
Renew � User Guide

Olaf Kummer

Frank Wienberg

Mihael Duvigneau

Lawrene Caba

Mihael Haustermann

David Mosteller

University of Hamburg

Department for Informatis

Theoretial Foundations Group

Release 2.6

April 28, 2022

This manual is
©2022 by Olaf Kummer, Frank Wienberg, Mihael Duvigneau, Lawrene Caba, Mihael Haustermann, David

Mosteller.

Arbeitsbereih TGI

� Renew �

Fahbereih Informatik

Universität Hamburg

Vogt-Kölln-Straÿe 30

D-22527 Hamburg

Germany

Apple is a registered trademark of Apple Computer, In.

Java is a registered trademark of Orale Corporation.

JavaCC is a trademark of Orale Corporation.

LAT

E

X is a trademark of Addison-Wesley Publishing Company.

LibreO�e is a trademark of The Doument Foundation.

MaOS is a trademark of Apple Computer In.

Mirosoft O�e is a registered trademark of Mirosoft Corporation.

MySQL is a trademark of Orale Corporation.

Orale is a registered trademark of Orale Corporation.

PostSript is a registered trademark of Adobe Systems In.

Sun is a registered trademark of Orale Corporation.

T

E

X is a trademark of the Amerian Mathematial Soiety.

UML is a trademark of the Objet Management Group.

Uniode is a registered trademark of Uniode, In.

UNIX is a registered trademark of AT&T.

Windows is a registered trademark of Mirosoft Corporation.

X Windows System is a trademark of X Consortium, In.

The trademarks may be laimed in one or more ountries.

Other trademarks are trademarks of their respetive owners.

The use of suh trademarks does not indiate that they an be freely used.

Please refer to the liense setion of the Renew user guide for more information about opyright and liability issues.

This doument was prepared using the LAT

E

X typesetting system.

This doument is ontained in the �le do/renew.pdf as distributed together with Renew 2.6.

Contents

1 Introdution 8

1.1 Should I Use Renew? . 8

1.2 How to Read This Manual . 9

1.3 Aknowledgements . 9

2 Installation 11

2.1 Prerequisites . 11

2.2 Possible Collisions . 11

2.3 Upgrade Notes . 11

2.3.1 General . 11

2.3.2 Upgrade from Renew 1.5 or earlier . 11

2.3.3 Upgrade from Renew 1.6 or earlier . 12

2.3.4 Upgrade from Renew 2.0/2.0.1 or earlier 12

2.3.5 Upgrade from Renew 2.1/2.1.1 or earlier 12

2.3.6 Upgrade from Renew 2.2 or earlier . 12

2.3.7 Upgrade from Renew 2.3 or earlier . 13

2.3.8 Upgrade from Renew 2.4.3 or earlier 13

2.3.9 Upgrade from Renew 2.5 or earlier . 13

2.3.10 Upgrade from Renew 2.5.1 or earlier 13

2.4 Installing Renew . 13

2.4.1 Base Installation . 13

2.4.2 Soure Installation . 14

2.5 Platform-spei� Hints . 14

2.5.1 MaOS . 14

2.5.2 Unix . 15

2.5.3 Windows . 15

2.6 Speial Con�guration Options . 16

2.6.1 Ways of on�guring Renew . 16

2.6.2 Drawing Load Server . 17

2.6.3 Multiproessor Mode . 18

2.6.4 Sequential Mode . 18

2.6.5 Class Loading (and Reloading) . 19

2.6.6 Net Loading . 20

2.6.7 Database Baking . 20

2.6.8 Remote Simulation Aess . 21

2.6.9 Logging . 22

2.7 Plug-ins . 23

2.7.1 Install Plug-ins . 23

2.7.2 Exlude Plug-ins Temporarily . 24

2.7.3 System Termination . 24

2.7.4 Commands . 24

2.7.5 Console . 27

3

2.7.6 Net Components . 27

2.8 Troubleshooting . 28

2.9 History . 28

2.9.1 Changes in Version 1.1 . 28

2.9.2 Changes in Version 1.2 . 29

2.9.3 Changes in Version 1.3 . 29

2.9.4 Changes in Version 1.4 . 29

2.9.5 Changes in Version 1.5 . 30

2.9.6 Changes in Version 1.5.1 . 30

2.9.7 Changes in Version 1.5.2 . 30

2.9.8 Changes in Version 1.6 . 30

2.9.9 Changes in Version 2.0 . 30

2.9.10 Changes in Version 2.0.1 . 31

2.9.11 Changes in Version 2.1 . 31

2.9.12 Changes in Version 2.1.1 . 32

2.9.13 Changes in Version 2.2 . 32

2.9.14 Changes in Version 2.3 . 33

2.9.15 Changes in Version 2.4 . 34

2.9.16 Changes in Version 2.4.1 . 35

2.9.17 Changes in Version 2.4.2 . 35

2.9.18 Changes in Version 2.4.3 . 35

2.9.19 Changes in Version 2.5 . 35

2.9.20 Changes in Version 2.5.1 . 36

2.9.21 Changes in Version 2.6 . 36

3 Referene Nets 37

3.1 Net Elements . 37

3.2 I do not Want to Learn Java . 39

3.3 A Thimble of Java . 39

3.4 The Insription Language . 42

3.4.1 Expressions and Variables . 42

3.4.2 Types . 43

3.4.3 The Equality Operator . 44

3.4.4 Method Invoations . 45

3.5 Tuples, Lists, and Uni�ation . 46

3.6 Net Instanes and Net Referenes . 47

3.7 Synhronous Channels . 48

3.8 Manual Transitions . 51

3.9 Calling Nets from Java . 52

3.9.1 Net Methods . 52

3.9.2 Event Listeners . 54

3.9.3 Automati Generation . 55

3.10 Additional Ar Types . 59

3.10.1 Flexible Ars . 59

3.10.2 Clear Ars . 61

3.10.3 Inhibitor Ars . 62

3.11 Timed Nets . 63

3.12 Pitfalls . 64

3.12.1 Reserve Ars and Test Ars . 65

3.12.2 Unbound Variables . 65

3.12.3 Side E�ets . 65

3.12.4 Boolean Conditions . 66

3.12.5 Custom Classes . 66

3.12.6 Net Stubs . 66

4

3.12.7 Exeution of synhronized Java Code 67

3.12.8 Case of Class and Variable Names in Untyped Nets 67

4 Using Renew 68

4.1 Basi Conepts . 68

4.2 Tools . 69

4.2.1 The Seletion Tool . 70

4.2.2 Drawing Tools . 71

4.2.3 Net Drawing Tools . 76

4.3 Menu ommands . 79

4.3.1 File . 79

4.3.2 Edit . 85

4.3.3 Layout . 87

4.3.4 Attributes . 90

4.3.5 Net . 93

4.3.6 Simulation . 98

4.3.7 Windows . 104

4.3.8 Additional Top-Level Menus . 104

4.4 Net Simulations . 104

4.4.1 Net Instane Windows . 104

4.4.2 Current Marking Windows . 105

4.4.3 Simulation Control . 105

4.5 Simulation Server . 106

4.6 Error Handling . 107

4.6.1 Quik Fix . 107

4.6.2 Parser Error Messages . 108

4.6.3 Early Error Messages . 108

4.6.4 Late Error Messages . 113

A Contating the Team 116

B File Types 117

C Keyboard Shortuts 118

D Liense 122

D.1 Contributed Parts . 122

D.1.1 The olletions Pakage . 122

D.1.2 The JHotDraw Pakage . 122

D.1.3 Code Generated from JavaCC . 122

D.1.4 Bill's Java Grammar . 123

D.1.5 Graph Layout Algorithm . 123

D.1.6 The Log4j Pakage . 124

D.1.7 The FreeHEP VetorGraphis pakage 125

D.1.8 JLine2 . 125

D.1.9 Commons CLI . 125

D.1.10 Other Libraries . 125

D.2 Original Parts . 125

D.2.1 Example Nets . 125

D.2.2 Java Soure Code and Exeutables . 125

D.3 Created Parts . 126

D.4 Dislaimer . 126

D.5 Open Soure . 126

5

List of Figures

3.1 The net elements . 37

3.2 The net olored . 38

3.3 The Java type hierarhy and the hierarhy of lossless onversions 40

3.4 The net gd . 42

3.5 The net gdtyped . 43

3.6 The net equality . 44

3.7 The net frame . 45

3.8 The net soks . 46

3.9 The net reverse . 47

3.10 The net reator . 48

3.11 The net othernet . 48

3.12 The net synhro . 48

3.13 The net multi . 50

3.14 The net param . 50

3.15 The net santa . 50

3.16 The net bag . 50

3.17 The net mutex . 51

3.18 The net aount . 52

3.19 The net ustomer . 54

3.20 The net buttonmaker . 56

3.21 The net sizehanger . 56

3.22 The net enumbag . 58

3.23 The net enumsanta . 58

3.24 The net flexible . 60

3.25 The net eletion . 60

3.26 The net visualeletion . 61

3.27 The net juggler . 62

3.28 The net filetypes . 63

3.29 The net port . 64

3.30 The net reserve . 65

3.31 The net buffer . 66

4.1 The Renew Window . 68

4.2 The Petri Net Toolbar in its own Window . 69

4.3 The Renew Navigator . 80

4.4 An Example of Browsing Token Objets in Expanded Tokens Mode 94

4.5 The net ionsanta . 96

4.6 The net ionbag . 96

4.7 The Santa Claus Example with Ions During Simulation. 97

6

List of Tables

2.1 The startup and stub sripts. 15

2.2 Properties to on�gure database baking . 21

2.3 Properties to on�gure a remote simulation 22

3.1 The primitive data types of Java . 39

3.2 Java binary operators, rules separate operators of equal preedene 41

3.3 Java unary operators . 41

4.1 Summary of seletion tool operations . 71

7

Chapter 1

Introdution

On the following pages, you will learn about Renew, the Referene Net Workshop. The most

important topis are:

• installing the tool (Chapter 2),

• the referene net formalism (Chapter 3),

• using Renew (Chapter 4),

Both referene nets and their supporting tools are based on the programming language Java.

To be able to use them to their full apaity, some knowledge of Java is required. While

the basi onepts of Java will be explained in this doument, there are plenty of books and

Websites that will serve as a more in-depth introdution to Java.

If you enounter any problem during your work with Renew, we will try to help you. See

Appendix A for our address. At the same address, you an make suggestions for improvements

or you an request information on the latest release of Renew. If you want to submit example

models or extensions to the tool, that would be espeially welome.

1.1 Should I Use Renew?

The main strength of Renew lies in its openness and versatility.

• Renew has been written in Java, so it will run on all major modern operating systems

without hanges.

• Renew omes omplete with soure, so its algorithms may be freely extended and

improved. It is in fat possible to add speial net insriptions quikly. It is even possible

to implement ompletely new net formalisms without hanging the basi struture of

Renew.

• Renew an make use of any Java lass. Today there exist Java lasses that over

almost all aspets of programming.

• Referene nets are themselves Java objets. Making alls from Java ode to nets is

just as easy as to make alls from nets to Java ode.

The Petri net formalism of Renew, too, might be very interesting for developers.

• Renew supports synhronous hannels. Channels are a powerful ommuniation meh-

anism and they an be used as a reliable abstration onept.

• Net instanes allow objet-oriented modeling with Petri nets. While a few other net

formalisms provide net instanes, it is their onsistent integration with the other fea-

tures that makes them useful.

• Referene nets were spei�ally designed with garbage olletion of net instanes in

mind, whih is indispensable for good objet-oriented programming.

8

• Many ar types are available that over almost all net formalisms. Simulation time

with an earliest �ring time semantis is integrated.

There are, however, a few points to be aware of.

• There are urrently only rudimentary analysis tools for Renew. Although a few export

interfaes have already been implemented, useful analysis seems a long way o�. Cur-

rently, Renew relies entirely on simulation to explore the properties of a net, where

you an dynamially and interatively explore the state of the simulation.

However, for many appliations, analysis does not play a prominent role. Petri nets are

often used only beause of their intuitive graphial representation, their expressiveness,

and their preise semantis.

• During simulation, the user annot hange the urrent marking of the simulated net

exept by �ring a transition. This an make it somewhat more di�ult to set up a

desired test ase.

• In our formalism, there is no notion of �ring probabilities or priorities. By exploiting

the open arhiteture of Renew, these features may be added later on, possibly as

third-party ontributions.

• Renew is an aademi tool. Support will be given as time permits, but you must be

aware that it might take some time for us to proess bug reports and even more time

to proess feature requests.

But sine Renew is provided with soure ode, you an do many hanges on your own.

And your feature requests have a high probability to be satis�ed if you an already

provide an implementation.

1.2 How to Read This Manual

It is generally reommended to read all hapters in the order in whih they are presented.

However, when somebody else has installed Renew for you, you should skip Chapter 2 entirely.

Renew

2.6

If you are already familiar with a previous version of Renew, you should simply skim

the manual and look for the Renew 2.6 ions as shown to the left. The paragraphs

that are tagged with this ion elaborate on new features of the urrent version.

You should also onsult Setion 2.3 for some notes on the upgrade proess. The

upgrade might require some expliit ations on your part.

Advaned users may want to onsult the arhiteture guide do/arhiteture.pdf in

the soure pakage of Renew, if it is intended to modify Renew. It is not reommended for the

asual user to spend muh time reading this manual, as it is quite tehnial and of little help

in the day-to-day use of Renew. The arhiteture guide is not up to date with the urrent

version of Renew, but may still be helpful to developers.

1.3 Aknowledgements

We would like to thank Prof. Dr. Rüdiger Valk and Dr. Daniel Moldt from the University of

Hamburg for interesting disussions, help, and enouraging omments.

We would also like to thank Marvin Brendel, Marel Hansson, Jonte Johnsen, Tim Kowal-

zyk, Hamed Mohammadi, Tim Radke, Miriam Strulik, Thorwin Vogt, Lukas Voÿ and Sven

Willrodt for their work during the preparation of this release.

We would like to thank Jörn Shumaher for the prototype of the plug-in system (2.0),

Benjamin Shleinzer for his work during the preparation of former releases (2.1-2.2) and

Berndt Müller who has been of great help with respet to previous Renew releases for MaOS

(≤ 2.0). Some nie extensions of Renew were suggested or programmed by Mihael Köhler-

Buÿmeier and Heiko Rölke.

9

We are indebted to the authors of various freeware libraries, namely Mark Donszelmann,

Erih Gamma, Doug Lea, David Megginson, Bill MKeeman and Sriram Sankar.

Dr. Maryam Purvis, Dr. Da Deng, and Selena Lemalu from the Department of Informa-

tion Siene (http://infosi.otago.a.nz/), University of Otago, Dunedin, New Zealand,

kindly aided us in the translation of parts of the doumentation and are involved in an

interesting appliation projet.

Valuable ontributions and suggestions were made by students and sienti� workers at the

University of Hamburg, most notably Hannes Ahrens, Tobias Betz, Jan Bolte, Lars Braubah,

Timo Carl, Domini Dibbern, Friedrih Delgado Friedrihs, Matthias Ernst, Matthias Feld-

mann, Max Friedrih, Daniel Friehe, Olaf Groÿler, Julia Hagemeister, Sven Heitsh, Marin

Hewelt, Jan Hiken, Thomas Jaob, Andreas Kanzlers, Lutz Kirsten, Till Kothe, Annette

Laue, Matthias Liedtke, Marel Martens, Klaus Mitreiter, Konstantin Möllers, Eva Müller,

Jens Norgall, Sven O�ermann, Felix Ortmann, Martin Pfei�er, Alexander Pokahr, Tobias

Rathjen, Dennis Reher, Christian Röder, Heiko Rölke, Benjamin Shleinzer, Jan Shlüter,

Mar Shönberg, Jörn Shumaher, Mihael Simon, Fabian Sobanski, Volker Tell, Benjamin

Teuber, Thomas Wagner, Matthias Wester-Ebbinghaus, Martin Winierz, and Eberhard

Wol�.

We would like to thank the numerous users of Renew who provided hints and onstrutive

ritiism. They helped greatly in improving the quality of the ode and the doumentation.

In partiular, we would like to name Alun Champion and Zaharias Tsiatsoulis.

10

Chapter 2

Installation

In this hapter we will give a short overview of the installation proess. It is not di�ult

espeially if you are already at ease with the Java environment. But even as a novie you

should be able to omplete the proess suessfully.

2.1 Prerequisites

You must have Java 11 or higher installed. If you have not done this yet, we suggest that you

get the latest Java Development Kit (JDK) from Orale (https://www.orale.om/java/)

or from Adoptium (https://adoptium.net/) where versions for Windows, Linux, MaOS

are available. Renew only requries the Java Runtime Environment (JRE), but it is no longer

distributed separately. All development kits are available free of harge for personal use. We

reommend using the version JDK 11 (LTS) or the latest available version.

If you intend to do a soure installation, you also need to install a ouple of software

pakages from third parties. See Setion 2.4.2 for details.

2.2 Possible Collisions

While Renew is based on the JHotDraw pakage by Gamma [8℄, the pakage is distributed with

Renew. The pakage has been substantially improved, so that it is impossible to substitute

a di�erent version for it. If you have the original JHotDraw installed, this might result in a

problem.

2.3 Upgrade Notes

These notes are supposed to help you when you have already installed an earlier version of

Renew. In Setion 2.9 you an �nd a list of di�erenes, if you are interested in further details.

2.3.1 General

Note that you annot usually read nets reated with a later version by older versions of

Renew. However, newer versions of Renew an read older �les without problems. I.e., an

upgrade to the urrent version is simple, but irreversible.

2.3.2 Upgrade from Renew 1.5 or earlier

Serialized shadow net systems exported by Renew 1.5 or earlier annot be used with any later

versions. You an simply re-export the net system.

11

https://www.oracle.com/java/
https://adoptium.net/

A new keyword manual was added to the insription language. In rare ases, you will

have to rename a variable or pakage to aount for this hange.

2.3.3 Upgrade from Renew 1.6 or earlier

The required Java version has hanged, you need at least Java 1.4 to run newer versions of

Renew.

You do not any longer need to install a separate XML parser (like Xeres) beause Renew

now uses the built-in parser of Java 1.4.

Saved simulation states exported by Renew 1.6 annot be used with the urrent version

of Renew.

Stubs ompiled with Renew 1.6 or earlier annot be used with the urrent version. You

an simply reompile the stubs and the resulting Java �les.

Several lasses of the Renew framework were moved or renamed. In partiular, the lass

de.renew.simulator.NetInstane has now beome de.renew.net.NetInstane. If you

use typed variables for net referenes in your nets, you must adapt the variable delarations

or pakage imports.

When a new net is reated, the :new() is no longer impliitly invoked. It is only invoked

when you reate the net using the notation n:new NetName() as opposed to n:new NetName.

You might have to rewrite some nets as a result of this hange.

The way of inluding ustom lasses in a Renew simulation has hanged, please read

Setion 2.6.5 for more details.

2.3.4 Upgrade from Renew 2.0/2.0.1 or earlier

The main appliation lass has been hanged from de.renew.plugin.PluginManager to

de.renew.plugin.Loader. There are now two on�guration �le loations: �rst, the per-

installation on�guration �le renew2.6/onfig/renew.properties is read, then the user-

spei� �le �/.renew.properties is onsulted. The property pluginLoations has been

hanged to a lasspath-like syntax (see Setion 2.7.1).

The net loader priorities have hanged: instead of preferring .sns �les over .rnw �les

regardless of the order of their diretories in the de.renew.netPath property, now the order

of diretories is onsidered �rst, while the order of �le types is undetermined.

The Renew ode has been modi�ed to ompile without warnings under Java 1.5, but

we still use Java 1.4.2. The onformity with Java 1.5 also implies the use of an up-to-date

version of JavaCC during ompilation. The old olletions pakage has been removed from

all omponents exept FS. The pakage is no longer distributed with the base arhive, but

inluded in the FS plug-in.

2.3.5 Upgrade from Renew 2.1/2.1.1 or earlier

The required Java version has hanged, you need at least Java 1.5 to run newer versions of

Renew.

Saved simulation states exported by Renew 2.1.1 or earlier annot be used with the urrent

version of Renew. The Drawing Load Server (see 2.6.2 now aepts onnetions from the loal

loopbak interfae only (this has been introdued as a seurity measure).

The JUnit test lasses that were sparsely sattered in the Renew ode have been migrated

from JUnit 3.x to JUnit 4.x arhiteture.

2.3.6 Upgrade from Renew 2.2 or earlier

The required Java version has hanged, you need at least Java 6 to run newer versions of

Renew.

12

2.3.7 Upgrade from Renew 2.3 or earlier

Files exported to the experimental .xrn format annot be used anymore. Its support has

been disontinued. We enourage the use of PNML, instead.

2.3.8 Upgrade from Renew 2.4.3 or earlier

The logging on�guration �les and the default logging diretory moved from the home folder

to a subdiretory .renew in the home folder. In order to use your old on�guration, you should

move the .log4j.properties �le to the .renew subdiretory in your home folder (you may

need to reate the diretory �rst). For the logs you now have to look in .renew/renewlogs

in your home folder (if not on�gured di�erently).

2.3.9 Upgrade from Renew 2.5 or earlier

The required Java version has hanged, you need at least Java 11 to run newer versions of

Renew.

2.3.10 Upgrade from Renew 2.5.1 or earlier

The PNML export and import were reimplemented beause the old implementation based

on a pre�nal standard of PNML. The new version implements the standard in version 2009

from http://www.pnml.org/. PNML �les reated with earlier versions may produe errors

in Renew 2.6 during import. If you enounter suh problems, save your �les as .rnw with

the old version to import them in Renew 2.6.

2.4 Installing Renew

The two zip-�les renew2.6base.zip and renew2.6soure.zip form the standard Renew

distribution. While the former �le ontains all �les that are required for the operation of

Renew, the latter �le inludes the soure �les, whih are generally not needed unless you

intend to modify Renew or learn about its algorithms. In addition to the base distribution,

we provide some plug-ins at our web page.

2.4.1 Base Installation

In the following, we assume Unix �lename onventions, i.e., diretories separated by / (slash).

For other operating systems you might need to hange it to \ (bakslash). Also, the list

separation harater di�ers: In Unix-based environments, : is used, while on Windows, the

: is reserved for drive letters, so ; is used for lists.

Extrat the base distribution to a diretory of your hoie. A diretory renew2.6 will be

reated in the urrent diretory. Doumentation �les, for example this manual, are plaed

in the subdiretory renew2.6/do. The subdiretory renew2.6/samples ontains example

nets. The funtionality of Renew has been deomposed into several plug-ins whih reside as

jar �les in the subdiretory renew2.6/plugins. This is also the plae where you an add

extra plug-ins (see Setion 2.7).

The �le renew2.6/loader.jar is a jar-�le that ould be used to exeute Renew e.g., by

saying

java -jar /some /where/renew2.6/loader.jar gui

if you extrated the zip-�le into /some/where. On Windows, this would look something like

java -jar C:\ some \where\renew2.6\loader.jar gui

13

http://www.pnml.org/

(mind the drive letter and the use of bakslash instead of slash). The gui part at the end of

the line is a ommand that tells the loader to start the graphial user interfae of Renew.

Note that for Unix and Windows we provide ready-made startup sripts already. They

will be generated when Renew is installed. In that ase, you do not have to provide a loader

ommand manually, and some lasspath-related issues (see Setion 2.6.5) are handled more

onveniently for most use ases. See Setion 2.5 for details.

2.4.2 Soure Installation

Usually there is no need to do a soure installation. If you feel onfused by this setion,

simply skip it.

Extrating the soure distribution will put �les into the diretories renew2.6/sr and

renew2.6/do.

The soures are aompanied by build.xml �les for the Apahe Ant tool. You should

install Ant to build Renew from soures, it is available at http://ant.apahe.org/. Further

you will need the parser generator JavaCC to ompile the soures. The unit testing pakage

JUnit is used for the development of Renew but optional for the ompilation. Elipse is used

as ode formatter and optional as well.

See the �le renew2.6/sr/README that lists the software pakages and versions you need

and gives some hints on how to ompile and run the appliation.

After you have suessfully built Renew, you an test your ompilation result. Just follow

the instrutions in the previous setion, but replae any referene to renew2.6/loader.jar

by renew2.6/sr/dist/loader.jar. The plugins diretory is reloated from its distribution

position to renew2.6/sr/dist/plugins, too.

If you sueed to run the ompiled Renew, you an delete the �le renew2.6/loader.jar

and the diretory renew2.6/pluginswith the original lass-�les. You should then onsider

to edit the start sripts for your platform, so that they beome aware of the �le loation

hanges.

Please note that the lean target de�ned in the Ant build.xml �le ompletely removes

the renew2.6/sr/dist diretory tree. Therefore any modi�ations (like installed plug-ins)

made in that diretory tree get lost every time you run ant lean.

2.5 Platform-spei� Hints

For a few platforms we provide speial installation support. Even in these ases you ould

install Renew as desribed above, but your task will be easier if you read this setion.

The installation sript is typially alled installrenew or similar. Start this sript to

install Renew. The sript will reate the atual startup sripts for Renew. You have to start

the one alled renew or similar to get the basi version of Renew running. Other sripts

allow you to load drawings into a running Renew editor or provide help for the generation

and ompilation of stubs, as summarized in Table 2.1.

In the next subsetions we will only desribe the usage of the basi sript. The other

sripts have a similar behavior when it omes to the interpretation of environment variables,

while their spei� e�ets are explained in other Setions of this manual.

2.5.1 MaOS

We provide a MaOS appliation bundle, whih is installed the usual way by dragging it to

the Appliation folder. The Renew App is not signed, whih may result in a gatekeeper error

message during startup. You need to expliitly allow the start of Renew in the Seurity &

Privay Settings (see https://support.apple.om/en-us/HT202491). The appliation is

on�gured in GUI-only mode without onsole output or prompt apabilities. It also provides

Finder integration for Renew drawing �les.

14

http://ant.apache.org/
https://support.apple.com/en-us/HT202491

sript name use

renew starts the Renew editor

loadrenew Java drawing load lient

(see Subsetion 2.6.2 for details)

makestub generates a net stub from a Java interfae

ompilestub ompiles a net stub to Java ode

jompile wrapper for java that inludes some

Renew lasses in the CLASSPATH

(see Subsetion 3.9.1 for details)

renewexport exports a drawing to an image

run as renewexport input.rnw output.pdf

where input.rnw is a path to a Renew drawing �le

and output.pdf the path of the output �le.

guesses the format from extension (pdf, eps, png, svg)

Table 2.1: The startup and stub sripts.

Sine MaOS is built upon a Unix ore, you an alternatively follow the installation dire-

tions for Unix. To do so, open the Terminal appliation whih an be found in /Appliations/

Utilities.

We provide an AppleUI plug-in as optional download, whih is already inluded in the

appliation bundle. This plug-in adds rudimentary support for native Ma OS look&feel

to Renew. It allows the md-q (or apple-q) shortut to lose the editor properly (with

safety questions for unsaved hanges) and it slightly modi�es the Ma OS menu bar. See

Setion 2.7.1 on how to install the plug-in.

Shortuts listed in this manual with the Ctrl modi�er key should be used on omputers

running MaOS with the Cmd modi�er key instead. Some reserved shortuts di�er slightly

under MaOS (see Appendix C).

2.5.2 Unix

We supply a simple install sript at renew2.6/bin/unix/installrenew that will handle the

installation on most �avors of Unix. Run that sript with

d renew2.6/bin/unix

sh installrenew

and it will reate the shell sripts renew, loadrenew, ompilestub, makestub, jompile,

and renewexport in the same diretory (see Table 2.1).

However, you must make sure that java an be alled with your urrent setting of the

PATH environment variable. It is also required that you start the installation sript from the

bin/unix diretory, otherwise it annot �nd the loation of the pakage.

We distribute some �les to support desktop integration in FreeDesktop-based environ-

ments suh as Gnome. In the diretory renew2.6/bin/unix/freedesktop, there is a README

�le that explains how suh desktop integration an be ahieved. However, desktop integration

still requires a manual on�guration proess. The installdesktop and uninstalldesktop

sripts automatially install and uninstall the desktop integration in the FreeDesktop envi-

ronment.

2.5.3 Windows

For Windows we provide an installation sript in the diretory renew2.6\bin\win for your

onveniene. This bath �le has to be started from its own diretory.

15

d renew2.6\bin\win

installrenew

This will reate the bath �les renew.bat, loadrenew.bat, makestub.bat, ompilestub.bat,

jompile.bat, and renewexport.bat in the same diretory (see Table 2.1).

However, you must make sure that java an be alled with your urrent setting of the

PATH environment variable. It is also required that you start the installation sript from the

bin\win diretory, otherwise it annot �nd the loation of the pakage.

Please hek your lasspath variable for any unquoted whitespae in it beause bath

sripts will interpret paths with it as two arguments.

The installrenew sript additionally reates some registry �les for the �le type as-

soiation of Renew �les (addregistry.reg and removeregistry.reg). addregistry.reg

ontains the registry entries to assoiate Renew �le types (.rnw, .draw, .aip, .sns) with the

loadrenew.bat sript. You an perform this assoiation by double liking addregistry.reg.

With removeregistry.reg you an remove the orresponding entries from the registry. Ad-

min rights are required to edit registry entries. The update of the ions for the Renew �le

types may need a restart to take e�et.

2.6 Speial Con�guration Options

There are several options that an help to adapt Renew to your spei� needs. Usually you

should not need to use these options, so it is best to skip this setion on the �rst reading.

2.6.1 Ways of on�guring Renew

There are at least two ways to on�gure any of the options mentioned in the following setions.

In Java terminology, an option is on�gured by setting a property to a value.

At startup. You an supply property values on the Java ommand line with the -D option

when you start Renew (this is the way you ould on�gure previous Renew releases). For

example, to on�gure that Renew uses a sequential simulator instead of the default onurrent

one, you an set the property de.renew.simulatorMode to the value -1. This is done by

starting Renew with the ommand line:

java -Dde.renew.simulatorMode =-1 -jar loader.jar gui

It is important that you do not insert any spaes between the -D option, the property, the =

sign and the value. Also, property names are ase sensitive.

This way, you an on�gure any property for just one run of Renew. However, you lose

the simpliity provided by the platform-dependent startup sripts. You will have to enter the

Java ommand line diretly, inluding the full path to loader.jar and the initial ommand

gui for the loader.

Permanently. To on�gure properties permanently, you an reate or edit either the �le

renew.properties in the installation diretory renew2.6/onfigor the .renew.properties

�le (note the initial dot!) in your home diretory. The former on�gures the Renew instal-

lation, while the latter provides on�guration on a per-user basis. The user settings may

override installation-wide values. In the following, the text .renew.properties refers to

both �les. A template for a .renew.properties �le an be found in the onfig diretory of

your Renew installation. The �le ontains several out-ommented properties.

The loation of your home diretory depends on the operating system (for Windows, it

even di�ers between versions). If you do not know where it is, just run Renew. The �rst two

lines of the appliation log (that is usually printed to the Java onsole) tell you where Renew

expets the on�guration �les.

16

One note for Windows users: The Explorer will not allow you to reate a �le name with

an initial dot. But you an reate suh a �le via the ommand line interfae (CMD.EXE) and

then edit it as usual.

In the .renew.properties �le, you an for example add the line

de.renew. simulatorMode =-1

and Renew uses the sequential simulation engine by default on every run. Of ourse, values

taken from the .renew.properties �le an always be overridden by a -D ommand line

option at startup.

At runtime. A third way for some (not all) of the on�guration options is provided

by menus or dialogues in the net editor. To stik with our example, the dialog opened

by the menu entry Simulation/Configure Simulation... ontains a hekbox named

Sequential mode and a box where you an hange the engine multipliity (for details, see

Setion 4.3.6). These two elements in ombination represent the urrent value of the property

de.renew.simulatorMode and its value is hanged when you press the Apply or OK buttons.

As a fourth way to set properties, the plug-in system provides a set ommand. This

ommand omes in useful in ombination with the sript ommand (see Setion 2.7) or if

you installed one of the prompt plug-ins (Console or GUIPrompt). Although this ommand

allows to set values for any known and unknown property at runtime, it is not guaranteed

that the value hange has any e�et. In fat, many properties are evaluated only one at

startup time.

As a rule of thumb, all options that a�et the simulation behavior are evaluated at eah

simulation setup. For example, the ommand

set de.renew.simulatorMode =-1

has no e�et on a simulation urrently ative (if there is any). But the next time you start

a simulation from within the running appliation, it will be sequential.

When you on�gure properties at runtime, any setting of that property from the ommand

line or the on�guration �le is overridden. Runtime settings are not stored permanently.

2.6.2 Drawing Load Server

Many users like to load douments into the orresponding appliation just by double-liking

the doument in the �le manager. A typial problem is that this starts a new instane of the

whole appliation. This is extremely nasty when using a Java appliation, sine a new Java

Virtual Mahine is started every time. To avoid this problem with Renew, we added a simple

server funtion to Renew (the Drawing Load Server). This server funtion is automatially

on�gured to use with the loadrenew sript. You probably do not need to do the manual

on�guration if you just want to pass �les into a running Renew instane.

loadrenew sript

You an use the sript loadrenew provided by the installation proess (see Setion 2.4)

to onnet to a running Renew instane and pass over the names of the �les to open. The

loadrenew sript starts a regular Renew instane, if the onnetion to a Drawing Load Server

is not possible (e.g. if Renew is not already running). So this sript an be used as default

ommand to load Renew. The sript uses the port on�gured in the .renew.properties �le

(property de.renew.loadServerPort) or the default port 65111 if the property is not set.

The idea is to assoiate the loadrenew sript to the Renew �le extensions (dependent on

the installed plug-ins but at least rnw). When a drawing is double-liked in the �le manager,

the lient is invoked and an transmit the drawing's �le name, whih is then reeived and

loaded by the single Renew appliation. This is really a nie feature, beause it o�ers a

rudimentary operation system integration.

17

manual on�guration

By setting the property de.renew.loadServerPort to a port number, you an tell Renew

to listen for loal requests to load a ertain drawing on a TCP/IP soket. Just speify an

unused TCP/IP port number, say 65111, either on the ommand line or in the on�guration

�le (see Setion 2.6.1). When Renew is started with this property, the �Drawing Load Server�

is set up on the given port and waits for lients to onnet and transmit the full �lename of a

drawing to open (followed by an end-of-line). Changing this property's value at runtime has

no e�et. The port 65111 is used by default. If you do not want to start a �Drawing Load

Server',' you an set the property to -1.

We provide a generi lient appliation written in Java that an be used as a Drawing

Load Client. Our Java lient is started by (this example is again given in Unix syntax, the \

is used to indiate that the three printed lines should be ombined into one ommand line)

java -Dde.renew.loadServerPort =65111 -p "*: plugins /*: libs /log4j/*" \
CH.ifa.draw .appliation .DrawingLoadClient <file name >

where 65111 is an example for the port number on whih the server is running (if you

deided to on�gure the property in the .renew.properties on�guration �le, the -D part

of the ommand an be omitted).

2.6.3 Multiproessor Mode

Renew provides support for shared-memory multiproessors. Depending on your spei�

appliation and hardware, this an signi�antly speed up the simulation engine. But note

that this feature is still experimental and has not been tested aross platforms due to lak of

funds. It should not be used for ritial appliations at the present time. We would be very

glad to reeive experiene reports, so that the ode an beome more stable.

You must set the property de.renew.simulatorMode to the number of onurrent sim-

ulation threads you want. Note that it will usually be detrimental to performane, if you

on�gure a number of threads that exeeds the number of physial proessors. This property

is evaluated eah time a simulation is started. It an also be on�gured in the Configure

Simulation dialog (see Setion 4.3.6).

Before using multiple proessors, you should probably try to optimize performane with

other means. You should on�gure Log4j to disard log events (alternatively you an disable

the generation of trae events for all or most net elements). You should open only very few

net instane windows, so that the graphial representation of the markings does not need to

be updated.

If you on�gure a negative number for the property de.renew.simulatorMode, sequential

simulators are used instead of the default onurrent one. Although Renew will do that, it is

kind of weird to on�gure multiple onurrent instanes of the sequential simulator. Only the

speial ase of exatly one sequential simulator is of use and explained in the next setion.

2.6.4 Sequential Mode

By setting the property de.renew.simulatorMode to the value -1, you an request a se-

quential mode where transition �rings are no longer onurrent. There is usually little reason

to do so, but sometimes onurrently exeuted transition insription might lead to strange

results. You an then selet the sequential mode to hek your nets.

Please note that net methods as desribed in Setion 3.9 annot be used in this mode.

As you might have noted, the property used to on�gure sequential mode is the same as

for multiproessor mode. So the on�guration and evaluation notes given in the previous

setion still apply to this property.

If we restrit the Petri net formalism to purely sequential behavior, we an add ertain

Petri net extensions that were not suitable for a true onurreny formalism. Most notably,

18

we an use inhibitor ars and lear ars. These extensions will be desribed in Subsetions

3.10.2 and 3.10.3.

The sequential ar types an now be added to and removed from the tool bar via the

menu entry Simulation/Show sequential-only ars (see Setion 4.3.6).

If you try to simulate nets that ontain sequential-only features and the simulation is on-

�gured to use a onurrent engine, you will enounter an error message. In this ase, you just

need to set the Sequential mode in the Configure Simulation dialog (see Setion 4.3.6)

and restart the simulation.

2.6.5 Class Loading (and Reloading)

When you are developing an appliation that onsists of Java ode and net drawings, or if

you want to extend some Renew plug-in by supplying ustom Java lasses, then you need

to make your lasses known to Renew. The Java way of doing this is to add your lasses to

the Java lasspath either by setting the environment variable CLASSPATH or by providing an

appropriate -lasspath option to the java ommand.

With the plug-in system (see Setion 2.7), providing ustom lasses via the Java lasspath

option or variable has some issues. First, our suggested startup ommand line uses the -jar

option, whih simply overrides any supplied lasspath (see the Java tool doumentation for

details). Seond, the plug-in system uses its own lass loader to �nd plug-ins. Due to the

Java lass loader onept, the plug-in lass loader hides all plug-in lasses from any lass that

is loaded via the system lasspath. This means that Renew an load and use your ustom

lasses from the lasspath, but your lasses annot refer to any Renew lass. This problem

espeially a�ets net stubs � they need to refer the NetInstane lass of the simulator plug-in.

To work around this, the plug-in system provides the property de.renew.lassPath.

You an set the property de.renew.lassPath to any value that follows the syntax and

semantis of the Java lasspath (whih depends on the operating system you use). The

property is evaluated one at startup time to on�gure the lass loader of the plug-in system

(hanges at runtime are not reommended by Java's lass loader onept). All lasses available

through de.renew.lassPath an be used in simulations and as plug-in extensions. However,

if a lass with the same quali�ed name exists in a plug-in and in the de.renew.lassPath,

the plug-in lass takes preedene.

For your onveniene, the renew and loadrenew startup sripts automatially transfers

the value of the CLASSPATH environment variable to the de.renew.lassPath property at

startup. As long as you stik to these sripts, you should be able to stik to the lassial

method of on�guring the CLASSPATH variable to inlude your ustom lasses and stubs.

When you are developing an appliation that onsists of Java ode and net drawings, you

might want to modify and reompile your own lasses and use them in your nets without

restarting Renew. Therefore, we provide a lass reloading mehanism to simulations in Renew.

By setting the property de.renew.lassReinit to true, you an request that all user

lasses that are referened by a net are reloaded before every ompilation of a net. When

the lass reloading feature is enabled, the de.renew.lassPath property is re-read at eah

simulation setup, but hanges to the lasspath do not a�et the plug-in system.

However, there is a nasty aveat with this feature: Even without hanging the lass-

path, you an have two instanes of the same lass in the Java VM: Both are loaded from

de.renew.lassPath, but one is known to the plug-in system while the other one is known to

the urrent simulation only. These lasses are never idential or equal, if they are ompared

(for example when the instaneof operator is applied to an objet of the other lass)! Note

that this mehanism may result in some problems when you aess the Java re�etion API,

too.

This property an also be hanged from the Configure Simulation dialog (see Se-

tion 4.3.6). It is evaluated eah time a simulation is set up. If no simulation is running, the

graphial editor evaluates it before eah ompilation.

Beause the reloading of lasses might a�et performane, it is disabled by default.

19

2.6.6 Net Loading

When you are using many nets referening eah other, you might want to try the net loading

mehanism. When nets are missing during a syntax hek, ompilation or simulation, the

engine will look for mathing drawing (.rnw) or shadow net (.sns) �les and automatially

load, ompile and inlude them into the net system.

The net loader is on�gured using the property de.renew.netPath, where the value is a

list of diretories spei�ed in the same syntax as the CLASSPATH environment variable used

by Java. Currently, the net path an omprise diretories only, .jar or .zip �les are not

supported. Subdiretories of the given diretories are not searhed, either. The order of

diretories in the path list matters, the �rst diretory ontaining a net will be used.

It is possible to speify netpath diretories relative to the lasspath. This is done by

prepending the diretory entry with the (reserved) diretory name CLASSPATH. For example,

if you inlude the diretory (in Unix syntax, Windows users should replae the slash by a

bakslash) CLASSPATH/nets in the de.renew.netPath property, then the net loader would

look for a missing net �le throughout all nets diretories relative to all lasspath entries. The

searhed lasspath inludes everything from the Java system lasspath, all loaded plug-ins,

and the de.renew.lassPath property (see Setion 2.6.5), in that order. When they are

inluded in the lasspath, .jar and .zip �les are searhed, too.

The behavior of the net loader di�ers depending on the type of �le it �nds when looking

for a net. If it enounters a shadow net system (.sns) �le, the net will be loaded into the

simulation or used for a syntax hek, but it will not show up in a drawing window on the

sreen. Mathing shadow net system �les must ontain a single net with the same name alone.

If more than one net is found in the shadow net system �le, it is rejeted to avoid onfusion

about the soure of ompiled nets. There is a ommand in the menu File/Export/Export

all (single file eah) to generate suh single-net shadow net system �les for all open

drawings (see Subsetion 4.3.1).

When the simulation has been started via the Simulation menu in the editor (and only

then!), the net loader will also look for (.rnw) �les in the netPath. If it �nds a mathing

drawing �le, the drawing shows up in an editor window and is immediately ompiled into the

running simulation.

If a net an be obtained from several di�erent soures at the same time, the net loader

takes the �rst one in the order of the netPath entries. If it enounters .sns �les in the same

diretory as .rnw �les with the same name, it is not de�ned whih one gets loaded.

The editor also uses the net loader during simulation to open drawings from .rnw �les that

are needed to display net instanes. But you should be aware that the net loading feature

omes with a big pitfall: If .sns �les and .rnw �les are not kept up-to-date, ompiled nets

in the running simulation may have a di�erent struture than the nets shown in the editor!

Sine the mapping from a simulated net to its drawing is based solely on the net name, it is

possible that transitions and plaes in a net instane window do not �re in aordane to the

visible net struture.

The de.renew.netPath property is re-read every time a simulation is started. It is on-

�gurable at runtime in the editor's Configure Simulation dialog (see Setion 4.3.6).

2.6.7 Database Baking

You an run Renew using a database that keeps a persistent opy of the urrent simulation

state. In the ase of a system rash, this allows you to ontinue the simulation from a valid

state just before the rash when Renew is restarted. Database baking is only supported

when the simulation is started from the ommand line (see Setion 4.5 for information on

ontrolling a simulation from ommand line). Using database baking in gui mode may lead

to unexpeted behavior But note that this feature is still experimental and has not been

tested aross platforms due to lak of funds.

The setup of the persistent database baking is de�nitely more triky than the other

20

Renew options, but it is supported by some prede�ned sripts. The soure pakage ontains

among others the SQL sript initTable.sql whih an be found in Simulator/sr/de/

renew/database/entitylayer/.

It reates the required database tables for an Orale server. For other databases, the

sript will need some hanges, but even the various versions of Orale di�er enough to ause

minor problems. A database bakend, whih supports transations is required (e.g. MySQL

does not support transations when using the default MyISAM engine; use InnoDB instead).

Having reated the tables, you should on�gure a set of properties to enable the database

baking feature (see Table 2.2). These properties are evaluated eah time a simulation is set

up. The lass names spei�ed for the driver and dialet properties should be aessible

Property name Type Comment

de.renew.simdb.driver lass JDBC driver lass (mandatory).

de.renew.simdb.url URL JDBC onnetion URL (mandatory).

de.renew.simdb.dialet lass Sublass of de.renew.database.entitylayer

.SQLDialet (optional).

de.renew.simdb.user string User aount for database login (optional).

de.renew.simdb.password string Password for database login. (ignored when

de.renew.simdb.user is not set).

Table 2.2: Properties to on�gure database baking

via the de.renew.lassPath (see Setion 2.6.5). The dialet lass is an internal lass that

adapts Renew to the SQL dialet of your database. The default is the generi SQLDialet, but

for some databases we already provide experimental implementations like OraleDialet,

MySqlDialet or MSqlDialet.

When using the database baking, your nets must onform to ertain restritions. Un-

fortunately, these restritions annot be heked by Renew automatially, so that you must

take speial are when preparing your net.

All tokens used in your net must be serializable, i.e., ustom lasses must implement

java.io.Serializable. Typially, all tokens are also immutable value objets, whih aquire

their state one during reation, before these objets are used as tokens in the net. For value

objets, the equals() method must not be based on objet identity, but on the represented

value. Similarly, the hashCode() method must also be properly de�ned.

If you use mutable, stateful objets in your nets, you must observe further restritions.

Contrary to value objet, stateful objets must preserve the original implementations of

Objet.equals() and Objet.hashCode(). Furthermore, the stateful objets must either

our diretly as tokens in the net or there must be exatly one token by whih a given

stateful objet is reahable. Failure to do so will result in a orrupted simulation state when

restoring the simulation from the database.

There is no garbage olletion when using the database-baked simulation.

2.6.8 Remote Simulation Aess

Any Renew simulation, regardless whether it is started from the ommand line or within the

graphial editor, an be published via Java's Remote Method Invoation (RMI) tehnique.

Any Renew editor an then onnet to the published remote simulation, display the token

game, and ontrol the �ring of transitions. See Setion 4.3.6 about how to onnet to a

running remote simulation. This setion fouses on how to on�gure the simulation engine

for remote aess.

The �rst step is that you start an RMI registry on the mahine where the server will

be running. This is a program distributed together with Java that stores RMI objets

and makes them aessible to other VMs. Simply run the program rmiregistry (e.g.

as a bakground task). Note that the rmiregistry proess either needs a lasspath with

21

renew2.6/plugins/remote-2.6_1.1.jar inluded or requires the simulation server has to

be on�gured with the java.rmi.server.odebase property (see Java RMI dos for details).

Property name Type Comment

de.renew.remote.enable boolean Enables remote aess (defaults to

false).

de.renew.remote.publiName string Name to use for RMI registration (de-

faults to default).

de.renew.remote.serverClass lass Implementation of the interfae

de.renew.remote.Server (defaults to

de.renew.remote.ServerImpl).

de.renew.remote.soketFatory lass Implementation of the interfae

java.rmi.server.RMISoketFatory

(defaults to RMI's default fatory).

de.renew.remote.rmi-host-name string the rmi server hostname to the or-

ret ip if the remote server annot be

found. It is similar to the java property

java.rmi.server.hostname

Table 2.3: Properties to on�gure a remote simulation

The remote simulation an be on�gured by using the properties listed in Table 2.3. The

defaults are suitable for most ases, so you just need to enable the remote aess by setting

the property de.renew.remote.enable to true.

The publiName property is required, if you intent to run several servers on one mahine.

When onneting from an editor, you an speify the server to onnet to by its name.

The serverClass and soketFatory properties are normally not needed. Plug-in devel-

opers may use these properties to replae the default implementations by enhaned versions.

The server lass determines the simulation ontrol features whih are remotely aessible.

The soket fatory may enhane RMI transmissions by ompression and/or enryption of the

network tra�.

All properties exept soketFatory are re-evaluated at eah simulation setup. They are

on�gurable at runtime in the editor's Configure Simulation dialog (see Setion 4.3.6).

2.6.9 Logging

Renew uses the Log4j pakage (in version 1.2.x) from the Apahe Logging Servies projet [1℄

to give detailed feedbak about its ativities. The Log4j framework allows users to tailor the

logging output to �t their needs. The level of detail an be on�gured for every appliation

pakage or lass individually.

The Renew base installation ontains a binary distribution of Log4j in the renew2.6/libs

diretory. The pakage is loaded immediately at appliation startup, before any on�guration

of the plug-in system is done. The early load time of this pakage has the onsequene that the

enhaned on�guration methods mentioned at the beginning of this Setion are not appliable

to on�gure the logging system.

Con�guration mehanism

The on�guration options of Log4j would oupy to muh spae in this manual, please have

a look at the doumentation setion of the Log4j homepage [1℄. With the Renew distribution

omes a ommented default on�guration �le renew2.6/onfig/log4j.properties.

Renew looks for Log4j on�guration �les at similar loations like its own on�guration

�les .renew.properties (see Setion 2.6.1). The on�guration �les an be in XML syntax

or in the Java properties format and must arry appropriate �le extensions. The �rst �le

found in the following list of andidates is used:

22

1. A �le named in the system property log4j.onfiguration at the java ommand line

with the -D option.

2. .log4j.xml in the .renew subdiretory of your home diretory.

3. log4j.xml in the installation diretory renew2.6/onfig/.

4. .log4j.properties in the .renew subdiretory of your home diretory and

log4j.properties in the installation diretory renew2.6/onfig/. If both �les exist,

individual settings in the user �le take preedene over settings in the installation �le.

5. A failsafe setup with a simple onsole logger is used if all on�guration �les are missing.

Renew provides the logs.home property that an be referred from within the on�guration

�les. This property by default points to the diretory .renew/renewlogs in your home

diretory, but you an override that setting with the -D option on the java ommand line.

Default on�guration

The default on�guration �le renew2.6/onfig/log4j.propertiesuses the logs.home prop-

erty (see above) so that you get two log �les (renew.log and simulation.log) in that dire-

tory. The former omprises appliation messages while the latter stores simulation traes. In

the default on�guration, appliation log messages are also printed to the Java onsole, but the

simulation trae is not. The logging plug-in provides a graphial user interfae that displays

the simulation trae and allows �exible on�guration of logged events (see Setion 4.3.6).

2.7 Plug-ins

As of Renew 2.0, the appliation is ontrolled by a plug-in system. The system is started

through the lass de.renew.plugin.Loader. The loader sets up some lass libraries and then

loads the main plug-in manager. The plug-in manager �nds, loads, initializes and terminates

plug-ins, but it knows nothing about Petri nets. The Renew funtionality is provided by a

set of plug-ins. More plug-ins an be installed to extend Renew.

In this setion, there will be a lot of examples with �le names and diretories. These are

all given in Unix syntax. Users of other operating systems: please transform these examples

to your appropriate syntax.

2.7.1 Install Plug-ins

There are two ways to install a plug-in. If it omes in one single .jar �le whih inludes a �le

named plugin.fg, you an just opy the �le in the renew2.6/plugins diretory (if you use

the MaOS appliation bundle, this diretory is loated inside the appliation pakage at the

path Contents/Java/plugins). If the plug-in omprises several �les, one of whih is the �le

plugin.fg, then you an reate a subdiretory below (e.g. renew2.6/plugins/myplugin

and opy all �les in this diretory.

On the next startup, the plug-in system will �nd and inlude the plug-ins automati-

ally. If you want to inlude the plug-in in the running system, use the load ommand (see

Setion 2.7.4) in addition.

If you do not want to install the plug-in to your renew distribution diretory, you an

install it to some other diretory, let's say /home/myself/devel/myplugin.jar (as single-

jar plug-in) or /home/myself/devel/myplugin/ (as multi-�le plug-in). Then you again have

two possibilities: To make the plug-in system aware of the plug-in at the next startup, add

the line

pluginLoations =/ home /myself/devel

23

to your .renew.properties �le (see Setion 2.6.1 for details). When entering multiple paths,

they must be separated by the system's path separator (whih is ";" on Windows and ":"

on Unix systems). To load the plug-in immediately but temporarily into a running plug-in

system, use the load ommand: Depending on the number of �les omprising the plug-in,

it's one of the following ommands:

load file :/ home /myself/devel/myplugin .jar

load file :/ home /myself/devel/myplugin /plugin.fg

2.7.2 Exlude Plug-ins Temporarily

To hide installed plug-ins from the plug-in �nder at startup, you an speify the property

de.renew.plugin.noLoad either via -D ommand line option or the .renew.properties �le

(see Setion 2.6.1 for details). The value of the property is a omma separated list of plug-in

names. For example, the line

java -Dde.renew.plugin.noLoad="Renew JHotDraw " -jar renew2.6/loader.\
jar gui

will start the plug-in system, but terminate with the omplaint that the gui ommand is

unknown. Beause the JHotDraw plug-in has not been loaded, all dependent plug-ins an

also not be loaded. This a�ets the Renew Gui plug-in whih would otherwise have provided

the gui ommand. Of ourse it would make more sense to use some non-graphial ommand

like startsimulation instead.

Alternatively it is possible to speify only the plug-ins you want to load at startup. For

that you have to set the property de.renew.plugin.autoLoad to false and speify the

plug-ins you want to load with the de.renew.plugin.load property. The following line will

also start the plug-in system and terminate, beause of the missing gui ommand.

java -Dde.renew.plugin. autoLoad =false -Dde.renew.plugin.load ="\
Console ,Renew Simulator ,Renew Formalism ,Renew Util " -jar renew\
2.6/ loader.jar gui

2.7.3 System Termination

The plug-in system tries to detet the situation where no plug-in is ative and therefore the

system an be shut down. Plug-ins are �ative� if they have some long-term work to do.

This always holds for the windows of the graphial editor. A running simulation also ounts

as ative. The Console plug-in has a speial keep-alive �ag whih marks it as ative (see

Setion 2.7.5).

Besides automati termination, the plug-in system an be terminated by request. The

exit ommand (see Setion 2.7.4) has just that purpose. The editor may also terminate the

plug-in system when it's main window is losed. The editor does this not by default, you

have to set the property de.renew.gui.shutdownOnClose to true.

The property de.renew.gui.autostart automatially starts the editor without the need

for an initial gui ommand, when set to true. The ombination of these two gui properties

frees users of the pure graphial editor of most ompliations introdued by the plug-in

system.

2.7.4 Commands

As mentioned in Setion 2.4, the plug-in system needs an initial ommand to start some plug-

in. Any plug-in an provide suh ommands (although the gui ommand is the one that you

will use most of the time). In the following, we present the basi ommands provided by the

24

plug-in manager itself and some additional ommands provided by other plug-ins. Note that

it is also possible to de�ne a hain of ommands by separating the ommands with �-. Most

of the ommands presented here you will typially not use on Renew start-up, but rather in

ombination with the Console plug-in desribed in the following Setion 2.7.5.

A basi set of ommands is provided by the plug-in manager itself:

help prints a list of all available ommands. Due to the addition or removal of plug-ins, this

list may vary from time to time.

get prints the value of a property. The property name has to be given as an argument.

-a shows all known property keys.

set sets the value of a property (as explained in Setion 2.6.1). This ommand aepts

multiple arguments of the form key=value. It is important that no spaes are inluded

in the key, the value, or in between.

list prints a list with the names of all loaded plug-ins. The ommand respets some mode

swithes:

-l (or �long) shows date and version information of plug-ins (if available).

-j (or �jar) shows the jar �le loations of plug-ins and libraries.

-o (or �ordered) shows an alphabetially ordered list of plug-in names.

info prints information about one plug-in. The plug-in's name has to be spei�ed as om-

mand argument (use list to see the plug-in names).

load loads one plug-in dynamially, if possible. The argument to this ommand is a URL

speifying the plug-in's loation. The plug-in loation an be given relative to the

de.renew.pluginLoation diretories. For example, load file:gui.jar would load

the gui plug-in from the renew distribution renew2.6/plugins/gui.jar. You an use

wildards (e.g. load gu*), if there is an ambiguity the alternatives are prompted for

seletion of the orret one.

unload terminates and unloads a plug-in, if possible. The plug-in's name has to be spei�ed

as ommand argument (use list to see the plug-in names). If other plug-ins depend on

the given plug-in, the plug-in system will omplain. You an add the argument -v to

see a list of dependent plug-ins, or the argument -r to unload all reursively dependent

plug-ins.

Although the plug-in is terminated and all dependenies are leaned, its lasses

are still aessible. Fixing this bug requires a di�erent plug-in lass loader,

whih will hopefully be written in some future release.

pakageCount prints the pakages and the total number of pakages in the lass loader.

exit terminates the plug-in system, and in onsequene the whole appliation. If some plug-

in hangs during termination, you an use exit fore to kill the Java VM abruptly or

exit ifidle to exit only if all plug-ins are inative.

g triggers the Java garbage olletor.

sript loads ommands from a text �le and exeutes them. The �le name has to be given

as argument, it an be spei�ed relative to the urrent diretory. This ommand is

espeially useful as initial ommand, when you in fat need to issue several ommands

at startup of the plug-in system.

sleep This ommand waits for a given time until the next ommand is exeuted. The time

to wait is given as argument in seonds.

25

The following ommands are not provided by the plug-in manager, but by some Renew

plug-ins. So they are available only when the respetive plug-in is loaded.

gui starts the graphial editor and/or passes its arguments to the editor. The arguments

are supposed to be drawing �le names. This ommand is provided by the Gui plug-in.

demonstrator opens a window with a list of drawing �le names. This plug-in is provided by

the Gui plug-in.

ex exports a drawing into various formats. The usage of the ommand is ex <type> <drawing>

where <type> may be (but may vary depending on the installed plug-ins):

• EPS

• PDF

• PNG

• PNML-P/T-Net

• PNML-P/T-Net-with-Renew-speifi-insriptions

• PNML-Referene-Net

• SVG

• ShadowNetSystem

• Woflan

This ommand is provided by the Export plug-in whih in turn uses the FreeHEP

projet for graphial exports. The ommand respets some mode swithes:

-a (or �aumulate) n-to-1 export (only available for some formats, e.g. Shad-

owNetSystem).

-o (or �output) speify the output �le.

You an type just ex without any options to see the available formats.

startsimulation starts a simulation without using the graphial editor. See Setion 4.5.

This ommand is provided by the Simulator plug-in.

simulation ontrols a running simulation without using the graphial editor. Use one of

the subommands help, run, step, stop or term as argument. See Setion 4.5. This

ommand is provided by the Simulator plug-in.

setFormalism hooses the formalism given as argument as urrent formalism. This is equiva-

lent to seleting a formalism in the menu (see Setion 4.3.6). This ommand is provided

by the Formalism plug-in.

listFormalisms lists all installed formalisms. The names listed by this ommand an be

used as argument to the setFormalism ommand or as value for the renew.ompiler

property. This ommand is provided by the Formalism plug-in.

keepalive displays and manipulates the keep-alive feature of the Console plug-in (see Se-

tion 2.7.5).

guiprompt opens a graphial prompt dialog (see Setion 2.7.5), if the Gui Prompt plug-in is

installed.

navigator opens the Navigator window.

26

2.7.5 Console

The Console plug-in is part of the base distribution. It enhanes the plug-in system by an

interative ommand shell in the Java onsole window and allows to issue ommands to the

plug-in system at runtime.

If you start the renew from a shell, you will be presented with the prompt Renew > at the

Java onsole. Here you an enter any of the ommands mentioned in the previous subsetion.

The Console plug-in itself o�ers one ommand with two alternative arguments:

keepalive on enables the keep-alive feature. As long as this feature is on, the plug-in system

will not terminate automatially beause there is no ative plug-in (see Setion 2.7.3).

However, an expliit termination request will still be exeuted.

keepalive off turns the keep-alive feature o�.

keepalive without argument displays the urrent state of the keep-alive �ag.

The initial state of the keep-alive �ag is determined from the value of the property de.renew

.onsole.keepalive. If you tend to use the Console plug-in as your only ative plug-in

most of the time, you should onsider adding the line de.renew.onsole.keepalive=true

to your .renew.properties on�guration �le.

As an alternative to the Console plug-in, there also exists a gui prompt plug-in for down-

load. This plug-in adds a small dialog to the Plugins menu of the editor whih aepts

ommands to the plug-in system. The graphial prompt automatially keeps the plug-in sys-

tem alive as long as its dialog is open. The dialog an also be opened by the ommand-line

ommand guiprompt. The ommand feedbak is now visible in the dialog instead of the Java

onsole window.

It is possible to esape whitespae haraters by surrounding double quotes or with a

preeding bakslash (e.g. gui "foo bar/file.rnw" or gui foo\ bar/file.rnw).

2.7.6 Net Components

Net Components (NC) are sets of net elements (Figures) that are grouped in a �at and weak

fashion. The aim is to be able to allow to move the whole set of net elements (the net

omponent) in onvenient way. Weak means that, although the net omponent an be moved

by liking and dragging the mouse in between the net elements, they an eah individually

be manipulated. Individual net elements an be dragged resulting in a manipulated layout

of the net omponent. It is also possible to edit insriptions of elements belonging to the net

omponent. Flat means that grouping is not hierarhial. In order to provide the funtionality

a new Figure has been added, whih has no graphial representation of its own.

The Net Component Plugin provides two basi funtionalists. The grouping and ungroup-

ing of a seletion of net elements and the management of tool palettes, whih represent a

repository of (pre-) de�ned sets of net omponents. A repository onsists in a folder that

holds several Renew net drawings, an images folder and a on�guration �le (.sequene). The

images folder should ontain ions in gif format (24×24 pixels), whih are used to �ll the tool

buttons of the palettes. If no image is de�ned for a spei� net omponent a generi image

(generi.gif) will be used instead. Names of net drawings and ion images should orrespond.

The .sequene �le ontains the names of the drawings (without extensions) and de�ne the

sequene in whih the buttons are shown in the palette. The �le may be empty but has to

be present in order for the diretory to be reognized as net omponent repository. Further,

non-listed drawings are inluded in the palette without spei� order.

There are two ways to use the net omponent repositories within the plug-in. First, repos-

itory folders an be opened diretly using the menu ommand. Seond, plug-ins an extend

the funtionality of the NC plugin by providing a repository. Suh a plugin an use the pro-

vided generi plugin faade PalettePlugin or a ustomized faade lass an be provided. In

27

the latter ase also other tool buttons and ommand line ommands an be added to the sys-

tem. Plugins using the PalettePlugin lass must provide two properties for the de�nition of

the diretory and two for the automati initialization swith: de.renew.n.dir-prop-name,

de.renew.n.init-prop-name. A minimal example for a plugin on�guration �le (plu-

gin.fg) is presented below. More information about the onept and the tool an be found

in [3℄.

mainClass = de.renew. netomponents . PalettePlugin

name = Renew ExampleComponents

provides = om.example .n

requires = de.renew.util ,de.renew.gui ,de.renew.n

de.renew.n.dir -prop -name =om.example .n.dir

de.renew.n.init -prop -name =om.example .n.init

om.example .n.dir=tools

om.example .n.init =false

2.8 Troubleshooting

A few possible problems and their solutions are desribed here. If you have problems, ontat

us. If you have solutions, ontat us, too.

• Java is not found.

Probably the shell sripts try to look for Java in the wrong plaes.

Enlarge the environment spae for the ommand window.

• Java annot �nd the lass de.renew.plugin.Loader.

This should not happen if you use -jar renew2.6/loader.jar at the Java ommand

line. If you want to use the environment variable CLASSPATH instead, hek if it

inludes loader.jar.

• Renew starts, but the window titles are inorret under the X Windows System.

• I annot open the sample �les.

Sometimes you need to add the root diretory / (or \, depending on your operating

system) to your lass path.

• Under MaOS, using md-Q (apple-Q) to quit the appliation will not give you the

opportunity to save hanges, even if the doument has reently been modi�ed.

The optional AppleUI plug-in (see Setion 2.5.1) solves that problem.

2.9 History

Version 1.0 was the �rst publi release. It inluded a net editor, a referene net simulator, a

Java stub ompiler, and example nets.

2.9.1 Changes in Version 1.1

Modi�ations

Some performane enhanements were implemented and minor bugs were �xed. Some soure

level inonsistenies were leaned up. The thread model of Java 1.2 was adopted. The soure

ode was hanged to be ompilable with Java 1.1.3. The windowing ode was made more

robust under Java 1.2.

The handling of null-objets in the simulator was orreted. The type system was made

more ompatible with the Java type system. The trae �ag of netelements is now saved to

28

disk. The simulation performane was improved. The garbage olletion of net instanes was

improved.

The graphial user interfae was improved for some window managers. The presentation

of urrent markings was improved. The interative exeution of referene nets has been

improved a lot (see Setion 4.3.6).

Additions

The parallel simulation ode was added. The heks for double names and for yli hannel

dependenies were added. Transition insriptions may now inlude several parts separated

by semiolons. Virtual plaes may now be used in nets.

During the simulation, bindings an be seleted and �red under user ontrol. The multiset

of tokens ontained in a plae instane an be displayed as just the ardinality of the multiset,

a olletion of all tokens in the multiset diretly within the drawing, or in a separate window.

Individual omponents of tuples an be inspeted. Initial markings are hidden during the

simulation.

2.9.2 Changes in Version 1.2

Modi�ations

The simulation engine was made more robust and �exible. Minor bugs were �xed.

A single insription �gure may now ontain multiple ar insriptions or initial marking

insriptions that are separated by semiolons. Slight inonsistenies in the insription lan-

guage were leaned up. The type rules were improved. The results of ation insriptions may

now be passed through synhronous hannels even in the presene of typed variables.

Some display problems with Java 1.2 have been �xed.

Additions

Flexible ars were added. Clear ars were added. Inhibitor ars were added.

Marked plaes and �ring transitions an now be highlighted during the simulation. A

rudimentary net layout algorithm has been implemented. The state of a running simulation

an now be saved and restored. Restarting a simulation may now reload Java lasses.

Export of Enapsulated PostSript was implemented. Seletion of groups of �gures was

improved.

2.9.3 Changes in Version 1.3

Modi�ations

Some minor improvements of the graphial user interfae were applied.

Additions

The timed simulation mode was added. Lists were provided in addition to tuples.

Breakpoints were added in order to ontrol the graphial simulation. An XML import

and export faility was added. A graph layout algorithm that may help in viewing nets was

added. More ommands for arranging �gures manually were provided. The ability to selet

and deselet �gures by type was added.

2.9.4 Changes in Version 1.4

Modi�ations

This was a maintenane release that provided mainly improvements in the user interfae,

doumentation updates, and bug �xes.

29

Additions

You an now inspet token Java objets in detail and put toolbars into their own window.

You an insert intermediate points into onnetions more easily.

2.9.5 Changes in Version 1.5

Modi�ations

The ompatibility with Java 1.2 was improved. Bugs in the simulation engine were �xed.

Some GUI problems were orreted. The menu struture was leaned up and simpli�ed.

Additions

A persistent database baking supports the deployment of the simulator in environment with

high availability requirements.

Ars an be B-splines. An alignment an be spei�ed for every text �gure. Transitions

and plaes an be re�ned. Subnets an be oarsened. Nets an be merged.

Drawings are now autosaved. A bakup opy of every �le is kept. Undo and redo om-

mands were added. Searh and replae ommands were added.

The arhiteture guide was added, whih is a manual that desribes the most important

internal algorithms and data strutures of Renew.

2.9.6 Changes in Version 1.5.1

Modi�ations

This was a maintenane release that provided bug �xes for the simulation engine.

2.9.7 Changes in Version 1.5.2

Modi�ations

This was a maintenane release that provided bug �xes for the install sripts and a perfor-

mane improvement of the simulation engine.

2.9.8 Changes in Version 1.6

Modi�ations

Java 1.2 is now required for ompiling and running Renew. Bugs in the Java net parser, lass

loader and simulation engine were �xed. Shadow net system serialization and rendering has

been �xed. The windows menu is sorted alphabetially. Windows an be de-ioni�ed.

Additions

A remote layer allows the separation of the user interfae from the simulation engine. A net

loader allows on-demand loading and ompilation of nets during a simulation.

A new transition insription manual was introdued for transitions that are not supposed

to �re automatially in ordinary running simulations.

2.9.9 Changes in Version 2.0

Removals

The RenewMode interfae provided by the GUI has been removed. In onsequene, the start

sripts for the modes disappeared, too. The hannel, name and isolated node heks have

30

been removed from the Net menu beause they need to be adopted to the new simulator

arhiteture.

Modi�ations

Java 1.4 is now required for ompiling and running Renew. The appliation was deomposed

into several plug-ins. The simulation engine was restrutured. The GUI appliation lasses

were restrutured and (partly) onverted to use the Swing pakage from the Java foundation

lasses. The import and export menus have been restrutured. The handling of the various

on�guration properties has been anonised by the plug-in system. The lass loader for

ustom lasses has hanged.

The :net() hannel is no longer invoked impliitly on instane reation. The lass

SequentialSimulator is replaed by the NonConurrentSimulator without deadlok de-

tetion feature. The expanded token display feature has moved into the optional FS plug-in,

this option has no e�et unless the FS plug-in is installed.

Additions

A plug-in system was added as bottom layer of the appliation. The ability to swith simulator

modes, net formalisms, the net loader path, and the remote aess feature on the �y was

added. A PNML-ompatible export format was added. The editor is able to load drawings

from URLs. The net loader an now searh nets relative to the lasspath.

2.9.10 Changes in Version 2.0.1

Modi�ations

This was a maintenane release that provided bug �xes for the install sripts and some redraw

issues of the graphial net editor.

Additions

An experimental AppleUI plug-in is available as optional download. It provides rudimentary

integration with the Ma OS look&feel.

2.9.11 Changes in Version 2.1

Modi�ations

Many error messages of the Java net ompiler or about problems in a running simulation

beame more detailed. The ommand-line tool ShadowTranslator and the orresponding

Ant task now optionally inlude the spei�ed formalism and a syntax hek. Fixed transition

modes of bool net ompiler. Fixed manual transitions in saved simulation states.

The olor and font attribute dialogues were improved. Whitespae-only insriptions are

now deleted automatially (like empty ones). The GuiPrompt plug-in now provides a text

area for ommand feedbak. The binding seletion frame is now srollable. Tool windows and

dialogues are now listed in the Windows menu. Breakpoints pre-set via the Net menu are now

visually tagged. Fixed some drawing edit bugs in the GUI. Fixed some rare deadloks in the

token game display. Improved srolling e�et of mouse wheel in drawings. Fixed handling of

polygons.

Some important hanges to on�guration properties are doumented in the upgrade notes

(see Setion 2.3). Developers might also have a look there beause of some ode hanges.

The set of Ant build �les that ome with the Renew soure has undergone some hanges.

The build proess now stores information about the ompilation environment with the plug-

ins. Distribution �le names an now optionally inlude version information. The list and

info ommands optionally display this information.

31

Additions

All Renew omponents (exept the onsole prompt) now use the Apahe Log4J logging frame-

work instead of Java onsole output. In the default on�guration, informational and error

messages are printed to the onsole and logged to a �le. The simulation trae also goes to

the logging framework (see Setion 2.6.9). The new Logging plug-in provides a simulation

trae window within the GUI.

The Net step option has been added to the simulation menu.

2.9.12 Changes in Version 2.1.1

Modi�ations

This was a maintenane release that provides several minor bug �xes for PNML export, null

token display and aess to publi methods of private (inner) lasses in Java expressions. In

addition, this release is apable of reading drawing �les reated with the later release 2.2

(with some minor exeptions).

Additions

The AppleUI plugin now supports building a MaOS appliation bundle.

2.9.13 Changes in Version 2.2

Modi�ations

Java 1.5 is now required for ompiling and running Renew.

The Gui now uses the Graphis2D Framework that ame with Java 1.2, so some of the

�gures might be drawn a little bit di�erent when it omes to size and style. Tokens are now

displayed on a white opaque bakground in the token game to inrease readability. Srolling

now ontinues if the mouse is moved outside a drawing while a button is pressed.

Modi�er keys (Ctrl, Shift) have been added to several ommands and tools on drawing

�gures. These enable users to resize �gures to equal width and height, to adjust polygon

verties at right angles with their adjaent edges, and to restrit polygon transformations to

either saling or rotation. Keyboard movement of �gures with arrow keys an now be sped

up using the Shift modi�er.

The behavior of Searh and Replae has been �xed so that multiple instanes of the searh

string in the same �gure are now found and replaed orretly. The Drawing Load Server

has been restrited to aept loal onnetion requests only.

Additions

Renew now inludes and uses the VetorGraphis pakages of the FreeHEP projet to a-

omplish graphial export of drawings. Additional supported export formats are PDF, SVG,

and PNG. EPS export now exports non-standard fonts orretly (at the prie of larger �les).

EPS �les now always have a retangular white anvas.

A new pie �gure allows to draw segments of ars and ellipses. Line styles (dotted, dashed,

et.) an now be applied to boxes, ellipses and other �gures with outlines. A transpareny

attribute has been added to all �gure, font and pen olors. This breaks ompatibility with

older Renew versions, so that drawings saved with version 2.2 an not be opened by pre-

vious versions (exept release 2.1.1). The transpareny attribute is urrently ignored when

exporting drawings to EPS and this feature might not be implemented in future versions.

For drawings with transpareny use one of the two new export formats SVG or PDF, whih

handle transpareny orretly.

The hotkey Ctrl+M now brings the menu and toolbar frame to front. Added �show net

pattern/instane element� options to the ontext menu in the simulation trae window. The

32

net stub ompiler now additionally supports stub objets that wrap themselves around an

existing net instane during instantiation (before, a stub objet always reated its own net

instane).

We provide a MaOS appliation bundle as well as on�guration �les for the FreeDesktop

(e.g. Gnome) environment that allow desktop integration with separate ions and mime-types

for Renew doument �les. However, there is still no suh support for the Windows family of

operating systems.

Relevant for developers only

GUI and simulation have been separated so that they use di�erent threads now. All alls to

the simulation are deoupled and exeuted in speialized simulation threads. All alls to the

GUI are delegated to or synhronized with the AWT event thread. Simulation threads an

now be on�gured with a separate priority. Loading of user-supplied lasses in the ontext

of simulations has been improved.

A new parameter �netpath� has been added to the Ant task to reate shadow net systems.

The Ant build environment has been enhaned to support separate soure ode trees for

JUnit tests and Cobertura overage reports. However, there still are nearly no test ases

implemented. Several tools that form the Renew build environment are now required in

newer releases. Please refer to the readme �le in the soure pakage.

2.9.14 Changes in Version 2.3

Modi�ations

Java 1.6 is now required for ompiling and running Renew.

Renew now inludes and uses the 2.2 version of the FreeHEP projet for graphial exports

of drawings.

Renew o�ers a better syntax hek for Java referene net models. If a Java insription

referenes a non-existing method or �eld of an objet, a proposal for existing methods or

�elds is made instead of just pointing out the syntax error (see also Setion 4.6).

Minor modi�ations to the graphial editor funtionality of Renew onsist of the following.

The names and olors of plae �gures are now transferred to their virtual plaes. The editor

prevents adding more than one ar insription by right-liking on an ar with the mouse

as this happened rather by aident than on purpose. However, it is still possible to add

multiple ar insriptions by using the insription tool.

Additions

On startup Renew displays a splashsreen that gives information about the loaded plugins.

There are two new entries in the File menu. The �rst addition is a list of reently saved

drawings. The seond addition is the possibility to open the Renew Navigator, whih allows

to import �le folders and show their ontent in a tree view. A more detailed desription of

how to use the navigator an be found in Setion 4.3.1.

It is now possible to de�ne re-usable Net Components. A net omponent onsists of a set

of net elements that typially ful�ll some generi funtion and an be treated as a whole in

a larger net model. More details an be found in Setion 2.7.6.

The bakground of expanded tokens in instane/simulation drawings an be hanged to

be transparent by setting the property de.renew.gui.noTokenBakground.

Several keyboard shortuts have been hanged and more have been added, espeially for

seleting the main drawing tools. A omprehensive list of existing shortuts an be found in

Appendix C.

33

Relevant for Developers only

Generis are now used throughout the ode.

The RMI funtionality whih was formerly inluded in the Simulator plugin was extrated

into a new Remote plugin.

The lok funtionality was moved from the Simulator to the Util plugin.

There are several hanges to the Ant build environment. The Ant target lean in the meta

build �le now iterates over all subdiretories instead of having a �xed list of plugins. Soure

�les of nets (.rnw) an optionally be inluded in the generated plugin arhives (.jars) with the

Ant target rnw. To ativate this funtion you need to set the property option.inlude.rnws

in your Ant properties (build.xml of the plugin in question or ant loal.properties). The

property option.sns.ompile swithes the syntax hek for shadow net �les (.sns) on and

o�. The Ant target java aepts an enoding parameter whih is set via the property

option.ompile.enoding and defaults to utf-8. The Ant task reatepng allows to export

net drawings to .png �les.

2.9.15 Changes in Version 2.4

Modi�ations

The support for the .xrn format is disontinued. We enourage the use of PNML instead.

We �xed the remote server onnetion (RMI) by providing on�guration (see the User Guide

Setion 2.6.) We have �xed the simulation database baking and adapted the mehanism

for MySQL with InnoDB. Remaining AWT dialogues have been onverted to Swing. The

Logging GUI has been improved by deoupling the Simulator from the GUI. The loadrenew

sript now starts a regular Renew instane if the onnetion to a Drawing Load Server is not

possible. The desktop integration for Linux and Windows have been improved. We provide

new uni�ed ions for all operating systems.

Many minor bugs have been �xed. Some of these were:

• Rare problems with loating nets relative to the lasspath have been solved.

• Changes on the line style now a�ets all �gures.

• The font style underlined now also a�ets small font sizes.

• Export to PNML now always produes �les in UTF-8 harater enoding.

• The Logging tab of the Con�gure Simulation dialog has been revised.

• The log4j PatternLayout an now be set from within the GUI

• Custom �le appenders reated in Logging GUI are now funtional.

• Net omponents are more robust if attahed �gures are manipulated.

• It is now possible to esape whitespaes in ommand line ommands. In that way it

is possible to open drawings with whitespaes in the path from ommand line.

Additions

The Navigator now o�ers a button to reursively expand a diretory sub-tree. The Navigator

now loads diretories without loking the GUI. PNML and ARM �les are shown in the

Navigator. The keyboard shortut Ctrl+Enter loses the text editor overlay.

The bakground transpareny of EPS �les an now be ontrolled by setting the property

de.renew.io.export.eps-transpareny. For Windows, the installation sript installre-

new.bat reates reg �les that assoiate and disassoiate Renew drawing �les with loadrenew.bat

and register ions. We provide deb pakages for Debian-based systems.

34

Relevant for Developers

We refatored large parts of the ode base. Many Java ompiler warnings have been re-

solved and Javado doumentation have been improved. A few more JUnit tests have been

introdued. Logging and the simulator have been partially reworked to allow deadlok-free

real-time (GUI) logging with only minimal time delay. Several tools that were originally

mandatory to build Renew are now optional: these are Cobertura, Jalopy, JUnit and Latex.

2.9.16 Changes in Version 2.4.1

This is a maintenane release that provides a �x for a rae ondition that ours - under rare

onditions - during the termination of the simulation.

2.9.17 Changes in Version 2.4.2

This is a maintenane release that provides a �x for the import of referene nets from PNML

format (RefNet).

2.9.18 Changes in Version 2.4.3

This is a maintenane release that provides an update of the FreeHEP library and a new

version of the MaOS appliation bundle. It �xes issues onerning the export funtionality

with newer Java versions. This version requires at least Java 7.

2.9.19 Changes in Version 2.5

Modi�ations

We have modi�ed several features of Renew. Most obvious is the omplete reimplementation

of the Navigator plugin. It is now persistent, extensible and the tree view an now be �ltered.

We optionally provide some onvenient extensions, suh as the integration of the drawing's

di� feature (ImageNetDi�), whih an now be triggered diretly from the Navigator GUI.

The FreeHEP library has been upgraded to version 2.4. The quik-draw

1

feature has been

improved, whih results in a redution to half the amount of mouse liks during quikly

drawing net elements. Some key-bindings are now on�gurable.

The log4j on�guration and the on�guration GUI have been improved. The individual

log4j on�guration �le now resides in folder .renew, whih is loated in the users home folder.

The default loation for log �les moved there, as well. The loading of plugins at startup

an now be blak-listed or white-listed. The PDF export produes PDF douments with

bounding boxes; on�guration has been �xed. The grid an now be adapted and it an be

ativated as default. Several onsole ommands have been improved, inluding the following

plugin ommands: list, load, unload and also export ommand ex. Type help to print a

synopsis of all ommands.

Additions

The Console plugin replaes the Prompt plugin. It employs the well-established JLine2 libray

and provides several improvements: tab-ompletion for ommands and attributes, ommand

history and editable ommand line. The Quik Fix feature improves the reporting of syntax

errors by providing suitable proposals for remedies and their automati realization. The

Refatoring plugin (optional) provides features suh as renaming of variable or renaming

of synhronous hannels. Drag & drop now works for Renew drawings. Simply pull the

drawing over Renew's main window. Drawings and also folders an also be dragged into the

Navigator Window. Additionally you an add images to a drawing by dragging it on the

1

The possibility to quikly draw an ar and a n node by using the ar handle (see Setion 4.2.3).

35

drawing's window. Two new text tools have been added. One is the target text tool, whih

allows to add hyperlinks to any drawing element. The targets an be other model artifats,

for instane a net, or external resoures referened by a URL. The hyperlink is ativated by

using the Ctrl modi�er key together with a mouse lik. The omment tool allows to quikly

add omments to a drawing element.

Removals

• Maao format has been removed, sine its usability was very limited.

• The PostSript export has been removed. Use EPS export or PDF export instead.

2.9.20 Changes in Version 2.5.1

This is a maintenane release that provides ompatibility for Java 11 and above. It also

updates the jline library, whih �xes an error during start, whih prevented the start of

Renew with some terminal emulators. This version requires at least Java 11.

2.9.21 Changes in Version 2.6

Modi�ations

• The PNML export and import were reimplemented beause the old implementation

based on a pre�nal standard of PNML. The new version implements the standard in

version 2009 from http://www.pnml.org/.

• The aidental overwriting of imported �les in the wrong format is now prevented.

• The keyboard shortut for the Align Middles ommand hanged to Ctrl+Shift+-.

• The keyboard shortut for the PNG export hanged to Ctrl+9.

• The bakground for the PNG export is now transparent.

• When exporting to EPS format with bakground transpareny enabled (property

de.renew.io.export.eps-transpareny set to true), a white bakground is added

to inluded PNG images beause images with transpareny are not supported in EPS

format. Previous versions threw an error in this ase. If you want to inlude PNG

images with a transparent bakground, we reommend using the PDF export.

• Multiple smaller bug �xes and ode improvements.

Additions

• We now provide a zooming feature, whih an be triggered using keyboard short-

uts (Ctrl and +/- to zoom in/out) or by using the mousewheel while pressing Ctrl

(Ctrl+Mousewheel up to zoom in and Ctrl+Mouswheel down to zoom out). The zoom

fator an be resetted with Ctrl+0.

• The automati layout now provides a new option Random, whih uses a simulated

annealing algorithm to automatially ontrol the parameters of the automati layout.

The algorithm produes quite nie results.

• Moving �gures with the arrow keys now reates undo snapshots.

• The installrenew sript additionally generates a renewexport sript to export im-

ages from Renew drawing �les.

36

http://www.pnml.org/

Chapter 3

Referene Nets

First, we are going to take a look at Petri nets with Java as an insription language. Then

we look at synhronous hannels and net referenes, two extensions that greatly add to the

expressiveness of Petri nets as desribed in [9℄ and [10℄. Finally, we are going to see how

nets and Java an seamlessly interat with eah other. Referene nets and their theoretial

foundation as a whole are de�ned in [11℄ (in German).

3.1 Net Elements

Referene nets onsist of plaes, transitions, and ars.

There are many types of ars. Firstly, ordinary input or output ars that ome with a

single arrow head. These behave just like in ordinary Petri nets, removing or depositing

tokens at a plae. Seondly, there are reserve ars, whih are simply a shorthand notation

for one input and one output ar. E�etively, these ars reserve a token during the �ring of

a transition. Thirdly, there are test ars, whih have no arrowheads at all. A single token

may be aessed, i.e. tested, by several test ars at one. This is important, beause an

extended period of time might be needed before a transition an omplete its �ring. For a

more detailed treatment of test ars see [6℄.

Besides these basi ar types, there are ar types that add greatly to the expressiveness

of nets, but are not as easy to understand. We postpone the desription of these ars until

Setion 3.10.

Eah plae or transition may be assigned a name. Currently, this name is used only for

the output of trae messages. By default, names are displayed in bold type.

a

b

c

d

e

f

p

Figure 3.1: The net elements

37

In Fig. 3.1 you an see a net that uses all net elements that were mentioned so far. You

an �nd it in the diretory samples/simple of the Renew distribution. A single plae p is

surrounded by six transitions. Initially, the plae is unmarked. Assume that transition a �res,

whih is always possible, beause all its ars are output ars. Now one token is plaed in p,

and all transitions exept are ativated. Transition is still disabled, beause it reserves

two tokens from p while it �res. In ontrast to this, transition e may �re, beause it is allowed

to test a single token twie. If a �res again, transition beomes ativated, too, beause a

seond token is now available. A �ring of the transitions b, , e, and f does not hange the

urrent marking. However, transition d will remove one token from p during eah �ring.

Every net element an arry semanti insriptions. Plaes an have an optional plae

type and an arbitrary number of initialization expressions. The initialization expressions are

evaluated and the resulting values serve as initial markings of the plaes. In an expression,

[℄ denotes a simple blak token. By default, a plae is initially unmarked.

Ars an have an optional ar insription. When a transition �res, its ar expressions are

evaluated and tokens are moved aording to the result.

Transitions an be equipped with a variety of insriptions. Expression insriptions are

ordinary expression that are evaluated while the net simulator searhes for a binding of the

transition. The result of this evaluation is disarded, but in suh expressions you an use the

equality operator = to in�uene the binding of variables that are used elsewhere.

Guard insriptions are expressions that are pre�xed with the reserved word guard. A

transition may only �re if all of its guard insriptions evaluate to true.

42

42

4

2

x

xx

x

x
x

x
y

x=xx

x

guard x!=y
int

Figure 3.2: The net olored

With these additions we over the basi olored Petri net formalism. In Fig. 3.2, whih is

also provided in the diretory samples/simple, we �nd a net that uses the basi plae and

ar insriptions. At the left, we have a plae that is typed int, whih means that it an only

take integers as tokens. In this ase, it has an initial marking of one integer 42 token. The

other plaes are untyped and initially unmarked. The leftmost transition will take 42 out of

the plae and deposit one 4 and one 2 into the respetive plaes. The upper middle transition

takes some x, whih happens to be 4 in this ase, out of its input plaes and opies it into

its two output plaes. The lower middle transition is similar, but here the equality of input

and output ar variables is established by the transition insription x=xx. The rightmost

transition has a guard that ensures that x 6= y, written guard x!=y. Therefore it an only

take a 2 out of the upper plae and a 4 out of the lower plae or vie versa.

Ation insriptions are expression insriptions preeded with the keyword ation. Con-

trary to expression insriptions, ation insriptions are guaranteed to be evaluated exatly

one during the �ring of a transition. Ation insriptions annot be used to alulate the

bindings of variables that are used on input ars, beause input ar expressions must be

fully evaluated before a transition an �re. However, ation insriptions an help to alulate

output tokens and they are required for expressions with side e�ets.

Then there are reation insriptions that deal with the reation of net instanes (see

Setion 3.6) and synhronous hannels (see Setion 3.7). But �rst we will look loser at the

expression syntax, whih is very similar to a subset of Java. In fat, we have to look arefully

to spot the di�erenes.

38

boolean boolean values (true, false)

byte 8-bit signed integers

short 16-bit signed integers

int 32-bit signed integers

long 64-bit signed integers

har 16-bit unsigned Uniode haraters

float 32-bit IEEE �oating point numbers

double 64-bit IEEE �oating point numbers

Table 3.1: The primitive data types of Java

3.2 I do not Want to Learn Java

Even if you do not want to learn Java, Renew might be a useful tool for you, although it

looses some of its expressiveness. In many ases it is enough to learn how to write numbers,

strings, variables, and the simplest operators.

Referene nets provide extensions that go well beyond simple high-level Petri nets with

Java insriptions. After you have read the next setions, you an use these extensions to

generate omplex models without the need to inorporate Java ode.

But remember that there are always subproblems that are easier to express in a program-

ming language rather than Petri nets. Referene nets work together seamlessly with Java

programs and gain a lot from utilizing the Java libraries. So one you do learn Java, you an

hoose the appropriate modeling method for eah task at hand.

3.3 A Thimble of Java

If you are already familiar with Java, you will want to skip to Setion 3.4 where we disuss

the di�erenes between Java and the insription language used in referene nets. Here we

give a most rudimentary introdution to Java.

Java is an objet-oriented programming language, but not everything is an objet in Java.

There are eight non-objet data types in Java whih are listed in Table 3.1. The types byte,

short, har, int, and long are alled integral types here. Together with float and double

they form the number types.

In Figure 3.3 you an see two type hierarhies. On the left the ordinary Java subtype

relation is depited. You an see that long is a subtype of float although some loss of prei-

sion might our during the onversion. Nevertheless, Java will silently insert this onversion

whenever it is required in a program.

Although this is helpful for Java programs, it poses several problems in the ontext of

Petri nets, where the diretion of information transfer is not always immediately obvious.

Hene suh onversions are not done by the simulator. Instead we introdued the relation of

lossless onversions, whih you an �nd on the right hand side of Figure 3.3. This relation

governs the type onstraints between plaes and their neighboring ars.

All other types exept primitive types are referene types, i.e., referenes to some objet.

Every objet belongs to a lass. When a lass is delared, it may reeive an arbitrary number

of �eld delarations and method delarations. Fields are variables that exist one per objet

or one per lass. The binding of the �elds of an objet aptures the state of that objet.

Methods desribe the possible ations of an objet. Eah method has a name, a list of

parameters, and a body, i.e. a sequene of statements that are exeuted if the method is

invoked.

Method delarations and �eld delarations are nested in the delaration of the lass to

whih they belong. It is possible to use the prede�ned lasses without writing new ones,

when working with Renew. We are going to see later how nets themselves an be regarded

39

Figure 3.3: The Java type hierarhy and the hierarhy of lossless onversions

as lasses. For a detailed disussion of the Java type system and the Java system libraries

we refer the reader to the literature.

Now we are going to look at the syntax of Java expressions. We only deal with the subset

of Java that is relevant to referene nets.

Variables are represented by identi�ers. Identi�ers are alphanumeri strings starting with

a non-numeral harater. E.g., renew, WRZLGRMF, go4it, and aLongVariableName are all

valid variable names. By onvention, variable names should start with a lower ase harater.

The delaration of a variable is denoted by pre�xing the variable name with the type name,

e.g. int i. Variables were already silently assumed in Fig. 3.2.

The Java language provides literals for integers (123), long integers (123L), �oats (12.3F),

and doubles (12.3). Furthermore, there are the boolean literals true and false, string literals

("string"), and harater literals (''). Java uses 16-bit Uniode haraters and strings.

There are no literals for the primitive types byte and short.

There is also one literal of referene type named null. Every variable of a referene type

may take null as a value. null equals only itself and no other referene. Trying to invoke a

method of the null referene will fail with a runtime exeption.

A sizable set of operators is provided in Java. Here we are going to disuss those operators

that are still present in referene nets. The binary operators are listed in Table 3.2, where

we also note their interpretation and the operand types to whih eah operator is appliable.

Most of the operators are de�ned for primitive types only, but you an also hek if two

referenes are idential with == and !=.

Never use == or != to ompare the equality of strings, like in s1==s2. Always use

the Java-method equals(...) as in s1.equals(s2) or you will get strange results.

This is a peuliarity that annoys many Java beginners, but we are not in a position

to hange this behavior.

The operator + is also used to onatenate strings. If only one operand of + is a string, the

other operand is �rst onverted to a string and the two strings are onatenated afterward,

e.g. "7x8="+42 results in the string "7x8=42".

If multiple operators are present, they are grouped aording to their preedene. *, /,

and % have the highest preedene, | has the lowest preedene. The expression a+b%*d|e is

equivalent to the fully parenthesized expression (a+((b%)*d))|e. The order of preedene

for eah operator an be found in Tab. 3.2. If in doubt, make the parentheses expliit.

An operand of a small type (byte, short, or har) is automatially onverted to int

before any operator is applied. If you need the result as a small type, you have to make an

40

* multiply number

/ divide number

% modulo number

+ plus number, String

- minus number

� shift left integral

� shift right integral

�> signed shift right integral

< less than number

> greater than number

<= less than or equal number

>= greater than or equal number

== equal primitive, referene

!= unequal primitive, referene

& and primitive

� exlusive or primitive

| or primitive

Table 3.2: Java binary operators, rules separate operators of equal preedene

- negate number

� bit omplement integral

! not boolean

Table 3.3: Java unary operators

expliit ast. E.g., (byte)b1+b2 adds the two bytes b1 and b2 and trunates the result to

8 bits. You might also want to redue the preision of a �oating point number by saying

(float)d1 where d1 is a double variable. The opposite ase where preision is added, e.g.

(long)b1, is helpful, too, but usually this kind of onversion is added automatially in the

plaes where it is needed.

Casts between referene types are also possible, but here no onversion takes plae. In-

stead, it is heked that the operand is indeed of the given referene type, either at ompile

time or at run time, if required. E.g., if a variable o of type Objet is delared, we an say

(String)o to ensure that o does indeed hold an objet of type String.

There are a few unary operators, too. They are listed in Table 3.3. Unary operators and

asts have a higher operator preedene than any binary operator.

A last operator that must be mentioned is instaneof. Its left operand is an expression

as usual, but its right operand must be the name of a lass or interfae. It evaluates to

true, if the result of the expression is a referene to an objet of the given lass or one of its

sublasses or of a lass that implements the given interfae.

With an objet referene you an also inspet �elds and invoke methods. E.g., if there is

an objet o with a �eld f, you an aess the �eld by writing o.f inside a Java expression.

The result will be the urrent value of that �eld.

For an objet o, a all of the method m with the parameters 1 and x would look like

o.m(1,x). This has the result of binding the formal variables to the parameter values and

exeuting the body statements of the method. Unless the method is of the return type void,

a return value will be alulated and returned.

Due to overloading, there might be more than one method of a given name within some

lass. In that ase, the method that mathes the parameter types most losely is invoked.

In order to reate a new instane of a lass, you an use the new operator. E.g., the

expression new java.lang.StringBuffer() will reate a new objet that belongs to the

41

lass java.lang.StringBuffer and invoke its onstrutor. A onstrutor an be seen as a

speial method that initializes a new objet. The new operator an take arguments inside

the parentheses. The arguments are then passed to the onstrutor just as in an ordinary

method all.

3.4 The Insription Language

Beause we are dealing with a olored Petri net formalism, the net simulator must determine

whih kind of token is moved for eah ar.

The possible kinds of tokens are Java values or referenes. By default, an ar will transport

a blak token, denoted by [℄. But if you add an ar insription to an ar, that insription

will be evaluated and the result will determine whih kind of token is moved.

3.4.1 Expressions and Variables

Ar insriptions are simply Java expressions, but there are a few di�erenes. The �rst dif-

ferene onerns the operators that are used in expressions. In Java the binary operators

&& (logial and) and || (logial or) are short-iruit operators. I.e., if the result of the left

operand determines the result of the operator, the right operand is not even evaluated. This

would imply an order of exeution, whih we tried to avoid in our net formalism. Hene, the

two operators are not implemented. The same holds for the ternary seletion operator ?:.

An additional bene�t of its exlusion from the language is that this frees up the olon for

other syntati onstruts. Possibly, these three operators might still our in later releases

of Renew.

In Java variables reeive their value by assignment. After a seond assignment, the value

from the �rst assignment is lost. This �avor of variables is not well-suited for high-level Petri

nets. Instead variables are supposed to be bound to one single value during the �ring of

a transition and that value must not hange. However, during the next �ring of the same

transition, the variables may be bound to ompletely di�erent values. This is quite similar

to the way variables are used in logial programming, e.g. in Prolog.

Figure 3.4: The net gd

In Fig. 3.4 we show an example net that uses expressions as ar insriptions and also as

guard insriptions. The example is provided in the diretory samples/simple. Some numbers

are put into a plae and the net will ompute the greatest ommon divisor of all these numbers

and terminate with no more enabled transitions. The upper entral transition is the most

interesting. It removes two tokens from the pool of numbers, but a guard makes sure that the

two numbers are greater than zero and orretly ordered. The transition outputs the smaller

number and the remainder (denoted by the operator %) of the division of the greater number

by the smaller number. The lower entral transition simply puts the new numbers bak into

the pool and the left transition disards zeroes.

Note how a single variable an be bound to di�erent values at di�erent times. Note that

the simulator will automatially searh for possible bindings of the variables.

42

3.4.2 Types

For referene nets, types play two roles. A type may be an insription of a plae. This means

that the plae an hold only values of that type. The net simulator an statially detet

many situations where type errors might our, i.e., when transitions try to deposit tokens

of the wrong type into a plae. Furthermore, variables may be typed. This means that the

variable an only be bound to values of that type.

In Java every variable needs to be delared. There are of ourse many good reasons to

demand this, but there are times when it is valuable to write programs without having to

worry about a type delaration. One of these ases are throw-away prototypes, whih are

supposed to be developed very quikly. Petri nets are generally usable for prototyping, so we

wanted to be able to write nets without having to delare variables.

But for stable ode that will be used in a prodution appliation types are a must. There-

fore referene nets provide the option to reate a delaration node. In the delaration node,

an arbitrary number of Java import statements and Java variable delarations are allowed. If

a delaration node is present, then all variables must be delared. This means that you have

the hoie between omplete liberty (no variables an be delared) and omplete seurity (all

variables must be delared).

Note that an undelared variable does not have a type. Therefore, the type of an ex-

pression an only be determined at runtime, if it ontains undelared variables. Worse, if a

method is overloaded, the hoie of the atual method must be delayed until runtime when

all operator types are known. This is ontrary to ordinary Java, where overloaded methods

are disambiguated at ompile time.

0
i

j

guard i>=j;

guard j>0 i%j

j

ii

60
42

105

int i;

int j;

int int

Figure 3.5: The net gdtyped

Fig. 3.5 shows a typed variation of the greatest ommon divisor algorithm. First, you an

see the type insriptions of the plaes that are all int in this ase. Seond, you will notie

the delaration node where the two variables are delared. As in Java, delarations onsist

of the type followed by the name of the variable.

Plaes an be typed, too. This allows the simulator to ath some di�ult situations before

the atual simulation. For input ars, the type of the ar insription should be omparable to

the type of the plae, i.e. either a subtype or a supertype. Otherwise it is probable that the

expression yields a value that annot be a token in the plae. Note that for this type hek

we have to use the lossless onversion rules as depited in Figure 3.3

For output ars we require that the type of the ar expression is narrower than the type of

the plae, so that the plae an always take the resulting token. This is important, beause the

values of the output expressions might only be determined during the �ring of the transition

when it is too late to delare the transition disabled. For input ars we an simply ignore

any binding that would result in a token of a bad type.

As a speial ase it is required that an output ar expression for a typed plae must be

typed. In pratie this means that you have to delare your variables as soon as you assign

types to plaes. On the other hand, you an type the variables without having to type the

plaes.

43

Sometimes it is required to onvert an expression of one type to an expression of a di�erent

type. Referene nets support Java's onept of asts. A ast is indiated by pre�xing an

expression with the desired type enlosed in parentheses. E.g., (Objet)"string" would be

an expression of type Objet, even though it will always result in "string", whih is of type

String.

On the other hand, if you know that a variable o of type Objet will always hold a

string, you an say (String)o to inform the type system of this fat. For primitive types, a

onversion takes plae, e.g., (byte)257 onverts the 32-bit integer 257 into the 8-bit integer

1 by trunating the most-signi�ant bits.

In Fig. 3.5 we also illustrated that you an make multiple insriptions to a single transition,

as we have two guards for a single transition.

If multiple transition insriptions are given in a single graphial �gure as in this ase, the

insriptions have to be separated by semiolons. They may also optionally be terminated

with a semiolon.

3.4.3 The Equality Operator

If we look at the new semantis of variables, we might wonder what the meaning of the

operator = is. It annot be an assignment, beause variables are immutable. Instead, it

is merely a spei�ation of equality. You will usually want equality spei�ations to our

inside speial insriptions that are attahed to transitions. E.g., you an say x=2 to bind the

variable x to 2 or you ould use x=y*z+42 for a more interesting omputation. If you speify

both x=2 and x=3 for a single transition, that transition will not be able to �re, beause x

annot be bound in a way that mathes both spei�ations.

Keep in mind that = is based on equality in the sense of the equals(Objet)method and

not in the sense of the operator ==. This might onfuse experiened Java programmers, but

it is the only possibility to avoid ertain other anomalies.

Figure 3.6: The net equality

In the net from Fig. 3.6 you an see two transitions that perform equivalent ations, as

you an see when you load the nets from samples/simple and simulate them. The transition

on the right uses a variable z to hold the value of the omputation x+y. At the left we see an

example where an expression ours on an input ar. Suh expressions are properly evaluated

and the simulator heks whether the resulting token is available.

But expressions on input ars have to be used with are. Just beause the simulator knows

that x+y equals 24 and x equals 22, it annot onlude that y is 2. Suh omputations would

have been possible in some ases, but not in others. Due to onsisteny we deided on the

general rule that expressions are not evaluated bakward. The only exeption are type asts,

whih we met earlier on. A type ast that may be performed without losing information, e.g.

(long)i for an integer i, an be alulated bakward. If due to an equality spei�ation the

44

result of suh a ast is known, it is propagated bakward to the asted expression, possibly

after some onversion.

If a bakward omputation is desired in the other ases, it has to be made expliit. In our

example, we ould omplement the equation z=x+y by x=z-y and y=z-x. Now the simulator

an determine y from x and z. This is allowed, exatly beause = does not mean an assignment

but an equality spei�ation. If a bound variable is alulated again by a redundant equation,

this does not pose a problem as long as the two bindings are equal.

If = does not assign, what do the modifying operators +=, *=, and so on mean in referene

nets? Simple answer: They make no sense and were therefore exluded from the language.

Similarly, the operators ++ and � do not appear.

3.4.4 Method Invoations

Referene nets also support method invoations. E.g., x.meth("a") invokes the method meth

of the objet referened by x with the parameter string "a". All Java methods an be used

in referene nets, but there are some ritial points.

First of all, methods an be evaluated more than one. Worse, a method might be invoked

even though the transition does not �re. This is done, beause the result of a method

invoation might be needed to determine whether a transition is enabled at all. Therefore it

is best, if the invoked methods do not produe any side e�ets. If side e�ets are required,

then they should be invoked in ation insriptions only.

Figure 3.7: The net frame

Fig. 3.7 shows some example method alls that are invoked by net insriptions. The

net is saved in the diretory samples/simple. The delaration node ontains an import

statement that instruts the simulator to searh the pakage java.awt for lasses whose

names appear in the net. The variables f and b are then delared as a Frame and a Button.

These two lasses are in the pakage java.awt, so we ould have written java.awt.Frame

and java.awt.Button instead. The proedure that has been implemented here is simple.

A window and a button are reated, the window is resized and the button is added to the

window. Now we an show the window, let the user lik it some times, and remove it from

the sreen again.

It is possible to give multiple ations in a single transition insription in a semiolon

separated list, e.g., ation y=o.m(x); ation x=o.m(); would be allowed. Note that the

order of exeution need not math the textual order. In the previous example, ation

x=o.m() would have to be exeuted �rst, beause it is required to determine the binding

for x. In the same sense, the ation keyword only applies to a single expression, not to

45

all following expressions. E.g., ation y=o.m(x); x=o.m(); would mean that x=o.m() is

evaluated early during the searh for a binding, beause it is not an ation.

3.5 Tuples, Lists, and Uni�ation

The insription language of referene nets has been extended to inlude tuples. A tuple is

denoted by a omma-separated list of expressions that is enlosed in square brakets. E.g.,

[1,"ab",1.0℄ denotes a 3-tuple whih has as its omponents the integer 1, the string "ab",

and the double preision �oat 1.0. Tuples are useful for storing a whole group of related values

inside a single token and hene in a single plae.

In ordinary Java, there are no tuples. If we want to store a group of values, we an simply

reate a group of variables, eah of whih holds one value. But with Petri nets we want to

store arbitrarily many tokens in a plae, making this solution useless in many ases.

It would of ourse be possible to reate a Java lass with an appropriate set of �elds to

wrap a group of values, but this would result in an exessive amount of trivial funtionless

lasses. (By the way, this is what has to be done in Java in some ases, too.)

Tuples are weakly typed. They are of type de.renew.unify.Tuple, but their omponents

are untyped. It is not even spei�ed whether a omponent of a tuple holds a primitive or a

referene type.

This does not matter muh, beause the only operation on tuples (or rather the only

operation that should be used) is uni�ation. You an unify tuples through an equality

spei�ation. E.g., [x,y,z℄=t means that t must be a 3-tuple. Furthermore, x will be equal

to the �rst omponent of t, y to the seond, and z to the third.

We already know that the blak token is denoted by [℄. Therefore a blak token is simply

a tuple without omponents (a zero-tuple).

["green","left"]

["blue","right"]

["red","left"]

["red","left"]

["green","right"]

drawer

take socks

[]

left

right

[col,type1]

[col,type2]

[col,type1]

[col,type2]

Figure 3.8: The net soks

In Fig. 3.8 we an see the sok algorithm of the typial theoretial omputer sientist.

The sientist will reah into the drawer to feth two soks. It does not matter if the soks are

left soks or right soks (they are topologially equivalent) as long as they are of the same

olor. In the net, whih an be found in the diretory samples/tuple, this is ahieved by

using the variable ol in both ar insriptions that will remove tokens from the drawer plae.

Tuples may be nested. [[1,2℄,[3,4,5℄℄would be a 2-tuple that has a 2-tuple as its �rst

omponent and a 3-tuple as its seond omponent. This might be useful if the omponents

are hierarhially strutured.

It is a ommon task to use tuples to simulate a database, so that the number of tuples in

a plae an be onsiderable. Often one omponent of an input ar tuple an be determined

without aessing the plae. In this ase, Renew aesses only those tokens that math

the known omponent. Beause few tokens need to be heked, the simulation an proeed

quikly. If two omponents of the input ar tuple are known, the simulation engine will use

that omponent as a key that results in fewer mathes.

In funtional programming nested pairs are used as a representation of lists. This ould

be simulated by nested tuples, but it would result in nets that are hard to read. Hene

46

we added expliit list support to the language. Lists are delimited by urly braes, e.g.,

{1,2,3,4} would be a four element list. Lists, like tuples, support pattern mathing. Using

{1,2,3,4}={u,v,w,x} as a transition insription, we would get u=1, v=2, and so on.

{1,2,3,4}

[{hd:tl},li][tl,{hd:li}]

li [li,{}] [{},li] li

Figure 3.9: The net reverse

In order to handle lists of unknown length, a tail expression may be added to the list. The

tail expression is separated from the ordinary list elements by a olon. The tail expression

mathes an arbitrary list of elements. By requiring {1,2,3,4}={u,v:w}we get u=1, v=2, and

w={3,4}. The tail onsists of all elements that are not expliitly represented. The tail may

be empty as in {1,2,3,4}={u,v,w,x:y} where y={}. Note that the empty tuple [℄ and the

empty list {} are not equal.

In Fig. 3.9 you an see an example net, whih reverses a list by suessively splitting o�

the head of the original list and appending it to a result list. The remainder of the original

list and the result list are jointly ontained in a tuple. One the original list is fully onsumed,

the result list is extrated.

3.6 Net Instanes and Net Referenes

When a simulation run of a net is started, the simulator reates a net instane of the net that

is simulated. A net that is drawn in the editor is a stati struture. However, an instane of

the net has a marking that an hange over time. Whenever a simulation is started, a new

instane is reated.

Most net formalisms stop here. They reate one instane of a net and simulate it. Renew

allows you to reate many instanes of a single net. Eah instane omes with its own marking

and an �re independently of other instanes.

Every net has a name. The name is derived from the �le where it is saved by removing

the diretory name and the su�x. E.g., a net saved in /users/foo/bar/baz.rnwwould have

baz as its name.

New net instanes are reated by transitions that arry reation insriptions, whih onsist

of a variable name, a olon (:), the reserved word new, and the name of the net. E.g., x:new

baz makes sure that x is bound to a fresh instane of the net baz.

In Figs. 3.10 and 3.11 you an see a simple example. These nets are available in the

samples/reation diretory.

When you start a simulation of reator, the top transition an �re and reates two new

net instanes of othernet. Referenes to the two nets are deposited in the middle plaes.

Now three transition instanes are ativated, namely the two transitions in the two instanes

of othernet and the bottom transition of reator. The guard is satis�ed, beause two

di�erent reation insriptions are guaranteed to reate di�erent net instanes. You never

reate the same instane twie.

Now the order of exeution is unde�ned. It might be possible that the bottom transition

of reator �res �rst. Even in that ase, the two transitions instanes of othernet remain

ativated. A net does not disappear simply beause it is no longer referened.

On the other hand, if a net instane is no longer referened and none of its transition

instanes an possibly beome enabled, then it is subjet to garbage olletion. Its presene

47

x:new othernet

y:new othernet

x y

x y

guard x!=y

[]

[]

Figure 3.10: The net reator Figure 3.11: The net othernet

has beome undetetable and hene we might remove it without further ado.

In Java the reserved word this denotes the objet whose method is urrently exeuted.

In referene nets this denotes the net instane in whih a transition �res.

We are often going to treat net instanes like objets of an objet-oriented programming

language. They are instanes of a net, just like objets are instanes of a lass. They have

an identity that an be heked with == and != just like objets. They have a state that

an hange over time and here plaes seem to orrespond to attributes. Net instanes also

enapsulate data. They an be referened from other net instanes. The only missing om-

ponent for full objets are methods. In the next setion we will learn about a ommuniation

onept that an be substituted for method alls sometimes. In Se. 3.9 we will �nally see

how nets an be equipped with methods.

3.7 Synhronous Channels

Currently, the idea of net instanes might not seem interesting, beause there is no mehanism

by whih nets an in�uene eah other. Hene, although net instanes enapsulate data, they

enapsulate it so well that it annot be aessed at all.

this:ch()

:ch()[]

Figure 3.12: The net synhro

In this setion we will establish a means of ommuniation for net instanes. There are

two fundamentally di�erent ways of ommuniation. First, we have message passing where

a sender reates a message that an be read by a reeiver later on. The sender an always

send the message regardless of the state of the reeiver. The reeiver may or may not be

48

able to proess the message. Seond, we have synhronous ommuniation where sender and

reeiver have to agree on partiipating in an ommuniation at some point of time.

In Petri net formalisms, the former kind of ommuniation is usually aptured by so-alled

fusion plaes. Referene nets, though, implement the latter kind of ommuniation in the form

of synhronous hannels. This allows more expressive models ompared to message passing,

beause it hides muh of the inherent omplexity of synhronization from the developer.

Furthermore, message passing an always be simulated using synhronous ommuniation.

Synhronous hannels were �rst onsidered for olored Petri nets by Christensen and

Damgaard Hansen in [5℄. They synhronize two transitions whih both �re atomially at

the same time. Both transitions must agree on the name of the hannel and on a set of

parameters, before they an engage in the synhronization.

Here we generalize this onept by allowing transitions in di�erent net instanes to syn-

hronize. In assoiation with lassial objet-oriented languages we require that the initiator

of a synhronization knows the other net instane.

The initiating transition must have a speial insription, the so-alled downlink. A down-

link makes a request at a designated subordinate net. A downlink onsists of an expression

that must evaluate to a net referene, a olon (:), the name of the hannel, an opening

parenthesis, an optional omma-separated list of arguments, and a losing parenthesis. E.g.,

net:h(1,2,3) tries to synhronize with another transition in the net denoted by the variable

net, the hannel has the name h and is passed the parameters 1, 2, and 3.

On the other side, the transition must be insribed with a so-alled uplink. An uplink

serves requests for everyone. A transition that is alled through an uplink need not know the

identity of the initiator, just like an ativated method of an objet does not neessarily know

of its aller. Therefore the expression that designates the other net instane is missing for

uplinks. An example uplink insription would look like :h(x,y,z), whih means that the

hannel name is h and that the three hannel parameters must math the binding of the

variables x, y, and z.

The uplinks and downlinks of a transition may be given as individual transition insrip-

tions or in a single semiolon separated list in one insription. The list might even inlude

ation insriptions and reation insriptions simultaneously with the hannel invoations.

Let us �rst look at the speial ase where two net instanes within the same net syn-

hronize. This is done by providing the keyword this as the target of the downlink. In

Fig. 3.12 you an see an example net with loal hannels, whih is provided in the diretory

samples/hannel like all other nets of this setion. The input plae of the left transition

is marked and the transition's downlink spei�ation an be met by synhronizing with the

right transition. Both transitions �re synhronously, suh that one token is removed from the

left plae and one token is added to the right plae in a single step. Now no more transitions

are enabled. The left transition laks a token on its input plae, the right transition has an

uplink that is not invoked by another transition.

Generally, transitions with an uplink annot �re without being requested expliitly by

another transition with a mathing downlink. We will sometimes all a transition without an

uplink a spontaneous transition. But even a spontaneous transition must �nd an appropriate

synhronization partner if it has a downlink.

It is allowed that a transition has multiple downlinks. It is also allowed that a transition

has both an uplink and downlinks. This is exempli�ed in Fig. 3.13. Again the transition on

the left initiates the synhronization. The required hannel is o�ered by the middle transition

whih does nothing exept linking to the hannel bar twie. This is allowed, a transition may

�re multiple times in one synhronous step, although it might be onfusing and should be

avoided when possible.

In general, multiple levels of synhronization are suspet from a methodial point of view,

beause they tend to be di�ult to understand. Petri nets exel at displaying ontrol �ow and

it seems that synhronous hannels should not be used to enapsulate omplex ontrol �ows

or even loops. It is best to use hannels where they show their greatest potential, namely

synhronization, ommuniation, and atomi modi�ations.

49

this:foo()

:foo()[] :bar()

this:bar()

this:bar()

Figure 3.13: The net multi

Channels an also take a list of parameters. Although there is a diretion of invoation,

this diretion need not oinide with the diretion of information transfer. Indeed it is possible

that a single synhronization transfers information in both diretions. Fig. 3.14 shows a

possible appliation where the left transition onsults a lookup table that is managed by

the right net instane. The parameter lists (x,y) and (a,b) math if x=a and y=b. After

binding x from the left plae the variable a is determined and only one token of the right

plae mathes the tuple of the ar insription. This allows to bind b and hene y.

this:lookup(x,y) :lookup(a,b)
42

x y [a,b]

[42,"6x7"]

[56,"8x7"]

Figure 3.14: The net param

In the previous examples we only enountered loal synhronizations within one net, but

Figs. 3.15 and 3.16 show two separate nets that an ommuniate. The net represents the

basi shedule of Santa Claus on the night before Christmas. He wakes up, takes a new bag

from the shelf and �lls it with presents. Later on he an simply reah into his bag and get

something that he an put into the hildren's boots, maybe some andy or a brand new game.

b: new bag

[]

b:deposit("sweets")

b:deposit("token game")
b

b

b:take(thing)

thing

wakeup

bag

boots

:take(thing):deposit(thing)

thing thing

Figure 3.15: The net santa
Figure 3.16: The net bag

It is possible to reate synhronization loops where the invoation of a hannel results

in the invoation of the same hannel. This should be avoided, beause it might throw the

simulator into an in�nite loop. A di�erent searh strategy ould have avoided this problem,

but it would have inurred a signi�ant performane ost.

We mentioned that message passing an be simulated by synhronous hannels. The

anonial way would be to reate a transition with a single-parameter uplink and a single

50

output ar in the reeiving net, whih an then put the argument of its uplink into its output

plae. Beause this transition is always enabled, messages an always be sent and the state

of the reeiver does not in�uene the sender in any way. After the message has been put into

the plae, it an be proessed in an arbitrary way.

Using the speial insription x:new net() you an indiate that you want to reate a new

net with name net, assign it to the variable x and perform a synhronization with the uplink

:new() in the newly reated net in one step. Note that, unlike earlier versions of Renew, the

hannel new is only invoked when you request it expliitly. An impliit invoation, even for

the initially reated net instane, is not performed.

For additional examples, see the nets that are distributed with Renew in the diretory

samples. Not all of them are given a detailed disussion in this manual. In diretory

samples/fireman you an �nd the �reman example that is based on an idea of Petri [14℄. A

work�ow system of a law enforement ageny is the basis for the nets in samples/proseute.

They are based on the artile [17℄, where this example is attributed to W.M.P. van der Aalst.

3.8 Manual Transitions

The manual insription, if attahed to a transition, stops the simulator from �ring the tran-

sition automatially. You have to �re suh transitions with a right mouse button lik. This

is useful for simulating external events or for adding ontrol swithes.

In the diretory sample/simple you an �nd the net mutex, whih is also displayed in

Fig. 3.17. It shows a mutual exlusion algorithm that uses only a single hannel per diretion

for both token transfers and token requests.

manual

notokcrit tok

request

request

toknotok crit

wait

wait

[] []

manual

Figure 3.17: The net mutex

The ritial setions that are guarded by the mutex algorithm are painted red. The left

proess is shown in yellow, whereas the right proess is shown in dark green. Initially, the

left proess holds the token to enter the ritial setion in its plae tok. The right proess

does not own the token.

After one of the blue manual transitions is �red, the assoiated proess tries to gain the

51

token and enter the ritial setion. To see this, run the simulation ontinuously. The manual

transitions do not �re automatially, but after one of them is �red by using the middle or

right mouse button, the rest of the net proesses the request immediately.

3.9 Calling Nets from Java

In the previous setion we onsidered the use of a Java-like insription language in referene

nets. Now we are going to allow aess to referene nets from Java ode. Nets are already

objets and they have an identity. But up to now all nets have the same type, namely

de.renew.net.NetInstane, and implement the methods of de.renew.net.NetInstane

only.

3.9.1 Net Methods

Therefore we must reate new lasses that behave like nets when treated by the simulator,

but whih implement additional methods. Upon invoation, the methods an ommuniate

with the net through synhronous hannels, whih will in turn take the required ations.

These lasses will be known as stub lasses.

Figure 3.18: The net aount

The net from Fig. 3.18 models a very simple bank aount. The ustomer an only deposit

and withdraw money and view the urrent amount. But we still need to wrap the synhronous

hannels in methods so that we an use the bank aount from Java ode. There is a speial

utility that reates appropriate methods automatially. We an input

void deposit (int amount) {

this:deposit (amount);

}

to desribe the ation assoiated with this method. Not all methods will be so simple, e.g.,

there might be more than one hannel invoation.

The translator needs to know other things besides the methods, espeially the name of

the net, here aount, and the name of the stub lass that should be generated. In this

ase we use the lass samples.all.Aount. samples.all seems to be the right pakage

beause the pakage name should re�et the diretory it is in. The full stub de�nition �le

an now be presented.

pakage samples.all ;

lass Aount for net aount {

void deposit (int amount) {

this :deposit(amount);

}

void withdraw (int amount) {

this :withdraw (amount);

52

}

int urrentAmount () {

this :amount(return);

}

}

The delaring pakage is given in a speial statement, whih is optional. The keywords for

net separate the lass name and the net name.

The body of a lass desription onsists of a sequene of method desriptions and onstru-

tor insriptions. In our example we do not have onstrutors, suh that a default onstrutor

will be automatially inserted. The body of eah method onsists of a sequene of hannel

invoations and variable delarations, separated by semiolons.

As in referene nets, variables need not be delared. If variables are delared, they must be

delared before they are used. In our example there are no variables exept for the input pa-

rameters and the speial variable return, whih is used in the last method urrentAmount().

This variable is automatially delared in eah method that has a non-void return type. A

non-void method returns the value of return at the end of its body.

The stub desription an now be ompiled with the ommand

ompilestub samples/all /Aount.stub

from the Unix ommand prompt, assuming that the stub desription is ontained in the

�le samples/all/Aount.stub. A similar sript is also provided under Windows, but for

other operating systems we do not urrently supply a onvenient shell sript, but you an

ahieve the same e�et by running

java -p plugins/mis-2.6_1.4.jar de.renew.all. StubCompiler samples /\
all /Aount .stub

or similar ommands. Now the ommand (the lasspath has to be entered on one line!)

java -lasspath loader.jar:libs /log4j/log4j-1.2.12.jar: plugins/\
util-2.6_1.5.jar: plugins/mis-2.6_1.4.jar:plugins/formalism-2.6_1.6.jar:\
plugins /simulator-2.6_1.7.jar samples /all /Aount .java

ompiles the Java soure resulting in the �le Aount.lass.

Beause this ommand is rather long, we provide the sript jompile for Unix and Win-

dows whih inludes an appropriate lasspath to ompile Renew-related lasses. Just type

the following ommand to ahieve the same result:

jompile samples/all /Aount .java

We will now use this lass inside a referene net, but it ould be used in Java ode just as

well. The only limitation is that the net assigned to this lass has to be loaded in Renew.

At the moment, Renew does not provide an automati net loading mehanism that would

orrespond to lass loading in Java. In Fig. 3.19 you an see the net ustomer that desribes

a ustomer aessing a bank aount. A new aount is reated, money is deposited, and the

ustomer heks the urrent savings.

If you load the two nets from the diretory samples/all and start the simulation of net

ustomer, you will see that the �rings of the transitions are no longer sequential. E.g., we

have in the simulation log �le:

...

(3) -------- Synhronously --------

(3) Removing [℄ in ustomer [0℄. reated

(3) Testing aount [2℄ in ustomer [0℄. aount

(3) Firing ustomer [0℄. deposit

53

Figure 3.19: The net ustomer

(4) -------- Synhronously --------

(4) Removing int (0) in aount [2℄. money

(4) Firing aount [2℄. deposit

(4) Putting int (500) into aount [2℄. money

(3) Untesting aount [2℄ in ustomer [0℄. aount

(3) Putting [℄ into ustomer [0℄. deposited

...

The transition deposit of ustomer �res at step (3), but at �rst it an only remove its

input token and test the aount referene. The output token is not put into the plae

deposited before the ation insription is ompleted. This requires the invoation of the

method a.deposit(500). Beause this method must perform a synhronization, it annot

omplete immediately. First, the method requests a synhronization with transition deposit

of net aount in step (4). After that step, the method returns, the ation is ompleted and

a token appears in plae deposited.

Note how the individual steps are mixed with eah other. Here we have true onurreny

in the simulation, beause the method is invoked in the bakground in a separate thread

and operates independently of further �rings. In fat, ations that inlude a method all are

always exeuted in the bakground. But often the searh for a new binding takes so muh

time that the bakground thread �nishes long before the next binding is found.

But here we have a method that requires a synhronous ommuniation before it om-

pletes. Suh methods rely on the simulator thread to �nd a mathing hannel and they

require more than one step in any ase.

The stub ompiler reognizes the delaration lass Name for netinstane (without a

spei� net name) as an alternative to the delaration given above. Suh a stub lass owns

a one-argument onstrutor that expets an existing net instane to be wrapped by the stub

objet. The stub objet an be passed around like any plain Java objet. It forwards its

method alls to synhronous hannels of the wrapped net instane as explained above.

It should be noted, however, that there are two objets with individual identities involved

(the stub and the net instane). In ontrast, the for net netname delaration reates one

single objet only whih is both the stub and the net instane.

3.9.2 Event Listeners

Nets that implement methods might be useful for designing a graphial user interfae where

the window system sends events that must be proessed by a listener. E.g., a button triggers

a java.awt.event.AtionEvent that is handled by a java.awt.event.AtionListener.

publi interfae AtionListener

implements java .util. EventListener

{

void ationPerformed (java .awt.event. AtionEvent);

54

}

Of ourse, a net ould implement the AtionListener interfae, but there is a ath. The

all to an event listener bloks the entire Java windowing thread, suh that no events an be

proessed before the listener ompletes the method all. Beause further user interations

might be needed to trigger the next simulation step, we might run into a deadlok.

To solve this problem, we may denote that a method should return before its synhronous

hannels are invoked. The hannel alls are then proessed in the bakground where they

do not blok other tasks. Of ourse this is only possible for void methods, beause other

methods must �rst ompute their return value. We will indiate suh methods with the

keywords break void, suggesting that another thread of ontrol breaks o� the main thread.

As an example we will reate nets that display a window with three buttons that grow,

shrink, and lose it. (A similar exerise is given in [18℄.) The interfae AtionListener is

implemented by:

pakage samples.all ;

lass SizeChanger for net sizehanger

implements java .awt.event.AtionListener

{

SizeChanger (java .awt.Frame frame)

{

this :setFrame (frame);

}

break void ationPerformed (java .awt.event.AtionEvent event)

{

this :putEvent (event);

}

}

The onstrutor takes one argument, namely the frame whose size should be hanged. The

single method is designated break void, so that it an return before any synhronizations are

performed. This stub is ontained in the �le SizeChanger.stub that resides in samples/all

along with the nets from Figs. 3.20 and 3.21.

The net buttonmaker is used to onstrut the frame with its buttons and the SizeChanger

objet. Later on, eah mouse lik on one of the three buttons results in an event that is

propagated to the sizehanger net. Every event is equipped with a ommand string that

determines the ation to be taken. It is always a good idea to be able to lose a window,

beause otherwise an undue amount of unloseable windows might aumulate on the desktop.

3.9.3 Automati Generation

A single synhronization per method is only appropriate for the most trivial methods, namely

those methods that an be ompleted atomially. Most methods will require at least two

synhronizations, one to pass the arguments of the all and one to ollet the results. A very

simple sheme would require the following two hannel invoations.

this :method(arg0 ,arg1 ,arg2)

this :result(return)

When two or more onurrent method alls are allowed, this sheme breaks up. It beomes

impossible to math the two synhronizations and a aller might reeive a result that was

requested by someone else.

Therefore we onsider a more elaborate sheme where eah method all is identi�ed by

some method instane value.

this :method(instane ,arg0 ,arg1 ,arg2)

this :result(instane ,return)

55

Figure 3.20: The net buttonmaker

Figure 3.21: The net sizehanger

56

The �rst hannel provides the arguments to the net and reeives a method instane value

bak. We do not speify how this value is omposed, but it must identify the original all

uniquely.

In the ase of a void method it would not be sensible to ompute a return value, hene we

ould leave out the return parameter from the seond hannel invoation. It still makes sense

to have the seond invoation, though, beause we usually want to wait for the ompletion

of the method.

this :method(instane ,arg0 ,arg1 ,arg2)

this :result(instane)

There is one problem with that solution, namely that methods should be able to throw

exeptions. Beause exeptions in Petri nets are not very well understood, we did not imple-

ment an exeption mehanism right now. It might be added in several ways, none of whih

looks entirely satisfying.

A regular struture of the synhronization requests suggests that we ould generate the

stub desription �les automatially. This is indeed possible using the Unix shell sript

makestub that reates a stub automatially. The sript needs the name of the lass to

be generated, the name of the net that is assoiated to the lass, and a list of interfaes that

the lass should implement.

For makestub the methods that are to be implemented are given only via the list of

interfaes. This might seem as a limitation, but quite often appropriate interfaes will be

present and in other ases they an be de�ned easily. And even in ordinary Java it is often

helpful to delare all publi methods in interfaes.

Assume that Santa's quality assurane department determines that the urrent version of

Santa's bag violates the design rule that bags should implement the java.util.Enumeration

interfae. Now a simple ommand

makestub samples.all .EnumBag enumbag java .util .Enumeration

reates the �le samples/all/EnumBag.stub. On some non-Unix mahine you might have

to use the ommand

java -p plugins/mis-2.6_1.4.jar: plugins/simulator-2.6_1.7.jar: plugins/\
util-2.6_1.5.jar:. de.renew.all .StubGenerator samples .all .EnumBag\
enumbag java .util . Enumeration

whih has the same e�et, but is a little longer.

Now the stub �le an be ompiled as desribed in Setion 3.9.1, i.e., by alling

ompilestub samples/all /EnumBag.stub

jompile samples/all /EnumBag .java

or equivalent ommands.

Fig. 3.22 shows the net assoiated to the new stub. After nextElement is invoked, a new

objet is reated that serves as an identi�er for this all. It is also heked that there are still

items in the bag before proeeding. An item is taken out of the bag and passed bak. The

result transition an be shared for both methods, beause it simply takes the results from a

plae and forwards them through the uplink.

Note that the bags are now �lled by the manufaturer instead of Santa due to a request

of his worker's union. Hene Santa's proedure has to hange, too. In Fig. 3.23 you an see

Santa distributing the Christmas presents.

Again, all presents are dropped into the boots over time, but now Santa knows when his

bag beomes empty, so that he an �y bak and feed his reindeer.

There are atually a few other ways to implement method alls on the level of nets. E.g.,

one might reate a new net instane for eah method all and pass the arguments of the all

to it. This way the net instane itself ould be used to identify the all and the transitions

57

Figure 3.22: The net enumbag

Figure 3.23: The net enumsanta

58

that handle the all ould be moved to another net, thereby leading to a muh leaner design.

The method net instane ould either deposit its result in the ommon result pool as shown in

the previous example, or the result transition ould take the result diretly from the method

net instane by yet another synhronous hannel.

3.10 Additional Ar Types

Besides those ars that are ommonly found in Petri net simulators, Renew implements a

ouple of additional ar types that are somewhat rarer, but still quite useful. This is done to

ahieve the maximum usability for di�erent users by providing adequate modeling tools.

It is sometimes argued that these ar types violate the spirit of true Petri nets. In some

sense, they do. Test ars, too, arry the stigma of bad onurreny semantis. But let's not

ban these extensions so rapidly. They have their uses and they an simplify ertain models

onsiderably.

If you are unsure about their theoretial foundations, do not use them. No ompromises

where made in the simulation engine to allow their implementation, so that robustness of

Renew is not a�eted.

3.10.1 Flexible Ars

Flexible input ars and �exible output ars were introdued by Reisig in [15℄. They allow

multiple tokens to be moved by a single ar. Moreover, the token values and even the number

of tokens may vary with the binding of the transition's variables.

In Renew, these ars are indiated by attahing two arrowheads instead of one to the end

of the ar. In the original artile, no suh distintion was made, but instead the �exible ars

were indiated by the type of the ar insription, whih is not feasible in the ase of referene

nets. Besides, �exible ars do not our that often and they do deserve some speial attention

and highlighting.

The insriptions of �exible ars must be of an array type. All elements of the array that is

alulated from the ar insription are suessively removed from the input plae or put into

the output plae, depending on the diretion of the ar. If one Java value ours multiple

time in the array, an equivalent number of orresponding tokens will be removed. The order

of the values in the array does not matter.

Arrays are preferred over vetors or other ontainer objets, beause they allow the use of

primitive values, whereas vetors an only arry referenes to objets. This an ause some

inonvenienes to the developer, beause oasionally an array is more di�ult to generate.

In those ases where it is not feasible to use arrays, Renew support the use of expressions

of the types de.renew.unify.List (see setion 3.5 for details) and java.util.Colletion.

For output ars, it is allowed to use java.util.Enumeration and java.util.Iterator

objets beside those types listed above. But due to the missing type safety, arbitrary values

an be ontained in these ontainer objets. Hene, output plaes for �exible ars using the

ontainer objets must be untyped.

It should be noted that �exible ars do not help the simulator to �nd information about

possible bindings. In some other tools, all possible ombinations of tokens are tried for

of �exible input ars, possibly binding variables insribed to the ar. This was seriously

onsidered, but the performane ost turned out to be prohibitive. At the same time, the

need for suh an algorithm was not obvious.

The net from Fig. 3.24, whih an be found in the diretory samples/ars, illustrates the

use of �exible ars. On the left hand side you an see a lassial way to remove �ve tokens

from a plae by looping with an expliit ounter. One after another the tokens are olleted

and assigned to an array, whih results in a rather lumsy net struture. Now we an see the

two kinds of �exible ars in ation on the right hand side. One transition puts �ve tokens

59

"net"
x

"arc" "transition"

"inscription"

"place"

[new String[5],4]

[a,i][a,i-1]

[a,-1]

[]
aa

a

a a

guard i>=0;

action a[i]=x;

Figure 3.24: The net flexible

onto a plae and another transition removes all �ve tokens atomially. The simpli�ation of

the net diagram is quite obvious.

Currently, �exible reserve ars are not supported. They will be added as soon as somebody

points out a useful appliation for them. Flexible test ars an be added, too, but even their

graphial representation is not obvious right now. In general, we reserve the right to make

some modi�ation to the handling of �exible ars, if some other syntati or semanti variant

proves superior.

The urrent implementation of �exible ars shows inonsistent behavior when the

ar expression does not evaluate to an array or olletion objet as explained above.

In suh ases, �exible output ars fall bak to shove the unmodi�ed token into

the output plae, while �exible input ars do not ativate the transition. This is

obviously not a symmetri behavior.

In the book [16℄ Reisig applies �exible ars to model distributed algorithms. He uses

algebrai Petri nets, whih are in general not aessible for Renew. However, in the given

ontext only very spei� algebras are used, namely those that represent ommuniation

topologies in a distributed system.

Therefore it is possible to implement an interfae Topology that aptures the signature

of the most ommon algebrai operations and speialized lasses that implement some useful

topologies, like RingTopology, StarTopology or LineTopology. If further topologies are

needed, new lasses an easily be added, say for hyperubes or meshes.

[x,z]

[x,y]

[]

t.pairs(t.nodes())

t

guard z>y

t

guard z<=y

t.prod(t.neighbors(x),y)

[x,y]

[x,y]

new UnionTopology(

 x=new StarTopology(8),

 new InverseTopology(x))

[x,y]

pending

import samples.reisig.*;

[x,z]

[x,z]

Figure 3.25: The net eletion

60

:show(3,n)

on

"?"

:show(4,n)

on

"?"

:show(6,n)

on

"?"

:show(7,n)

on

"?"

:show(5,n)

on

"?"

:show(8,n)

on

"?"

:show(1,n)

on

"?"

:show(2,n)

on

"?"

:show(0,n)

on

"?"

0

1

2

3

4

5

6

8

[x,z]

[x,z]

[x,y]

[]

t.pairs(t.nodes())

t

t.prod(t.neighbors(x),y)

[x,y]

[x,y]

new UnionTopology(

 x=new StarTopology(8),

 new InverseTopology(x))

[x,y]

pending

import samples.reisig.*;

this:show(x,y)

guard z<=y

guard z>y

7

[x,z]

t

Figure 3.26: The net visualeletion

The net from Fig. 3.25 shows a simple algorithm that determines a global leader within a

network of proessors that an only ommuniate loally. The green net elements onstitute

the ore algorithm as presented in [16℄. Additional yellow net elements are for the initializa-

tion proess. You an see the olors when you load the net from its diretory samples/reisig.

In your nets, too, the use of olor might improve the nets' presentation.

In this example, a star topology is used. By default, a star topology is direted, but in

this ase we add the inverse to the original topology, so that a symmetri topology arises.

Flexible ars are used to send messages to all neighboring ars whenever a possible new leader

has to be announed.

Fig. 3.26 shows the same net, but augmented by a visualization omponent. For every

node of the ommuniation network there is a plae that is marked with the node of best

urrently known priority. Transitions with synhronous hannels, whih are loated in the

lower part of the drawing, are used to sort the information into the various plaes. Virtual

plae opies, depited by doubly lined irles on the right hand side, are arranged aording

to the used topology, so that the topology beomes immediately obvious. Of ourse, it is now

harder to try di�erent topologies, but this kind of visualization is quite e�etive in lassroom

demonstrations.

3.10.2 Clear Ars

Clear ars are used to remove all tokens from a plae. They are typially applied to reset

the state of the net to a well-de�ned marking. [12℄ gives some thoughts on lear ars and on

many other ar types.

In order to use this ar type, you need to selet the extended sequential mode as desribed

61

in Subsetion 2.6.4.

A lear ar is indiated by a double arrow tip attahed to the transition's end of the ar,

where the arrow tip is hollow, i.e., �lled with the bakground olor. It need not be insribed.

If it is insribed, it must be insribed with a single variable that is either untyped or that has

an array type. In the latter ase, all the tokens in the plae are put into an array and the

variable is bound to the array.

Note that the binding ours only during the �ring, i.e., as though the variable was

assigned in an ation statement. Hene you annot use the variable of a lear ar for other

input ar insriptions or for guards. However, you an use the variable for output ars. This

is very useful in onjuntion with a �exible output ar, when you want to move all tokens

from one plae to another.

The net from Fig. 3.27 shows the basi algorithm of a juggler who wants to earn a few oins

in a rowded mall. He waits for spetators to ome along and does a few triks now and then.

This makes all spetators who were previously waiting happy and everybody ontributes a

�ver. Try to load the net from the diretory samples/ars and play around with it.

In the net implementation, note that the variable x is bound to an array that holds all

tokens of the plae waiting during the �ring of the transition. We use the array to move

all the tokens to another plae. The array an also be used in ordinary Java omputations,

if desired. But beause the set of tokens is determined only during the transitions �ring, a

variable attahed to a lear an only be used in an ation insription, but not in guards, in

other transition insriptions, or in ar insriptions.

A lear ar takes e�et after all other input ars have been evaluated. This means that

you an remove some tokens from a plae using ordinary ars and then remove the remaining

tokens with a lear ar. In the given net, you may use this feature by adding an ordinary

ar from the plae waiting to the transition perform. This way, the juggler only starts his

business when there is at least one spetator.

0

newmoney money

arrive waiting
x x

happy

money

action newmoney=

 money+5*x.length

perform

Figure 3.27: The net juggler

3.10.3 Inhibitor Ars

Inhibitor ars make sure that a token of a ertain kind is not in a plae. They are used to

represent boolean onditions with simple blak tokens when it is required to hek for the

inverse ondition, too. They are also used to delay ertain ations until a system is idle and

to wait until the end of a loop.

In order to use this ar type, you need to selet the extended sequential mode as desribed

in Subsetion 2.6.4.

Some varieties of inhibitor ars were suggested in the literature, see [6℄ and [12℄ for a

reent approah and [4℄ for a onsideration of onurreny issues. The papers also give

further referenes. The formalism presented here is less general than that presented in [6℄,

but on the other hand we do not require that the plae assoiated to the inhibitor ar is

bounded by a apaity.

An inhibitor ar is represented by a onnetion with a �lled irle on eah end in Renew.

Some other formalisms highlight only one of the line's ends, but we prefer the symmetri

62

appearane beause it emphasizes that no hanges to the urrent marking are performed by

inhibitor ars.

An inhibitor ar may be insribed just like an ordinary input ar. An inhibitor ar,

however, does not ontribute any information about possible bindings to the simulator, i.e.,

all variables used in the insription must be determined by other insriptions.

It is not possible to inhibit whole groups of token values, e.g., to make sure that no tuples

whose �rst omponent is a given value are ontained in a plae. But this an usually be

simulated by providing a seond plae that stores only the �rst omponents of the tokens and

that is updated onsistently with the original plae.

"rnw"
"sha"

"ps"

"java"

type type

type type

known unknown

Figure 3.28: The net filetypes

In Fig. 3.28 a typial use of inhibitor ars is shown. In the plae at the top, a �letype is

given and the system has to deide whether this is a known �le type. All known �le types

are supposed to be registered in the plae at the lower enter. Now the left-hand transition

selets the known �le types, whereas the right-hand transition an only �re if the �letype is

not ontained in the enter plae. Using ordinary Petri nets it is rather di�ult to express

suh a onstraint.

Note, however, that inhibitor ars lak a robust onurreny semantis, so that they have

to be used with the extended sequential mode as desribed in Subsetion 2.6.4.

3.11 Timed Nets

While pure Petri nets apture the ausality and on�it situations of a system niely, there are

reasons to add a notion of time to the formalism in order to model additional dependenies.

This is espeially true in the ase of simulations of physial systems.

To enable timed simulations, two options need to be on�gured. The usual Java om-

piler omplains about time insriptions, you have to hoose the Timed Java Compiler in the

Formalismsmenu (see setion 4.3.6) or with the setFormalism ommand (see setion 2.7.4).

Timed nets an only be simulated in the sequential simulation mode as desribed in subse-

tion 2.6.4. For your onveniene, the sequential simulation mode is enabled automatially

when you hoose the Timed Java Compiler in the editor.

In timed mode, a time stamp is attahed to eah token. It denotes the time when the

token beomes available. Delays may be used with ars in order to ontrol the time stamps

of token and the �ring times of transitions.

A delay is added to an ar by adding to the ar insription the symbol � and an expression

that evaluates to the number of time units. E.g., x+1�t indiates that the token value x+1

has to be moved after t time units. Input ars an require that a token remains available for

a given time before enabling the transition. For input ars, the delay must not be reated

by a random number generator or depend on the result of an ation insription. However,

an input ar delay may depend on token values and indeed on the value of the delayed input

token itself, whih means that [x,t℄�t would be a legal, although somewhat peuliar ar

insription.

63

Output ars an speify that a token is only available after some time. The output ar

delay may be alulated in an ation and it may be a random number. The output ar

delay annot in�uene the enabling of a transition, but only the timestamps of the generated

tokens. Reserve ars an speify an output ar delay. The input ar delay is always zero, the

token is onsumed at the urrent time.

Test ars annot speify a time. They an only aess urrently available tokens. They

put the token bak with the original time stamp. Clear ars annot speify a time. They

remove all tokens, regardless of the time stamp. Inhibitor ars annot speify a time. They

blok on all tokens, regardless of the time stamp. Flexible ars an remove only urrently

available tokens.

[x,true]

x

x

x

xx@1

x

waiting for

customs

x

ship

counter

[x,false]

x

x x@5

[]@5

next

ship

[x,Math.random()<0.2]

no unloading

required

unloading required

[]@1

[]

check

[];[]

x

x

x

delivered goodsload ship

x+1@Dist.

 negexp(2)

1

check
waiting

truck departsfinish unloading

[];[];[]

goods on truck

ship arrived

import de.renew.util.Dist;

x

start

unloading
x@Dist.

 negexp(6)

checked chief officerofficers
craneunloading

x@3 x@1

empty ship

Figure 3.29: The net port

In Fig. 3.29 you an see an example model of a sea port where ships arrive and are

unloaded. The loading of the ships is not displayed. At the upper left hand orner, you

an see that new ships are reated, eah ship being numbered aordingly. Probabilistially

it is determined whether the ship needs unloading. If yes, the ship is unloaded and the

ustoms delarations are heked onurrently. The ship is unloaded by one of three ranes,

where the unloading takes six hours on average with a negative-exponential distribution. Two

ustoms o�ers handle delarations in three hours, but they need another two hours for �ling

afterward. If a delaration is not handled for at least �ve hours, the hief ustoms o�er

helps proessing the forms. He does not look very arefully and needs only one hour in total.

With the good and the signed ustoms forms, a truk may leave the port. After another hour

of leaning up, the ship may be reloaded.

Note how we use a reserve ar to model a resoure that is unavailable during some time.

An input ar delay was used to prioritize the ordinary ustoms o�ers over the hief o�er

and to fore the hief o�er into ation at the right time.

You might want to try to add di�erent unloading times to the three ranes. Try to model

the loading of the ship. Consider partial unloading of ships. Try to onvert the net to an

objet-oriented design, where the port, the ranes, the ships, and the o�ers are all individual

nets that ommuniate via synhronous hannels.

3.12 Pitfalls

A few ommon and espeially dangerous pitfalls will be disussed in this setion.

64

3.12.1 Reserve Ars and Test Ars

Reserve ars and test ars look alike, beause they do not hange the marking of the assoiated

plae. This an lead to subtle modeling errors.

["Smith","Smith"]

[author,editor]

this:getAddress(author,

 authorAddr)

this:getAddress(editor,

 editorAddr)

authotAddr

editorAddr

:getAddress(name,addr)

["Smith","42 Petri Avenue"]

["Jones","117 Java Park"]

["Miller","10 Renew Street"]

[name,addr]

Figure 3.30: The net reserve

The net from Fig. 3.30, whih is �led in the diretory samples/pitfalls, shows a small

exerpt of a work�ow when a printing error is found in an artile in a book. The desired e�et

is to lookup the address of both author and editor, so that they an be sent a noti�ation. The

modeler wanted less net elements, therefore both lookups were done by a single transition.

However, the database aess is done with a reserve ar, so that this proedure fails when

author and editor oinide. In this ase, it would have been better to use a test ar, beause

there is no need to reserve the information in the database. This error, whih is not the

only one in the net, is espeially di�ult to detet beause it is hidden behind a synhronous

hannel invoation.

Use test ars to aess information, use reserve ars to aess physial items or logial

resoures.

3.12.2 Unbound Variables

The main task of the simulation engine is to �nd bindings of the variables under whih a

transition beomes ativated. However, the simulation engine never tries to bind variables

blindly to all possible values, e.g., trying -2147483647, then -2147483646, then -2147483645,

until a binding of an integer variable is found. Instead, variables that our as insriptions

to input ars are bound to the values that our as tokens in the orresponding plaes.

This leads to an important design rule: Always make sure that the bindings for all variables

an be determined by binding input ar variables to tokens. Remember that the simulator

does not evaluate expressions bakward. Remember that �exible ars do not ontribute to

variable bindings.

If the simulation engine does not manage to bind a variable in this way, it simply gives up

and delares the transition disabled. In some other Petri net formalisms, unbound variables

are used as a sort of random generator. While this may be a good idea sometimes, it is not

di�ult to simulate this behavior by a diret all to a random number generator.

Closely related are spelling mistakes for variable names. In the untyped formalism every

identi�er is a legal variable name, therefore many spelling mistakes annot be deteted. Often

this leads to unbound variables and ompletely disabled transitions, although all tokens seem

to be in plae. In fat, Fig. 3.30 ontains suh an error, beause in one plae authorAddr is

misspelled as authotAddr.

3.12.3 Side E�ets

It has already been noted that side e�ets must only our in ation insriptions. However,

there is another triky point: The enabledness of a transition must not depend on a mutable

65

property of a Java objet.

buffer=

 new StringBuffer()
buffer

buffer.append("!")

guard buffer.length()>10
buffer[]

buffer

buffer

Figure 3.31: The net buffer

In Fig. 3.31 we have a net whose modeler is guilty on both aounts. It was intended

to have a string that grows and grows and that some other transition should �re as soon as

the length of the string exeeds 10. But if you run the net, you will �nd out that the upper

right transition never �res. Or at least it is very improbable that it �res. This is beause it

is heked for enabledness early on, while the string length is still 1 or 2. Afterward it is not

reheked, beause its input plae did not hange its marking.

It is also possible that the length of the string inreases by 2 during some yles. How

an that be? The all to append is not ontained in an ation, so that ould be evaluated

one during the searh for a binding and one during the atual �ring. Note that this is a

relatively harmless senario.

3.12.4 Boolean Conditions

The standard way of ensuring the equality of two expressions is the transition insription

expr1=expr2. But note that the insription expr1!=expr2 does not lead to inequality. It is

merely a boolean expression that is evaluated and whose result is disarded. If you want to

speify inequality, you have to use a guard like guard expr1!=expr2.

3.12.5 Custom Classes

It is often sensible to enapsulate omplex operations in helper lasses that are assoiated

with a net. In this way, it is possible to keep the nets free of unneeded detail. Of ourse, the

helper lasses need some hanges oasionally and have to be reompiled.

If the helper lass was already used in the simulator at the time of reompilation, e.g. in a

previous simulation run, then the Java virtual mahine will not load it again. Instead it will

ontinue to use the old version of the lass. To reload new lasses, you either have to lose

and restart Renew entirely or use the lass reinit mode as desribed in subsetion 2.6.5.

3.12.6 Net Stubs

A net stub (see 3.9) is reated with the name of its assoiated net. At runtime the net stub

tries to �nd a net with this name, but it will only sueed if the net is already ompiled or

if the net is aessible through the net loader (see setion 2.6.6). If not, the onstrutor will

throw an unquali�ed RuntimeExeption.

When using a stub delared with for net netname , it is important that the stub objet is

reated instead of the net instane itself. This means that the net should not be instantiated

by the usual :new insription. The onstrutor of the stub lass must be used beause

suh a stub is not able to wrap an existing net instane. The alternative delaration for

netinstane allows wrapping of net instanes, but reates a seond objet.

Calls to stub methods or the stub onstrutor should be enapsulated in ation in-

sriptions beause these methods annot terminate until the simulation step needed for the

involved hannel synhronization is ompleted. The simulator may hang if stub methods are

66

exeuted outside of ations. (This note applies espeially to those ases where a net alls a

Java method whih in turn alls a net stub.)

3.12.7 Exeution of synhronized Java Code

This omes lose to the exeution of methods with side e�ets. The side e�et of a synhro-

nized method or ode blok is that it delays the exeution of other threads. This an lead

to a deadlok when the thread of the simulation engine has to wait in a monitor for another

thread whih annot �nish without the simulation thread (if you are asking how to produe

suh a onstellation: Call a net stub from synhronized ode, for example).

There are two ways how to avoid the problem:

• Do not use synhronized Java ode. Every time you would need synhronization,

model it expliitly with nets. This way you are able to see the problem, if one ours.

• When alling a synhronized method, make the alling insription an ation insrip-

tion. So the simulation engine is out of danger of waiting in a Java monitor during

the searh for bindings. If you are using the default onurrent simulator, it stays

alive and is able to ontinue its work. It still an happen that the exeution of the

ation insription hangs, but then the responsible transition is highlighted and an be

identi�ed.

3.12.8 Case of Class and Variable Names in Untyped Nets

The insription language of Java referene nets is ase sensitive. However, if you reate

untyped nets (without any variable delaration in the delaration node), there might be an

exeption � depending on the operating system you are using.

In untyped nets, Renew has to guess whether a partiular identi�er denotes a lass or

a variable. It does so by heking for lasses with a mathing name in the on�gured lass

loader, whih in turn looks up all �le loations in the lass path. On operating systems with

a ase-insensitive �le system (e.g. Windows), the lass loader might �nd a lass that mathes

the queried name exept for the ase. Renew then reports a lass with a linkage problem

referring to a NoClassDefFoundError (or similar).

The problem ours espeially when you use lass and variable names that di�er only in

ase. Although this is aeptable in nets with expliit variable delarations, you should avoid

this tehnique in untyped nets.

67

Chapter 4

Using Renew

Renew o�ers a graphial, user-friendly interfae for drawing referene nets and auxiliary

graphial elements. The net editor ontained within Renew is based upon a Java library

alled JHotDraw [8℄. The basi drawing apabilities are mainly taken over from JHotDraw,

while the multi-windowing GUI, the net editor �gures and tools, and the image �gure tool

have been implemented by the Renew team. Still, this manual overs a omplete desription

of all drawing and editing apabilities Renew o�ers.

4.1 Basi Conepts

When working with Renew, you edit so-alled drawings. A drawing onsists of many drawing

elements, alled �gures. Eah drawing is displayed in a separate drawing window. Sine

you are expeted to work on many di�erent drawings and thus have many di�erent windows

open at the same time, it would onsume lots of valuable desktop spae to repeat a menu

bar and tool buttons in every window. To avoid this, all ommands have been grouped into

one entral window, the Renew window, whih ontains a menubar, a toolbar and a status

line (see �gure 4.1). This might seen a bit unfamiliar for Ma users, but is related with the

platform independene of Java.

The shortut Ctrl+M ativates the entral Renew window and brings it on top of all other

windows. This key is useful if you are working with many large drawing windows, these

buried the entral window and you need aess to the menu bar or tools.

Figure 4.1: The Renew Window

There is always one ative drawing window. Seleting a pull-down menu invokes a om-

mand whih a�ets the ative window, its drawing, or a seletion of �gures of that drawing,

unless it has a global e�et only. Examples of menu ommands are saving or loading a dou-

ment or hanging attributes of �gures. The menu ommands are explained in Setion 4.3. On

the other hand, the toolbar is used for seleting a urrent tool. With a tool you an reate or

edit ertain kinds of �gures in a drawing. All tools available in the toolbar are disussed in

Setion 4.2. Sine eah tool (but the seletion tool) is related to a ertain type of �gures, the

68

orresponding �gure type is also explained in that setion. To manipulate �gures, handles

are used. Handles are small squares or irles that appear at speial points of a �gure when

the �gure is seleted. Dragging and (double-)liking handles has varying e�ets, depending

on the kind of �gure and handle. Handles are also explained in the orresponding �gure's

setion.

Renew

2.6

We now provide a zooming feature, whih an be triggered using keyboard shortuts

(Ctrl and +/- to zoom in/out) or by using the mousewheel while pressing Ctrl

(Ctrl+Mousewheel up to zoom in and Ctrl+Mouswheel down to zoom out). The

zoom fator an be resetted with Ctrl+0.

To �nd out how to install Renew, refer to Setion 2.4. You should then be able to start

Renew from the ommand line, just typing renew (or loadrenew), or using a program ion

you reated, depending on your operation system.

You an also provide some drawings' �le names as ommand line parameters. After typing

renew, just provide the (path and) name of one or more �les, inluding the extension .rnw,

e.g.

renew MyNet.rnw some /where/OtherNet .rnw

On start-up, Renew tries to load drawings from all spei�ed �les. On Unix systems, you an

even use

renew some /where/*.rnw

to load all drawings in a diretory.

If you have a program ion that is assoiated orretly, your OS usually also supports

double-liking some .rnw �le or using drag & drop.

In the rare ase that Renew terminates abnormally, it should leave an autosave �le for

eah modi�ed net drawing. Autosave �les are typially updates every two minutes. You an

detet an autosave �le by its �le extension .aut. Whenever possible, the �lename is derived

from the main drawing's �le name by removing the old name extension .rnw and adding

.aut. If suh a �le exists already, a random �le name of the form rnw99999.aut with an

arbitrary number is hosen. In order to reover an autosave �le, simply rename it, so that it

reeives the .rnw extension.

Renew also leaves .bak �les that onstitute the last version of the �le that Renew loaded.

Unlike autosave �les, these �les are overwritten during subsequent runs of Renew.

4.2 Tools

In the toolbar, several tool buttons are displayed, whih an be seleted by liking on them.

The tool buttons are grouped in two or more toolbars (depending on the mode of Renew).

When resizing the Renew window, toolbars are wrapped aording to the size of the window.

The standard toolbars are the drawing toolbar and the Petri net toolbar. More toolbars an

show up based on the hosen formalism.

Eah single toolbar an be put into its own window by liking at the spot on the left

of the toolbar. Figure 4.2 shows the Petri net toolbar in a separate window. If a toolbar

window is losed, the toolbar is returned to the Renew window.

Figure 4.2: The Petri Net Toolbar in its own Window

69

At any point in time, exatly one tool of all toolbars is seleted, whih appears pushed

down. By default, a speial tool, the seletion tool, is seleted, whenever the work with the

urrent tool is �nished.

If you double-lik a tool button, the tool will remain ative until you expliitly selet

another tool or right-lik on an empty spot in the drawing. This replaes the menu Toggle

Stiky Tools from the Edit menu. In general, double-liking tools is most useful during

the initial reation of nets (but there are also other, probably more elegant ways) and the

normal seletion is more apt to later modi�ation stages. But of ourse, whih way to use

tools also depends on your personal preferenes.

In the status line in the Renew window, a short desription of the tool is displayed if you

move the mouse pointer over a tool button. All other tools but the seletion tool are used

to reate a ertain type of �gures. Some of the tools an also be used to manipulate already

existing �gures of the orresponding type.

4.2.1 The Seletion Tool

The seletion tool is the most basi tool and is not related to any speial �gure type. Instead,

any �gure or group of �gures an be seleted and moved using this tool. If not otherwise

noted, when talking about pressing a mouse button, the primary mouse button is meant.

If the seletion tool is the urrent tool, the following user interations are possible:

Selet By liking on a �gure, it beomes seleted. A seleted �gure an be reognized by

its visible handles. Depending on the type of �gure, di�erent handles appear, but in all

ases, some handles will appear. There are even non-funtional handles, whih are just

there to show that a �gure is seleted and do not have any additional (manipulation)

funtionality. If another �gure is seleted, the urrent �gure beomes deseleted. To

lear the urrent seletion, lik inside the drawing, but not on any �gure.

Add to Seletion If the shift key is pressed while liking on a �gure, the �gure is added

to or removed from the urrent seletion, depending on its seletion status. This way,

a group of objets an be seleted, whih is onvenient or even required for some om-

mands.

Area Seletion If the mouse button is pressed inside a drawing, but not inside any �gure,

the area seletion mode is ativated after a short delay. The starting point marks one

orner of a �rubber band� retangle. While the mouse button is held down, the other

orner of that retangle an be dragged by moving the mouse. When the button is re-

leased, all �gures that are ompletely inside the retangle area are seleted. Combining

this with the �Add to Seletion� funtion is possible.

Inspetion. Some �gures have an additional inspet funtion that is invoked by double-

liking them, whih displays some additional information of the �gure without modi-

fying it. E.g., all onneted text �gures (see Setion 4.2.2: The Conneted Text Tool)

selet their parent during inspetion.

Diret Modi�ation Some �gures have an additional diret manipulation funtion that is

invoked by liking on them with the right mouse button. E.g., all text �gures swith

into edit mode.

Dragging If the mouse button is pressed inside a �gure and held down, the drag mode is

ativated. All �gures that are urrently seleted are moved until the mouse button is

released. An advaned feature of dragging is that it is possible to hange a �gure's

parent. For more information on this funtion, see Setion 4.2.2: The Conneted Text

Tool.

70

type of �gure double lik right lik

retangle, ellipse, . . . selet hildren selet/drag

text selet text edit

onneted text selet parent text edit

transition selet hildren attah insription :s()

plae selet hildren attah insription [℄

virtual plae selet assoiated plae attah insription [℄

ar selet hildren attah/edit insription

delaration selet text edit

insription, name, label selet parent text edit

transition instane open binding window �re arbitrary binding

plae instane selet marking open urrent marking window

ardinality marking selet plae instane show token marking

token marking selet plae instane show ardinality marking

Table 4.1: Summary of seletion tool operations

Stepwise Movement You an use the ursor movement keys on the keyboard to move

seleted �gures upward, downward, leftward or rightward in steps of one pixel. If no

�gure is seleted, the ursor keys sroll the viewable area of the drawing in its window.

By holding the shift key during ursor movement, seleted �gures are moved in steps

of 10 pixels.

Manipulating Depending on the kind of seleted �gure, handles are displayed at speial

points within the �gure. Using these handles, a �gure an be manipulated. The di�erent

types of handles are disussed in Setion 4.2.2 in the subsetion of the orresponding

�gure's tool.

Open Target Loation If the ontrol key is pressed while liking on a �gure, the tar-

get loation of the �gure (if set) is opened (see the subsetion of the target tool in

Setion 4.2.2 for details).

To move a single �gure, it is ruial not to hit a �gure's handle, otherwise the handle's

funtion is invoked instead of moving the �gure(s). When more than one �gure is seleted,

the handles of all seleted �gures are shown but have no e�et. To atually use the handles,

you have to selet exatly one �gure. The easiest way to do so is to lik on an empty spot

in the drawing and then selet the �gure you want to manipulate.

If you move outside a drawing window while operating with the mouse (i.e. while the

mouse button is held down), the viewable area of the drawing is srolled until the drawing

bounds are reahed. If you are dragging a �gure or handle downward or rightward beyond the

urrent drawing bounds, the bounds are pushed forward until you either release the button

or move the mouse bak into the window.

In Table 4.1 we summarize the ations of the inspetion and diret manipulation funtions

for all �gures. The ations assoiated to the di�erent �gures are explained in more detail in

the setion that douments the orresponding tool. Some of the entries in the table refer to

the simulation mode, whih will be explained in more detail in Setion 4.3.6.

4.2.2 Drawing Tools

Renew provides several drawing tools whih reate and manipulate drawing �gures. These

drawing �gures do not have any semanti meaning to the net simulator, but may be used

for doumentation or illustration purposes. You may lak some funtions that you are used

to from your favorite drawing tool (like adjusting line width and suh), but remember that

Renew is a Petri net tool, not a drawing tool in the �rst plae.

71

The Retangle Tool

The retangle tool is used for reating new retangle �gures. Press the mouse button at the

point where the �rst orner is supposed to be and drag the mouse to speify the opposite

orner while holding down the mouse button. While dragging, you an already see the

retangle's dimension and loation whih is on�rmed as soon as you release the mouse

button.

After a new �gure has been reated, the new �gure is not automatially seleted. To

do so, just lik on the �gure with the seletion tool (see Setion 4.2.1). Now, the �gure's

handles appear. In the ase of a retangle or ellipse �gure, these are sizing handles whih

are displayed as small white boxes at the orners of the �gure. These handles let you hange

the dimension (and loation) of a �gure after you reated it. Depending on the position

of the handle, only ertain hanges are allowed. For example, the �east� sizing handle only

allows to hange the width of a �gure, while maintaining the loation of the left side, and

the �south-west� sizing handle only lets you reloate the lower left orner of a �gure, while

maintaining the loation of the upper and right side. The �south-east� handle restrits itself

to sizes of equal height and width (squares) as long as the ontrol key is pressed. With the

shift key pressed, the �south-east� handle restrits itself to onstrain the proportions. The

ontrol key an also be used as a modi�er while you are working with the retangle reation

tool (and many other �gure reation tools).

All newly reated �gures have a blak outline and aquamarine as the �ll olor (if there is

any). To hange these attributes, use the Attributes menu (see Setion 4.3.4).

To reate �gures with the same attributes as an existing �gure, use opy & paste

(see Setion 4.3.2).

The Round Retangle Tool

The round retangle tool works the same way as the retangle tool (see above), only that

the reated �gure is a box with rounded orners. A round retangle �gure has the same

handles as a retangle �gure plus an additional single round yellow handle to hange the size

of the urvature. Drag this handle and hange your round retangle to anything between a

retangle and an ellipse.

The Ellipse Tool

The ellipse tool works the same way as the retangle tool (see above), only that ellipses are

reated within the given retangle area. An ellipse �gure has the same handles as a retangle

�gure.

The Pie Tool

The pie tool works the same way as the retangle tool (see above), only that segments of

ellipses are reated within the given retangle area. A pie �gure has the same handles as

a retangle �gure, with two additional �angle� handles that are small yellow irles. The

�angle� handles ontrol start and end of the ar segment that frames the pie. By pressing the

ontrol key while dragging these handles around, their movement an be restrited to steps

of 15 degrees. If a pie's �ll olor is set to �none�, it displays as an open ar segment instead

of a losed pie.

The Diamond Tool

The diamond tool works the same way as the retangle tool (see above), only that diamonds

are reated within the given retangle area. A diamond �gure has the same handles as a

retangle �gure.

72

The Triangle Tool

The triangle tool works the same way as the retangle tool (see above), only that triangles are

reated within the given retangle area. A triangle �gure has the same handles as a retangle

�gure, with an additional �turn� handle that is a small yellow irle. This handle lets you

hoose the diretion the triangle points to, whih is restrited to one of the enters of the

four sides or one of the four orners.

The Line Tool

The line tool produes simple lines that are not onneted (see also the next setion: The

Connetion Tool). Creating a line is similar to reating a retangle: Press the primary mouse

button where the starting point is supposed to be and drag the mouse to speify the end

point while holding down the mouse button.

The line �gure has two sizing handles (small white boxes) in order to let you hange

the starting and end point afterward. It also has an intermediate point as desribed in

Setion 4.2.2: The Connetion Tool.

A line �gure has no �ll olor, but it respets the pen olor (see Setion 4.3.4).

The Connetion Tool

This tool lets you reate onnetions (ars) between other �gures. A onnetion is like a line,

exept that it onnets two existing �gures and is automatially adapted every time one of

the onneted �gures hanges.

Consequently, the loation of pressing down the mouse button does not speify a starting

point, but a starting �gure. Again, the mouse button has to be held down while dragging the

end point of the onnetion. If an appropriate �gure is found under the mouse button, the

end point �snaps� into this �gure's enter. This �gure is on�rmed as the end point �gure as

soon as you release the mouse button. The onneting line always is �ut o�� at the outline

of the start and end �gure, so that it just touhes their borders.

A onnetion an be re-onneted using its green square onnetion handles. Just drag

one of these handles to the new start or end �gure. If you release the mouse button while

the onnetion is not �snapped� into a new �gure, the onnetion will jump bak into its old

position.

An advaned feature is to produe intermediate points (or �pin-points�) in a onnetion.

When seleted, onnetion �gures show additional insert point handles to reate new inter-

mediate points in the middle of eah line segment. These are depited as small irles with

a ross (plus-sign) inside. When you lik on an insert point handle, a new loation handle

(see below) is reated within the given line segment and an immediately be moved. By

holding Ctrl while pressing, holding and dragging an intermediate point you an orient the

two emerging line segments in a right angle.

A di�erent method to reate and delete intermediate points is to use the onnetion tool.

Ativate the tool and lik on a point on the onneting line. Now, a new loation handle

(white square) is reated, whih you an see the next time you selet the onnetion �gure.

This handle an be dragged to an arbitrary position.

When you hold down the ontrol key while moving a loation handle, the intermediate

point jumps to the losest position so that the adjaent line segments form a right angle.

You an also keep the mouse button pressed down right after liking on an intermediate

point and drag the new handle immediately (without atually having seen the handle itself).

If you want to get rid of a pin-point, simply selet the onnetion and double-lik the

assoiated handle. Another (more ompliated) way to remove intermediate points is to

selet the onnetion tool and lik on the intermediate point with the left mouse button.

If you move two �gures, a straight onnetion is automatially moved with them.

But if the onnetion has intermediate points, these stay at their old loation. So-

73

lution: Just selet the onnetion itself additionally, and everything will move to-

gether.

The Elbow Connetion Tool

The elbow onnetion tool establishes a onnetion between two �gures just like the on-

netion tool. The di�erene is that an elbow onnetion does not draw a diret line from

one �gure to the other, but uses straight (horizontal or vertial) lines only. When you selet

an elbow onnetion, you see up to three yellow handles whih adjust the position of the

horizontal and vertial lines.

Changes to these handles are not stored. Also, if the onneted �gures are lose

together, the deision whether to go horizontal or vertial �rst is quite poor. Sine

no elbow onnetions are needed to onstrut referene nets, we do not really are

about these bugs.

The Sribble Tool

The sribble tool lets you sribble in a drawing with your mouse, just like the famous Java

applet. More preisely, a sribble �gure traes the mouse movement while the button is held

down and thus de�nes several points, whih are onneted by lines. You an also de�ne

single points by single mouse liks. The reation mode is ended by double-liking at the

last point or right-liking in the drawing window. The lou about the sribble �gure: After

it has been reated, every single point an still be hanged by dragging the orresponding

white, square handle. To drag the whole �gure, start dragging on a line segment rather than

inside a handle, or deselet the �gure �rst and then start dragging anywhere on a line of the

�gure.

The Polygon Tool

A polygon is reated analogous to a sribble �gure (see above). While you reate the polygon,

you an already see that the area surrounded by the lines is �lled with the �ll olor. In ontrast

to the sribble �gure, the surrounding line is losed automatially. By interseting the lines,

you an reate un-�lled areas. Like in the sribble �gure, there are white, square handles to

drag every single point of the polygon �gure. A point that is dragged to somewhere on the

diret line between its anestor and predeessor point is removed from the polygon. Also,

there is a round, yellow handle that an be used to turn and to sale the entire polygon �gure

by dragging the handle, whih looks really nie (thanks to Doug Lea).

The round, yellow handle is restrited to pure rotation as long as the shift key is pressed

and to pure saling as long as the ontrol key is pressed. The behavior of white, square point

handles an be modi�ed with the ontrol key similar that of loation handles of onnetions

(see above).

It an be on�gured how the polygon smoothness lines by removing intermediate points.

The property h.ifa.draw.polygon.smoothing an be set to the following values (hanges

take e�et the next time a polygon is manipulated):

alignment This is the default behavior. Points are removed if they are loated on a straight

line between their adjaent points.

distanes Points are removed only if they are too lose to eah other (less than 5 pixels

distane horizontally and vertially).

o� No smoothing at all (no points are removed).

74

The Image Tool

The image tool o�ers you the possibility to inlude bitmap graphis into your drawings.

When ativating this tool, a �le dialog box opens that lets you hoose a bitmap graphi �le

from your �le system. gif �les should work on all platforms, but other formats like jpg, too.

Java (and thus Renew) even supports transparent GIF images.

Be aware that the Enapsulated PostSript output does not support transparent

GIF images, but some of the other export formats (e.g. PDF and SVG) do.

After you on�rmed the �le seletion, the dialog disappears and leaves you with two

options: Either you just lik somewhere in your drawing, or you drag open an area, just like

when reating a retangle. If you just lik, the image is inserted using its original dimensions

(in pixels), otherwise it is saled to the retangle area spei�ed by your drag operation.

An image �gure has the same handles as a retangle �gure.

Sine Renew 2.5 you an use drag and drop to add images. Just drag the image into the

drawing editor.

The Text Tool

The text tool is used to arrange text with your graphial elements. The �rst mouse lik after

ativating the tool selets the upper left orner of the text area and invokes a text editor.

Now you an type in any text, inluding numbers, symbols, and so on. You an even use

the ursor keys, delete any haraters, selet some part of the text with the mouse and so

on, like in any other Java edit �eld. Note that you an even type in several lines, as usual by

pressing the return or the enter key. This is why pressing return or enter does not end the

edit mode.

After you lik somewhere outside of the text editing box, the text is entered and all of

the text is displayed. If the editing box is empty at that moment (the entered text omprises

white spaes and line breaks only), the text �gure is automatially removed from the drawing.

The white box handles are just to show that a text �gure is seleted. The dimension of

a text �gure an not be hanged, as it only depends on its text ontents and font seletion.

The only handle to modify a text �gure is a small yellow round font sizing handle. It

an be dragged to alter the font size, whih an also be done using a menu ommand (see

Setion 4.3.4).

If you want to hange the text ontents of an existing text �gure, just make sure the text

tool is ativated and lik on the text �gure. The text editor desribed above will appear.

Again, on�rm your hanges by liking somewhere outside the editing area.

A fast way to enter text edit mode for any text �gure (inluding onneted text,

insription, name, and delaration �gures) is to right-lik on these �gures. The

orresponding tool is ativated and the �gure is put into text edit mode immediately.

The Conneted Text Tool

Conneted text works exatly like normal text, exept that it is onneted to some other

�gure, whih is alled its parent.

To reate a onneted text �gure, selet the onneted text tool and lik on the �gure

that is to beome the parent of the new onneted text �gure. If you selet a �gure that

annot take a onneted text �gure or if you selet no �gure at all, your seletion is ignored.

If the �gure was suessfully hosen, ontinue with editing text like with a normal text �gure

(see above).

Now, every time you move the parent �gure, the onneted text �gure will move with it.

Only when you drag the onneted text �gure itself, the o�set to its parent is hanged.

To verify whih �gure is the parent of some onneted text �gure, double-lik on the

onneted text �gure, and the parent (if there is any) is seleted.

75

A speial feature of onneted text is dragging a single onneted text �gure, or any

speial sublass like insriptions (see Setion 4.2.3: The Insription Tool), to a new parent.

Whenever the �landing point� of a onneted text drag operation is another potential parent,

it is seleted immediately to indiate that instead of hanging the o�set to the old parent,

the targeted �gure will beome the new parent of the onneted text �gure as soon as you

release the mouse button. If you drag the onneted text �gure to a loation outside this

new parent again, its old parent (if there is any) is seleted in the same manner, to indiate

if you let go the mouse button now, the parent will stay the same.

Note that the o�set the onneted text �gure had to its old parent is re-established for its

new parent, so it might jump to another position after reonnetion. This is quite onvenient

if you moved an insription to a preferred o�set to its parent (e.g. to the right-hand side of

a transition), and want to keep this o�set even after onneting it to a new �gure.

The Target Tool

The target tool an be used to add hyperlinks (target loations) to �gures. These target

loations an point to other Renew drawings, �les in the �le system or to a loations written

as URI (e.g. a website). The target tool works like the onneted text tool with the di�erene

that the target loation is only visible when edited. The target loation is stored as attribute

of the �gure (targetLoation). The target loations an be opened by using the seletion

tool and liking on the �gure while pressing the ontrol key (see Setion 4.2.1).

4.2.3 Net Drawing Tools

Now it is really getting interesting: This group of tools allows you to draw Petri nets that

have a semanti meaning to the simulation engine. Renew di�erentiates between a simple

retangle and a transition, although they may look the same. When you use the net drawing

tools, some syntati onstraints are heked immediately (see Setion 4.6).

Sine all net element �gures (transitions, plaes, and ars) may have insriptions,

Renew supports automati insription generation. Clik on a net element �gure

with the right mouse button, and a new insription �gure is reated with a default

insription depending on the type of net element. This is espeially onvenient for

ar insriptions, sine these usually onsist of a single variable. Of ourse, in most

ases, you have to hange the insription afterward, but you do not need to use the

insription tool. Instead, you right-lik on the net element and then right-lik on

the newly reated insription.

The Transition Tool

This tool funtions almost exatly like the retangle tool. The di�erenes are:

• Only transition �gures have a semanti meaning to the simulator. A retangle �gure

is ignored by the net exeution engine.

• To reate a transition with a default size, after seleting the transition tool, just lik

instead of drag. The position of the lik spei�es the enter of the newly reated

transition.

• A transition �gure o�ers an additional handle. The ar handle, a small blue irle in

the middle of the �gure, an be used to reate new output ars (see Setion 4.2.3: The

Ar Tool).

The new handle has a speial behavior when you stop dragging on �gure that is not ap-

propriate as a target for the ar. A normal onnetion is deleted when there is no appropriate

end �gure. However, for an ar it is quite lear what kind of �gure is supposed to be there:

a plae �gure. And this is what happens: Automatially, a plae �gure is reated with its

76

enter set to the loation where you released the mouse pointer, and the newly reated ar

onnets the transition and the new plae.

This feature o�ers you a very fast way to reate referene nets. Just start with a

transition and use its blue ar handle to reate a new ar and the next plae. Sine

this works for plaes (see below), too, you an ontinue to reate the next ar and

transition using the ar handle of the newly reated plae. If you want to reuse an

existing plae or transition, just drag the ar to that �gure as usual. Thus, you an

reate arbitrarily omplex nets without seleting any other tool! If you ombine this

with the automati insription generation and editing (see above), even olored nets

will only take seonds to reate.

The Plae Tool

The plae tool works analogously to the transition tool, only that the ar handle (the small

blue irle) reates input ars (see previous setion). If the new ar is not released on top of

an existing transition, a new transition is reated and used as the target of the ar.

The Virtual Plae Tool

The virtual plae tool is used to reate virtual opies of a plae. It improves the readability

and graphial appearane of nets in whih ertain plaes are used by many transitions. Other

Petri net tools sometimes all suh a virtual opy of a plae a fusion plae. If the ontents of

a plae is needed for many transitions, the readability of the net dereases beause of many

rossing ars. With a virtual plae opy, you an draw the same plae many times, thus

avoiding suh rossing ars and ars over long distanes.

You reate a virtual opy of a plae by ativating the virtual plae tool, then liking on

the plae you want to opy (this an also be a virtual plae!) and keeping the mouse button

down while dragging the virtual plae �gure to its destination loation. The virtual plae

an be distinguished from a normal plae by the double border line (see the graphis inside

the tool button). To �nd out whih plae a virtual plae belongs to, just double-lik the

virtual plae. To make this relation visible in printed versions of your nets, you should opy

the name of the plae to the virtual plae. Unfortunately, the tool does not take are of the

names of virtual plaes automatially. Another solution supported by the tool is to give eah

group of a plae and all its virtual opies a di�erent �ll or pen olor. All plaes belonging

together will hange their olors if you hange the olor for one plae.

During simulation, every virtual opy of a plae ontains exatly the same token multiset

as its original plae. Still, it is possible to determine the marking appearane separately for

eah virtual plae (and the plae itself) (see Setion 4.3.6).

A nie way to take advantage of this feature is to reate virtual opies of plaes

with an important and extensive marking and move these to an area outside the

net. This has a similar e�et as the urrent marking window, but you do not get

your sreen luttered with so many windows.

The Ar Tools

The ar tool works quite the same as the onnetion tool (see desription in Setion 4.2.2).

The di�erenes are, like above, that an ar has a semanti meaning to the simulator. A

restrition oming from the Petri net struture is that an ar always has to onnet one

transition and one plae, not two �gures of the same kind or any other �gures. The ar will

not snap in on the wrong �gures and disappear if you release the mouse button over a wrong

�gure. This behavior is di�erent from when you reate ars using the ar onnetion handle

in plaes or transitions (see Setion 4.2.3: The Transition Tool).

There are four ar tools for those di�erent ar types that are generally available:

77

Ar Tool � This tool is used for reating input and output ars, whih only have one

arrow tip at their ending. If the start �gure of the onnetion is a plae (and thus, the

end �gure has to be a transition), this one-way-ar is an input ar. If the start �gure

is a transition, we have an output ar.

Test Ar Tool � Here, test ars without any arrow tips are reated. A test ar has no

diretion, as no tokens are atually moved when the transition �res (see Setion 3.12.1).

This means it does not matter whether you start a test ar at the plae or at the

transition.

Reserve Ar Tool � With this tool, reserve ars with arrow tips at both sides are re-

ated. Again, the diretion does not matter. For the semantis of reserve ars, see

Setion 3.12.1.

Flexible Ar Tool � An ar with two arrow tips on one side is reated. These �exible

ars transport a variable number of tokens. For the semantis of �exible ars, see

Setion 3.10.1.

There are two additional ar tools that are only displayed on request, as desribed in

Subsetion 4.3.6.

Clear Ar Tool � This tool is used for reating lear ars, whih remove all tokens from a

plae. You have to selet the plae as the start �gure and the transition as the end �gure

during the reation of a lear ar. For the semantis of lear ars, see Setion 3.10.2.

Inhibitor Ar Tool � This tool is used for reating inhibitor ars, whih stop the attahed

transition from �ring as long as ertain tokens are ontained in a plae. This ar features

irles at both of it end points. Again, the diretion does not matter. For the semantis

of inhibitor ars, see Setion 3.10.3.

Using the Attributes menu, it is possible to hange the diretion of an ar after its

reation. Simply selet the desired value for the attribute Arrow. However, you annot

urrently hange ordinary ars to �exible ars, or vie versa. Neither an you aess inhibitor

or lear ars this way.

Let us repeat from Setion 4.2.2 that you an reate intermediate points by seleting an

ar tool before liking on an already existing �gure. You an then drag the intermediate

point to its destination. To get rid of intermediate point, right-lik the assoiated handles.

The Insription Tool

Insriptions are an important ingredient for most high-level Petri net formalisms. An insrip-

tion is a piee of text that is onneted to a net element (plae, transition, or ar). Refer to

Setion 3 to �nd out what kind of insriptions are valid in our formalism. You an insribe

types and initial markings to plaes. You an provide insriptions for ars, in order to deter-

mine the type of tokens moved. Transitions may arry guards, ations, uplinks, downlinks,

and expressions. Multiple transition insriptions may be given in a single �gure, but they

have to be separated by semiolons.

When editing insription �gures, you have to know that in priniple they behave like

onneted text �gures. This means that all funtions for onneted text �gures also work

for insription �gures (see Setion 4.2.2: The Conneted Text Tool). For example, to hek

that an insription �gure is in fat onneted to the net element you want it to be onneted

to, double-lik on the insription �gure. Then, the orresponding net element should be

seleted. Also, you an drag an insription to another net element.

Again, in ontrast to text �gures, insription �gures have a semanti meaning to the

simulator. By default, insriptions are set in plain style, while labels (text without semanti

meaning) are itali. The syntax of an insription is heked diretly after you stop editing it

(see Setion 4.6). Refer to Chapter 3 for a desription of the syntax of Renew net insriptions.

78

The Name Tool

The name tool also onnets text to net elements, in this ase to plaes and transitions only.

By default, a name is set in bold style. The idea of a name for a plae or transition is to

enhane readability of the net as well as simulation runs. When a transition �res, its name is

printed in the simulation trae exatly like you spei�ed it in the name �gure. Plae names

are used in the simulation trae whenever tokens are removed from or put into a plae. Also,

a plae's name is used in the window title of urrent marking windows and a transition's

name is used in the new transition binding window (see Setion 4.3.6).

Eah plae and transition should have at most one name �gure onneted and eah name

should be unique within one net (but the editor does not hek either of these onditions).

Plaes and transitions without onneted name �gures are given a default name like P1, P2,

. . . and T1, T2, . . .

The Delaration Tool

A delaration �gure is only needed if you deide to use types (see Setion 3.4.2). Eah drawing

should have at most one delaration �gure. The �gure is used like a text �gure, only that the

text it ontains has a semanti meaning to the simulator. The text of the delaration �gure

is used for import statements as well as variable delarations (see Setion 3.4.2).

As in the ase of insriptions (see above), the ontent of a delaration �gure is syntax-

heked as soon as you stop editing. For an explanation of syntax errors that may our,

refer to Setion 4.6.

The Comment Tool

The omment tool onnets omment texts to net elements. Comment texts have a blue text

olor as default and no semanti meaning for the simulator.

4.3 Menu ommands

This setion ontains a referene to Renew's menus and the funtions invoked by them.

4.3.1 File

As usual, the �le menu ontains every funtion that is needed to load, save and export

drawings. In the following setion, all menu items of the �le menu are explained.

New Net Drawing (*.rnw)

This menu invokes a funtion that reates a new drawing and opens it in a drawing window

in a default window size. The new drawing is named �untitled� and is added to the list of

drawings in memory (see Setion 4.3.7).

The keyboard shortut for this funtion is Ctrl+N.

New Drawing. . .

Renew supports di�erent kinds of drawings (dependent on the installed plug-ins), this menu

entry opens a dialog where the type of drawing an be hosen. Selet the appropriate drawing

type in the dialog and press the New button.

79

Open Navigator

This ommand opens the Renew �le navigator in a new window. The navigator displays fold-

ers and their Renew-related ontent in a diretory tree. The navigator is shown in Figure 4.3.

The keyboard shortut for this funtion is Ctrl+Shift+N.

Figure 4.3: The Renew Navigator

Usage of the Navigator At the top of the navi-

gator window is an ion bar with eight buttons and

an additional �lter bar with an input �eld and three

additional �lter buttons. We desribe these buttons

and their funtion �left to right�.

The Home button displays the home diretory

whih defaults to the preon�gured �les (see next

paragraph) or, if there are none, to the urrent dire-

tory. The NetPath button displays all folders whih

are inluded in the netpath of Renew. This is usu-

ally empty but an be set when starting Renew or in

the menu Simulation→Con�gure Simulation→Net

Path. The Add Folder button opens a �le hoose di-

alog and adds the hosen diretory or �le to the tree.

Files anf folders an also be added to the Navigator

using drag and drop. The Expand button expands the

omplete folder struture. The Collapse button ol-

lapses all nodes of the tree. The Refresh button heks for new and deleted �les and updates

the display in the tree area. The Remove button removes a single node from the tree, while

the Remove all button removes the whole tree.

The input �eld an be used to �lter the Navigator's ontent. The �rst button next to the

input �eld lears the input �eld and the last two buttons provide prede�ned �lters for .rnw

and .java �les.

The Navigator is persistent and extensible. We optionally provide some onvenient ex-

tensions, suh as the integration of the drawing's di� feature (ImageNetDi�), whih an be

triggered diretly from the Navigator GUI. The persisted state of the Navigator is saved in

the �le navigator.xml in the .renew subdiretory of your home diretory.

Con�guring the Navigator The navigator has two properties that an be on�gured in

the usual on�guration �les: de.renew.navigator.workspae and de.renew.navigator.

filesAtStartup. The �rst property de�nes the base diretory for the navigator plugin. It

needs to be an absolute path like /path/to/renew2.6/ or :/path/to/Renew2.6/. The

seond property is a semiolon

1

separated list of paths relative to the base diretory. All

folders and �les de�ned in this list will be added to the tree area on startup.

Example: MyNets;Core/samples;../../../home/renewuser/exampleNets

Open URL. . .

Renew an load drawings from a remote loation spei�ed by a URL. This ommand opens

a dialog where you an type the URL and press OK. Note that Renew is not able to save

drawings to URLs, it still requires a loal �le name.

Open Drawing. . .

This funtion displays a �le seletor dialog that lets you selet a drawing that was saved

previously. The �le seletor dialog looks a little bit di�erent depending on the platform, but

1

A semiolon has to be used even on Unix-based systems, where paths are usually separated with the olon

(:).

80

always allows you to browse the �le system and selet an existing �le. By pressing the OK

button, the seletion is on�rmed and Renew tries to load this �le as a drawing. If that does

not sueed, an error message is displayed in the appliation log and in the status line of

the Renew window. Otherwise, the drawing is added to the list of drawings in memory (see

Setion 4.3.7) and opened in a new drawing window. The keyboard shortut for this funtion

is Ctrl+O.

The open dialog aepts the seletion of multiple �les. This will result in multiple drawing

windows to be opened in the editor simultaneously.

Dependent on the set of installed plug-ins (and on your window manager), one of several

available drawing �le types an be hosen from a drop down box in the dialog. This will

restrit the display of �les in the dialog. You may override the �le type �lter by speifying a

wildard pattern like *.* as �le name and pressing Enter.

Alternatively to using the Open Drawing ommand in the menu, you an use drag and

drop to open drawings. Just drag the �les into the Renew menu and tools window.

Insert Drawing. . .

This funtion opens a previously saved drawing to be inserted into the urrently foused

drawing editor (Opening works like in Open Drawing...). All �gures whih are seleted

before insertion are deseleted. In return all the inserted �gures are seleted now whih

makes it easy to move them around without jamming the other �gures.

Save Drawing

This funtion saves the ative drawing (see Setion 4.1) to a �le using a textual format. The

drawing is saved to the last �le name used, whih is the �le it was loaded from or the �le it

was last saved to. If the drawing has not been saved before, this funtion behaves like Save

Drawing As... (see below).

If there is an old version of the �le, it is overwritten. Depending on your operating system,

overwriting a �le might need on�rmation by the user (you).

The keyboard shortut for this funtion is Ctrl+S.

Save Drawing As. . .

This funtions is used to determine a (new) �le name for a drawing and save it in textual

format (see above).

Like in Open Drawing..., a �le seletor dialog is displayed to let you determine the (new)

�le name and loation. After on�rming with the OK button, the spei�ed �le name is used

to store the drawing now and during future invoations of Save Drawing. The name of the

drawing is set to the �le name without path and �le extension. If you anel or do not selet

an appropriate �le name, the drawing will neither be saved nor renamed.

Dependent on the set of installed plug-ins (and on your window manager), one of several

available drawing �le types an be hosen from a drop down box in the dialog. The e�ets

are similar to the e�ets in the Open Drawing dialog explained above. However, the list of

available �le types is restrited by the type of the drawing you are going to save.

The keyboard shortut for this funtion is Ctrl+Shift+S.

Save All Drawings

This funtion saves all drawings that are urrently in memory (see Setion 4.3.7). Before

this an be done, all untitled drawings have to be given a (�le) name, whih is done as in

Save Drawing As... (see above). If you anel any of the save dialogues, no drawing will

be saved. If all drawings are given a proper (�le) name, they are all saved. You should invoke

this funtion before you exit Renew (see below).

81

Close Drawing

Closes the ative drawing window and removes the orresponding drawing from the list of

drawings in memory (see Setion 4.3.7).

Before doing so, Renew heks if the drawing ould have been hanged (this hek is a

little bit pessimisti) and if so, asks you whether to save the drawing. You have the options

to answer Save now, Close, or Canel. Save now tries to save the drawing. Drawings whih

already have a name are saved with that name. If the drawing is untitled, the normal save

dialog appears (see above). Here, you still have the option to anel, whih also anels the

losing of the drawing. If you selet Close, the drawing is losed and all hanges sine the

last save are lost (or the whole drawing, if it was still untitled). Last but not least, you have

the option to Canel losing the drawing.

The keyboard shortut for this funtion is Ctrl+W.

Close All Drawing

Closes all opened drawing windows and removes the orresponding drawings from the list of

drawings in memory. If you anel any of the save dialogues, the proess is aneled and no

further drawing windows are losed.

The keyboard shortut for this funtion is Ctrl+Shift+W.

Reently saved

The Reently saved menu allows you to load reently saved �les.

Export

The items in the export submenu allow you to save the ative drawing in several formats

for use with other appliations. The Export menu has three submenus. Export urrent

drawing omprises export �lters for the ative drawing only. All these �lters are available

through the �rst menu entry Export urrent drawing (any type), too, where you an

hoose the desired export format via a drop-down box in the �le dialog.

Export all drawings (single file eah) provides the same set of �lters, but there

they are applied to all drawings automatially. This results in one exported �le per drawing,

these �les are stored in the same loation and with the same name as the respetive drawing

�les, but with a di�erent extension.

Export all drawings (merged file) omprises export �lters that are able to merge all

drawings into one �le. Sine this feature must be supported by the format of the exported

�le, the set of export �lters in this submenu is restrited.

The export formats inluded in the basi Renew distribution are listed as follows:

PDF This funtion produes a PDF doument that ontains the urrent drawing. A �le

with the default extension of .pdf is generated.

The �Renew FreeHEP Export� plugin provides the de.renew.io.export.pageSize and

de.renew.io.export.pageOrientation on�guration properties, whih in�uene the page

layout of generated PDF �les. Possible values for page size are: A3, A4, A5, A6, International,

Letter, Legal, Exeutive, Ledger and BoundingBox. Possible values for orientation are: portrait

and landsape.

The properties default to BoundingBox for page size and portrait for orientation. However,

orientation does not apply, if page size is set to BoundingBox.

The keyboard shortut for this funtion is Ctrl+Shift+P.

82

EPS If you want to inlude net drawings into written material, you an use an Enapsulated

Postsript (EPS) �le. The EPS �le an be used to insert graphis into other douments, e.g.

in LaTeX, LibreO�e, Mirosoft O�e, and others. EPS �les are not of a �xed page size.

Instead, their bounding box mathes exatly the dimensions of the drawing.

The keyboard shortut for this funtion is Ctrl+E.

The EPS and PDF export feature relies on the VetorGraphis pakage of the FreeHEP

projet (see https://java.freehep.org). The �Renew FreeHEP Export� plugin provides a

property for the on�guration of the font handling (de.renew.io.export.epsFontHandling).

It an be set to Embed, Shapes or None. The Shapes option is the default as it produes the

most similar output with respet to sreen display. However, the generated �les an beome

rather large. The None option omes lose to the old Renew export behavior without any

font information inluded. The Embed option should be the best (theoretially), but it often

produes unreadable results.

The bakground of drawings exported to eps an also be set to transparent by setting

the property de.renew.io.export.eps-transpareny to true. Inluded images with trans-

pareny (alpha) always get a white bakground. If you want to inlude transparent images,

we reommend to use the PDF export.

PNG This funtion produes a PNG image that ontains the urrent drawing. A �le with

the default extension of .png is generated. This export format di�ers from the previously

mentioned formats sine it is pixel-oriented instead of vetor-based. The generated image

has a �xed resolution that annot be saled without loss of information. The bakground of

exported PNG images is transparent. The PNG export is based on the FreeHEP library.

The keyboard shortut for this funtion is Ctrl+9.

XML There are several export formats that use XML. We provide experimental PNML

support sine Renew 2.0. PNML stands for Petri net Markup language and has been presented

at the ICATPN'2003 in [2℄. With Renew 2.2, the SVG format has been added. With Renew

2.4, the support for the experimental XRN format provided in previous releases has been

disontinued.

PNML-P/T-Net This format saves the drawing as a P/T-net, ompatible with the

PNML standard type de�nition in version 2009 from http://www.pnml.org. Note that all

drawing elements whih are not needed to desribe the P/T-net are omitted.

PNML-P/T-Net with Renew-spei� insriptions This format saves the drawing

as PNML-P/T-Net but stores the Renew-spei� insriptions using the toolspei� extension

of PNML.

PNML-RefNet This format saves the drawing as a Renew referene net. Graphial

�gures without semanti meaning (e.g. those �gures produed by the drawing tool bar) are

omitted. The underlying PNML type de�nition is experimental, it may be subjet to hanges

without notie.

Please note that the PNML standard allows multiple nets to be ontained within one �le.

SVG This format exports the omplete graphial information of a drawing into an SVG

image �le whih an be displayed by many modern web browsers. Petri net semantis are

not retained. The SVG export is based on the FreeHEP library.

Wo�an Wo�an (see [7℄) is a Work�ow Analysis tool that heks if a Petri net onforms to

some restritions that make sense for Work�ows. As Wo�an only handles single, non-olored

Petri nets without synhronizations, only the struture of the ative window's net is exported.

83

https://java.freehep.org
http://www.pnml.org

Still, if you have the Wo�an tool, it makes sense to hek Renew work�ow models for severe

modeling errors in their struture.

For the time being, the initial plae of the work�ow net must arry the name pinit.

Otherwise, a plae with this name (but without any onneted ars) will be generated in the

exported net.

Shadow Net System A shadow net system an omprise one or more nets whih an be

used by the non-graphial simulator (see setion 4.5), the net loader or other tools. Only the

semanti information is ontained in the shadows, but not the visual appearane.

The urrent formalism (see setion 4.3.6) and the on�guration of simulation traes for

individual net elements (see setion 4.3.5) will be stored within the shadow net system.

As merged �le A shadow net system that ontains all nets needed for a simulation

an be generated by the N to 1 entry in the Export all drawings (merged file) menu.

Before exporting a olletion of nets to the shadow simulator, it is reommended to do a

syntax hek on the net. Although any syntax errors in the nets will be deteted before the

start of a non-graphial simulation, �xing these errors requires the editor.

The urrent formalism (see setion 4.3.6) and the on�guration of simulation traes for

individual net elements (see setion 4.3.5) will be stored within the shadow net system.

As single �le eah These �les are well suited for the net loading mehanism desribed

in subsetion 2.6.6.

The ommand does not require any additional interation, all �le names are derived from

the orresponding drawing �les. If a drawing has not been assigned a �le name, it is skipped

during the export.

Import

The items in the import menu allow you to load drawings from di�erent �le formats.

import (any type) The �rst entry of the Menu ombines all import �lters into one dialog

where you an hoose the desired format from a drop-down box. For window managers where

this drop-down box is not available, the separate menu entries are still available.

XML Analogous to the export features desribed in subsetion 4.3.1, Renew provides the

PNML format as import �lters.

PNML Tries to import a �le in PNML format. The �lter automatially guesses the net

type used in the PNML �le. It tries to extrat as muh graphial and semanti information

as possible from the �le.

Shadow Net System Lets you import a previously exported (or automatially generated)

shadow net system (see above).

Sine a shadow net system does not ontain any graphial information, the plaes, tran-

sitions, ars, and insriptions are loated in a rather unreadable manner. Thus, this funtion

only makes sense for shadow net systems automatially generated by other tools. After im-

porting, it is of ourse also possible to edit all nodes and insriptions in a normal fashion. An

automati graph layout funtion that an ease the task of making an imported net readable

is desribed in Subsetion 4.3.3.

84

Print. . .

The print menu invokes a platform dependent print dialog and lets you make hardopies of

the ative drawing. Using the Java standard print system, though, the quality of the printer

output is usually very poor. In that ase, we enourage to use the EPS or PDF export instead

and print with an external tool.

The keyboard shortut for this funtion is Ctrl+P.

Exit

Tells Renew to terminate. All drawings are losed as if you losed them manually, whih

means that now Renew asks you about saving hanged drawings (see Subsetion 4.3.1).

Due to the introdution of the plug-in system, other plug-ins might still be ative when the

editor is losed. With respet to the simulator plug-in, the editor asks you for on�rmation

to terminate a running simulation (if there is any). If you hoose No, then the non-graphial

simulation of Renew will ontinue.

To enfore that the whole plug-in system is shut down when you lose the editor, you an

on�gure the property de.renew.gui.shutdownOnClose (see Subsetion 2.7.3 for details).

4.3.2 Edit

The Edit menu ontains funtions to insert, remove and group �gures and to hange a �gure's

Z-order. Details an be found in the following setions.

Undo, Redo

Up to ten modi�ations to eah drawing an be undone step by step. The e�et of an undo

an be undone by the redo ommand. The keyboard shortut for undo is Ctrl+Z and for

redo it is Ctrl+Y.

Cut, Copy, Paste

This funtion group o�ers the typial lipboard interations. Cut and Copy relate to the

urrent seletion in the ative drawing window (see Setion 4.1). Thus, these funtions are

only available if there is a urrent seletion.

Cut puts all seleted �gures into the lipboard and removes them from the drawing. The

keyboard shortut for Cut is Ctrl+X.

Copy puts all seleted �gures into the lipboard, but they also remain in the drawing.

The keyboard shortut for Copy is Ctrl+C.

Paste inserts the urrent lipboard ontents into the ative drawing. The upper left

orner of the objet or group of objets is plaed at the oordinates of the last mouse lik.

The keyboard shortut for Paste is Ctrl+V.

Note that due to restritions of Java, Renew's lipboard does not interat with your

operating system's lipboard.

The urrent seletion is automatially extended to inlude all referened �gures before

opying to the lipboard. If for example you selet an ar insription and invoke opy and

then paste, the ar, the start �gure, and the end �gure of the ar will also be opied. This is

sometimes not what you intended to do, but you an easily move the opied ar insription

to the original ar (see Setion 4.2.2) and remove the other dupliated �gures. Of ourse, ut

only removes the �gures whih were originally seleted.

The better alternative to opy insriptions is to mark and opy the text of the

insription when you are in text edit mode (Ctrl+C, unfortunately, this does not

work on all Unix platforms). Then, reate a new insription by right-liking the

net element. Edit the new insription by right-liking it and paste the opied text

by pressing Ctrl+V.

85

Dupliate

Dupliate works like Copy followed by Paste (see previous Setion), where the paste oordi-

nates are not depending on the last mouse lik, but are just a small o�set to the right and

down from the position of the original seletion.

The keyboard shortut for Dupliate is Ctrl+D.

Delete

Removes the seleted �gures from the ative drawing. Note that if a �gure is removed, all its

onneted text �gures and onnetion �gures are also deleted.

The keyboard shortut for Delete is the bakspae and/or the delete key (depending on

the platform).

Searh, Searh & Replae

Searh looks for a math or substring-math of an user given searh string in all text�elds

of all loaded nets. Searh is ase sensitive. After an ourrene of the searh string is found

the next an be found by pressing the searh button again. Changes on the searh string

start a new searh. The keyboard shortut for this funtion is Ctrl+F.

Searh & Replae gives the opportunity to replae any found searh string with a

replae string. Eah replaement is prompted and has to be on�rmed by the user. Changes

on the replae string start a new searh. The keyboard shortut for this funtion is Ctrl+G.

The searh window allows you to selet, whether the searh should be ase sensitive and

whether the searh shall inlude all drawings or only the ative one.

Group, Ungroup

You an reate a group of all urrently seleted �gures in the ative drawing. A group is

atually a new �gure, whih onsists of all the seleted �gures. You an even group a single

�gure, whih does not really make sense unless you want to prevent resizing of this �gure.

From now on, the �gures inside the group an only be moved, deleted, et. together, until

you �ungroup� the group of �gures again. To release a group, one or more groups have to be

seleted. Then, selet the Ungroup menu, and all group partiipants are single �gures again

(whih are all seleted).

Selet All

Commands that allow seletion or deseletion of large sets of nodes allow the user to selet

groups of logially related net elements together. For seleting loally related net elements

or individual net elements see Subsetion 4.2.1.

Using the selet all ommand, all �gures of a drawing are seleted. This is useful when

you want to move all the net elements to a di�erent plae. This ommand works even for

�gures that are loated o�-sreen. The keyboard shortut for this funtion is Ctrl+A.

Invert Seletion

Inverts the seletion of the drawing: All seleted net elements will be removed from the

seletion, whereas all the other net elements will be seleted.

Selet

This menu hierarhy is used to selet all nodes of a ertain type. E.g., it o�ers the possibility

to selet all transitions, or all ars, or all insriptions that are attahed to plaes.

This ommand omes in handy when you want to set attributes like olor or font size for

all �gures of a ertain type.

86

Add To Seletion

This ommand is similar to the selet ommand, but it does not lear the seletion before it

selets the net elements, thereby ahieving a union of the seletion sets.

This ommand is espeially useful when you want to selet a ombination of net elements

that is naturally overed by the seletion ommand itself. E.g., you an selet all transitions

and then add all insriptions of transitions to the seletion.

Remove From Seletion

This ommand is the opposite of the add-to-seletion ommand. It removes ertain �gures

from the seletion, but leaves the seletion state of the remaining �gures unhanged.

This ommand an be used to selet all �gures, but not the transitions or not the ars.

Restrit Seletion

Sometimes you want to selet a ertain type of net elements inside a ertain area. In this ase,

the restrit ommand allows you to selet the entire area as desribed in Subsetion 4.2.1,

but to restrit the seletion to a ertain type of �gures afterward.

The remove-from-seletion ommand an be used instead of this ommand, if you want

to speify the �gures to drop from the seletion instead of the �gures to keep in the seletion.

4.3.3 Layout

The Layout menu allows to snap �gures to a grid, to align a �gure's position aording to

other �gures, to hange the Z-order of �gures and to layout graphs automatially.

Toggle Snap to Grid

Seleting this menu toggles the Snap to Grid mode of Renew. This grid is not absolute

referring to the page, but means that when the grid is ative, �gures an only be plaed to

grid positions and moved by ertain o�sets. Beause the editor onsiders o�sets while moving

(not absolute oordinates), �gures should be aligned �rst (see below) and then moved in grid

mode.

The grid density now ustomizable. Set the option h.ifa.draw.grid.size to the desired

value in your preferenes. Default is 5 pixel. This preferene is dynami, i.e. an be set at

runtime. E�ets take plae during next exeution of ommand. The grid an also be set

as the default behavior for drawing views. Set the h.ifa.draw.grid.default property to

true (default false).

Align

The ommands in this menu align the seleted �gures. The �gure seleted �rst is the referene

�gure whih determines the oordinates for all others.

Lefts, Centers, Rights. These ommands align the �gure's x-oordinates, i.e. they move

them horizontally. Lefts sets the left-hand side of all seleted �gures to the x-oordinate of

the left side of the �gure that was seleted �rst, Rights does the same for the right-hand

side. Centers takes into aount the width of eah �gure and plaes all �gures so that their

x-enter is below the referene �gure's x-enter.

The keyboard shortut for aligning middles is Ctrl+\ (the bakslash harater).

The shortut works only on an English keyboard layout, where the keys for the

shortut an be typed diretly, i.e. without additional modi�ers like Shift.

87

Tops, Middles, Bottoms. These ommands work exatly like the ommands in the pre-

vious paragraph, exept that the y-oordinate is hanged. Thus, �gures are moved vertially

in order to be aligned with their tops, middles, or bottoms.

The keyboard shortut for aligning middles is Ctrl+Shift+- (the minus sign).

Spread

The items of this menu spread the seleted �gures equidistantly. The two outermost �gures

that are seleted stay at their previous loation while all other seleted �gures are reposi-

tioned. The order of the �gures (left-to-right, top-to-bottom or diagonal) remains unhanged.

To use the spread ommands, you must have seleted at least three �gures.

Lefts, Centers, Rights, Distanes. Here we spread the �gures by modifying their x-

oordinates. The y-oordinate remains unhanged. Lefts arranges the �gures in a way

that the x-oordinates of their left borders are distributed equally. Rights does the same

with respet to the �gure's right borders, Centers with respet to eah �gure's enter point.

Distanes arranges the �gures in a way that the spae in between of eah pair of neighboring

�gures will have the same width. The di�erenes between the four ommands will only be

visible when �gures of di�erent sizes are seleted.

Tops, Middles, Bottoms, Distanes. These funtions work exatly like the funtions

in the previous paragraph, exept that the y-oordinate is hanged. Thus, the �gures are

moved vertially to equal the distanes of their tops, middles, bottoms or borders.

Diagonal. This ommand spreads the �gures in both diretions, horizontally and vertially.

All �gures are treated with respet to their enter point. First of all, a virtual line is drawn

from the outermost �gure (in relation to the enter of the bounding box of all seleted �gures)

to the �gure most apart from the outermost one. Afterward, all other �gures are moved onto

that line with equal distanes between their enter points. The order of the �gures on the

line is determined by the order of the orthogonal projetions of their original loation onto

the virtual line.

Send to Bak, Bring to Front

The �gures in a drawing have a so-alled Z-order that determines the sequene in whih the

�gures are drawn. If a �gure is drawn early, other �gures may over it partially or totally.

To hange the Z-order of �gures, the funtions Send to Bak and Bring to Front are

available. Send to Bak puts the seleted �gure(s) at the beginning of the �gure list and

Bring to Front puts it/them at the end, with the result explained above.

Sometimes, ertain �gures an not be reahed to selet and modify them. Using

these funtions it is possible to temporarily move the overing �gure to the bak,

selet the desired �gures, and move the �gure to the front again. Another option in

ases like this one is to use Area Seletion (see Setion 4.2.1).

Figure size

These two ommands set the size of �gures. The funtion opy within seletion sets the

size of all seleted �gures to the size of the �gure that was seleted �rst. The ommand reset

to default resets the seleted �gure's sizes to their �gure type spei� default. As there

are defaults spei�ed only for net element �gures, the ommand will not have any e�et on

ordinary drawing �gures.

88

Automati Net Layout. . .

Espeially for automatially generated nets, it is nie to have an automati layout of the net

graph, so that one gets at least a rough overview of the struture of the net.

Renew

2.6

The automati layout now provides a new option Random, whih uses a simulated

annealing algorithm to automatially ontrol the parameters of the automati lay-

out. The algorithm produes quite nie results.

This menu entry opens a window to ontrol the automati net layout. The algorithm an

be stopeed and started with the respetive buttons. While this mode is ative, the nodes of

the net are moved aording to ertain rules that are to some extend inspired by physial

fores ating on a mesh of springs.

• Ars have a ertain optimal length that is dependent on the size of the adjaent nodes.

They will at as springs.

• Ars feel a torque whenever they are not horizontally or vertially oriented. The torque

works toward these optimal positions.

• Nodes feel a repulsive fore from eah other until a ertain distane is reahed where

this fore disappears entirely.

• Nodes feel frition, i.e., the motion that was aused by the fores mentioned before

ontinually slows down unless the fore is still applied and ompensates the frition.

• Nodes that would move out of the upper or left border are pushed bak into the

viewable area of the drawing.

These rules will not produe the niest net graph in many ases, but they an ease the early

stages of the layout onsiderably. They might also be used to maintain a layout during early

prototyping phases when the struture of a net hanges onstantly.

In order to improve the layout of the graph, a speial window pops up that allows you

to ontrol some parameters or the physial model using sliders. The �rst slider ontrols the

length of the springs. Some diagrams tend to lump together too muh, whih might an be

a reason to raise this value. On the other hand, the spring might be too rigid, not allowing

some springs to streth to their optimal length. In that ase, you an ontrol the rigidity of

the spring with the seond slider.

The repelling fore ats only up to a ertain distane. By default, the fore is quite far

reahing and establishes a nie global spreading. But you may want to redue this fore's

maximum distane in order exlude only overlapping nodes. In that ase, it may also be good

idea to inrease the repulsion strength.

The torque strength ontrols whether the ars are supposed to be very stritly horizontal

or vertial. Initially, this fore might atually inhibit the progress toward to optimal layout,

but in the end it helps to get a nie net. Try to vary this slider's position during the layout

for optimal results.

Lastly, the frition slider may be lowered, so that the motion is faster overall. Use this

slider with are, beause the layout algorithm may beome unstable for very low frition

values and onvergene to an equilibrium might atually slow down due to osillations. The

optimal value depends heavily on the topology of the net. If you feel that you annot set

some fore's strength high enough, onsider lowering the other fores, and also lowering the

frition a little.

Even while the graph is hanged automatially, you an still grab a node with

the seletion tool and move it to a desired position. Of ourse, it might fall bak

into the old position due to the ating fores, but your ation might establish a

topologially di�erent situation where the fores at toward a di�erent equilibrium.

This is espeially useful when you have seleted high torque and rigid springs, but

low or no repulsion.

89

After you are satis�ed with the graph, swith o� the layout mode. If you add or remove

nodes or ars during the layout proedure, you have to restart the net layout algorithm,

before these hanges a�et the layout algorithm. Note that the start of a layout proedure

always a�ets the urrent drawing, not the drawing that was previously used for layout.

Loation

Using this menu you an delare the urrently seleted �gures as either �xed or dynami.

Dynami nodes partiipate in the automati layout as usual, whih is the default. On the

other hand, �xed nodes still exert fores upon other nodes, but they are rigidly glued to their

position and move only if the user moves them.

By �xing the loation of some nodes, you an selet a preferred diretion or speify the

basi shape of the net while leaving the details to the layout algorithm.

4.3.4 Attributes

This menu helps you to hange a �gure's attributes after its reation. If several �gures are

seleted, the attribute is hanged for all �gures that support that attribute. If you try to

hange an attribute that some seleted �gures do not support (e.g. font size for retangles),

nothing is hanged for that �gures, but the hange is still applied to the other �gures.

Fill Color

The �ll olor attribute determines the olor of the inner area of a �gure. All �gures but the

line-based �gures like onnetion, ar, et. o�er this attribute. The values for this attribute

ould be any RGB-olor, but the user interfae only o�ers 14 prede�ned olors from whih

you an hoose. The default �ll olor is Aquamarine exept for text �gures, where it is None.

When you hoose other... at the end of the list of olors, you get a full-featured olor

hooser dialog that provides multiple ways to de�ne any olor. There are four buttons at the

bottom of the dialog:

Apply applies the urrently hosen olor to seleted �gures.

Update hooses the olor of a seleted �gure and makes it the urrent olor in the dialog.

OK loses the dialog and applies the urrently hosen olor to seleted �gures.

Canel loses the dialog.

The dialog an be used to opy olor attributes between �gures by a sequene of

Update and Apply ations. Similar dialogues are provided for other attributes like

pen olor, text olor, font and font size.

Opaqueness

The opaqueness attribute determines the transpareny of the inner area of a �gure, of the pen

olor or of the font. Eah attribute Fill Color, Pen Color and Font has its own opaqueness

menu that is loated right below eah menu entry. The visibility of eah item an be set in

values ranging from 0% (invisible) to 100% (opaque).

The transpareny attribute is ignored in EPS export. However, transparenies are

printed orretly using the Print dialog and in the PDF, SVG and PNG export

formats.

90

Pen Color

The pen olor attribute is used for all lines that are drawn. All �gures but the image �gure

support this attribute. Note that the pen olor does not hange a text �gure's text olor

(see below), but the olor of a retangle frame that is drawn around the text. Again, hoose

the desired olor from the given list. The default pen olor is blak, exept for text �gures,

where it is None (i.e. transparent). The other... entry at the end of the list of olors opens

a full-featured olor hooser dialog as desribed under Fill olor.

Visibility

The visibility attribute an be used for all types of �gures. A �gure marked as invisible

is still part of the drawing, but it will not be displayed. As it is not visible, it annot be

seleted by the mouse any more, but the selet ommands from the menus Edit or Net will

still inlude the �gure when appropriate. This feature is useful espeially in ombination with

the Assoiate highlight ommand from the net menu. The invisible �gure will appear in

the instane drawing while it is highlighted.

Arrow

This attribute is only valid for the onnetion and the ar �gure and o�ers four possibilities

of arrow tip appearane: None, at Start, at End, or at Both ends of the line. If the �gure

is an ar, its semantis are hanged aordingly.

Arrow shape

This attribute is valid only for lines or onnetion �gures. The style of arrow tips an be

hanged to one of four shapes, whih are usually used to mark di�erent semantis of ars in

Renew. But as it is urrently not possible to hange the ar semantis in aordane to the

arrow tip shape, this attribute will not have any e�et on ar �gures.

Line Style

Every line possesses a line style, whih an be hosen out of the options normal, dotted,

dashed, medium dashed, long dashed or dash-dotted. Lines are typially reated as solid,

normal lines.

It is also possible to de�ne your own line style: After hoosing the option other..., you

an enter any ustom line style in a non-modal dialog. The dialog has four buttons Apply,

Update, OK and Canel that work similar as in the Fill olor dialog (see above).

A ustom line style onsists of a spae-separated sequene of numbers. The �rst number

of the sequene determines the length (in pixels) of the �rst dash. The seond number is

interpreted as the length of the gap after the �rst dash. The third number determines the

seond dash's length, then the next gap's length follows and so on.

The sequene must onsist of an even number of numbers. There is only one exeption:

A single number an be used for a simple dashed line where dashes and gaps are of the same

length. The normal solid line style an be set by applying an empty sequene.

Some examples from our prede�ned line styles:

dashed �10�

medium dashed �15 10�

dash-dotted �7 3 1 3�

Line styles an not only be applied to lines, onnetions and sribble �gures, but also to

retangles, ellipses, polygons, transitions, plaes and other losed shapes.

91

Line Shape

With this attribute a straight line an be hanged to a B-Spline and vie versa. Every

linetype an be hanged to a B-spline. But these lines retain their other like handles and

behavior. If this onversion is applied, there are more attributes o�ered to in�uene the

bspline algorithm:

standard This works as a reset to standard settings with a degree of 2 and a segment size

of 15.

Segments This is used to hange the number of segments to smooth the edges.

Degree The lower the number, the loser the line stiks to the handles. 2 reates maximally

urved line. The degree depends on the number of handles and is only e�etive if the

hoie is not larger than the number of handles plus one.

Round orners

This attribute in�uenes the behavior of round retangles when they are saled. When set

to fixed radius, the size of the urvature will remain unhanged regardless of the saling

of the �gure. Nevertheless, an expliit modi�ation of the radius is still possible by using the

speial yellow handle. This is the default, whih was exlusively used in previous releases of

Renew.

The setting sale with size will adapt the urvature size when the retangle is saled,

so that the proportion of the retangle used for the urvature remains the same.

Font

Only appliable to text-based �gures, this attribute sets the font for the omplete text of

this text �gure. Not all fonts are available on all platforms. It is not possible to use several

fonts inside one text �gure (but still, this is a graph editor, not a word proessor or DTP

appliation). The other... entry at the end of the list of olors opens a font seletion

dialog that works like the olor dialog desribed under Fill olor. The font seletion dialog

inludes other font attributes like the size or itali and bold style options.

Caution: If you use non-standard fonts, the text will show up di�erently on systems where

the fonts are not installed.

Font Size

Only for text-based �gures, selet one of the prede�ned font sizes given in point with this

menu. The other... entry at the end of the list opens a dialog where you an enter any

number as size. The dialog has four buttons Apply, Update, OK and Canel that work similar

as in the Fill olor dialog (see above).

Font Style

Available font styles (again, only for text-based �gures) are Itali and Bold. If you selet a

style, it is toggled in the seleted text �gure(s), i.e. added or removed. Thus, you an even

ombine itali and bold style. To reset the text style to normal, selet Plain.

Text alignment

The diretion of text justi�ation an be on�gured by this attribute. This will a�et the

alignment of lines in text �gures with multiple lines as well as the diretion of growth or

shrinking when a text hanges its width due to a hange in its text length. By default,

insriptions and other onneted text is entered at the parent �gure while other text �gures

are left-aligned.

92

Text Color

The text olor attribute is only appliable to text-based �gures and sets the olor of the text

(si!). This is independent of the pen and �ll olor. The default text olor is (of ourse)

blak. The other... entry at the end of the list of olors opens a full-featured olor hooser

dialog as desribed under Fill olor.

Text Type

This attribute is quite nie to debug your referene nets quikly. The text type determines if

and what semanti meaning a text �gure has for the simulator.

If a text �gure is a Label, it has no semanti meaning at all. If it is a Insription, it is

used for the simulation (see Setion 4.2.3: The Insription Tool). A Name text type does not

hange the simulation, but makes the log more readable (see Setion 4.2.3: The Name Tool).

It is quite onvenient to �swith o�� ertain insriptions by onverting them to labels

if you suspet them ausing some problems. This way, you an easily re-ativate

them by onverting them bak to insriptions.

You might also want to have ertain insriptions appear as transition names during the

simulation. You an ahieve this by dupliating the insription �gure, dragging the dupliate

to the transition (see Setion 4.2.2: The Conneted Text Tool) and hanging the dupliate's

text type to Name.

4.3.5 Net

This menu o�ers ommands that are useful for nets only. You an semantially modify �gures

in a drawing, hek the ative drawing for problems, or on�gure the graphial simulation

feedbak for net elements.

Split transition/plae

This ommand provides a simple way to re�ne net elements by splitting a single transition

or plae into two.

If a transition is split the old transition is onneted to a newly reated plae. This plae,

in turn, is onneted to a newly reated transition. The inbound ars of the old transition

remain unhanged, the outbound ars are reonneted to the new transition. Reserve ars

are split into an inbound and an outbound ar, whih are handled respetively.

If a plae is split it will be extended by a new transition and a new plae. The onneted

ars are treated in the same manner as desribed above (outbound ars are reonneted to

the new plae).

Coarsen subnet

This ommand oarsens plae-bounded or transition-bounded subnets. It is only available if

a plae-bounded or transition-bounded subset of �gures is seleted within the drawing.

On exeution, if the seleted subset is plae-bounded, all plaes are merged into one and

all transitions are removed. The insriptions of the removed plaes are attahed to the single

remaining plae. All ars entering or leaving the seleted subnet are reonneted to this plae,

too.

If the seleted subset is transition-bounded, transitions are merged and plaes are removed,

respetively.

93

Trae

This menu and the next two are realized as �gure attributes that an be applied to eah

single net element. However, they must be set before the simulation is started to take e�et.

They also annot be applied to �gures in net instane drawings.

Sometimes, the simulation log beomes very omplex and full. To redue the amount of

information that is logged, the trae �ag of net elements an be swithed o�.

• If a transition's trae �ag is swithed o�, the �rings of this transition are not reported

in the log window.

• A plae's trae �ag determines whether the insertion of the initial marking into the

plae should be logged.

• If an ar's trae �ag is swithed o�, the messages informing about tokens �owing

through this ar are omitted.

With the integration of the Log4j framework (see Setion 2.6.9), the need for the trae

attribute has been redued. The on�guration of Log4j is muh more �exible, it allows for

multiple log event targets with individual �lter riteria while the trae �ag globally ontrols

the generation of log events for a net element. A valid reason to still use the trae attribute

may be the simulation speed when you want to disard the trae anyway, but Log4j is

rather e�ient in suh a situation, too. Please note that Renew provides a graphial Log4j

on�guration dialog for simulation traes (see Subsetion 4.3.6).

Marking

This menu ontrols the default as well as the urrent hoie how the ontents of eah plae

is to be displayed during simulation.

There are four ways to display the marking of a plae during simulation: Either the

marked plaes are simply highlighted in a di�erent olor (highlight only), or the number

of tokens is shown (Cardinality), or the verbose multiset of tokens (Tokens) is shown, or

eah token and its attributes is shown in detail (expanded Tokens). This is also the default

mode for urrent marking windows. However, these modes an be swithed at drawing time

and at simulation time using the Marking menu.

The expanded token mode relies on the undoumented feature struture (fs) formalism to

display objet attributes. Sine the fs formalism is not any longer distributed with the base

renew distribution, this mode is not available unless you install the FS plug-in.

In Expanded Tokens mode, token objets are shown in a UML-like (Uni�ed Modeling

Language) notation. An objet is noted by a box ontaining two so-alled ompartments.

import java.awt.*;

menus=

items=
label=label=

label=

"Save..."

:MenuItem

"Load..."

:MenuItem

"File"

:Menu

:MenuBar

Figure 4.4: An Example of Browsing Token Objets in Expanded Tokens Mode

The �rst ompartment spei�es a temporary name of the objet (Renew just gives numbers

to objets), followed by a olon (:), followed by this objet's lass name. Aording to UML,

the whole string is underlined to indiate that this is an instane, not the lass. The seond

ompartment is only shown if you lik the shutter handle, a small yellow retangle with a

94

ross (plus sign) inside. Otherwise, the available information is indiated by three dots (...)

after the lass name.

The seond ompartment ontains a list of all attributes of the token objet and their

values, whih are basi types or again objets. Multi-valued attributes (e.g. array values

or Enumerations) are shown as lists in sharp brakets (this part is not quite UML). After

opening the attributes ompartment, the handle hanges to a horizontal line (minus sign)

and lets you lose the ompartment again if you wish to do so. This way, you an browse

the objet graph starting at the token objet. If the value of an attribute happens to be

an objet that already appeared in the open part of the objet graph, only the temporary

name (number) of that objet is display as the attribute's value. To help you �nd the original

objet, you an lik on this objet number, and all appearanes of this objet are highlighted

by a red frame. To get rid of the highlighting, just lik on any of the numbers again.

Figure 4.4 shows an example of a java.awt.MenuBar objet that is being browser as an

Expanded Token. In the example, the menu bar ontains one menu File with two menu item

of whih the �rst one is Load.... The parent of the �rst menu item is again the menu, as

you an see by the highlighting. The seond menu item is losed.

Renew tries to �nd attributes of the token objet by using Java's re�etion mehanism

on �elds and get-methods. Any method without parameters and with a return type whih is

not void is regarded a get-method. In some ases, suh methods return volatile (hanging)

results, but are only queried one when the token �gure is expanded. This means you should

not expet to see hanges of a token objet while browsing it!

Renew stores for eah plae the preferred display mode hosen by the Marking menu.

This means that every new simulation starts with the display mode hosen for eah plae,

and the display mode is also saved to disk. The menu an also be used to hange the display

mode during run-time. To do this, either the token �gure or the plae instane has to be

seleted.

Breakpoints

Using this attribute, you an request breakpoints for ertain plaes and transitions. These

breakpoints will be established immediately after the start of the simulation and have exatly

the same e�et as a global breakpoint that is set during the simulation. In the net drawing,

transitions and plaes with a set breakpoint attribute are marked by a small red irle in

their upper right orner. However, the tag is not shown in instane drawings.

Attributed breakpoints, like breakpoints set during the simulation, will show up in the

breakpoint menu while the simulation is running. Please see subsetion 4.3.6 for a detailed

desription of the possible breakpoints. Note that you an set at most one breakpoint for

eah net element using this menu ommand.

Attributed breakpoints are established only when the net drawing is loaded in the editor

at the moment where the ompiled net is passed to the simulation engine. For the initial

drawings (that were used to start the simulation) this is usually the ase. But if nets are

loaded later by the net loader from .sns �les (see Subsetion 2.6.6), no breakpoints are set.

This behavior is due to the fat that the responsibility for the reation of breakpoints

lies in the graphial user interfae and not in the simulation engine. Sine the breakpoint

attribute is dropped when exporting shadow net systems (see Subsetion 4.3.1), the simulator

is not able to establish these breakpoints.

Set Seletion as Ion

This feature allows you to assign ions to your nets. These ions will be displayed during

simulation, whenever a plae marking is displayed in token mode (see subsetion 4.3.5) and

referenes an instane of a net with an ion.

Selet exatly one �gure, whih an be of any type, then selet the menu Set Seletion

as Ion. If more than one �gure was seleted, nothing happens, but in the ase of a single

95

�gure, it is assigned as the net's ion. When the �gure is removed, the net does not have

a speial ion, so that referenes to this net are again displayed as text. When the �gure is

or inludes a text �gure, the string $ID, ontained anywhere within the text, has a speial

meaning: During simulation, $ID will be replaed by the index number of the referened net

instane.

You an use net ions as in the following example whih an be found in the samples

folder ion. Remember the Santa Claus example from Setion 3.7? Imagine you want to

visualize the bag and its ontents as ions. Figs 4.5 and 4.6 show modi�ed versions of the

nets from the Santa Claus example.

b

b:take(thing)

thing

boots

bag

[]

wakeup

b:deposit(m2)

b: new iconbag

m1: new muffin

b:deposit(m3)

b

b:deposit(m1)

m2: new muffin

m3: new muffin

:take(thing):deposit(thing)

thing thing

BAG $ID

Figure 4.5: The net ionsanta

Figure 4.6: The net ionbag

Add an ion to the bag net by drawing an ellipse, oloring it gray, and drawing a polygon

whih looks like the losure of the bag. Add a text with the string BAG $ID to the drawing.

Group together all new �gures (Edit | Group). This is neessary, sine the ion of a net has

to be a single �gure. Now you an selet the group and then the menu Set Seletion as

Ion. Note that when you have to Ungroup the ion (e.g. to move one of the inluded �gures

individually), this orresponds to removing the group �gure. So, after re-grouping the ion,

you have to invoke the menu again, or the group �gure will not be set as the net's ion.

The next step to make an ionized version of the Santa Claus example is to reate a new

net, add an image �gure with your favorite sweet (in my ase, this is a mu�n) and a text

�gure saying $ID. Then again group together the image and the text, selet this new group,

and selet the menu Set Seletion as Ion. Save this net as muffin.

Now, you an selet the net ionsanta and start a new simulation. After performing two

steps, the running nets may look like those in Figure 4.7. Note that the referene to the net

bag is now display as the bag ion with $ID replaed by the net instane index 1. Without

the ion, the token would have been desribed as bag[1℄. Also note that the mu�ns all have

di�erent index numbers, so that you an see to whih net they refer.

The bakground of expanded tokens in instane/simulation drawings is not trans-

parent by default to improve readability. It an be hanged to be transparent by

setting the property de.renew.gui.noTokenBakground.

Assoiate Highlight

It is not only possible to selet the kind of feedbak given for the marking of a plae (see

Subsetion 4.4.1), but also to speify arbitrary graphial elements to be highlighted whenever

a plae is marked or a transition is �ring. Eah net element an have at most one highlight

�gure, but this �gure an be any Renew drawing �gure like any retangle, line, text, et.,

even a group �gure.

96

Figure 4.7: The Santa Claus Example with Ions During Simulation.

You an for example draw a StateChart with Renew's drawing failities, onstrut a net

whih simulates the StateChart's behavior, and assoiate �gures suh that during simulation,

the StateChart is highlighted aordingly.

The �rst funtion one needs for dealing with suh highlights is to assoiate a highlight to a

net element suh as a plae or a transition. When the menu Assoiate Highlight is invoked,

exatly two �gures have to be seleted, of whih one has to be a plae or a transition.

2

The

status line tells you if assoiating the highlight to the net element was suessful, otherwise

displays an error message.

Now, during simulation, the assoiated �gure will be highlighted exatly when the net

element is highlighted. If the assoiated �gure is invisible, it will be made visible whenever

it is highlighted. If the �gure is already visible, its olor will hange as a result of the

highlighting.

Selet Highlight(s)

To �nd the assoiated highlight �gure (see above) to a net element, selet the net element and

then this menu. If the net element does not have any highlight �gure, a orresponding message

appears in the status line. You an also selet multiple net elements, and all assoiated

highlight �gures of any one net element of the group will be seleted.

Unassoiate Highlight

Sometimes you also want to get rid of a highlight-assoiation (see above). Then, selet one

single net element (plae or transition) with an assoiated highlight �gure and then invoke

this menu. When you assoiate a net element to a highlight �gure, any old assoiation is

automatially aneled.

Syntax Chek

This menu entry heks the net for syntax errors without starting a simulation run. Of ourse,

most syntax errors are immediately reported after the editing of an insription, but not all

errors are found this way. E.g., multiple uplink insriptions annot be deteted immediately.

You an also invoke a syntax hek when you have orreted one error, in order to make sure

that no other error remains. It is always a good idea to keep the nets syntatially orret

at all times.

2

It is even possible to assoiate another net element as a highlight, but this is not reommended, as it an

lead to onfusion.

97

Layout Chek

This menu entry heks in all loaded drawings whether text�elds overlap by more than 50%.

Overlap indiates problems in the lear representation. Also, the situation is deteted that a

seond insription is aidentally assigned to an ar and is hidden beause of the overlap.

4.3.6 Simulation

This menu ontrols the exeution or simulation of the net system you reated (or loaded).

Before a simulation an be started, all neessary nets must be loaded into memory (see

subsetion 4.3.7). The drawing window ontaining the net that is to be instantiated initially

has to be ativated.

Refer to Setion 4.4, if you want to learn how to monitor and in�uene a simulation run

that you have started using this menu.

Run Simulation

This funtion starts or ontinues a simulation run that ontinues automatially until you

stop the simulation. If you want to enfore starting a new simulation run, use Terminate

Simulation (see below) �rst. For most net models, it is almost impossible to follow what's

going on in this simulation mode. Its main appliation is to exeute a net system of whih

you know that it works.

Some syntax heking is done even while you edit the net (see Setion 4.2.3: The Insrip-

tion Tool), but when you try to run a simulation of your referene nets, the referene net

ompiler is invoked and may report further errors (see Setion 4.6). You have to orret all

ompiler errors before you an start a simulation run.

The keyboard shortut for this funtion is Ctrl+R.

Simulation Step

This menu performs the next simulation step in the ative simulation run or starts a new

simulation run if there is no ative simulation.

If a simulation is already running in ontinuous mode, one more step is exeuted and then

the simulation is paused to be ontinued in single-step mode. Thus, it is possible to swith

between ontinuous and single-step simulation modes.

The keyboard shortut for this funtion is Ctrl+I.

Simulation Net Step

This menu entry performs a series of simulation steps in the ative simulation run or starts a

new simulation run if there is no ative simulation. The simulation is paused when an event

in the net instane in the urrent instane window ours.

The keyboard shortut for this funtion is Ctrl+Shift+I.

Halt Simulation

This menu halts the urrent simulation run, whih has been started with Run Simulation, or

terminates the searh for a possible binding in single step mode. No further simulation steps

are made, but you are free to resume the simulation with Run Simulation or Simulation

Step.

There are situations where a net invokes a Java method that does not terminate.

In these ases Renew annot sueed in halting the simulation.

The keyboard shortut for this funtion is Ctrl+H.

On MaOS systems, Cmd+H is bound system-wide to hide the appliation window. There-

fore, the shortut key has been hanged to Shift+Cmd+H.

98

Terminate Simulation

This menu entry stops the urrent simulation run (if there is any). For ertain reasons, the

simulator an not know if the simulated net is dead (it ould always be re-ativated from

outside, see Setion 3.9), so a simulation only ends when you invoke this ommand. When

you issue another simulation ommand after this ommand, a new simulation is automatially

started.

All simulation related windows (net instanes, urrent markings, now also possible transi-

tion bindings) are now automatially losed when simulation is terminated, sine they annot

be used after simulation anyway.

The keyboard shortut for this funtion is Ctrl+T.

Con�gure Simulation. . .

This dialog allows to hange some simulation related on�guration options. These options an

also be ontrolled from the ommand line or the on�guration �le .renew.properties (see

setion 2.6.1). All options presented in this dialog are evaluated eah time a new simulation

is started. However, the settings in this dialog are not stored permanently.

The dialog omprises several tabs, eah tab groups some on�guration options. The

buttons at the bottom of the dialog a�et all tabs.

Apply passes the urrent settings to the plug-in system, so that the simulator plug-in an

interpret them at the next simulation startup.

Update refreshes the dialog to display the urrent settings known to the plug-in system.

Unless you modify some properties onurrently, you an think of this button as a

�revert� button, that restores the most reently applied on�guration.

Update from simulation refreshes the dialog to display the on�guration of the running

simulation, if there is any. These settings may di�er from the urrent simulator plug-in

on�guration, so you might want to press Apply or OK afterward to bring the plug-in

on�guration bak in syn with the settings of the running simulation.

OK applies the urrent on�guration (like Apply would do) and loses the dialog.

Close loses the dialog and disards any setting hanges (unless they have been applied

before).

The tabs provide the following options:

Engine The two options Sequential mode and Multipliity on�gure the onurreny

of the simulation engine. The sequential mode is of interest when you work with a timed

formalism (see setion 3.11) or speial ar types (see setion 4.3.6). Multiple simulators may

enhane the performane on multiproessor systems. A sequential mode with multipliity

greater than one is not sequential beause it uses multiple onurrent sequential simulators.

The settings are equivalent to the de.renew.simulatorMode property mentioned in se-

tions 2.6.3 and 2.6.4. Just think of the Sequential Mode hek box as the sign of the

simulatorMode value (if you enter a minus sign in the Multipliity �eld, it is ignored).

The Class reinit mode setting equivalents the de.renew.lassReinit property ex-

plained in setion 2.6.5. It allows you to reload ustom lasses during development.

The Simulation priority sets the priority of eah thread the simulation spawns. Higher

values allow for faster simulations but might result in redued GUI responsiveness. The

default value of 5 is onsidered a good tradeo� between speed and gui response time.

99

Remote Aess The options provided by this tab �nd their equivalents in the remote

properties whih are explained in setion 2.6.8. When you hek Enable remote aess,

the simulation will be published over Java RMI to allow remote inspetion and simulation

ontrol (this feature needs a running RMI registry to work). To distinguish multiple sim-

ulations on the same registry, you an assign a Publi name to the simulation. Plug-In

developers might be interested in the possibility to replae the remote Server lass by a

ustom implementation. A ustom RMI Soket fatory an only be supplied at startup,

therefore this property annot be hanged here.

To observe the simulation from a remote editor, use the the Remote server ommand

explained in setion 4.3.6.

Net path This tab allows the manipulation of the de.renew.netPath property used by

the net loader (see setion 2.6.6). On the left, you have a list of path entries, one diretory

per line. The net loader searhes the diretories in order from top to bottom. In the list, you

an selet one or more entries to manipulate. On the right, there are �ve buttons, most of

whih a�et the seleted set of entries.

Add... opens a dialog where you an enter a new path entry. The diretory should be entered

in os-spei� syntax.

If you want to speify a diretory relative to the lasspath, hek the appropriate box

and make sure that the path does not start with a slash, bakslash, drive letter or what

else delares a path absolute at your operating system.

Edit... opens a dialog similar to the Add... dialog for eah seleted path entry.

Move up moves all seleted entries one line above the �rst seleted entry (or to the top of

the list, if the topmost entry was inluded in the seletion).

Move down moves all seleted entries one line below the last seleted entry (or to the end of

the list, if the bottom-most entry was inluded in the seletion).

Delete removes all seleted entries from the list.

Logging This tab on�gures the simulation log traes (see Menu entry �Show simulation

trae. . . � below). In ontrast to other tabs, hanges to the settings on this tab take e�et

immediately.

It is possible to reate additional loggers that fous on net-, transition- or plae-spei�

parts of the simulation trae. A lik with the right mouse button on the top-level entry

of the logger tree opens a ontext menu where additional loggers an be added. The logger

name serves as �lter riterion.

Eah logger an be on�gured to send its data to one or more appenders. Depending

on the kind of appender, the �ltered simulation trae an go to the onsole, a �le or a trae

window (GuiAppender). Eah appender an be on�gured with various options. For example

the bu�er size (the number of viewable simulation steps) of the GuiAppender an be adjusted

to your needs.

The text�eld Layout is used to ustomize logger output using log4j PatternLayout.

Remote server. . .

Using this menu entry, you an list all net instanes of a Renew simulation server. To be

able to do this, a simulator must be running with remote aess enabled as desribed in

setion 2.6.8.

The dialog omprises two parts: The upper buttons swith between remote simulations,

the lower part shows a list of net instanes. Initially, the list shows net instanes of the loal

simulation (if there is a running simulation).

100

The Connet... button displays another dialog whih allows you to onnet to a remote

simulation server. You must speify the host on whih the Server is running. The server

Name an be left at the default value unless you spei�ed the de.renew.remote.publiName

property on the server side.

If the onnetion has been established, the drop-down box at the top of the Remote Renew

servers dialog inludes the remote simulation and the list of net instanes is updated. You

an swith between servers by seleting them in the drop-down box. The onnetion stays

alive until you press the Disonnet button, or either Renew appliation (loal or remote)

terminates.

In the net instane list, you an selet a net instane and open it by double-lik or by

pressing the Open button. The title of the net instane window shows that it is the instane of

another server. You an use nearly all the interation features of loal net instane drawings.

All your modi�ations are exeuted on the server. Like loal simulation windows, events from

the remote simulation ensure that the drawings will be up-to-date at every time.

The editor is not able to display two net instanes with the same name and id. It will

bring the existing net instane window to front when you selet a net instane with

the same name and id from a di�erent simulation. To see the other net instane,

lose the existing net instane window.

Breakpoints

You an set breakpoints to stop the simulation at a prede�ned point of time, whih is espe-

ially helpful for debugging purposes, where the simulation might have to run for extended

periods of time, before an interesting situation arises.

The breakpoint menu onsists of two setions. The �rst allows you to set and lear

breakpoints and the seond allows you to view all breakpoints urrently set in the simulation.

A breakpoint will stop the searh for enabled bindings when running a simulations. How-

ever, the exeution of those transitions that are already �ring ontinues. This is espeially

important if a breakpoint is attahed to a transition: The transition might still run to om-

pletion while the breakpoint is reported.

That means that you will often want to attah a breakpoint to an input plae of a

transition, if you want to inspet the state of the net before a ertain transition �res. You

annot urrently detet a hange of enabledness diretly.

Set Breakpoint at Seletion. Before setting a breakpoint you must selet a plae or

transition or a group thereof within a net instane window. You an set a breakpoint either

loally or globally. A loal breakpoint will a�et exatly the hosen net instane and will

not ause a simulation stop if other net instanes hange. A global breakpoint automatially

applies to all net instanes, even those that will be reated after the breakpoint is established.

There are a number of di�erent breakpoint types:

• Default. This is a onveniene type that is equivalent to a breakpoint on start of �ring

for transitions and on hange of marking for plaes. You an use it if you want to set

a breakpoint to a plae and a transition simultaneously.

• Firing starts. This breakpoint is triggered whenever the transition starts �ring. The

breakpoint happens just after all input tokens have been removed from their plaes

and the transition is about to exeute its ations.

• Firing ompletes. Unlike the previous item, the breakpoint ours at the end of a

transition's �ring. This is espeially useful in the ase of net stubs, where you want

to inspet the result of a stub all.

• Marking hanges. Any hange of the state of a plae is deteted here, even if the

hange is simply due to a test ar.

101

• Marking hanges, ignoring test ars. Here it is required that tokens are atually moved

and not merely tested.

• +1 token. Only a token deposit triggers this breakpoint.

• −1 token. A token removal must our before this breakpoint is ativated.

• Test status hanges. Normal ars do not trigger this breakpoint, but test ars do.

Multiple breakpoint types may be set for a single net element using this menu.

Clear Breakpoint at Seletion. A breakpoint is not automatially leared after it was

invoked. Instead, you must lear breakpoints expliitly. Having seleted the net element that

ontains a breakpoint, you an either lear all loal breakpoints or all global breakpoints.

Clear All Breakpoints in Current Simulation. This ommand will get rid of all break-

points that were ever set. This is useful if you have reahed a ertain desired situation and

want to ontinue the simulation normally. Alternatively, you might want to lear all break-

points that were on�gured using the attribute menu, if you require a ompletely automati

run one in a while, but not want to loose the information about the standard breakpoints.

Breakpoint List. The seond part of the menu allows you to view all breakpoints, loate

the assoiated net elements, and possibly reset individual breakpoints.

Save simulation state. . .

This menu entry saves the urrent simulation state to a �le, so it an be restored later

on by the menu ommand Load simulation state. The saved state also inludes all net

instanes urrently opened in drawings and all ompiled nets. The default extension for

Renew simulator state �les is .rst.

Points to be aware of:

• Saved simulation states will most likely not be ompatible between di�erent versions

of Renew.

• All ustom lasses used in the urrent marking of the net must implement the interfae

java.io.Serializable in a sensible way to obtain a omplete state �le.

There are also some minor side e�ets:

• This ommand halts the simulator, beause there must not our any hanges to the

urrent simulation state while it is saved to obtain a onsistent state �le. You an

ontinue the simulation afterward.

• The binding seletion window will be losed, if it is open.

Load simulation state. . .

This menu entry loads a simulation state from a �le saved by the menu ommand Save

simulation state before. You will then be able to ontinue the simulation as usual from

the point at whih the simulation state was saved.

If all drawings used in the state are loaded, you an use all simulation ontrol failities

as usual. However, it is not neessary to have all used drawings open. If some drawing is

missing, the only drawbak is that its net instanes will not be displayed in instane drawings.

As a onsequene, you will not be able to use the extended ontrol features desribed in

Setion 4.4 for these nets, but the menu ommands Simulation step and Run simulation

will still work and trae events will still be logged. This holds even if no drawing used by the

saved simulation state is loaded at all.

The mapping from a ompiled net ontained in the saved state to an open net drawing is

done by the net's name. This mapping ours every time when you try to open an instane

drawing for any instane of the net. If you added to or removed from the net drawing any

102

transitions or plaes sine the simulation state was saved, some messages informing you about

the problem and its onsequenes are printed to the appliation log. An instane drawing

will still be opened, but it will not neessarily display the same struture that the ompiled

net uses.

Further points to be aware of:

• If you load a simulation state, any running simulation will be terminated and all

related windows are losed.

• If the lass reinit mode is seleted (see Subsetion 2.6.5), ustom lasses will be reloaded

while restoring the simulation state.

• All ustom lasses used in the saved simulation state must be available when restoring

the state.

Show simulation trae. . .

This menu ommand opens a window that shows the trae of the urrent simulation. In

previous Renew releases, the trae has always been printed to the onsole, now you an

losely inspet the trae inside the editor. The shortut for this ommand is Ctrl+L

By default, the drop-down list on top of the window provides one simulation trae that

overs the last 20 simulation steps. You an on�gure additional traes of di�erent length that

fous on spei� net instanes, plaes or transitions using the Logging tab of the Configure

simulation dialog (see above).

A double left mouse button lik on a simulation trae entry opens a window that displays

the whole message, using multiple lines if appropriate. A right mouse button lik opens a

ontext menu that allows you to display the net template or instane that was involved in

the simulation step. It is also possible to selet the individual plae or transition in the net

template or instane.

The mouse ations to inspet a trae entry are not available before you have seleted

any line of the simulation step it belongs to.

Formalisms

This submenu on�gures the urrent formalism used during ompilation and simulation.

Please note that a running simulation will always stay with the formalism it has been started

with. To apply the hosen formalism to the simulation, you have to terminate it and start a

new one.

The entries of this menu depend on the set of plug-ins urrently installed. The basi

renew distribution inludes four formalisms, represented by their ompilers:

P/T Net Compiler ompiles the net as a simple plae-transition net. It aepts integer

numbers as initial markings and ar weights. Capaities are not supported.

Java Net Compiler enapsulates the referene net formalism with Java insriptions as de-

sribed in hapter 3. However, this ompiler does not aept time annotations.

Timed Java Compiler represents the same formalism as the Java Net Compiler, but

with additional time annotations as explained in setion 3.11. Nets ompiled by this

ompiler must be exeuted in a sequential simulation.

Bool Net Compiler ompiles nets aording to the formalism presented in [13℄. A bool net

is a restrited olored net with exatly one olor bool := {0, 1} (an also be represented

as {false, true}). It aepts one of the propositional logi operators and, or and xor

as transition guard insriptions.

103

Show sequential-only ars

This option is available only when the Java Net Compiler is hosen as urrent formalism.

Seleting this option adds another toolbar to the editor. This toolbar omprises two additional

ar types (see setion 4.2.3) whih are allowed in sequential simulations only. Please note

that this option is automatially enabled (although the menu entry is not visible) when you

hoose the Timed Java Compiler as formalism.

For your onveniene, the sequential simulation mode (see setions 4.3.6 and 2.6.4) is

ativated eah time you hek the box or hoose the Timed Java Compiler. However, the

engine is not swithed bak to onurrent mode when you unhek the box or hange to

another formalism.

4.3.7 Windows

This menu ontains a list of all drawings loaded into memory. The drawings are lassi�ed

into Nets, Net instanes and Token Bags and appear in alphabetially sorted submenus.

A drawing an be loaded supplying its �le name to Renew as a ommand line argument,

invoking the Open Drawing... menu, or reated through the New Drawing menu. A newly

reated drawing an be named and any drawing an be renamed by saving it using the Save

Drawing as... menu.

By seleting a drawing in the Windows menu, its window is raised and beomes the ative

drawing window. In the menu, the name of the ative drawing appears heked.

Non-modal tool and attribute dialogues are inluded in the windows menu in their own

ategories. These windows are raised when the orresponding menu entry is seleted, but

there is no e�et with respet to the list of ative drawings.

4.3.8 Additional Top-Level Menus

The menu manager allows for the registration of a menu item by the plugins under any

top-level menu. Additionally, plugins may use a new top-level name. Typial andidates are

Plugins, Tools and Appliation

The optional plugin GuiPrompt o�ers its ommand under the Plugins menu. The Net-

Components plugin and the optional plugins

3

Diagram, NetDi� and Lola reside under the

Tools menu. Sine version 2.3 it is also possible to determine the position of the menu item

within the menu. The Navigator plugin extends the File menu.

4.4 Net Simulations

During simulation, there may be textual and graphial feedbak. The Log4j framework

reeives simulation events and an log them alternatively to the onsole, a �le, the trae

window, et. In Subsetion 4.3.6, the graphial on�guration dialog for Log4j is explained.

In a trae of log events, you an see exatly whih transitions �red and whih tokens were

onsumed and produed. Alternatively, you an view the state of the various net instanes

graphially and you an in�uene the simulation run. The following setions desribe the

means to monitor and ontrol the simulation.

4.4.1 Net Instane Windows

The graphial feed-bak onsists of speial windows, whih ontain instanes of your referene

nets. When a simulation run is started, the �rst instane of the main referene net that is

generated is displayed in suh a net instane window. As in the simulation log, the name

of a net instane (and thus of its window) is omposed of the net's name together with a

3

All mentioned optional plugins are not part of the release of Renew. They are provided separately.

104

numbering in square brakets, e.g. myNet[1℄. Net instane windows an also be reognized

by their speial bakground olor (something bluish/purple), so they annot be onfused with

the windows where the nets are edited. In a net instane window, you annot edit the net,

you annot even selet net elements. The net is in a �bakground layer�, and only simulation

relevant objets are seletable, like urrent markings of plaes and transition instanes. Plaes

in net instane windows are annotated with the number of tokens they ontain (if any). If

you double-lik on a marking the ontaining plae will be seleted. If you right-lik on

suh a marking, the marking will swith between the number of tokens and the tokens in

a string representation. If you right-lik on the ontaining plae, another window appears,

ontaining detailed information about the tokens.

You an display the ontents of the urrent marking diretly inside the net instane

window. This is extremely useful when a plae ontains only few tokens (or even only one).

This also helps to ontrol the number of windows, whih ould beome very large using

Renew. To swith between the simple (ardinality of the multiset) and the token display of a

plae marking, just right-lik it. The expanded display behaves exatly like the ontents of

a urrent marking window, whih is desribed in the following setion. Tokens in markings

are always displayed with a white, opaque bakground. This inreases the readability of

markings.

4.4.2 Current Marking Windows

A urrent marking window shows the name of the orresponding plae (net instane name

dot plae name, e.g. myNet[1℄.myPlae) in its window title bar. If the token list does not �t

into the urrent marking window, the sroll bars an be used. For eah di�erent token value

in the multiset, a urrent marking window shows the multipliity (if di�erent from one) and

the value itself. The Expanded Tokens mode desribed in Subsetion 4.3.5 is now the default

mode for urrent marking windows (if the FS plug-in is installed).

There is a speial funtion to gain aess to other net instanes. If a token's value is or

ontains a net instane, a blue frame appears around the name of the net instane. If you

lik inside that frame, a new net instane window for that net instane is opened or the

orresponding net instane window is ativated, if it already existed. This also works for

net referenes ontained within a tuple, or even within a nested tuple. Using the Expanded

Tokens mode, this also works for net referenes ontained within a list or inside any other

Java objet

You an open a net instane window, double lik all plaes you want to �wath� and

lose the net instane window again. This helps to fous on the state information

you really want to see.

4.4.3 Simulation Control

In a onurrent system, many transitions an be ativated at one. Normally, the simulation

engine deides whih of these transitions atually �res when the next simulation step is

exeuted. For debugging and testing, it an be very onvenient for you to take are of this

deision. Of ourse, this only makes sense when the simulation is performed step by step (see

below).

Interative simulation is possible. You an fore a spei� enabled transition to �re in

two ways:

• Right-lik the transition. Here, the simulation engine still deides nondeterministi-

ally about the variable bindings.

• Double-lik the transition. Then, the so-alled binding seletion window is shown and

swithed to the transition you double-liked. The title of the window says �transition-

name's possible bindings�, where transition-name is the full name (name of the net

instane-dot-transition-name) of the transition.

105

In the top part of the window a single binding is desribed. Eah transition instane

that partiipates in this binding is shown on a single line, listing those variables that

are already bound. See Setion 3.7 for an explanation why multiple transition instanes

might partiipate in a single �ring. At the bottom of the window there is a list of all

possible bindings, where eah binding is displayed in a single row.

When you press the Fire button, the binding of the entry whih is urrently seleted

will be used in the �ring. This window should be automatially updated whenever

the net's marking hanges. Use the Update button, if the automati update fails, and

make sure to report this as a bug. Close hides the transition binding window.

If the liked transition is not ativated, the status line of the Renew window tells you so and

nothing else is going to happen.

There are situations where a transition annot be �red manually, although it is ativated.

This is the ase for all transitions with an uplink. Sine a transition with an uplink is waiting

for a synhronization request from any other transition with the orresponding downlink,

Renew annot �nd suh �bakward� ativations. You have to �re the transition with the

downlink instead.

You should experiment with the simulation mode using some of the sample net systems

�rst. Then, try to get your own referene nets to run and enjoy the simulation!

4.5 Simulation Server

Renew supports lient/server simulations via RMI. You an set up a simulation as a Java VM

of its own. You are then able to onnet both loally and remotely, as long as the onnetion

between the omputers allows RMI alls (e.g. no �rewall bloks them).

As a onsequene of the deomposition of Renew into several plug-ins, any simulation

an be published over RMI. You just need to set the appropriate properties as explained in

setion 2.6.8 or use the Configure Simulation dialog (see setion 4.3.6). Therefore, this

setion does not fous on the on�guration of a remote simulation, it just desribes how to

set up a simulation without using the editor's graphial user interfae.

To do this, you have to export all required nets as a shadow net system �rst (see 4.3.1

for details). Whenever you make hanges to any net of this net system, you have to generate

the shadow net system again and start a new server with it.

Now you are ready to start the server itself, by issuing the following ommand to the

Renew plug-in system:

startsimulation <net system > <primary net > [-i℄

The parameters to this ommand have the following meaning:

net system: The .sns �le, as generated in the step above.

primary net: The name of the net, of whih a net instane shall be opened when the sim-

ulation starts. Using the regular GUI, this equals the seleting of a net before starting

the simulation.

-i: If you set this optional �ag, then the simulation is initialized only, that is, the primary

net instane is opened, but the simulation is not started automatially.

As mentioned in setion 2.7, the ommand an be passed to the plug-in system by several

means. For example, to start a remotely aessible simulation with net systemnet out of

the net system allnets.sns diret from the java ommand line, you will have to issue the

following ommand (in Unix syntax, the \ indiates that the printed lines should be entered

as one line):

java -Dde.renew.remote.enable=true -jar renew2.6/loader.jar \
startsimulation allnets .sns systemnet

106

If you need a speial simulation mode or any other Renew property to be on�gured, you

an add multiple -D options or use one of the other on�guration methods mentioned in

setion 2.6.1.

A simulation started by the startsimulation ommand di�ers slightly from a simulation

started by the editor: The net loader does not look for .rnw �les, it loads nets from .sns

�les only.

If you want to experiment with properties and ommands, or if you need to pause and

run the simulation interatively, you should install the Console plug-in (see setion 2.7.5).

When a simulation is running, several ommands an be entered at the prompt to ontrol

the simulation. These ommands provide the same funtionality as the menu entries listed in

setion 4.3.6. In fat, if you use the Console plug-in in ombination with the graphial editor,

both ommand sets (menu and onsole) ontrol the same simulation. The onsole ommands

are:

simulation run: Resumes a stopped simulation. If the -i option was appended to the

startsimulation ommand, this ommand starts the simulation.

simulation step: Exeutes another simulation step. If the -i option was appended to the

startsimulation ommand, this ommand exeutes the �rst simulation step.

simulation stop: Halts the simulation, but does not abandon it, despite of the term om-

mand. The run ommand ontinues it. This is equivalent to the menu entry Halt

simulation.

simulation term: Ends and abandons the urrent simulation. This may result in termina-

tion of the plug-in system (see setion 2.7.3).

simulation help: Shows a short help for all available simulation ommands.

4.6 Error Handling

Renew helps you to maintain a syntatially orret model by making an immediate syntax

hek whenever an insription has been hanged. Additionally, a syntax hek is done before

the �rst simulation step of a model. The simulation will not start if there is any error in any

net.

If an error is deteted, an error window is opened, whih displays the error message.

At the bottom of the window is a button labeled selet. Pressing this button selets the

o�ending net element or net elements and raises the orresponding drawing. If the error

originates from a text �gure, that �gure is edited with the orresponding text edit tool. The

ursor is automatially positioned lose to the point where Renew deteted the error. For

more information on editing see Setion 4.2.2: The Text Tool.

Renew displays exatly one error at a time. If a seond error is found, the old error

message will be disarded and the new error message will be displayed in the error window.

Some errors are not reported at the plae where they originate. E.g., if you are using a

delaration �gure, an unde�ned variable is deteted where it is used, but the missing de�nition

has to be added to delaration node. Similar e�ets might happen due to missing import

statements. This is unavoidable, beause Renew annot tell an undelared variable from a

misspelled variable.

For some errors Renew provides a Quik Fix feature, whih is desribed in the following

setion. Other errors and possible solutions are desribed in the subsequent setions.

4.6.1 Quik Fix

The Quik Fix feature improves the reporting of syntax errors by providing suitable proposals

for remedies and their automati realization.

107

For errors of type No suh onstrutor/�eld/method, proposals for orret onstrutors,

�elds or methods are provided by the syntax hek. If a onstrutor with the wrong number

or types of arguments is entered, a list of existing onstrutor signatures is provided. If a

non-existing �eld name for a lass or an objet is entered, a list of all known �eld names is

provided. If a non-existing method is entered, a list of known method signatures where the

method name is pre�xed by the erroneous method name is provided. If the method name

_() is entered, a list of all known methods is provided. For errors of type No suh variable,

type proposals are provided.

By double-liking on one of the proposals or seleting and pressing the apply button,

you an apply the proposed �x for the reported error. The Quik Fix hanges the erroneous

method/�eld name or onstrutor into the seleted one or delares the variable in the delara-

tion note. It an also automatially add import statements for unambiguous types (requires

full quali�ed lass names).

4.6.2 Parser Error Messages

If the expression parser detets a syntax error, it will report something like:

Enountered "do" at line 1, olumn 3.

Was expeting one of:

"new" ...

<IDENTIFIER > ...

This gives at least a hint where the syntax error originated and whih ontext the parser

expeted. In our ase the insription a:do() was reported, beause do is a keyword that

must not be used as a hannel name.

4.6.3 Early Error Messages

These errors are determined during the immediate syntax hek following eah text edit.

Bad method all or no suh method

Typially you entered two pairs of parentheses instead of one. Possibly a lass name was

mistaken for a method all. Maybe a name was misspelled?

Boolean expression expeted

An expression following the keyword guard must be boolean. Maybe you wrote guard x=y,

but meant guard x==y?

Cannot ast . . .

An expliit ast was requested, but this ast is forbidden by the Java typing rules. Renew

determined at ompile time that this ast an never sueed.

Cannot onvert . . .

The Java type system does not support a onversion that would be neessary at this point

of the statement.

Cannot make stati all to instane method

An instane method annot be aessed statially via the lass name. A onrete referene

must be provided. Maybe the wrong method was alled?

108

Enumerable type expeted

The operator requested at the point of the error an at only on enumerable types, but not

on �oating point numbers.

Expression of net instane type expeted

For a downlink expression, the expression before the olon must denote a net instane. E.g.

it is an error, if in x:h() the variable x is of type String. Maybe you have to use a ast?

Expression of type void not allowed here

An expression of void type was enountered in the middle of an expression where its result

is supposed to be proessed further, e.g. by an operator or as an argument to a method all.

Maybe you alled the wrong method?

Integral type expeted

The operator requested at the point of the error an at only on integral types, but not on

�oating point numbers or booleans.

Invalid left hand side of assignment

In an ation insription, only variables, �elds, and array elements an our on the left hand

side of an equation. Maybe this expression should not be an ation?

Multiple onstrutors math

A onstrutor all was spei�ed, but from the types of the arguments it is not lear whih

onstrutor is supposed to be alled. There are overloaded onstrutors, but none of them

seems to be better suited than the others. Maybe you should use asts to indiate the intended

onstrutor?

Multiple methods math

A method all was spei�ed, but from the types of the arguments it is not lear whih method

is supposed to be alled. There are overloaded methods, but none of them seems to be better

suited than the others. Maybe you should use asts to indiate the intended method?

No suh lass

The ompiler ould not �nd a lass that mathes a given lass name, but it is quite sure that

a lass name has to our here. Maybe you misspelled the lass name? Maybe you forgot an

import statement in the delaration node?

No suh lass or variable

The meaning of a name ould not be determined at all. Maybe the name was misspelled?

Maybe a delaration or an import statement is missing?

No suh onstrutor

A mathing onstrutor ould not be found. Maybe the parameters are in the wrong order?

Maybe the number of parameters is not orret? Maybe the requested onstrutor is not

publi?

109

No suh �eld

A mathing �eld ould not be found. Maybe the name was misspelled? Maybe the requested

�eld is not publi?

No suh method

A mathing method ould not be found. Maybe the name was misspelled? Maybe the

parameters are in the wrong order? Maybe the number of parameters is not orret? Maybe

the requested method is not publi?

No suh variable

A name that supposedly denotes a variable ould not be found in the delarations. Maybe

the name was misspelled? Maybe a delaration is missing?

Not an array

Only expressions of an array type an be post�xed with an indexing argument in square

brakets.

Numeri type expeted

A boolean expression was used in a ontext where only numeri expressions are allowed,

possibly after a unary numeri operator.

Operator types do not math

No appropriate version of the operator ould be found that mathes both the left and the

right hand expression type, although both expression would be valid individually.

Primitive type expeted

Most operators an at only on values of primitive type, but the ompiler deteted an objet

type.

Type mismath in assignment

An equality spei�ation ould not be implemented, beause the types of both sides are

inompatible. One type must be subtype of the other type or the types must be idential.

Variable must be assignable from de.renew.net.NetInstane

The variable to whih a new net is assigned must be of type NetInstane, i.e. of exatly

that type, of type java.lang.Objet, or untyped. E.g. it is an error, if in x:new net the

variable x is of type java.lang.String. Maybe you have to use an intermediate variable of

the proper type and perform a ast later?

Variable name expeted

The identi�er to whih a new net is assigned must denote a variable. E.g. it is an error, if in

x:new net the identi�er x is a lass name.

110

Cannot lear untyped plae using typed variable

A lear ar is insribed with a variable that is typed. The ar is supposed to lear an untyped

plae. Beause it annot be safely assumed that all tokens in the plae will have the orret

type, it might not be possible to lear the plae entirely. Consider delaring the variable that

is insribed to the ar.

Cannot losslessly onvert . . .

A typed plae must hold only values of the given type. Hene the type of an output ar

expression must be a subtype of the orresponding plae type. The type of an input ar

expression is allowed to be a subtype or a supertype, but it is not allowed that the type is

ompletely unrelated.

Maybe you were onfused by the slight variations of the typing rules ompared to Java?

Have a look at Subsetion 3.4.2.

Cannot use void expressions as ar insriptions

Void expressions do not ompute a value. If you use suh an expression, typially a method

all, as an ar insription, the simulator annot determine whih kind of token to move.

Class . . . imported twie

In a delaration node there were two import statements that made the same unquali�ed name

well-known, e.g., import java.lang.Double and also import some.where.else.Double.

Remove one import statement and use the fully quali�ed lass name for that lass.

Deteted two nets with the same name

The simulator must resolve textual referenes to nets by net names, hene it is not allowed

for two nets to arry the same name. Maybe you have opened the same net twie? Maybe

you have reated new nets, whih have the name untitled by default, and you have not

saved the nets yet?

Flexible ars must be insribed

A �exible ar is not equipped with an insription. Flexible ars are supposed to move a

variable amount of tokens to or from a plae, but this ar does not depend on any variables

and laks the required variability. Maybe you did not yet speify an insription? Maybe the

insription is attahed to the wrong net element? Maybe you want to use an ordinary ar

instead?

For non-array insriptions the plae must be untyped

An insription of a �exible ar is given as a list or a vetor or an enumeration, but the output

plae is typed. The resulting restrition on the element types ould not be veri�ed. Maybe

it is possible to use an array insription? Maybe the plae should not be typed?

Inorret type for �exible ar insription

An insription of a �exible ar is expeted to evaluate to an array or a list or a vetor. It

is only allowed to use enumerations on output ars, beause the elements might have to be

aessed multiple times in the ase of input ars. Use an insriptions that is orretly typed.

Maybe the ompiler determined the type java.lang.Objet, but it is known that only arrays

will result from the expression. In that ase, use an expliit ast to indiate this fat.

111

Null not allowed for �exible ars.

An insription of a �exible ar is expeted to evaluate to and array or a list. The ompiler

was able to determine that the given expression will always evaluate to null. Maybe the

insription is attahed to the wrong net element? Maybe the ar was not intended to be a

�exible ar?

Only one delaration node is allowed

You have two or more delaration nodes in your net drawing. In general, the simulator

annot determine in whih order multiple delaration nodes should be proessed, hene this

is not allowed. Maybe a delaration node was dupliated unintentionally? Maybe you want

to merge the nodes into one node?

Output ar expression for typed plae must be typed

A typed plae must only hold values of the given type. An untyped output ar is not

guaranteed to deliver an appropriate value, so this might lead to potential problems. Maybe

you want to type your variables? Maybe you want to remove the typing of the plae?

Plae is typed more than one

At most one type name an be insribed to a plae. Multiple types are not allowed, even if

they are idential. Maybe a type was dupliated unintentionally?

Time annotations are not allowed

The ompiler deteted an annotation of the form ...�..., but the urrent ompiler annot

handle suh insriptions, whih require a speial net formalism. You should swith to the

Timed Java Compiler (see Subsetion 4.3.6).

Transition has more than one uplink

At most one uplink an be insribed to a transition. Maybe an uplink was dupliated unin-

tentionally? Maybe one uplink has to be a downlink?

Unknown net

In a reation expression an unknown net name ourred. Maybe the name is misspelled?

Maybe you have not opened the net in question?

Variable . . . delared twie

In a delaration node there were two delarations of the same variable. Remove one variable

delaration.

Variable . . . is named identially to an imported lass

In a delaration node there was a variable delaration and an import statement that refer-

ened the same symbol, e.g., import some.where.Name and String Name. This error is rare,

beause by onvention lass names should start with an upper ase letter and variable names

should start with a lower ase letter. You should probably rename the variable.

112

Variable of array type expeted

If a lear ar is insribed with a typed variable, that variable should have an array type, so

that the set of all tokens an be bound to the variable in the form of an array. You should

hek whether the orret variable is used and whether the variable is orretly typed.

4.6.4 Late Error Messages

Here we disuss the error message that is not reported during the immediate hek, but only

during the omplete hek before the simulation.

Unsupported ar type

An ar of the net was of an illegal type, i.e., the urrent net formalism does not support it.

This an only happen when you exeute a net with a net formalism that is inompatible with

the net formalism that was used to draw the net. Maybe you should restart Renew with

another net formalism?

113

Bibliography

[1℄ Apahe Logging Servies. Log4j, 2012.

WWW page at https://logging.apahe.org/log4j/1.2/.

[2℄ Jonathan Billington, Sören Christensen, Kees van Hee, Ekkart Kindler, Olaf Kummer,

Laure Petrui, Reinier Post, Christian Stehno, and Mihael Weber. The petri net

markup language: Conepts, tehnology, and tools. In W. van der Aalst and E. Best,

editors, Appliations and Theory of Petri Nets 2003: Proeedings of 24th International

Conferene, Eindhoven, The Netherlands, volume 2679 of Leture Notes in Computer

Siene, pages 483�505. Springer-Verlag, 2003.

[3℄ Lawrene Caba. Net omponents: Conepts, tool, praxis. In Daniel Moldt, editor,

Petri Nets and Software Engineering, International Workshop, PNSE'09. Proeedings,

Tehnial Reports Université Paris 13, pages 17�33, 99, avenue Jean-Baptiste Clément,

93 430 Villetaneuse, June 2009. Université Paris 13.

[4℄ Giovanni Chiola, Susanna Donatelli, and Guiliana Franeshinis. Priorities, inhibitor

ars, and onurreny in nets. In Appliation and Theory of Petri Nets 1991, Proeedings

12th International Conferene, Gjern, Denmark, pages 182�205. 1991.

[5℄ Søren Christensen and Niels Damgaard Hansen. Coloured petri nets extended with

hannels for synhronous ommuniation. Tehnial Report DAIMI PB�390, Aarhus

University, 1992.

[6℄ Søren Christensen and Niels Damgaard Hansen. Coloured petri nets extended with plae

apaities, test ars and inhibitor ars. In M. Ajmone Marsan, editor, Appliation and

Theory of Petri Nets 1993, Proeedings 14th International Conferene, Chiago, Illinois,

USA, volume 691 of Leture Notes in Computer Siene, pages 186�205. Springer-Verlag,

1993.

Available at http://www.daimi.au.dk/ sorenhr/publ.html.

[7℄ Eindhoven University of Tehnology. Wo�an � The Work�ow Analyser, 1998.

WWW page at http://www.win.tue.nl/woflan/.

[8℄ Erih Gamma. JHotDraw, 1998.

Available at http://members.pingnet.h/gamma/JHD-5.1.zip.

[9℄ Olaf Kummer. Simulating synhronous hannels and net instanes. In J. Desel, P. Kem-

per, E. Kindler, and A. Oberweis, editors, 5. Workshop Algorithmen und Werkzeuge

für Petrinetze, pages 73�78. Forshungsberiht 694, Universität Dortmund, Fahbereih

Informatik, Otober 1998.

[10℄ Olaf Kummer. Tight integration of Java and Petri nets. In J. Desel and A. Ober-

weis, editors, 6. Workshop Algorithmen und Werkzeuge für Petrinetze, pages 30�35.

J.W. Goethe-Universität, Institut für Wirtshaftinformatik, Frankfurt am Main, Fah-

bereih Informatik, Otober 1999.

114

https://logging.apache.org/log4j/1.2/
http://www.win.tue.nl/woflan/
http://members.pingnet.ch/gamma/JHD-5.1.zip

[11℄ Olaf Kummer. Referenznetze. Logos-Verlag, Berlin, 2002.

[12℄ Charles A. Lakos and Søren Christensen. A general systemati approah to ar extensions

for oloured petri nets. In R. Valette, editor, Appliation and Theory of Petri Nets 1994,

Proeedings 15th International Conferene, Zaragoza, Spain, volume 815 of Leture Notes

in Computer Siene, pages 338�357. Springer-Verlag, 1994.

Available at http://www.daimi.au.dk/ sorenhr/publ.html.

[13℄ Peter Langner, Christoph Shneider, and JoahimWehler. Petri net based erti�ation of

event-driven proess hains. In J. Desel and M. Silva, editors, Appliation and Theory of

Petri Nets 1998: Proeedings of 19th International Conferene, Lisbon, Portugal, volume

1420 of Leture Notes in Computer Siene, pages 286�305. Springer-Verlag, 1998.

[14℄ Carl Adam Petri. Introdution to general net theory. In Brauer, W., editor, Net Theory

and Appliations, Pro. of the Advaned Course on General Net Theory of Proesses and

Systems, Hamburg, 1979, volume 84 of Leture Notes in Computer Siene, pages 1�19.

Springer-Verlag, 1980.

[15℄ Wolfgang Reisig. Petri nets and algebrai spei�ations. Theoretial Computer Siene,

80(1�2):1�34, 1991.

[16℄ Wolfgang Reisig. Elements of Distributed Algorithms: Modelling and Analysis with Petri

Nets. Springer-Verlag, 1998.

[17℄ Rüdiger Valk. Petri nets as token objets: An introdution to elementary objet nets.

In Jörg Desel and Manuel Silva, editors, Appliation and Theory of Petri Nets, volume

1420 of Leture Notes in Computer Siene, pages 1�25. Springer-Verlag, 1998.

[18℄ Peter van der Linden. Just Java. The Sunsoft Press Java Series. Prentie Hall, 1996.

115

Appendix A

Contating the Team

To get in ontat with us, you an send an email to

support�renew.de

regarding any aspet of the Renew tool, espeially update noti�ation requests, bug reports,

feature requests, and soure ode submissions. Our postal address is

Arbeitsbereih ART

� Renew �

Fahbereih Informatik, Universität Hamburg

Vogt-Kölln-Straÿe 30

D-22527 Hamburg

Germany

in ase you do not have aess to email. The latest news about Renew are available from the

URL

http://www.renew.de/

and in the same plae improved versions and bug �xes appear �rst.

116

Appendix B

File Types

Renew reates, uses and onsists of many di�erent kinds of �les that are distinguished by

their �le extension. We will desribe the most important �le types here.

A �le named ontains

*.aut an autosaved net drawing (may be renamed to *.rnw)

*.bak a bakup net drawing (may be renamed to *.rnw)

*.bat a Windows bath �le

*.bib a BibT

E

X bibliography

*.lass a ompiled Java lass

*.draw a drawing (mime-type: appliation/x-renew-drawing)

*.dtd an XML DTD

*.dvi a devie independent output �le of T

E

X

*.eps Enapsulated PostSript graphis

*.gif a bitmap in GIF format

*.jar a JAR ompressed arhive

*.java Java soure ode

*.jj a JavaCC grammar

*.pdf a PDF doument

*.pnml one or more nets in PNML format

*.rnw a net drawing (mime-type: appliation/x-renew-net)

*.rst a saved simulation state (mime-type: appliation/x-renew-state)

*.sns a serialized shadow net system (mime-type: appliation/x-renew-sns)

*.stub a net stub desription

*.sty a T

E

X style de�nition

*.tex a T

E

X soure �le

*.zip a ZIP ompressed arhive

117

Appendix C

Keyboard Shortuts

Shortuts listed here with the Ctrlmodi�er key should be used on omputers running MaOS

with the Cmd modi�er key instead .

List by Category

(a) Apple Spei�, (b) build-in, () ustomizable, (r) reserved, (s) swithing (simula-

tion/editing), (p) provided by (optional) plugin

Modi�er Key Funtion % Plugin

File

Ctrl N New RNW b

Ctrl-Shift N Open Navigator p Navigator

Ctrl O Open Drawing b

Ctrl S Save Drawing b

Ctrl-Shift S Save Drawing As... b

Ctrl W Close Window b

Ctrl-Shift W Close All Windows b

Ctrl E EPS Export p Export

Ctrl-Shift P PDF Export p Export

Ctrl 9 PNG Export p Export

Cmd Q Quit Program ra

Edit

Ctrl Z Undo b

Ctrl Y Redo b

Ctrl X Cut b

Ctrl C Copy b

Ctrl V Paste b

Ctrl D Dupliate b

Ctrl F Searh b

Ctrl G Searh & Replae b

Ctrl A Selet All b

Ctrl 1 group Net Component p Net Components

Ctrl 3 ungroup Net Component p Net Components

Ctrl Enter Finish Editing b

Ctrl B Send to Bak b

Ctrl-Shift B Bring to Front b

Ctrl \ Align Center

Ctrl-Shift - Align Middles

Ctrl = Spread Centers

118

Ctrl ; Spread Middles

Ctrl / Spread Diagonal b

119

Net

Ctrl-Option B Set Breakpoint bs

Ctrl-Option C Clear Breakpoint bs

Ctrl-Option S Syntax Chek b

Ctrl-Option L Layout Chek b

Simulation

Ctrl R Run Simulation b

Ctrl I Simulation Step b

Ctrl-Shift I Simulation Net Step b

Ctrl H Halt Simulation b

Cmd-Shift H Halt Simulation ba

Ctrl T Terminate Simulation b

Ctrl L Show Simulation Trae p Logging

Ctrl-Option B Set Breakpoint bs

Ctrl-Option C Clear Breakpoint bs

Window

Ctrl M Bring Menu to Front b

Without Menu Entry

Ctrl + Zoom in b

Ctrl - Zoom out b

Ctrl 0 Reset Zoom Fator b

Alphabetial List

(a) Apple Spei�, (b) build-in, () ustomizable, (r) reserved, (s) swithing (simula-

tion/editing), (p) provided by (optional) plugin

Modi�er Key Funtion % Plugin

Ctrl + Zoom in b

Ctrl - Zoom out b

Ctrl-Shift - Align Middles

Ctrl / Spread Diagonal b

Ctrl 0 Reset Zoom Fator b

Ctrl 1 group Net Component p Net Components

Ctrl 3 ungroup Net Component p Net Components

Ctrl 9 PNG Export p Export

Ctrl ; Spread Middles

Ctrl = Spread Centers

Ctrl A Selet All b

Ctrl B Send to Bak b

Ctrl-Shift B Bring to Front b

Ctrl-Option B Set Breakpoint bs

Ctrl-Option B Set Breakpoint bs

Ctrl-Option C Clear Breakpoint bs

Ctrl-Option C Clear Breakpoint bs

Ctrl C Copy b

Ctrl D Dupliate b

Ctrl E EPS Export p Export

Ctrl F Searh b

Ctrl G Searh & Replae b

Ctrl H Halt Simulation b

120

Cmd-Shift H Halt Simulation ba

Ctrl I Simulation Step b

Ctrl-Shift I Simulation Net Step b

Ctrl L Show Simulation Trae p Logging

Ctrl-Option L Layout Chek b

Ctrl M Bring Menu to Front b

Ctrl N New RNW b

Ctrl-Shift N Open Navigator p Navigator

Ctrl O Open Drawing b

Ctrl-Shift P PDF Export p Export

Cmd Q Quit Program ra

Ctrl R Run Simulation b

Ctrl S Save Drawing b

Ctrl-Shift S Save Drawing As... b

Ctrl-Option S Syntax Chek b

Ctrl T Terminate Simulation b

Ctrl V Paste b

Ctrl W Close Window b

Ctrl-Shift W Close All Windows b

Ctrl X Cut b

Ctrl Y Redo b

Ctrl Z Undo b

Ctrl \ Align Center

Ctrl Enter Finish Editing b

Toggle Key Mappings for Main Drawing Tools

By setting the property de.renew.keymap.use-mapping=true keystrokes an be used to se-

let drawing tools (tool buttons). This mehanism an easily be ustomized by setting op-

tions in the form of de.renew.keymap.XY where XY is the name of the tool; for example

de.renew.keymap.Transition_Tool=t. Set these options in your on�guration �les in or-

der to be ativated during GUI initialization. Use the Shift modi�er key to selet a tool

permanently. The following keys onstitute a preset seletion for the main Renew drawing

tools:

. Seletion Tool

t Transition Tool

p Plae Tool

v Virtual Plae Tool

a Ar Tool

x Test Ar Tool

r Reserve Ar Tool

f Flexible Ar Tool

i Insription Tool

n Name Tool

d Delaration Tool

121

Appendix D

Liense

`We' refers to the opyright holders. `You' refers to the liensee. `Renew' refers to the omplete

set of soures, exeutables, and sample nets that make up the Referene Net Workshop.

Renew is available free of harge, but not without restritions. The majority of Renew

is published under the GNU Lesser General Publi Liense (for details see Setion �Original

Parts� below). However, Renew builds up on other people's work that has been liensed

under other terms.

The liense setion got a bit long. We apologize, but we annot hope to do better, beause

we inluded many external parts with many di�erent lienses.

D.1 Contributed Parts

Renew uses several parts that were previously developed by other people and have been made

publily available.

D.1.1 The olletions Pakage

The olletions pakage is used as our set/queue/list implementation. The relevant liense

information states:

Originally written by Doug Lea and released into the publi domain.

You an use it as you want. Please note that Doug Lea now suggests to use the ontainer

libraries that ome with Java 1.2 instead of his own libraries. We are urrently working on the

migration, so far all plug-ins exept the FS plug-in have been adopted to the Java ontainer

lasses.

D.1.2 The JHotDraw Pakage

The JHotDraw graphial editor written by Erih Gamma is opyrighted. The relevant liense

information states:

JHotDraw is opyright 1996, 1997 by IFA Informatik and Erih Gamma.

It is hereby granted that this software an be used, opied, modi�ed, and dis-

tributed without fee provided that this opyright notie appears in all opies.

D.1.3 Code Generated from JavaCC

Some of the ode of Renew was generated by the parser generator JavaCC. The relevant

liense information states:

122

3. DEVELOPED PRODUCTS

You may use the Software to generate software program(s) ("Developed Pro-

grams"). Sun laims no rights in or to the Developed Programs.

4. YOUR INDEMNIFICATION OF SAMPLE GRAMMARS

DERIVATIVES AND DEVELOPED PRODUCTS

You agree to indemnify, hold harmless, and defend Sun from and against any

laims or suits, inluding attorneys' fees, whih arise or result from any use or

distribution of Sample Grammar Derivatives and/or Developed Programs.

Hene we would like to expliitly point out that Sun is not responsible for any problems

that might result from the use of the output of JavaCC.

D.1.4 Bill's Java Grammar

A Java grammar billsJava1.0.2.jj was distributed together with JavaCC 0.7 as a sample

grammar. Bill MKeeman (mkeeman�mathworks.om) ontributed this grammar to JavaCC.

The relevant liense information from Sun states:

2. SAMPLE GRAMMARS

You may modify the sample grammars inluded in the Software to develop deriva-

tives thereof ("Sample Grammar Derivatives"), and subliense the Sample Gram-

mar Derivatives diretly or indiretly to your ustomers.

4. YOUR INDEMNIFICATION OF SAMPLE GRAMMARS

DERIVATIVES AND DEVELOPED PRODUCTS

You agree to indemnify, hold harmless, and defend Sun from and against any

laims or suits, inluding attorneys' fees, whih arise or result from any use or

distribution of Sample Grammar Derivatives and/or Developed Programs.

The original parts of billsJava1.0.2.jj whih are now ontained in a modi�ed form in

the �les JavaNetParser.jj, FSNetParser.jj, FSParser.jj, and StubParser.jj are Copy-

right (C) 1996, 1997 Sun Mirosystems In. A subliense for these grammars is hereby

granted. If you have any further questions, please onsult the �le COPYRIGHT as distributed

with JavaCC.

D.1.5 Graph Layout Algorithm

The graph layout algorithm used in the lass de.renew.gui.GraphLayout was originally

provided by Sun as part of the Java Development Kit. The relevant liense information from

Sun states:

Sun grants you ("Liensee") a non-exlusive, royalty free, liense to use, modify

and redistribute this software in soure and binary ode form, provided that i) this

opyright notie and liense appear on all opies of the software; and ii) Liensee

does not utilize the software in a manner whih is disparaging to Sun.

. . .

This software is not designed or intended for use in on-line ontrol of airraft, air

tra�, airraft navigation or airraft ommuniations; or in the design, onstru-

tion, operation or maintenane of any nulear faility. Liensee represents and

warrants that it will not use or redistribute the Software for suh purposes.

We would like to expliitly point out that Sun is not responsible for any problems that

might result from the use of the graph layout algorithm. See the soure �les for Sun's original

dislaimer.

123

D.1.6 The Log4j Pakage

Renew omes with an unmodi�ed, binary distribution of the Log4j pakage from the Apahe

Logging Servies projet. The pakage is liensed under the Apahe Liense, Version 2.0. The

full liense is inluded in the distribution, a opy of the Liense may also be obtained from

http://www.apahe.org/lienses/LICENSE-2.0. The relevant liense information states:

2. Grant of Copyright Liense. Subjet to the terms and onditions of this

Liense, eah Contributor hereby grants to You a perpetual, worldwide,

non-exlusive, no-harge, royalty-free, irrevoable opyright liense to re-

produe, prepare Derivative Works of, publily display, publily perform,

subliense, and distribute the Work and suh Derivative Works in Soure

or Objet form.

3. Grant of Patent Liense. Subjet to the terms and onditions of this

Liense, eah Contributor hereby grants to You a perpetual, worldwide,

non-exlusive, no-harge, royalty-free, irrevoable (exept as stated in this

setion) patent liense to make, have made, use, o�er to sell, sell, import,

and otherwise transfer the Work, where suh liense applies only to those

patent laims liensable by suh Contributor that are neessarily infringed

by their Contribution(s) alone or by ombination of their Contribution(s)

with the Work to whih suh Contribution(s) was submitted. If You insti-

tute patent litigation against any entity (inluding a ross-laim or ounter-

laim in a lawsuit) alleging that the Work or a Contribution inorporated

within the Work onstitutes diret or ontributory patent infringement,

then any patent lienses granted to You under this Liense for that Work

shall terminate as of the date suh litigation is �led.

4. Redistribution. You may reprodue and distribute opies of the Work or

Derivative Works thereof in any medium, with or without modi�ations,

and in Soure or Objet form, provided that You meet the following on-

ditions:

(a) You must give any other reipients of the Work or Derivative Works

a opy of this Liense; and

. . .

You may add Your own opyright statement to Your modi�ations and

may provide additional or di�erent liense terms and onditions for use,

reprodution, or distribution of Your modi�ations, or for any suh Deriva-

tive Works as a whole, provided Your use, reprodution, and distribution

of the Work otherwise omplies with the onditions stated in this Liense.

. . .

7. Dislaimer of Warranty. Unless required by appliable law or agreed to

in writing, Liensor provides the Work (and eah Contributor provides

its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES

OR CONDITIONS OF ANY KIND, either express or implied, inlud-

ing, without limitation, any warranties or onditions of TITLE, NON-

INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PAR-

TICULAR PURPOSE. You are solely responsible for determining the ap-

propriateness of using or redistributing the Work and assume any risks

assoiated with Your exerise of permissions under this Liense.

8. Limitation of Liability. In no event and under no legal theory, whether

in tort (inluding negligene), ontrat, or otherwise, unless required by

appliable law (suh as deliberate and grossly negligent ats) or agreed to

in writing, shall any Contributor be liable to You for damages, inluding

124

http://www.apache.org/licenses/LICENSE-2.0

any diret, indiret, speial, inidental, or onsequential damages of any

harater arising as a result of this Liense or out of the use or inability to

use the Work (inluding but not limited to damages for loss of goodwill,

work stoppage, omputer failure or malfuntion, or any and all other om-

merial damages or losses), even if suh Contributor has been advised of

the possibility of suh damages.

D.1.7 The FreeHEP VetorGraphis pakage

Renew omes with a slightly modi�ed version of Java libraries provided by the the FreeHEP

projet to support several export formats like EPS, PDF, SVG or PNG. The FreeHEP libraries

are provided under the same liense as Renew itself (the GNU Lesser General Publi Liense,

for a link see below) whih allows the inlusion of a binary distribution within other projets.

The modi�ed soures are available at https://github.om/renew-tgi/.

D.1.8 JLine2

Renew omes with an unmodi�ed, binary distribution and some slightly modi�ed lasses of

the JLine2 pakage, whih provides the basis for the Console plug-in. JLine2 is distributed

under the BSD Liense, meaning that you are ompletely free to redistribute, modify, or sell

it with almost no restritions. The full liense is inluded in the distribution, a opy of the

Liense may also be obtained from https://opensoure.org/lienses/bsd-liense.php.

The original JLine2 pakage an be obtained from https://github.om/jline/jline2/,

the modi�ed lasses are part of the soure distribution of Renew.

D.1.9 Commons CLI

Commons CLI is a library that supports parsing ommand line ommands in Java and is

distributed under the Apahe Liense, Version 2.0 as of 2004. It is used by Renew to provide

a uniform ommand line interfae. The Commons CLI library is available at the Apahe

projet website http://ommons.apahe.org/li.

D.1.10 Other Libraries

Other libraries might provide their own lienses.

D.2 Original Parts

This opyright setion deals with those part of Renew that are not based on other works, i.e.

the example nets and the pakages fs and de.renew without the JavaCC grammars.

D.2.1 Example Nets

The example nets are in the publi domain. You may modify them as you like. You may use

them as the basis for your own nets without restritions.

D.2.2 Java Soure Code and Exeutables

Soures and exeutables are opyright 1998�2022 by Olaf Kummer, Frank Wienberg, Mihael

Duvigenau, Lawrene Caba, Mihael Haustermann, David Mosteller and others. You an

distribute these �les under the GNU Lesser General Publi Liense.

You should have reeived a opy of the GNU Lesser General Publi Liense along with

this program in the �le do/COPYING; if not, write to the Free Software Foundation, In., 59

Temple Plae, Suite 330, Boston, MA 02111-1307 USA.

125

https://opensource.org/licenses/bsd-license.php
https://github.com/jline/jline2/
http://commons.apache.org/cli

D.3 Created Parts

You are permitted to use works that you reate with Renew (i.e., Java stubs, net drawings,

EPS/PDF output, simulation states, and other exported data) without restritions.

D.4 Dislaimer

We distribute Renew in the hope that it will be useful, but without any warranty ; without

even the implied warranty of merhantability or �tness for a partiular purpose.

We are not liable for any diret, indiret, inidental or onsequential damage inluding,

but not limited to, loss of data, loss of pro�ts, or system failure, whih arises out of use or

inability to use Renew or works reated with Renew. This lause does not apply to gross

negligene or premeditation.

Some parts of Renew may use patented tehniques that may not be freely usable in some

ountries. In that ase, it is the responsibility of the user of Renew to obtain a liense on the

aforementioned tehniques before using Renew.

Some parts of Renew may inlude additional dislaimers in their liense terms. In suh

ases, both dislaimers hold simultaneously. If one lause of any dislaimer is found invalid

under appliable law, this does not a�et the validity of the remaining lauses or of other

dislaimers.

The appliable ourt is Hamburg, Germany.

D.5 Open Soure

This liense is intended to be Open Soure ompliant.

If you �nd any lause within this liense that is inompatible with the guidelines set forth

in the Open Soure de�nition (see http://www.opensoure.org/osd.html), please ontat

the authors.

126

	Introduction
	Should I Use Renew?
	How to Read This Manual
	Acknowledgements

	Installation
	Prerequisites
	Possible Collisions
	Upgrade Notes
	General
	Upgrade from Renew 1.5 or earlier
	Upgrade from Renew 1.6 or earlier
	Upgrade from Renew 2.0/2.0.1 or earlier
	Upgrade from Renew 2.1/2.1.1 or earlier
	Upgrade from Renew 2.2 or earlier
	Upgrade from Renew 2.3 or earlier
	Upgrade from Renew 2.4.3 or earlier
	Upgrade from Renew 2.5 or earlier
	Upgrade from Renew 2.5.1 or earlier

	Installing Renew
	Base Installation
	Source Installation

	Platform-specific Hints
	MacOS
	Unix
	Windows

	Special Configuration Options
	Ways of configuring Renew
	Drawing Load Server
	Multiprocessor Mode
	Sequential Mode
	Class Loading (and Reloading)
	Net Loading
	Database Backing
	Remote Simulation Access
	Logging

	Plug-ins
	Install Plug-ins
	Exclude Plug-ins Temporarily
	System Termination
	Commands
	Console
	Net Components

	Troubleshooting
	History
	Changes in Version 1.1
	Changes in Version 1.2
	Changes in Version 1.3
	Changes in Version 1.4
	Changes in Version 1.5
	Changes in Version 1.5.1
	Changes in Version 1.5.2
	Changes in Version 1.6
	Changes in Version 2.0
	Changes in Version 2.0.1
	Changes in Version 2.1
	Changes in Version 2.1.1
	Changes in Version 2.2
	Changes in Version 2.3
	Changes in Version 2.4
	Changes in Version 2.4.1
	Changes in Version 2.4.2
	Changes in Version 2.4.3
	Changes in Version 2.5
	Changes in Version 2.5.1
	Changes in Version 2.6

	Reference Nets
	Net Elements
	I do not Want to Learn Java
	A Thimble of Java
	The Inscription Language
	Expressions and Variables
	Types
	The Equality Operator
	Method Invocations

	Tuples, Lists, and Unification
	Net Instances and Net References
	Synchronous Channels
	Manual Transitions
	Calling Nets from Java
	Net Methods
	Event Listeners
	Automatic Generation

	Additional Arc Types
	Flexible Arcs
	Clear Arcs
	Inhibitor Arcs

	Timed Nets
	Pitfalls
	Reserve Arcs and Test Arcs
	Unbound Variables
	Side Effects
	Boolean Conditions
	Custom Classes
	Net Stubs
	Execution of synchronized Java Code
	Case of Class and Variable Names in Untyped Nets

	Using Renew
	Basic Concepts
	Tools
	The Selection Tool
	Drawing Tools
	Net Drawing Tools

	Menu commands
	File
	Edit
	Layout
	Attributes
	Net
	Simulation
	Windows
	Additional Top-Level Menus

	Net Simulations
	Net Instance Windows
	Current Marking Windows
	Simulation Control

	Simulation Server
	Error Handling
	Quick Fix
	Parser Error Messages
	Early Error Messages
	Late Error Messages

	Contacting the Team
	File Types
	Keyboard Shortcuts
	License
	Contributed Parts
	The collections Package
	The JHotDraw Package
	Code Generated from JavaCC
	Bill's Java Grammar
	Graph Layout Algorithm
	The Log4j Package
	The FreeHEP VectorGraphics package
	JLine2
	Commons CLI
	Other Libraries

	Original Parts
	Example Nets
	Java Source Code and Executables

	Created Parts
	Disclaimer
	Open Source

