifies our initial assumption that
additional context is needed for assigning abstract syntactic categories.

2.3 Introducing context as input and output: RAAM

While the R-PN network used context as an extension for the input layer now
the hidden layer is not only copied to the context layer at the input layer C'L;
but also at the output layer C'L, (see figure 1 ¢)). This principle of using
the hidden layer as context for subsequent input and output representations
1s characteristic for RAAM networks [2]. Furthermore, we also extended the
output layer with the autoassociation of basic syntactic categories BA. In each
training step the 7 units for the basic category representation plus the 6 units for
the context are associated with the 12 units for basic and abstract categories
and 6 context umits at the output layer. The performance of this modified
RAAM network was 95.2% for the training set and 92.2% for the test set, that
1s worse on the training set and better on the test set than the R-PN network.

3 Analysis and Discussion

We have shown that the missing context in a FF network dramatically restricts
the performance, that a R-PN network reaches good performance and that a
much more complex RAAM network provides worse training and better testing
results. Since R-PN networks are much smaller and therefore faster to train
than RAAM networks, R-PN networks are judged superior to the RAAM archi-
tectures for this task of learning abstract syntactic representations for phrases.
For the R-PN network, 94.1% of the nouns in noun groups were generalized
correctly and 98.1% of the nouns in prepositional groups. This is a very clear
example for the learned preceding context and the generalization to the new
unknown test data. Especially the prepositional groups and noun groups and
their context generalized very well. Assignments with weaker performance,
for instance all assignments below 75%, are only underrepresented mappings
since only 52 (2.4%) of all mappings between basic and abstract syntactic cat-
egories are below 75% correct assignments. The example below illustrates that

!R-PN networks differ from SRN networks by [1] by the classification task, their more
general network structure (4] and the use of plausibilities for word representations.
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the same basic category representations (determiner, noun) can be mapped to
different abstract syntactic categories depending on the context (noun group,
prepositional group).

THE -> determiner -> NG (noun group)
DEVELOPMERT -> noun -> NG

OF -> preposition =-> PG (prepositional group)
THE -> determiner -> PG

AMERICAN -> adjectilve -> PG

MODERN -> adjective -> PG

STYLE -> noun -> PG

In summary and conclusion, we have identified the learning of flat syntactic
representations as an important task for language processing. We implemented
and tested three different classes of network architectures and found that R-PN
networks are most useful for learning flat syntactic representations. Although
we experimented with a certain set of abstract syntactic categories the used
techniques have not used domain-dependent knowledge and therefore can be
ported to different domains and be used for different purposes.

Flat syntactic representations were developed with the long-term goal of
supporting the integration of speech and language sources. So far we have
concentrated on learning semantic and contextual processing {4], robust fault
tolerant processing [5], and syntactic flat analysis (this paper) using flat repre-
sentations. Flat connectionist representations are very promising for examining
the interaction of speech and language since these representations are learnable,
fault-tolerant, flat-structured and incremental so that important key properties
of speech/language systems can be supported with these connectiomst repre-
sentations.
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