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Abstract—Recent studies show that robots are still far from 

being long-term companions in our daily lives. With an 

interdisciplinary approach, this position paper structures 

around coping with this problem and suggests guidelines on 

how to develop a cognitive architecture for social robots 

assuring their long-term personal assistance at home. Following 

the guidelines, we offer a conceptual cognitive architecture 

enabling assistant robots to autonomously create cognitive 

representations of cared-for individuals. Our proposed 

architecture places Theory of Mind approach in a metacognitive 

process first to empathize and learn with humans, then to guide 

robot’s high-level decision-making accordingly. These decisions 

evaluate, regulate and control robot’s cognitive process towards 

understanding, validating and caring for interacted humans 

and serving them in a personalized way. Hence, robots 

deploying this architecture will be trustworthy, flexible and 

generic to any human type and needs; in the end, they will 

establish a secure attachment with interacted humans. Finally, 

we present a use-case for our novel cognitive architecture to 

better visualize our conceptual work. 

I. INTRODUCTION 

Recent engineering achievements on the robotic 
technologies have led to robots that are robust enough to be 
put in close interaction with humans in domestic 
environments. However, the fact that robots have only 
recently been deployed out of their lab environments leaves it 
controversial whether or not their capabilities will be 
satisfactory enough to be accepted in the long-term within 
proper human environment, i.e., the real world. Doubts are 
driven by the fact that the Novelty Effect, the first response to 
a new technology, also exists in HRI and the behaviors and 
the attitudes of humans towards robots change negatively as 
it wears off in long-term [1]. 

To support the longevity of robot usage in close 
interaction with humans, robots need to be social actors 
achieving social intelligence [2]. For this purpose, robots 
need to create cognitive representations of interacted humans 
by processing sensory inputs as well as learning from 
previous interactions [3]. In the case of social robots assisting 
at home, cognitive representations should comprise 
understanding personal needs and preferences of individuals 
living at home and adaptively responding to meet those needs 
[4]. However, recent studies showed that robots have 
deficient capacity to understand human’s changing affective 
and motivational states (to empathize) and adapt to respond 
autonomously in long-term [5]. This suggests that robots are 
still far from creating such complex cognitive representations 
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of interacted humans; as a result, they mostly depend on 
human commands or well-structured scenarios to initiate their 
interactions. The lack of adaptation to various changing 
human needs result in failure to keep users engaged over 
repeated and long-term interactions [1].  

Adaptation of robots to dynamic human needs is an open-
ended task that spans longer intervals of time. 
Implementation of autonomous robot architectures executing 
such open-ended tasks is non-trivial and suggested to be best 
achieved by memory-centered cognitive architectures [6]. 
The attention of these architectures has recently been drawn 
to social HRI, suggesting their applicability in the field along 
with further developments [7]. Moving from [7], it is our 
intuition that further strategies should be taken on cognitive 
architectures towards making them capable of adaptively 
creating cognitive representations of interacted humans, 
while making their structure simple enough to be applicable 
to robots deployed in real human environments. 

In this position paper, we define a set of high-level 
guidelines in developing such a cognitive architecture 
specifically for social robots in their long-term personal 
assistance at home. The guidelines are extracted by linking 
the listed requirements for assistant social robots to the state-
of-the-art cognitive architectures. Following these guidelines, 
we offer a conceptual cognitive architecture enabling 
assistant robots to autonomously create cognitive 
representations of cared-for individuals. These 
representations comprise human’s personal needs and 
preferences. Our proposed architecture, in the end, places 
Theory of Mind approach [8] in a metacognitive process first 
to empathize and learn with humans, then to guide robot’s 
high-level decision-making accordingly. These decisions 
evaluate, regulate and control robot’s cognitive process based 
on twofold: i) exerting responsiveness behaviors, i.e., 
understanding, validating and caring for interacted humans 
as examined in [9]; ii) serving humans in a personalized way. 
Hence, robots deploying this architecture will be trustworthy, 
flexible and generic to any human type and needs; in the end, 
they will establish a secure attachment with interacted 
humans. 

 In Section II we present the related works, a brief 
literature survey on cognitive architectures and their 
requirements to implement social planning in assistive robots. 
Section III.A moves from this survey and extracts guidelines 
through developing a cognitive architecture for social robots 
towards their long-term personal assistance at home. Section 
III.B contains our novel cognitive architecture, a prototype 
following the guidelines as a proof of concept. In Section 
III.C we define a use-case scenario, as an exemplary 
application created using our cognitive architecture. Finally, 
the conclusion summarizes the article and our future plans.
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II. RELATED WORKS 

Many challenges are stated for social robots towards their 
assistance in daily life home environment. Tapus et al. [4] 
suggests that robots need to realize natural interaction with 
humans by means of empathizing with its user to understand 
personal needs and preferences and learning from the user to 
adapt its capabilities to the user’s personality in providing 
customized interaction. Moreover, they added that the 
adaptation needs to cover both the short-term changes for 
individual differences and the long-term changes for allowing 
engagement over repeated and long-term interactions. That is, 
assistive robots towards their social interaction need to create 
adaptive cognitive representations of their cared-for humans. 
This level of cognitive process, achieving such open-ended 
and dynamic tasks in human interaction scenarios, is argued 
to be best achieved with human brain inspired cognitive 
architectures that emphasizes the role of memory in 
constantly learning the world and human [6], [10]. In these 
models, lifelong learning is achieved by separating the 
content from the architecture (e.g., control mechanisms, 
estimation models, learning processes etc.), where the 
architecture learns the content (e.g., needs of humans and 
how they are met) over the course of problem solving [6]. 

There are a few robotic cognitive architectures that have 
been developed as embodied approaches, integrating sensory-
motor learning for recognizing and responding to outside 
stimuli. They use hybrid approaches, where subsymbolic 
level is used to recognize the outside stimuli, translate them 
into symbols and forward them to symbolic level (condition-
action rules) to match with appropriate outputs. Being one of 
them, ACT-R/E [10] applies some HRI tasks including gaze 
following and Theory of Mind. The major drawback of ACT-
R/E is that the learning is mostly limited to subsymbolic layer 
making it deficient in adaptively generating new symbolic 
rules (high-level knowledge) out of learnt stimuli. In other 
words, it is deficient in higher-level reasoning and problem 
solving at an abstract level. ADAPT [11] and SS-RICS [12] 
are other examples of embodied architectures, which are also 
limited to low-level tasks (e.g., navigation, SLAM). 

It is stated that self-regulated learning is crucial in open-
ended tasks, which is the case for assistive social robots in 
their long-term interactions, and it requires both cognitive 
process for constructing knowledge and metacognitive 
process for monitoring, controlling and regulating the learnt 
knowledge, i.e., high-level reasoning [13], [14]. CLARION 
cognitive architecture successfully integrates a metacognitive 
layer evaluating and creating new rules (knowledge) by 
combining reinforcement learning (Q-learning) with 
symbolic planning [14]. Each selected action decision is 
evaluated and regulated through Q-learning. MIDCA is 
another example of integrating metacognition process [15]. 
However, these two architectures are not embodied and have 
no application of HRI leaving their computational complexity 
towards their application to mobile robots and their abilities 
to exert social intelligence controversial. 

Creating adaptive cognitive representations of humans 
requires a thorough understanding of human cognitive 
information. For this purpose, Theory of Mind (ToM) 
approach, the ability to understand human mental states like 
intention, receive a significant attention [8]. ACT-R/E 

successfully applies ToM approach in testing their embodied 
architecture [10]. Although the estimation results are 
remarkable, the application is limited to the given scenario 
where human and robot patrol an area. That is, robot runs 
cognitive simulations on hand-coded human beliefs only 
related to patrolling task. This is actually reflected in the 
aforementioned deficiency of ACT-R/E in problem solving at 
an abstract level, which causes its applications to be ad hoc 
(scenario specific). In a more recent study [16], a robot 
estimates human’s belief on the joint actions of a shared plan 
to decipher work division between human and robot in a 
collaborative task. The authors implement a ToM manager in 
estimating human agent’s mental state that is defined as 
human’s belief on the state of his/her actions, plans and 
goals. Through this definition, human beliefs to be estimated 
are generalized towards their usage in broad range of 
assistant tasks of robots in human collaboration. Although 
this approach highly inspires our study, offered architecture is 
not focusing on personalized assistance, thus it is not 
adapting to human agents. Moreover, their belief estimation 
process does not take into account human emotional states 
and human reactions to robot moves; howbeit, in reality they 
have a significant impact on. 

As Baxter recently states [7], cognitive architectures 
needs to integrate further strategies from social robotics 
towards their conformation to social human interactions. 
They need to enable planning of robot behaviors to be 
predictable, consistent and reliable for the interacted human. 
However, he adds that highly complex structure of available 
architectures practically limits this conformation when they 
are performed on real human interactions within real 
environments. On the other hand, studies on social robotics 
also highlight the missing integration of cognitive 
information about the human (intentions, beliefs, needs etc.) 
into the highest-level decision-making of robotic 
architectures towards their natural human interactions [17], 
[18]. As indicated in [9], these decisions of robots in general 
need to strive for exerting responsiveness behaviors listed as 
understanding, validating and caring for interacted humans in 
order to achieve a secure attachment between cared-for 
individual and the robot. 

Moving from the outlined points, it is our belief that a 
metacognitive process integrating ToM approach is what is 
missing in conventional cognitive architecture towards their 
application to assistive social robots. Metacognitive process 
needs to utilize human mental states (to empathize) in 
controlling robot’s cognitive tasks while always striving for 
exerting responsiveness behaviors and assisting cared-for 
humans with their goals. Moreover, the architectures should 
reduce their system complexity and should be compatible and 
adaptable to various assistant tasks and human types. To our 
knowledge, there is no such an embodied cognitive 
architecture integrating the listed requirements above. 

III. GENERAL FRAMEWORK 

In this section, we present our guidelines in developing a 
cognitive architecture for social robots towards their personal 
assistance. Then, we introduce our conceptual cognitive 
architecture in detail. Finally, we give a use-case for the 
application of such an architecture on a robot in a real home 
environment assigned to assist an older person. 



  

A. Guidelines for Cognitive Process in Assistive Social 

Robots 

The motivation in listing the guidelines is to introduce 
new challenges when the fields of cognitive architectures and 
assistive social robots are engineered together. We use these 
guidelines in defining the components and their connection 
(input-output) strategies to compose our architecture. We do 
not claim with certainty that following the guidelines will 
output a robot supporting all aspects of real social assistance. 
Rather, these high-level guidelines are the minimum 
requirements that are extracted from the studies outlined in 
the related works. The guidelines are listed next. 

1) Implement the cognitive architecture in a way that it 
will not be ad hoc, but be flexible and generic. 

Social HRI scenarios put human in the center of the 
planning, which results in very dynamic contexts. Hence, 
robot architectures shall be built independent of the tasks and 
scenarios, then shall learn over the course of problem-
solving.  

2) Ensure adaptability of robot behaviors to various 
changing human behaviors. 

Human behaviors differ from one day to another. This 
requires adapting to both short-term changes in user’s mental 
state (e.g., tough day at work) and long-term personal habits 
and preferences. Therefore, architecture shall acquire and 
regulate knowledge lifelong, learning with human agents. 

3) Recognize human mental states (Theory of Mind) to 
infer the true need and preferences of the user. 

To empathize and adaptively respond to changing human 
needs, robot shall constantly recognize the mental states of its 
user. Mental states in assistant tasks shall include emotional 
state, intention and belief of the user.  

4) Use human mental states in meta-level robot decision-
making, regulating low-level cognitive process.  

Metacognitive process targets for assessing the overall 
success of the cognitive system and regulating its process 
accordingly. In the case of assistive social robots, the 
assessment shall be based on changes in the recognized 
human mental states (see Guideline 3). Robot shall 
understand these changes and make new decisions, such as 
re-planning, which assures its adaptability (see Guideline 2). 

5) Start with stereotyped plans, model preferences of each 
user and use this model in planning for personalization. 

Every person has different social preferences and reacts 
differently to similar responses. Following Kirsch et al. [19] 
the planning shall: i) move from stereotyped behaviors 
suggested by social psychology studies; ii) adaptively learn 
user’s social preferences and robot actions that creates 
appropriate responses on the user and update the user model 
with the learnt knowledge; iii) use the memory in planning 
behaviors through assisting the user in a personal way. 

6) Make decisions that the user can anticipate and also 
approves towards establishing secure attachment.  

Planning shall be goal-driven for user to anticipate. 
Particularly, the robot shall have internal goals where 

validating and caring for the user shall always be two of them 
throughout robot lifetime (Responsiveness behaviors of 
robots examined by Hoffman et al. [9] for secure attachment). 
Therefore, in assistive social robots, success criterion for the 
metacognitive evaluation of cognitive process (see Guideline 
4) shall always be towards getting the approval of the user to 
robot actions. As a result, the user always trusts robot that it 
plans through assisting him in user’s way, which in the end 
establishes a trustworthy relation and secure attachment 
between robot and the user. 

7) Empathize and respond autonomously: decisional and 
functional autonomy. 

Understanding, adapting and planning shall be connected 
in a closed-loop manner (input-output relation) constructing 
full decisional and functional autonomy. This supports robot 
to engage in intuitive and long-term interactions [5]. 

B. Proposed Approach – CASOR Cognitive Architecture 

We contemplate the guidelines in designing a cognitive 

architecture that comprises of understanding, adapting and 

planning in a closed loop manner (Targeting Guideline 7). 

Our approach is based on our conceptual cognitive 

architecture given in Fig.1, named as CASOR acronym of 

“Cognitive Architecture for Assistive SOcial Robots”. It 

describes the core processes of understanding human 

behavior and mental state from a robotic perspective 

(empathizing), learning from experiences and modelling the 

user and the world through social interactions. The goal is to 

create a task-invariant infrastructure that allows 

implementation of various skills (e.g., sensory/motor) and 

learns new contents, in this case user’s personal preferences 

and needs. Therefore, our architecture offers a more generic 

and adaptive solution for assistive social robotics towards 

implementing various use-cases. (Targets Guideline 1)  

CASOR is divided into two levels as Cognitive Level and 
Meta-Cognitive Level. The former comprises Sensing, 
Actuating and Memory components, where the latter has 
Theory Of Mind (ToM) and Update Module as illustrated in 
Fig.1. Cognitive Level is the low-level of the architecture and 
follows the plans set by meta-level. It holds sensory skills in 
recognizing outside stimuli and actuator skills for executing 
plans in forms of robot actions. Whereas Meta-Cognitive 
Level infers human mental states, evaluates success of the 
current plan through achieving human goals and then 
interrupts cognitive process and generates new plans, if 
necessary. The functionalities of each component and how 
we plan to achieve them are briefly explained below. 

1) Sensing Component  
This component consists of two levels of sensing as 

illustrated in Fig.1. Low- level sensing involves environment 
mapping, object recognition and recognition of human’s 
presence, face, gaze, body joints (skeletal tracking), pose, 
basic facial expressions and basic speech commands. High-
level sensing, on the other hand, utilizes the low-level cues in 
recognizing emotional states and actions of the user. In 
assistant tasks, emotional state is used as human feedback 
(see Fig.1) and is in the form of approval/disapproval 
detected using cues like smiling face or speech like “thank 
you” (targeting Guideline 6). Before depicting the action 



  

recognition, we give an exemplary definition of an action to 
better describe the context in which it functions: 

action =  agent, type, object, location 

where for instance, act1 = User-A, grasping, book, onTable. 
More contents can be added to the action definition, such as 
precondition and effect, yet the type is the most descriptive. 
Sensing recognizes action type by conventional action 
recognition methods using Hidden Markov Models. 
Estimation models utilize body joints as features for basic 
human actions like sitting, walking, grasping; whereas human 
gaze, head pose and objects (from low-level) are used to 
estimate what and where human is looking at, i.e., visual-
perspective taking. 

By defining actions in such a symbolic way, it is possible 
to introduce new actions using trained (known) action types 
in combination with other descriptors like trained objects. 
This is towards making the system flexible to various use-
cases (targeting Guideline 1). Sensing component, then, is 
able to detect these actions in humans, which are to be used 
in goal (intention) estimation and plan descriptions. 

2) Memory Component 

CASOR is able to adapt to its own user and his/her 
changing preferences by modeling user’s needs (goals) and 
preferences (plans) to meet these needs. Memory component 
is only for storing user models consist of symbolic 
knowledge in the form of productions (rules), i.e., goal-plan-
quality pairs. Quality term is the quality of selecting a rule 
and it is calculated by user’s approval (reward) in response to 
its previous selection (see Update Module). Goals, we also 
call as intentions, are personal goals of cared-for human that 
are also the goal of the robot to assist the human (for details, 
see ToM Component). Plans are action sequences in realizing 
these goals. An exemplary plan description is given as: 

plan =  agent list, action sequence, goal  

where action sequence consists of ordered actions, agent list 

holds the actor agent of each action in the sequence and goal 

stands for the goal the plan allows to achieve.  

Memory is accessed by Decision-Making component of 
ToM to retrieve the specific user model for rule selection, and 
by Update Module to update rule qualities or to generate new 
ones (see Fig.1). Memory component starts with manually 
entered plan(s) for each goal of a user. In time, by being 
constantly updated through changing user preferences or 
states (see Update Module), Memory holds the personalized 
model of the user constructing a long-term memory. (Targets 
Guideline 2, 5) 

3) Actuating Component 
After Decision-Making component selects a rule, the set 

of actions of the rule’s plan are translated here to 
navigational, sound and gestural actions for robot. For 

example, a symbolic representation of an action =  robot, 

grasping, the glasses, onTable is translated into the actions 
of navigating to the location of the glasses and grasping it. 
Action Planning component does motor planning and 
actuates the motors to interact with the physical world. 

4) Theory of Mind (ToM) Component 

CASOR incorporates ToM approach to have robot take 

perspective of the user in estimating person’s goal and 

preferred plan to reach the goal in the context. In ToM 

component, first step is to estimate intention and mental state 

of the user, then to incorporate them into meta-level 

decision-making. (Targets Guideline 4) 

- Intention Estimation: Assistance is a joint action and its 

first step is to share a goal. Intentions in our architecture are 

Figure 1 CASOR – Conceptual Robot Cognitive Architecture 

 



  

called user goals, e.g., in daily life scenarios user habits like 

watching TV, reading book, etc. Robot shares these goals to 

assist human in achieving them. Goals can also be 

symbolically defined. An exemplary description is given as: 

goal =  agent, model, world state 

where model holds the trained model for estimation of the 

goal, world state defines the desired states goal wants to 

reach, such as desired human actions. 

Features for training intention models are set of observed 

actions (recognized by Sensing) leading to an intention [18]. 

For example, looking at a book and grasping it may indicate 

the intention of reading. One HMM is used to train for each 

intention model with recorded action sequences (i.e., 

features) while a person is realizing this goal. Goal 

estimation then functions by checking the relevance of an 

action recognized (emission probability of the action in the 

model) and the transition of the actions (transition 

probabilities of the model). Estimated goals are used in 

mental state estimation and decision-making, which makes it 

a crucial part of CASOR. (Targets Guideline 3) 

- Mental State Estimation: Inspired from [16], mental 

state in CASOR is the belief of human agent on the state of 

his/her current estimated goal (e.g., in progress, succeeded, 

aborted), plan (e.g., in progress) and action (e.g., aborted, 

help needed, done) in robot’s view. For example, the state of 

action-A of the user is estimated as help needed, whereas 

plan-A and goal-A are in progress. Mental state estimation is 

a state transition model to be developed, for example, using 

Markov decision process, where states are the states of 

goals/plans/actions and transitions between states are based 

on: i) the current user action; ii) estimated intention (goal); 

iii) user reactions to robot moves in forms of approval 

/disapproval (i and iii from Sensing). We note that robot 

estimates succeeded as the belief of the user on user’s goal 

only if robot constantly detects user’s approval to its actions. 

Therefore, robot always strives for user’s approval keeping 

his/her autonomy. Human mental state is the feedback of the 

system that helps robot evaluate the current success of its 

decisions. By constantly estimating it, robot realizes its 

mistakes and finally understands person’s true preferences 

on the context to assist successfully. This gives robot the 

ability to adapt to user’s momentary needs and preferences 

(short-term adaptation). (Targets Guidelines 2,3,6) 

- Decision-Making: Meta decisions for CASOR are given 
as, but not limited to: re-estimating a goal, selecting a plan, 
triggering Update Module. Firstly, re-estimation of user goal 
(intention) is decided when robot estimates “aborted” for 
user’s belief in the status of his/her estimated goal. Any 
unexpected action detection, which is an action that is not in 
the defined plan for a given goal, leads to the estimation of 
goal aborted. As a result, robot is able to detect its mistake in 
intention estimation of the human, which is already non-
trivial even for us as humans. Secondly, plan selection is 
through symbolic planning. Algorithms are to be developed 
to match human goal with rules stored in the model of the 
user and to select one rule based on the quality values (see 
Memory Component). A new rule is selected each time the 

user’s belief for a plan or a goal is estimated to be aborted or 
succeeded. Finally, Update Module is triggered for two 
reasons: to update the quality values of rules after each 
interaction, to generate new plans. (Targets Guideline 4) 

5) Update Module 

CASOR integrates associative reinforcement learning 

method to its symbolic planner in updating learnt knowledge 

with respect to constantly estimated human mental and 

emotional states. Quality value of a rule reflects the dynamic 

quality of selecting the rule. Rewards are the received user 

approvals (positive emotional states such as smiling or 

saying “thank you”) in response to executed robot actions of 

a plan. The more approvals the robot receives (e.g., for each 

action under the given plan), the higher the quality value for 

selected rule will be. Thereby, selected plans always reflect 

user’s approved way to achieve a goal for a trustworthy 

relationship. (Targets Guideline 6)  

Moreover, Update Module is able to create new plans 

and so new rules. Any change in action sequence or agent 

list (see Memory Component) of plan descriptors constitutes 

a new plan. For example, Update is triggered to take over 

mopping upon the estimation of help needed. This changes 

the work-division (agent list) in a plan for house cleaning, 

thus creating a new plan. Associative learning approach 

matches the newly created plans with corresponding goals. 

By constantly fine tuning the user model, robot learns the 

most favored, secured and personalized plans to serve its 

user (long-term adaptation). (Targets Guideline 2, 5) 

C. A Use-Case for the Proposed Cognitive Architecture 

Our strategy is to keep the architecture task-invariant as 
much as possible. Developers have the ability to introduce 
new sensing (e.g., action types, objects and so actions) and 
actuation capabilities through implementing new applications 
as assistant tasks. 

One possible use-case could be where a robot is assisting 

User-A, a conscious older man lives alone, in his daily 

activities. Robot’s aim is to autonomously detect in which 

action User-A needs help and take over this action to assist 

in achieving his goal. User-A’s family defines his habit of 

“reading” as a goal to the system with related actions given 

as (following the notation introduced in Section III.B): 

- AC1 (Action-1) =  User-A/Robot, Look for, Glasses, 

- AC2 =  User-A/Robot, Navigate, toGlasses, PRE: AC1, 

- AC3 =  User-A/Robot, Fetch, Glasses, PRE: AC2, 

- AC4 =  User-A/Robot, Look for, Book, 

- AC5 =  User-A/Robot, Navigate, toBook, PRE: AC4, 

- AC6 =  User-A/Robot, Fetch, Book, PRE: AC5, 

- AC7 =  User-A, Sit, onYellowCouch 

where the actor of an action, agents, may be the robot or 

User-A, and PRE is the precondition of action. Simple goal 

definition and manually entered initial plan are given as: 

- GO1 (Goal 1: Reading) =  User-A, model_GO1, 

- PL0 (Initial plan) =  All Agents: User-A, AC4+AC5+ 

 AC6+AC1+AC2+AC3+AC7, GO1 

where PL0 is the initial plan for realizing the goal GO1 and 
User-A is initially set as actor agent of all ACs under PL0 



  

with the given order. Ultimately, robot’s goal is to detect 
when exactly (which action in the plan) User-A needs help to 
assist him with the action upon the user’s consent. 

Robot starts by estimating User-A’s intention from the 

given models. In this iteration, User-A’s goal is estimated as 

“reading” since Sensing recognized AC4 in User-A (he is 

looking at the table where the book stands). According to the 

plan PL0, the only plan in Memory (Model of User-A), robot 

thinks that User-A must be planning to take the book (AC5). 

However, User-A’s inaction for a while leads to mental state 

(MS) estimation of “User-A needs help in his action”. It may 

be that User-A has aborted GO1 but the ongoing look 

towards the table and MS transition probabilities (the belief 

that a person doesn’t easily give up on his/her goal when it is 

in progress) makes robot reason that goal GO1 is still in 

progress. Then, robot quickly asks User-A if it should bring 

the book. User-A smiles, which is a reward for the robot. 

Next action being “pick the glasses”, the robot knows where 

User-A left his reading glasses and offers to take them. This 

time User-A says “don’t!”. He didn’t want robot to pick the 

glasses because he was afraid that it could break them. 

Robot detects his disapproval, estimating “the action is 

aborted”. User-A picks the glasses leading robot reason that 

User-A doesn’t need help in taking his glasses. After User-A 

sits back on his couch (AC7 is recognized), robot concludes 

that initially it made the correct intention estimation of 

reading. Now that the work-division (active agent list) of 

PL0 has changed, Update Module saves it as a new plan to 

User-A Model with the collected rewards. The plan is (PL1): 

Robot is responsible for fetching the book but not the 

glasses, i.e., actor agent of AC4,5,6 is robot. This new plan is 

actually User-A’s preferred plan for the goal of reading.  

A week after, User-A has a terrible pain on his legs. Upon the 
estimation of “reading” goal, robot will not fetch the glasses 
as it has learnt that way. However, detected inaction of User-
A will make MS estimation eventually result in “User-A 
needs help”. As a result, robot asks and fetches the glasses 
creating another plan (PL2) in the user model. It could also 
be that User-A is not able to see without the glasses. This 
way, robot can adapt to such changing situations by 
empathizing with the user and reasoning when he needs help. 
If this new plan, where robot also fetches the glasses, is 
selected and succeeded more frequently on the upcoming 
days, robot will more likely select it assuming that it is User-
A’s favorite (having more reward). 

IV. CONCLUSION 

In this paper, we propose an approach for developing 

assistive social robots that bear a cognitive architecture to 

provide a long-term personalized assistance at home 

environment. We presented existing work in the field and 

pointed out the gaps to achieve our ultimate aim. The 

guidelines stated in the paper are attainable for a successful 

cognitive architecture required for personal long-term 

assistance of robots at home. 

As future work, we are planning to implement our 
proposed architecture, CASOR. All the components except 
Theory of Mind are to be developed using state-of-the-art 

solutions, where ToM component and its integration to the 
cognitive process are to be our main contributions. Finally, 
CASOR is to be evaluated through a use-case scenario, 
similar to the one given, in successfully deciding when and 
how to assist older people in achieving their goals at home. 
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