Renew — User Guide

Olaf Kummer
Frank Wienberg
Michael Duvigneau
Lawrence Cabac

Michael Haustermann
David Mosteller

University of Hamburg
Department for Informatics

Theoretical Foundations Group

Release 2.5
June 16, 2016

This manual is ©2016 by Olaf Kummer, Frank Wienberg, Michael Duvigneau, Lawrence Cabac, Michael Haustermann, David
Mosteller.

Arbeitsbereich TGI
— Renew —

Fachbereich Informatik
Universitit Hamburg
Vogt-Kblln-Strafe 30
D-22527 Hamburg
Germany

Apple is a registered trademark of Apple Computer, Inc.
Alphaworks is a registered trademark of IBM Corporation.

IBM is a registered trademark of IBM Corporation.

Java is a registered trademark of Oracle Corporation.

JavaCC is a trademark of Oracle Corporation.

IATEX is a trademark of Addison-Wesley Publishing Company.
Macintosh is a registered trademark of Apple Computer, Inc.
Mac OS X is a trademark of Apple Computer Inc.

Microsoft Office is a registered trademark of Microsoft Corporation.
MySQL is a trademark of Oracle Corporation.

Oracle is a registered trademark of Oracle Corporation.
PostScript is a registered trademark of Adobe Systems Inc.
Solaris is a registered trademark of Oracle Corporation.
OpenOffice is a trademark of The Apache Software Foundation.
Sun is a registered trademark of Oracle Corporation.

TEX is a trademark of the American Mathematical Society.
UML is a trademark of the Object Management Group.
Unicode is a registered trademark of Unicode, Inc.

UNIX is a registered trademark of AT&T.

Windows is a registered trademark of Microsoft Corporation.

X Windows System is a trademark of X Consortium, Inc.

The trademarks may be claimed in one or more countries.
Other trademarks are trademarks of their respective owners.
The use of such trademarks does not indicate that they can be freely used.

Please refer to the license section of the Renew user guide for more information about copyright and liability issues.

This document was prepared using the IATEX typesetting system.
This document is contained in the file doc/renew.pdf as distributed together with Renew 2.5.

Contents

2.6.4 Sequential Modd

[2.6.5 Class Loading (and Reloading)

Lo Histord 29

[2.9.1 Changesin Version 1.1 o o i i 29

2.9.16 Chanes in Version 2410 e 35
[2.9.17 Changesin Version 2.4.2 o o i 35
o - — :

[3.7 Svnchronous Chanmeld o o o o 48

.8 Manual Transitiond . . .« « « ¢ v vt v e 51
3.9 Calling Nets from Javal 52

m%ﬂ 59
ible Arcd e 59

312 Pitfalld e e 64

3.12.6 Net Stubd o 66

M1 Mouse handling 68
4.2 Basic CONCEPLS . . o o o o 68
A3 TO0ld .« o o 70
4.3.1 _The Selection Tool o vt 70
% 71

ing Toold . . o o 76
|_4_.A_Me_mlmmm_a.ndﬂ 79
AAT Fild « oo oo 80
142 BAill . o o e 85
% 87

ibuted 90

MAn Nel . . oo 93
4,46 Simulationl 98
447 Windowd o 104
4.4.8 Additional Top-Level Menud oo oo v oo e 104

5 Net SInmlafiond o oo oooe 105
[4.5.1 Net Instance Windows oo oo oo 105
%@mﬁ 105

453 Si ion Control .« « . . o 106

|A_Contacting the Teaml 116
[B_File Typed 117
|C_Keyboard Shortcuts 118
[D_Licensd 121
D1 Contributed Partd oo 121
[D.1.1_The collections Packagd. . . « « o oo v e e 121
% 121
....................... 121

D.1.4 Bill's Java Grammar o o oo e 122

FERT © o o e e e 122

D e e W e 123
D.L.7_The FreeHEP VectorGraphics packagd . « - « « « « oo o oo oo 124

D8 JLANed . . . o o 124

D.1.9 Commons CLI o v o 124
[D.1.10 Other Libraried o oo 124
l@ 124
D21 Example Netd o e 124

D.2.2 Java Source Code and Executabled 124

D3 Created Partd 125
D4 Disclaimer 125
D5 _Open Sourcd .« « v v v e 125

List of Figures

4. [he Renew Windowl v v v v e e
4,2 __The Petri Net Toolbar in its own Windowd« v oo v oot

List of Tables

[2.1 The startup and stub seripts! 15
[2.2 Properties to confieure database backing 21

i i jonl 22
[3.1 The primitive data types of Javal 39
[3.2 Java binarv operators, rules separate operators of equal precedencd 41

Chapter 1

Introduction

On the following pages, you will learn about Renew, the Reference Net Workshop. The most
important topics are:

e installing the tool (Chapter [2),

o the reference net formalism (Chapter B]),

e using Renew (Chapter @),
Both reference nets and their supporting tools are based on the programming language Java.
To be able to use them to their full capacity, some knowledge of Java is required. While
the basic concepts of Java will be explained in this document, there are plenty of books that
will serve as a more in-depth introduction to Java. [I8] is a good first start for experienced
programmers.

If you encounter any problem during your work with Renew, we will try to help you. See
Appendix[Alfor our address. At the same address, you can make suggestions for improvements
or you can request information on the latest release of Renew. If you want to submit example
models or extensions to the tool, that would be especially welcome.

1.1 Should I Use Renew?

The main strength of Renew lies in its openness and versatility.

e Renew has been written in Java, so it will run on all major modern operating systems
without changes.

e Renew comes complete with source, so its algorithms may be freely extended and
improved. It is in fact possible to add special net inscriptions quickly. It is even possible
to implement completely new net formalisms without changing the basic structure of
Renew.

e Renew can make use of any Java class. Today there exist Java classes that cover
almost all aspects of programming.
e Reference nets are themselves Java objects. Making calls from Java code to nets is
just as easy as to make calls from nets to Java code.
The Petri net formalism of Renew, too, might be very interesting for developers.

e Renew supports synchronous channels. Channels are a powerful communication mech-
anism and they can be used as a reliable abstraction concept.

e Net instances allow object-oriented modeling with Petri nets. While a few other net
formalisms provide net instances, it is their consistent integration with the other fea-
tures that makes them useful.

e Reference nets were specifically designed with garbage collection of net instances in
mind, which is indispensable for good object-oriented programming.

e Many arc types are available that cover almost all net formalisms. Simulation time
with an earliest firing time semantics is integrated.

There are, however, a few points to be aware of.

e There are currently only rudimentary analysis tools for Renew. Although a few ex-
port interfaces have already been implemented, useful analysis seems a long way off.
Currently, Renew relies entirely on simulation to explore the properties of a net, where
you can dynamically and interactively explore the state of the simulation.

However, for many applications, analysis does not play a prominent role. Petri nets are
often used only because of their intuitive graphical representation, their expressiveness,
and their precise semantics.

e During simulation, the user cannot change the current marking of the simulated net
except by firing a transition. This can make it somewhat more difficult to set up a
desired test case.

e In our formalism, there is no notion of firing probabilities or priorities. By exploiting
the open architecture of Renew, these features may be added later on, possibly as
third-party contributions.

e Renew is an academic tool. Support will be given as time permits, but you must be
aware that it might take some time for us to process bug reports and even more time
to process feature requests.

But since Renew is provided with source code, you can do many changes on your own.
And your feature requests have a high probability to be satisfied if you can already
provide an implementation.

1.2 How to Read This Manual

It is generally recommended to read all chapters in the order in which they are presented.
However, when somebody else has installed Renew for you, you should skip Chapter Rlentirely.

Renew [f you are already familiar with a previous version of Renew, you should simply skim

2 . 5 the manual and look for the Renew 2.5 icons as shown to the left. The paragraphs
that are tagged with this icon elaborate on new features of the current version.
You should also consult Section 2.3] for some notes on the upgrade process. The
upgrade might require some explicit actions on your part.

Advanced users may want to consult the architecture guide doc/architecture.pdf in
the source package of Renew, if it is intended to modify Renew. It is not recommended for
the casual user to spend much time reading this manual, as it is quite technical and of little
help in the day-to-day use of Renew.

1.3 Acknowledgements

We would like to thank Prof. Dr. Riidiger Valk and Dr. Daniel Moldt from the University of
Hamburg for interesting discussions, help, and encouraging comments.

We would also like to thank Sénke Rolke, Dennis Schmitz and Martin Wincierz for their
work during the preparation of this release. We would like to thank Jorn Schumacher for the
prototype of the plug-in system (2.0), Benjamin Schleinzer for his work during the preparation
of former releases (2.1-2.2) and Berndt Miiller who has been of great help with respect to
previous Renew releases for Mac OS (< 2.0). Some nice extensions of Renew were suggested
or programmed by Michael Kchler and Heiko Rolke.

We are indebted to the authors of various freeware libraries, namely Mark Donszelmann,
Erich Gamma, Doug Lea, David Megginson, Bill McKeeman and Sriram Sankar.

Dr. Maryam Purvis, Dr. Da Deng, and Selena Lemalu from the Department of Informa-
tion Science (http://infosci.otago.ac.nz/), University of Otago, Dunedin, New Zealand,
kindly aided us in the translation of parts of the documentation and are involved in an
interesting application project.

Valuable contributions and suggestions were made by students and scientific workers at
the University of Hamburg, most notably Hannes Ahrens, Tobias Betz, Jan Bolte, Lars
Braubach, Timo Carl, Dominic Dibbern, Friedrich Delgado Friedrichs, Matthias Ernst, Max
Friedrich, Daniel Friehe, Olaf Grofiler, Julia Hagemeister, Sven Heitsch, Marcin Hewelt, Jan
Hicken, Thomas Jacob, Andreas Kanzlers, Lutz Kirsten, Michael Kéhler, Till Kothe, Annette
Laue, Matthias Liedtke, Marcel Martens, Klaus Mitreiter, Konstantin Mollers, Eva Miiller,
Jens Norgall, Sven Offermann, Felix Ortmann, Martin Pfeiffer; Alexander Pokahr, Tobias
Rathjen, Christian Réder, Heiko Rolke, Benjamin Schleinzer, Jan Schliiter, Marc Schonberg,
Jorn Schumacher, Michael Simon, Fabian Sobanski, Volker Tell, Benjamin Teuber, Thomas
Wagner, Matthias Wester-Ebbinghaus, and Eberhard Wolff.

We would like to thank the numerous users of Renew who provided hints and constructive
criticism. They helped greatly in improving the quality of the code and the documentation.
In particular, we would like to name Alun Champion and Zacharias Tsiatsoulis.

10

Chapter 2

Installation

In this chapter we will give a short overview of the installation process. It is not difficult
especially if you are already at ease with the Java environment. But even as a novice you
should be able to complete the process successfully.

2.1 Prerequisites

Before you proceed, make sure to have a system backup available on the off-chance that an
error occurs during the installation procedure.

You must have Java 1.7 or higher installed. If you have not done this yet, we suggest
that you get the latest Java Runtime Environment from Oracle (http://www.oracle.com/
technetwork/java/) where versions for Windows, Linux, Mac OS and Solaris are available.
All runtime environments are available free of charge for personal use. We recommend the
latest version of JDK 1.7, which at this point of time should be JDK 1.7.0, depending on the
operating system.

If you intend to do a source installation, you also need to install a couple of software
packages from third parties. See Section for details.

2.2 Possible Collisions

While Renew is based on the JHotDraw package by Gamma [8], the package is distributed with
Renew. The package has been substantially improved, so that it is impossible to substitute
a different version for it. If you have the original JHotDraw installed, this might result in a
problem.

2.3 Upgrade Notes

These notes are supposed to help you when you have already installed an earlier version of
Renew. In Section 2.9 you can find a list of differences, if you are interested in further details.

2.3.1 General

Note that you cannot usually read nets created with a later version by older versions of
Renew. However, newer versions of Renew can read older files without problems. I.e., an
upgrade to the current version is simple, but irreversible.

11

http://www.oracle.com/technetwork/java/
http://www.oracle.com/technetwork/java/

2.3.2 Upgrade from Renew 1.5 or earlier

Serialized shadow net systems exported by Renew 1.5 or earlier cannot be used with any later
versions. You can simply re-export the net system.

A new keyword manual was added to the inscription language. In rare cases, you will
have to rename a variable or package to account for this change.

2.3.3 Upgrade from Renew 1.6 or earlier

The required Java version has changed, you need at least Java 1.4 to run newer versions of
Renew.

You do not any longer need to install a separate XML parser (like Xerces) because Renew
now uses the built-in parser of Java 1.4.

Saved simulation states exported by Renew 1.6 cannot be used with the current version
of Renew.

Stubs compiled with Renew 1.6 or earlier cannot be used with the current version. You
can simply recompile the stubs and the resulting Java files.

Several classes of the Renew framework were moved or renamed. In particular, the class
de.renew.simulator.NetInstance has now become de.renew.net.NetInstance. If you
use typed variables for net references in your nets, you must adapt the variable declarations
or package imports.

When a new net is created, the :new() is no longer implicitly invoked. It is only invoked
when you create the net using the notation n:new NetName () as opposed to n:new NetName.
You might have to rewrite some nets as a result of this change.

The way of including custom classes in a Renew simulation has changed, please read
Section for more details.

2.3.4 Upgrade from Renew 2.0/2.0.1 or earlier

The main application class has been changed from de.renew.plugin.PluginManager to
de.renew.plugin.Loader. There are now two configuration file locations: first, the per-
installation configuration file renew2.5/config/renew.properties is read, then the user-
specific file “/.renew.properties is consulted. The property pluginLocations has been
changed to a classpath-like syntax (see Section 27.1]).

The net loader priorities have changed: instead of preferring .sns files over .rnw files
regardless of the order of their directories in the de.renew.netPath property, now the order
of directories is considered first, while the order of file types is undetermined.

The Renew code has been modified to compile without warnings under Java 1.5, but
we still use Java 1.4.2. The conformity with Java 1.5 also implies the use of an up-to-date
version of JavaCC during compilation. The old collections package has been removed from
all components except FS. The package is no longer distributed with the base archive, but
included in the FS plug-in.

2.3.5 Upgrade from Renew 2.1/2.1.1 or earlier

The required Java version has changed, you need at least Java 1.5 to run newer versions of
Renew.

Saved simulation states exported by Renew 2.1.1 or earlier cannot be used with the current
version of Renew. The Drawing Load Server (see[Z6.2lnow accepts connections from the local
loopback interface only (this has been introduced as a security measure).

The JUnit test classes that were sparsely scattered in the Renew code have been migrated
from JUnit 3.x to JUnit 4.x architecture.

12

2.3.6 Upgrade from Renew 2.2 or earlier

The required Java version has changed, you need at least Java 6 to run newer versions of
Renew.

2.3.7 Upgrade from Renew 2.3 or earlier

Files exported to the experimental .xrn format cannot be used anymore. Its support has
been discontinued. We encourage the use of PNML, instead.

2.3.8 Upgrade from Renew 2.4.3 or earlier

The logging configuration files and the default logging directory moved from the home folder
to a subdirectory .renew in the home folder. In order to use your old configuration, you should
move the .logdj.properties file to the .renew subdirectory in your home folder (you may
need to create the directory first). For the logs you now have to look in .renew/renewlogs
in your home folder (if not configured differently).

2.4 Installing Renew

The two zip-files renew2.5base.zip and renew2.5source.zip form the standard Renew
distribution. While the former file contains all files that are required for the operation of
Renew, the latter file includes the source files, which are generally not needed unless you
intend to modify Renew or learn about its algorithms. In addition to the base distribution,
we provide some plug-ins at our web page.

The base Renew distribution consumes about 5 MByte. The source distribution consumes
about 18 MByte. Compiling the source will additionally generate 5 MByte of executables
for the main distribution and the compilation of all available plug-ins will consume another
30 MByte for additional libraries and executables. The full JavaDoc will occupy between
45 and 57 MByte.

2.4.1 Base Installation

In the following, we assume Unix filename conventions, i.e., directories separated by / (slash).
For other operating systems you might need to change it to \ (backslash). Also, the list
separation character differs: In Unix-based environments, : is used, while in DOS-based
environments, the : is reserved for drive letters, so ; is used for lists.

Extract the base distribution to a directory of your choice. A directory renew2.5 will be
created in the current directory. Documentation files, for example this manual, are placed
in the subdirectory renew2.5/doc. The subdirectory renew2.5/samples contains example
nets. The functionality of Renew has been decomposed into several plug-ins which reside as
jar files in the subdirectory renew2.5/plugins. This is also the place where you can add
extra plug-ins (see Section 2.7]).

The file renew2.5/1loader. jar is a jar-file that could be used to execute Renew e.g., by
saying

‘ java -jar /some/where/renew2.5/loader.jar gui

if you extracted the zip-file into /some/where. In a DOS-based environment, this would look
something like

‘ java -jar C:\some\where\renew2.5\1loader. jar gui

(mind the drive letter and the use of backslash instead of slash). The gui part at the end of
the line is a command that tells the loader to start the graphical user interface of Renew.

13

Note that for Unix, and Windows we provide ready-made startup scripts already. They
will be generated when Renew is installed. In that case, you do not have to provide a loader
command manually, and some classpath-related issues (see Section [Z6.5]) are handled more
conveniently for most use cases. See Section for details.

2.4.2 Source Installation

Usually there is no need to do a source installation. If you feel confused by this section,
simply skip it.

Extracting the source distribution will put files into the directories renew2.5/src and
renew?2.5/doc.

The sources are accompanied by build.xml files for the Apache Ant tool. You should
install Ant to build Renew from sources, it is available at http://ant .apache.org/. Further
you will need the parser generator JavaCC to compile the sources. The unit testing package
JUnit and the code beautifier Jalopy are used for the development of Renew but optional for
the compilation.

See the file renew2.5/src/README that lists the software packages and versions you need
and gives some hints on how to compile and run the application.

After you have successfully built Renew, you can test your compilation result. Just follow
the instructions in the previous section, but replace any reference to renew2.5/loader. jar
by renew2.5/src/dist/loader. jar. The plugins directory is relocated from its distribution
position to renew2.5/src/dist/plugins, too.

If you succeed to run the compiled Renew, you can delete the file renew2.5/1loader. jar
and the directory renew2.5/plugins with the original class-files. You should then consider
to edit the start scripts for your platform, so that they become aware of the file location
changes.

Please note that the clean target defined in the Ant build.xml file completely removes
the renew2.5/src/dist directory tree. Therefore any modifications (like installed plug-ins)
made in that directory tree get lost every time you run ant clean.

2.5 Platform-specific Hints

For a few platforms we provide special installation support. Even in these cases you could
install Renew as described above, but your task will be easier if you read this section.

The installation script is typically called installrenew or similar. Start this script to
install Renew. The script will create the actual startup scripts for Renew. You have to start
the one called renew or similar to get the basic version of Renew running. Other scripts
allow you to load drawings into a running Renew editor or provide help for the generation
and compilation of stubs, as summarized in Table 211

In the next subsections we will only describe the usage of the basic script. The other
scripts have a similar behavior when it comes to the interpretation of environment variables,
while their specific effects are explained in other Sections of this manual.

2.5.1 Mac OS X

From version 2.4.3 onward, Renew requires at least Java 1.7.

Since Mac OS X is built upon a Unix core, you can follow the installation directions
for Unix. To do so, open the Terminal application which can be found in /Applications/
Utilities.

We provide an experimental AppleUI plug-in as optional download. This plug-in adds
rudimentary support for native Mac OS look&feel to Renew. It allows the cmd-q (or apple-q)
shortcut to close the editor properly (with safety questions for unsaved changes) and it slightly
modifies the Mac OS menu bar. See Section [Z7.T] on how to install the plug-in.

14

http://ant.apache.org/

script name use
renew starts the Renew editor
loadrenew Java drawing load client
(see Subsection for details)
makestub generates a net stub from a Java interface
compilestub | compiles a net stub to Java code
jcompile wrapper for javac that includes some
Renew classes in the CLASSPATH
(see Subsection B9l for details)

Table 2.1: The startup and stub scripts.

We also provide an experimental Mac OS X application bundle for download which can
replace the Unix-style installation of Renew. The application is configured in GUI-only mode
without console output or prompt capabilities. Since release 2.2, it also provides Finder
integration for Renew drawing files.

Shortcuts listed in this manual with the Ctrl modifier key should be used on computers
running Mac OS X with the Cmd modifier key instead . Some reserved shortcuts differ slightly
under Mac OS X (see Appendix [C]).

2.5.2 Unix

We supply a simple install script at renew2.5/bin/unix/installrenew that will handle the
installation on most flavors of Unix. Run that script with

cd renew2.5/bin/unix
sh installrenew

and it will create the shell scripts renew, loadrenew, compilestub, makestub, and jcompile
in the same directory (see Table 2.T]).

However, you must make sure that java can be called with your current setting of the
PATH environment variable. It is also required that you start the installation script from the
bin/unix directory, otherwise it cannot find the location of the package.

We distribute some files to support desktop integration in FreeDesktop-based environ-
ments like Gnome. In the directory renew2.5/bin/unix/freedesktop, there is a README file
that explains how such desktop integration can be achieved. However, desktop integration
still requires a manual configuration process. The installdesktop and uninstalldesktop
scripts automatically install and uninstall the desktop integration in the FreeDesktop envi-
ronment.

We also provide experimental deb packages for Debian-based distributions. Just add the
following lines to your /etc/apt/sources.list:

The Renew Repository
deb http://www.informatik .uni-hamburg.de/TGI/renew/debian renew stable

Download the public key for the Renew repository with:

wget http://www.informatik .uni-hamburg.de/TGI/renew/renevw.gpg

add the key to the trusted keys and install Renew by running the following commands as
superuser:

apt-key add renew.gpg
apt-get update
apt-get install renew

15

2.5.3 Windows

For Windows we provide an installation script in the directory renew2.5\bin\win for your
convenience. This batch file has to be started from its own directory.

cd renew2.5\bin\win
installrenew

This will create the batch files renew.bat, loadrenew.bat, makestub.bat, compilestub.bat
and jcompile.bat in the same directory (see Table 2.T]).

However, you must make sure that java can be called with your current setting of the
PATH environment variable. It is also required that you start the installation script from the
bin\win directory, otherwise it cannot find the location of the package.

Please check your classpath variable for any unquoted whitespace in it because batch
scripts will interpret paths with it as two arguments.

The installrenew script additionally creates some registry files for the file type as-
sociation of Renew files (addregistry.reg and removeregistry.reg). addregistry.reg
contains the registry entries to associate Renew file types (.rnw, .draw, .aip, .sns) with the
loadrenew.bat script. You can perform this association by double clicking addregistry.reg.
With removeregistry.reg you can remove the corresponding entries from the registry. Ad-
min rights are required to edit registry entries. The update of the icons for the Renew file
types may need a restart to take effect.

2.6 Special Configuration Options

There are several options that can help to adapt Renew to your specific needs. Usually you
should not need to use these options, so it is best to skip this section on the first reading.

2.6.1 Ways of configuring Renew

There are at least two ways to configure any of the options mentioned in the following sections.
In Java terminology, an option is configured by setting a property to a value.

At startup. You can supply property values on the Java command line with the -D option
when you start Renew (this is the way you could configure previous Renew releases). For
example, to configure that Renew uses a sequential simulator instead of the default concurrent
one, you can set the property de.renew.simulatorMode to the value -1. This is done by
starting Renew with the command line:

java -Dde.renew.simulatorMode=-1 -jar loader.jar gui

It is important that you do not insert any spaces between the -D option, the property, the =
sign and the value. Also, property names are case sensitive.

This way, you can configure any property for just one run of Renew. However, you lose
the simplicity provided by the platform-dependent startup scripts. You will have to enter the
Java command line directly, including the full path to loader. jar and the initial command
gui for the loader.

Permanently. To configure properties permanently, you can create or edit either the file
renew.propertiesin the installation directory renew2.5/configor the .renew.properties
file (note the initial dot!) in your home directory. The former configures the Renew instal-
lation, while the latter provides configuration on a per-user basis. The user settings may
override installation-wide values. In the following, the text .renew.properties refers to
both files. A template for a .renew.properties file can be found in the config directory of
your Renew installation. The file contains several out-commented properties.

16

The location of your home directory depends on the operating system (for Windows, it
even differs between versions). If you do not know where it is, just run Renew. The first two
lines of the application log (that is usually printed to the Java console) tell you where Renew
expects the configuration files.

One note for Windows users: The Explorer will not allow you to create a file name with
an initial dot. But you can create such a file via the command line interface (DOS window)
and then edit it as usual.

In the .renew.properties file, you can for example add the line

de.renew.simulatorMode=-1 ‘

and Renew uses the sequential simulation engine by default on every run. Of course, values
taken from the .renew.properties file can always be overridden by a -D command line
option at startup.

At runtime. A third way for some (not all) of the configuration options is provided
by menus or dialogues in the net editor. To stick with our example, the dialog opened
by the menu entry Simulation/Configure Simulation... contains a checkbox named
Sequential mode and a box where you can change the engine multiplicity (for details, see
Section4.4.0]). These two elements in combination represent the current value of the property
de.renew.simulatorMode and its value is changed when you press the Apply or OK buttons.

As a fourth way to set properties, the plug-in system provides a set command. This
command comes in useful in combination with the script command (see Section 7)) or if
you installed one of the prompt plug-ins (Console or GUIPrompt). Although this command
allows to set values for any known and unknown property at runtime, it is not guaranteed
that the value change has any effect. In fact, many properties are evaluated only once at
startup time.

As a rule of thumb, all options that affect the simulation behavior are evaluated at each
simulation setup. For example, the command

set de.renew.simulatorMode=-1

has no effect on a simulation currently active (if there is any). But the next time you start
a simulation from within the running application, it will be sequential.

When you configure properties at runtime, any setting of that property from the command
line or the configuration file is overridden. Runtime settings are not stored permanently.

2.6.2 Drawing Load Server

Many users like to load documents into the corresponding application just by double-clicking
the document in the file manager. A typical problem is that this starts a new instance of the
whole application. This is extremely nasty when using a Java application, since a new Java
Virtual Machine is started every time. To avoid this problem with Renew, we added a simple
server function to Renew (the Drawing Load Server). This server function is automatically
configured to use with the loadrenew script. You probably do not need to do the manual
configuration if you just want to pass files into a running Renew instance.

loadrenew script

You can use the script loadrenew provided by the installation process (see Section [24])
to connect to a running Renew instance and pass over the names of the files to open. The
loadrenew script starts a regular Renew instance, if the connection to a Drawing Load Server
was not possible (e.g. if Renew is not already running). So this script can be used as default
command to load Renew. The script uses the port configured in the .renew.properties file
(property de.renew.loadServerPort) or the default port 65111 if the property is not set.

17

The idea is to associate the loadrenew script to the Renew file extensions (dependent on
the installed plug-ins but at least rnw). When a drawing is double-clicked in the file manager,
the client is invoked and can transmit the drawing’s file name, which is then received and
loaded by the single Renew application. This is really a nice feature, because it offers a
rudimentary operation system integration.

manual configuration

By setting the property de.renew.loadServerPort to a port number, you can tell Renew to
listen for local requests to load a certain drawing on a TCP /IP socket. Just specify an unused
TCP/IP port number, say 65111, either on the command line or in the configuration file (see
Section 2.6.T). When Renew is started with this property, the “Drawing Load Server” is
set up on the given port and waits for clients to connect and transmit the full filename of a
drawing to open (followed by an end-of-line). Changing this property’s value at runtime has
no effect. The port 65111 is used by default. If you do not want to start a “Drawing Load
Server’,” you can set the property to -1.

We provide a generic client application written in Java that can be used as a Drawing
Load Client. In the meantime, Java Virtual Machines and computers have become much
faster, but it is still questionable whether it is a good idea to start a JVM each time you
want to load a drawing into Renew.

Our Java client is started by (this example is again given in Unix syntax, the \ is used to
indicate that the three printed lines should be combined into one command line)

java -Dde.renew.loadServerPort=65111 -cp "*:plugins/*:1libs/logdj/*" \
CH.ifa.draw.application.DrawingloadClient <file name>

where 65111 is an example for the port number on which the server is running (if you
decided to configure the property in the .renew.properties configuration file, the -D part
of the command can be omitted).

2.6.3 Multiprocessor Mode

Renew provides support for shared-memory multiprocessors. Depending on your specific
application and hardware, this can significantly speed up the simulation engine. But note
that this feature is still experimental and has not been tested across platforms due to lack of
funds. It should not be used for critical applications at the present time. We would be very
glad to receive experience reports, so that the code can become more stable.

You must set the property de.renew.simulatorMode to the number of concurrent sim-
ulation threads you want. Note that it will usually be detrimental to performance, if you
configure a number of threads that exceeds the number of physical processors. This property
is evaluated each time a simulation is started. It can also be configured in the Configure
Simulation dialog (see Section A.Z.6]).

Before using multiple processors, you should probably try to optimize performance with
other means. You should configure Log4j to discard log events (alternatively you can disable
the generation of trace events for all or most net elements). You should open only very few
net instance windows, so that the graphical representation of the markings does not need to
be updated.

If you configure a negative number for the property de.renew.simulatorMode, sequential
simulators are used instead of the default concurrent one. Although Renew will do that, it is
kind of weird to configure multiple concurrent instances of the sequential simulator. Only the
special case of exactly one sequential simulator is of use and explained in the next section.

18

2.6.4 Sequential Mode

By setting the property de.renew.simulatorMode to the value -1, you can request a se-
quential mode where transition firings are no longer concurrent. There is usually little reason
to do so, but sometimes concurrently executed transition inscription might lead to strange
results. You can then select the sequential mode to check your nets.

Please note that net methods as described in Section 3.9 cannot be used in this mode.

As you might have noted, the property used to configure sequential mode is the same
as for multiprocessor mode. So the configuration and evaluation notes given in the previous
section still apply to this property.

If we restrict the Petri net formalism to purely sequential behavior, we can add certain
Petri net extensions that were not suitable for a true concurrency formalism. Most notably,
we can use inhibitor arcs and clear arcs. These extensions will be described in Subsections
and BI0.3l

The sequential arc types can now be added to and removed from the tool bar via the
menu entry Simulation/Show sequential-only arcs (see Section [L.4.0]).

If you try to simulate nets that contain sequential-only features and the simulation is con-
figured to use a concurrent engine, you will encounter an error message. In this case, you just
need to set the Sequential mode in the Configure Simulation dialog (see Section Z.0])
and restart the simulation.

2.6.5 Class Loading (and Reloading)

When you are developing an application that consists of Java code and net drawings, or if
you want to extend some Renew plug-in by supplying custom Java classes, then you need
to make your classes known to Renew. The Java way of doing this is to add your classes to
the Java classpath either by setting the environment variable CLASSPATH or by providing an
appropriate —classpath option to the java command.

With the plug-in system (see Section [27]), providing custom classes via the Java classpath
option or variable has some issues. First, our suggested startup command line uses the -jar
option, which simply overrides any supplied classpath (see the Java tool documentation for
details). Second, the plug-in system uses its own class loader to find plug-ins. Due to the
Java class loader concept, the plug-in class loader hides all plug-in classes from any class that
is loaded via the system classpath. This means that Renew can load and use your custom
classes from the classpath, but your classes cannot refer to any Renew class. This problem
especially affects net stubs — they need to refer the NetInstance class of the simulator plug-in.
To work around this, the plug-in system provides the property de.renew.classPath.

You can set the property de.renew.classPath to any value that follows the syntax and
semantics of the Java classpath (which depends on the operating system you use). The
property is evaluated once at startup time to configure the class loader of the plug-in system
(changes at runtime are not recommended by Java’s class loader concept). All classes available
through de.renew.classPath can be used in simulations and as plug-in extensions. However,
if a class with the same qualified name exists in a plug-in and in the de.renew.classPath,
the plug-in class takes precedence.

For your convenience, the renew and loadrenew startup scripts automatically transfers
the value of the CLASSPATH environment variable to the de.renew.classPath property at
startup. As long as you stick to these scripts, you should be able to stick to the classical
method of configuring the CLASSPATH variable to include your custom classes and stubs.

When you are developing an application that consists of Java code and net drawings,
you might want to modify and recompile your own classes and use them in your nets with-
out restarting Renew. Therefore, we provide a class reloading mechanism to simulations in
Renew.

By setting the property de.renew.classReinit to true, you can request that all user
classes that are referenced by a net are reloaded before every compilation of a net. When

19

the class reloading feature is enabled, the de.renew.classPath property is re-read at each
simulation setup, but changes to the classpath do not affect the plug-in system.

However, there is a nasty caveat with this feature: Even without changing the class-
path, you can have two instances of the same class in the Java VM: Both are loaded from
de.renew.classPath, but one is known to the plug-in system while the other one is known to
the current simulation only. These classes are never identical or equal, if they are compared
(for example when the instanceof operator is applied to an object of the other class)! Note
that this mechanism may result in some problems when you access the Java reflection API,
too.

This property can also be changed from the Configure Simulation dialog (see Sec-
tion [£.4.6)). It is evaluated each time a simulation is set up. If no simulation is running, the
graphical editor evaluates it before each compilation.

Because the reloading of classes might affect performance, it is disabled by default.

2.6.6 Net Loading

When you are using many nets referencing each other, you might want to try the net loading
mechanism. When nets are missing during a syntax check, compilation or simulation, the
engine will look for matching drawing (.rnw) or shadow net (.sns) files and automatically
load, compile and include them into the net system.

The net loader is configured using the property de.renew.netPath, where the value is a
list of directories specified in the same syntax as the CLASSPATH environment variable used
by Java. Currently, the net path can comprise directories only, .jar or .zip files are not
supported. Subdirectories of the given directories are not searched, either. The order of
directories in the path list matters, the first directory containing a net will be used.

It is possible to specify netpath directories relative to the classpath. This is done by
prepending the directory entry with the (reserved) directory name CLASSPATH. For example,
if you include the directory (in Unix syntax, Windows users should replace the slash by a
backslash) CLASSPATH/nets in the de.renew.netPath property, then the net loader would
look for a missing net file throughout all nets directories relative to all classpath entries. The
searched classpath includes everything from the Java system classpath, all loaded plug-ins,
and the de.renew.classPath property (see Section [Z6.5]), in that order. When they are
included in the classpath, .jar and .zip files are searched, too.

The behavior of the net loader differs depending on the type of file it finds when looking
for a net. If it encounters a shadow net system (.sns) file, the net will be loaded into the
simulation or used for a syntax check, but it will not show up in a drawing window on the
screen. Matching shadow net system files must contain a single net with the same name alone.
If more than one net is found in the shadow net system file, it is rejected to avoid confusion
about the source of compiled nets. There is a command in the menu File/Export/Export
all (single file each) to generate such single-net shadow net system files for all open
drawings (see Subsection A.4.T]).

When the simulation has been started via the Simulation menu in the editor (and only
then!), the net loader will also look for (.rnw) files in the netPath. If it finds a matching
drawing file, the drawing shows up in an editor window and is immediately compiled into the
running simulation.

If a net can be obtained from several different sources at the same time, the net loader
takes the first one in the order of the netPath entries. If it encounters .sns files in the same
directory as .rnw files with the same name, it is not defined which one gets loaded.

The editor also uses the net loader during simulation to open drawings from .rnw files that
are needed to display net instances. But you should be aware that the net loading feature
comes with a big pitfall: If .sns files and .rnw files are not kept up-to-date, compiled nets
in the running simulation may have a different structure than the nets shown in the editor!
Since the mapping from a simulated net to its drawing is based solely on the net name, it is

20

possible that transitions and places in a net instance window do not fire in accordance to the
visible net structure.

The de.renew.netPath property is re-read every time a simulation is started. It is
configurable at runtime in the editor’s Configure Simulation dialog (see Section [LZ6]).

2.6.7 Database Backing

You can run Renew using a database that keeps a persistent copy of the current simulation
state. In the case of a system crash, this allows you to continue the simulation from a valid
state just before the crash when Renew is restarted. Database backing is only supported
when the simulation is started from the command line (see Section for information on
controlling a simulation from command line). Using database backing in gui mode may lead
to unexpected behavior But note that this feature is still experimental and has not been
tested across platforms due to lack of funds.

The setup of the persistent database backing is definitely more tricky than the other
Renew options, but it is supported by some predefined scripts. The source package contains
among others the SQL script initTable.sql which can be found in Simulator/src/de/
renew/database/entitylayer/.

It creates the required database tables for an Oracle server. For other databases, the
script will need some changes, but even the various versions of Oracle differ enough to cause
minor problems. A database backend, which supports transactions is required (e.g. MySQL
does not support transactions when using the default MyISAM engine; use InnoDB instead).

Having created the tables, you should configure a set of properties to enable the database
backing feature (see Table 2Z2]). These properties are evaluated each time a simulation is set
up. The class names specified for the driver and dialect properties should be accessible

Property name Type Comment
de.renew.simdb.driver class JDBC driver class (mandatory).
de.renew.simdb.url URL JDBC connection URL (mandatory).

de.renew.simdb.dialect class Subclass of de.renew.database.entitylayer
.SQLDialect (optional).

de.renew.simdb.user string User account for database login (optional).

de.renew.simdb.password string Password for database login. (ignored when
de.renew.simdb.user is not set).

Table 2.2: Properties to configure database backing

via the de.renew.classPath (see Section[Z6.5]). The dialect class is an internal class that
adapts Renew to the SQL dialect of your database. The default is the generic SQLDialect, but
for some databases we already provide experimental implementations like OracleDialect,
MySqlDialect or MSqlDialect.

When using the database backing, your nets must conform to certain restrictions. Un-
fortunately, these restrictions cannot be checked by Renew automatically, so that you must
take special care when preparing your net.

All tokens used in your net must be serializable, i.e., custom classes must implement
java.io.Serializable. Typically, all tokens are also immutable value objects, which acquire
their state once during creation, before these objects are used as tokens in the net. For value
objects, the equals() method must not be based on object identity, but on the represented
value. Similarly, the hashCode () method must also be properly defined.

If you use mutable, stateful objects in your nets, you must observe further restrictions.
Contrary to value object, stateful objects must preserve the original implementations of
Object.equals() and Object.hashCode(). Furthermore, the stateful objects must either
occur directly as tokens in the net or there must be exactly one token by which a given

21

stateful object is reachable. Failure to do so will result in a corrupted simulation state when
restoring the simulation from the database.
There is no garbage collection when using the database-backed simulation.

2.6.8 Remote Simulation Access

Any Renew simulation, regardless whether it is started from the command line or within the
graphical editor, can be published via Java’s Remote Method Invocation (RMI) technique.
Any Renew editor can then connect to the published remote simulation, display the token
game, and control the firing of transitions. See Section about how to connect to a
running remote simulation. This section focuses on how to configure the simulation engine
for remote access.

The first step is that you start an RMI registry on the machine where the server will
be running. This is a program distributed together with Java that stores RMI objects
and makes them accessible to other VMs. Simply run the program rmiregistry (e.g. as
a background task). Note that the rmiregistry process either needs a classpath with
renew2.5/plugins/remote-2.5.1.0. jar included or that the simulation server has to be
configured with the java.rmi.server.codebase property (see Java RMI docs for details).

Property name Type Comment

de.renew.remote.enable boolean Enables remote access (defaults to
false).

de.renew.remote.publicName string Name to use for RMI registration (de-
faults to default).

de.renew.remote.serverClass class Implementation of the interface

de.renew.remote.Server (defaults to
de.renew.remote.ServerImpl).
de.renew.remote.socketFactory class Implementation of the interface
java.rmi.server.RMISocketFactory
(defaults to RMI’s default factory).
de.renew.remote.rmi-host-name string the rmi server hostname to the cor-
rect ip if the remote server cannot be
found. It is similar to the java property
java.rmi.server.hostname

Table 2.3: Properties to configure a remote simulation

The remote simulation can be configured by using the properties listed in Table 2.3 The
defaults are suitable for most cases, so you just need to enable the remote access by setting
the property de.renew.remote.enable to true.

The publicName property is required, if you intent to run several servers on one machine.
When connecting from an editor, you can specify the server to connect to by its name.

The serverClass and socketFactory properties are normally not needed. Plug-in devel-
opers may use these properties to replace the default implementations by enhanced versions.
The server class determines the simulation control features which are remotely accessible.
The socket factory may enhance RMI transmissions by compression and/or encryption of the
network traffic.

All properties except socketFactory are re-evaluated at each simulation setup. They are
configurable at runtime in the editor’s Configure Simulation dialog (see Section [L.4.6]).

2.6.9 Logging

Renew uses the Log4j package (in version 1.2.x) from the Apache Logging Services project [I]
to give detailed feedback about its activities. The Log4j framework allows users to tailor the

22

logging output to fit their needs. The level of detail can be configured for every application
package or class individually.

The Renew base installation contains a binary distribution of Log4j in the renew2.5/1ibs
directory. The package is loaded immediately at application startup, before any configuration
of the plug-in system is done. The early load time of this package has the consequence that the
enhanced configuration methods mentioned at the beginning of this Section are not applicable
to configure the logging system.

Configuration mechanism

The configuration options of Log4j would occupy to much space in this manual, please have
a look at the documentation section of the Log4j homepage [I]. With the Renew distribution
comes a commented default configuration file renew2.5/config/log4j.properties.

Renew looks for Log4j configuration files at similar locations like its own .renew.properties
files (see Section ZX6.1]). The configuration files can be in XML syntax or in the Java prop-
erties format and must carry appropriate file extensions. The first file found in the following
list of candidates is used:

1. A file named in the system property log4j.configuration at the java command line
with the -D option.

2. .log4j.xml in the .renew subdirectory of your home directory.
3. log4j.xml in the installation directory renew2.5/config/.

4. .log4j.properties in the .renew subdirectory of your home directory and
log4j.properties in the installation directory renew2.5/config/. If both files exist,
individual settings in the user file take precedence over settings in the installation file.

5. A failsafe setup with a simple console logger is used if all configuration files are missing.

Renew provides the logs . home property that can be referred from within the configuration
files. This property by default points to the directory .renew/renewlogs in your home
directory, but you can override that setting with the -D option on the java command line.

Renew With Renew 2.5 the user configuration files .log4j.properties and .log4j.xml
2.5 as well as the logs.home default location moved from the home directory to the
.renew subdirectory in your home directory.

Default configuration

The default configuration file renew2.5/config/log4j.properties uses the logs.home prop-
erty (see above) so that you get two log files (renew.log and simulation.log) in that direc-
tory. The former comprises application messages while the latter stores simulation traces. In
the default configuration, application log messages are also printed to the Java console, but the
simulation trace is not. The logging plug-in provides a graphical user interface that displays
the simulation trace and allows flexible configuration of logged events (see Section [LZ.6]).

2.7 Plug-ins

As of Renew 2.0, the application is controlled by a plug-in system. The system is started
through the class de.renew.plugin.Loader. The loader sets up some class libraries and then
loads the main plug-in manager. The plug-in manager finds, loads, initializes and terminates
plug-ins, but it knows nothing about Petri nets. The Renew functionality is provided by a
set of plug-ins. More plug-ins can be installed to extend Renew.

In this section, there will be a lot of examples with file names and directories. These are
all given in Unix syntax. Users of other operating systems: please transform these examples
to your appropriate syntax.

23

2.7.1 Install Plug-ins

There are two ways to install a plug-in. If it comes in one single .jar file which includes
a file named plugin.cfg, you can just copy the file in the renew2.5/plugins directory (if
you use the Mac OS X application bundle, this directory is located inside the application
package at the path Contents/Resources/Java/plugins). If the plug-in comprises several
files, one of which is the file plugin.cfg, then you can create a subdirectory below (e.g.
renew2.5/plugins/myplugin and copy all files in this directory.

On the next startup, the plug-in system will find and include the plug-ins automati-
cally. If you want to include the plug-in in the running system, use the load command (see
Section 27.4]) in addition.

If you do not want to install the plug-in to your renew distribution directory, you can
install it to some other directory, let’s say /home/myself/devel/myplugin.jar (as single-
jar plug-in) or /home/myself/devel/myplugin/ (as multi-file plug-in). Then you again have
two possibilities: To make the plug-in system aware of the plug-in at the next startup, add
the line

‘ pluginlLocations=/home/myself/devel

to your .renew.properties file (see Section[ZG. Tl for details). When entering multiple paths,
they must be separated by the system’s path separator (which is ”;” on Windows and ”:”
on Unix systems). To load the plug-in immediately but temporarily into a running plug-in
system, use the load command: Depending on the number of files comprising the plug-in,
it’s one of the following commands:

load file:/home/myself/devel/myplugin. jar
load file:/home/myself/devel/myplugin/plugin.cfg

2.7.2 Exclude Plug-ins Temporarily

To hide installed plug-ins from the plug-in finder at startup, you can specify the property
de.renew.plugin.noLoad either via -D command line option or the .renew.properties file
(see Section 6.l for details). The value of the property is a comma separated list of plug-in
names. For example, the line

java -Dde.renew.plugin.nolLoad="Renew JHotDraw" -jar renew2.5/loader.)\
jar gui

will start the plug-in system, but terminate with the complaint that the gui command is
unknown. Because the JHotDraw plug-in has not been loaded, all dependent plug-ins can
also not be loaded. This affects the Renew Gui plug-in which would otherwise have provided
the gui command. Of course it would make more sense to use some non-graphical command
like startsimulation instead.

Alternatively it is possible to specify only the plug-ins you want to load at startup. For
that you have to set the property de.renew.plugin.autoLoad to false. And specify the
plug-ins you want to load with the de.renew.plugin.load property. The following line will
also start the plug-in system and terminate, because of the missing gui command.

java -Dde.renew.plugin.autoLoad=false -Dde.renew.plugin.load="\
Console ,RenewSimulator ,Renew Formalism ,Renew Util" -jar renew\
2.5/1loader. jar gui

2.7.3 System Termination

The plug-in system tries to detect the situation where no plug-in is active and therefore the
system can be shut down. Plug-ins are “active” if they have some long-term work to do.

24

This always holds for the windows of the graphical editor. A running simulation also counts
as active. The Console plug-in has a special keep-alive flag which marks it as active (see
Section [Z77.H).

Besides automatic termination, the plug-in system can be terminated by request. The
exit command (see Section 2.7.4]) has just that purpose. The editor may also terminate the
plug-in system when it’s main window is closed. The editor does this not by default, you
have to set the property de.renew.gui.shutdownOnClose to true.

The property de.renew.gui.autostart automatically starts the editor without the need
for an initial gui command, when set to true. The combination of these two gui properties
frees users of the pure graphical editor of most complications introduced by the plug-in
system.

2.7.4 Commands

As mentioned in Section[2.4] the plug-in system needs an initial command to start some plug-
in. Any plug-in can provide such commands (although the gui command is the one that you
will use most of the time). In the following, we present the basic commands provided by the
plug-in manager itself and some additional commands provided by other plug-ins. Note that
it is also possible to define a chain of commands by separating the commands with ---. Most
of the commands presented here you will typically not use on Renew start-up, but rather in
combination with the Console plug-in described in the following Section
A basic set of commands is provided by the plug-in manager itself:

help prints a list of all available commands. Due to the addition or removal of plug-ins, this
list may vary from time to time.

get prints the value of a property. The property name has to be given as an argument.

-a shows all known property keys.

set sets the value of a property (as explained in Section 2.6.J]). This command accepts
multiple arguments of the form key=value. It is important that no spaces are included
in the key, the value, or in between.

list prints a list with the names of all loaded plug-ins. The command respects some mode
switches:

-1 (or --long) shows date and version information of plug-ins (if available).
-j (or --jar) shows the jar file locations of plug-ins and libraries.

-0 (or -—ordered) shows an alphabetically ordered list of plug-in names.

info prints information about one plug-in. The plug-in’s name has to be specified as com-
mand argument (use list to see the plug-in names).

load loads one plug-in dynamically, if possible. The argument to this command is a URL
specifying the plug-in’s location. The plug-in location can be given relative to the
de.renew.pluginLocation directories. For example, load file:gui.jar would load
the gui plug-in from the renew distribution renew2.5/plugins/gui. jar. You can use
wildcards (e.g. load gux), if there is an ambiguity the alternatives are prompted for
selection of the correct one.

unload terminates and unloads a plug-in, if possible. The plug-in’s name has to be specified
as command argument (use 1list to see the plug-in names). If other plug-ins depend on
the given plug-in, the plug-in system will complain. You can add the argument -v to
see a list of dependent plug-ins, or the argument -r to unload all recursively dependent
plug-ins.

25

Although the plug-in is terminated and all dependencies are cleaned, its classes
% are still accessible. Fixing this bug requires a different plug-in class loader,
which will hopefully be written in some future release.

packageCount prints the packages and the total number of packages in the class loader.

exit terminates the plug-in system, and in consequence the whole application. If some plug-
in hangs during termination, you can use exit force to kill the Java VM abruptly or
exit ifidle to exit only if all plug-ins are inactive.

gc triggers the Java garbage collector.

script loads commands from a text file and executes them. The file name has to be given
as argument, it can be specified relative to the current directory. This command is
especially useful as initial command, when you in fact need to issue several commands
at startup of the plug-in system.

sleep This command waits for a given time until the next command is executed. The time
to wait is given as argument in seconds.

The following commands are not provided by the plug-in manager, but by some Renew
plug-ins. So they are available only when the respective plug-in is loaded.

gui starts the graphical editor and/or passes its arguments to the editor. The arguments
are supposed to be drawing file names. This command is provided by the Gui plug-in.

demonstrator opens a window with a list of drawing file names. This plug-in is provided by
the Gui plug-in.

ex exports a drawing into various formats. The usage of the command is ex <type> <drawing>
where <type> may be (but may vary depending on the installed plug-ins):
e PNG
o PNML-RefNet
e PNML-http://www.informatik.hu-berlin.de/top/pntd/ptNetb
e SVG
e ShadowNetSystem
e Woflan

This command is provided by the Export plug-in which in turn uses the FreeHEP
project for graphical exports. The command respects some mode switches:

-a (or -—accumulate) n-to-1 export (only available for some formats, e.g. Shad-
owNetSystem).

-0 (or ——output) specify the output file.

You can type just ex without any options to see the available formats.

startsimulation starts a simulation without using the graphical editor. See Section
This command is provided by the Simulator plug-in.

simulation controls a running simulation without using the graphical editor. Use one of
the subcommands help, run, step, stop or term as argument. See Section This
command is provided by the Simulator plug-in.

setFormalism chooses the formalism given as argument as current formalism. This is equiva-
lent to selecting a formalism in the menu (see Section [£4.6]). This command is provided
by the Formalism plug-in.

26

listFormalisms lists all installed formalisms. The names listed by this command can be
used as argument to the setFormalism command or as value for the renew.compiler
property. This command is provided by the Formalism plug-in.

keepalive displays and manipulates the keep-alive feature of the Console plug-in (see Sec-
tion 2Z77.5)).

guiprompt opens a graphical prompt dialog (see Section 2770, if the Gui Prompt plug-in is
installed.

navigator opens the Navigator window.

2.7.5 Console

The Console plug-in is part of the base distribution. It enhances the plug-in system by an
interactive command shell in the Java console window and allows to issue commands to the
plug-in system at runtime.

Renew With Renew 2.5 the old prompt plug-in is replaced by the new Console plug-in. It
2 . 5 utilizes JLine2 as library and provides editable command lines, tab-based command
and argument completions as well as searchable and persistent command history.

If you start the renew from a shell, you will be presented with the prompt Renew > at the
Java console. Here you can enter any of the commands mentioned in the previous subsection.
The Console plug-in itself offers one command with two alternative arguments:

keepalive on enables the keep-alive feature. Aslong as this feature is on, the plug-in system
will not terminate automatically because there is no active plug-in (see Section 2.7.3)).
However, an explicit termination request will still be executed.

keepalive off turns the keep-alive feature off.
keepalive without argument displays the current state of the keep-alive flag.

The initial state of the keep-alive flag is determined from the value of the property de.renew
.console.keepalive. If you tend to use the Console plug-in as your only active plug-in
most of the time, you should consider adding the line de.renew.console.keepalive=true
to your .renew.properties configuration file.

As an alternative to the Console plug-in, there also exists a gui prompt plug-in for down-
load. This plug-in adds a small dialog to the Plugins menu of the editor which accepts
commands to the plug-in system. The graphical prompt automatically keeps the plug-in sys-
tem alive as long as its dialog is open. The dialog can also be opened by the command-line
command guiprompt. The command feedback is now visible in the dialog instead of the Java
console window.

It is possible to escape whitespace characters by surrounding double quotes or with a
preceding backslash (e.g. gui "foo bar/file.rnw" or gui foo\ bar/file.rnw).

2.7.6 Net Components

Net Components (NC) are sets of net elements (Figures) that are grouped in a flat and
weak fashion. The aim is to be able to allow to move the whole set of net elements (the net
component) in convenient way. Weak means that, although the net component can be moved
by clicking and dragging the mouse in between the net elements, they can each individually
be manipulated. Individual net elements can be dragged resulting in a manipulated layout
of the net component. It is also possible to edit inscriptions of elements belonging to the net
component. Flat means that grouping is not hierarchical. In order to provide the functionality
a new Figure has been added, which has no graphical representation of its own.

27

The Net Component Plugin provides two basic functionalists. The grouping and ungroup-
ing of a selection of net elements and the management of tool palettes, which represent a
repository of (pre-) defined sets of net components. A repository consists in a folder that
holds several Renew net drawings, an images folder and a configuration file (.sequence). The
images folder should contain icons in gif format (24x24 pixels), which are used to fill the tool
buttons of the palettes. If no image is defined for a specific net component a generic image
(generic.gif) will be used instead. Names of net drawings and icon images should correspond.
The .sequence file contains the names of the drawings (without extensions) and define the
sequence in which the buttons are shown in the palette. The file may be empty but has to
be present in order for the directory to be recognized as net component repository. Further,
non-listed drawings are included in the palette without specific order.

There are two ways to use the net component repositories within the plug-in. First, repos-
itory folders can be opened directly using the menu command. Second, plug-ins can extend
the functionality of the NC plugin by providing a repository. Such a plugin can use the pro-
vided generic plugin facade PalettePlugin or a customized facade class can be provided. In
the latter case also other tool buttons and command line commands can be added to the sys-
tem. Plugins using the PalettePlugin class must provide two properties for the definition of
the directory and two for the automatic initialization switch: de.renew.nc.dir-prop-name,
de.renew.nc.init-prop-name. A minimal example for a plugin configuration file (plu-
gin.cfg) is presented below. More information about the concept and the tool can be found
in [3].

mainClass = de.renew.netcomponents .PalettePlugin
name = Renew ExampleComponents

provides = com.example.nc

requires = de.renew.util ,de.renew.gui,de.renew.nc

de.renew.nc.dir-prop-name=com.example.nc.dir
de.renew.nc.init -prop-name=com.example.nc.init
com.example.nc.dir=tools
com.example.nc.init=false

2.8 Troubleshooting

A few possible problems and their solutions are described here. If you have problems, contact
us. If you have solutions, contact us, too.

e [cannot extract the files from the archives.
Maybe the files got corrupted on their way to you? Maybe you are using an old version
of unzip? If you have a version of the JDK that does not support zipped jar archives,
please let us know.
Note that you must use Java 1.1 or newer to use jar archives and that Renew requires
Java 1.7 for different reasons anyway.

e Java is not found.
Probably the shell scripts try to look for Java in the wrong places.

e Under Windows, the installation or the start of Renew terminates with a message
regarding missing space for environment variable.
Enlarge the environment space for the command window.

e Java cannot find the class de.renew.plugin.Loader.
This should not happen if you use -jar renew2.5/loader. jar at the Java command
line. If you want to use the environment variable CLASSPATH instead, check if it
includes loader. jar.

e Renew starts, but the window titles are incorrect under the X Windows System.

28

Try a different window manager, e.g., mwm is known to work correctly. This is a general
Java problem and not related to Renew, so we cannot do anything about it.

e When I switch to a window of a different application while the Renew menu is open,
the menu stays visible in front of all other windows.
This is a general Java (more concrete: Swing) problem and not related to Renew, so
we cannot do anything about it. With Java 1.5, the bug has been fixed.

e [cannot open the sample files.
Sometimes you need to add the root directory / (or \, depending on your operating
system) to your class path.

e Under Mac OS X, using cmd-Q (apple-Q) to quit the application will not give you the
opportunity to save changes, even if the document has recently been modified.
The optional AppleUT plug-in (see Section Z5.T]) solves that problem.

2.9 History

Version 1.0 was the first public release. It included a net editor, a reference net simulator, a
Java stub compiler, and example nets.

2.9.1 Changes in Version 1.1
Modifications

Some performance enhancements were implemented and minor bugs were fixed. Some source
level inconsistencies were cleaned up. The thread model of Java 1.2 was adopted. The source
code was changed to be compilable with Java 1.1.3. The windowing code was made more
robust under Java 1.2.

The handling of null-objects in the simulator was corrected. The type system was made
more compatible with the Java type system. The trace flag of netelements is now saved to
disk. The simulation performance was improved. The garbage collection of net instances was
improved.

The graphical user interface was improved for some window managers. The presentation
of current markings was improved. The interactive execution of reference nets has been
improved a lot (see Section A.4.6]).

Additions

The parallel simulation code was added. The checks for double names and for cyclic channel
dependencies were added. Transition inscriptions may now include several parts separated
by semicolons. Virtual places may now be used in nets.

During the simulation, bindings can be selected and fired under user control. The multiset
of tokens contained in a place instance can be displayed as just the cardinality of the multiset,
a collection of all tokens in the multiset directly within the drawing, or in a separate window.
Individual components of tuples can be inspected. Initial markings are hidden during the
simulation.

2.9.2 Changes in Version 1.2
Modifications

The simulation engine was made more robust and flexible. Minor bugs were fixed.

A single inscription figure may now contain multiple arc inscriptions or initial marking
inscriptions that are separated by semicolons. Slight inconsistencies in the inscription lan-
guage were cleaned up. The type rules were improved. The results of action inscriptions may
now be passed through synchronous channels even in the presence of typed variables.

29

Some display problems with Java 1.2 have been fixed.

Additions

Flexible arcs were added. Clear arcs were added. Inhibitor arcs were added.

Marked places and firing transitions can now be highlighted during the simulation. A
rudimentary net layout algorithm has been implemented. The state of a running simulation
can now be saved and restored. Restarting a simulation may now reload Java classes.

Export of Encapsulated PostScript was implemented. Selection of groups of figures was
improved.

2.9.3 Changes in Version 1.3
Modifications

Some minor improvements of the graphical user interface were applied.

Additions

The timed simulation mode was added. Lists were provided in addition to tuples.

Breakpoints were added in order to control the graphical simulation. An XML import
and export facility was added. A graph layout algorithm that may help in viewing nets was
added. More commands for arranging figures manually were provided. The ability to select
and deselect figures by type was added.

2.9.4 Changes in Version 1.4
Modifications

This was a maintenance release that provided mainly improvements in the user interface,
documentation updates, and bug fixes.

Additions

You can now inspect token Java objects in detail and put toolbars into their own window.
You can insert intermediate points into connections more easily.

2.9.5 Changes in Version 1.5
Modifications

The compatibility with Java 1.2 was improved. Bugs in the simulation engine were fixed.
Some GUI problems were corrected. The menu structure was cleaned up and simplified.

Additions

A persistent database backing supports the deployment of the simulator in environment with
high availability requirements.

Arcs can be B-splines. An alignment can be specified for every text figure. Transitions
and places can be refined. Subnets can be coarsened. Nets can be merged.

Drawings are now autosaved. A backup copy of every file is kept. Undo and redo com-
mands were added. Search and replace commands were added.

The architecture guide was added, which is a manual that describes the most important
internal algorithms and data structures of Renew.

30

2.9.6 Changes in Version 1.5.1
Modifications

This was a maintenance release that provided bug fixes for the simulation engine.

2.9.7 Changes in Version 1.5.2
Modifications

This was a maintenance release that provided bug fixes for the install scripts and a perfor-
mance improvement of the simulation engine.

2.9.8 Changes in Version 1.6
Modifications

Java 1.2 is now required for compiling and running Renew. Bugs in the Java net parser, class
loader and simulation engine were fixed. Shadow net system serialization and rendering has
been fixed. The windows menu is sorted alphabetically. Windows can be de-iconified.

Additions

A remote layer allows the separation of the user interface from the simulation engine. A net
loader allows on-demand loading and compilation of nets during a simulation.

A new transition inscription manual was introduced for transitions that are not supposed
to fire automatically in ordinary running simulations.

2.9.9 Changes in Version 2.0
Removals

The RenewMode interface provided by the GUI has been removed. In consequence, the start
scripts for the modes disappeared, too. The channel, name and isolated node checks have
been removed from the Net menu because they need to be adopted to the new simulator
architecture.

Modifications

Java 1.4 is now required for compiling and running Renew. The application was decomposed
into several plug-ins. The simulation engine was restructured. The GUI application classes
were restructured and (partly) converted to use the Swing package from the Java foundation
classes. The import and export menus have been restructured. The handling of the various
configuration properties has been canonised by the plug-in system. The class loader for
custom classes has changed.

The :net() channel is no longer invoked implicitly on instance creation. The class
SequentialSimulator is replaced by the NonConcurrentSimulator without deadlock de-
tection feature. The expanded token display feature has moved into the optional FS plug-in,
this option has no effect unless the F'S plug-in is installed.

Additions

A plug-in system was added as bottom layer of the application. The ability to switch simulator
modes, net formalisms, the net loader path, and the remote access feature on the fly was
added. A PNML-compatible export format was added. The editor is able to load drawings
from URLs. The net loader can now search nets relative to the classpath.

31

2.9.10 Changes in Version 2.0.1
Modifications

This was a maintenance release that provided bug fixes for the install scripts and some redraw
issues of the graphical net editor.

Additions

An experimental AppleUI plug-in is available as optional download. It provides rudimentary
integration with the Mac OS looké&feel.

2.9.11 Changes in Version 2.1
Modifications

Many error messages of the Java net compiler or about problems in a running simulation
became more detailed. The command-line tool ShadowTranslator and the corresponding
Ant task now optionally include the specified formalism and a syntax check. Fixed transition
modes of bool net compiler. Fixed manual transitions in saved simulation states.

The color and font attribute dialogues were improved. Whitespace-only inscriptions are
now deleted automatically (like empty ones). The GuiPrompt plug-in now provides a text
area for command feedback. The binding selection frame is now scrollable. Tool windows and
dialogues are now listed in the Windows menu. Breakpoints pre-set via the Net menu are now
visually tagged. Fixed some drawing edit bugs in the GUI. Fixed some rare deadlocks in the
token game display. Improved scrolling effect of mouse wheel in drawings. Fixed handling of
polygons.

Some important changes to configuration properties are documented in the upgrade notes
(see Section 23)). Developers might also have a look there because of some code changes.

The set of Ant build files that come with the Renew source has undergone some changes.
The build process now stores information about the compilation environment with the plug-
ins. Distribution file names can now optionally include version information. The list and
info commands optionally display this information.

Additions

All Renew components (except the console prompt) now use the Apache Log4J logging frame-
work instead of Java console output. In the default configuration, informational and error
messages are printed to the console and logged to a file. The simulation trace also goes to
the logging framework (see Section [Z6.9]). The new Logging plug-in provides a simulation
trace window within the GUI.

The Net step option has been added to the simulation menu.

2.9.12 Changes in Version 2.1.1
Modifications

This was a maintenance release that provides several minor bug fixes for PNML export, null
token display and access to public methods of private (inner) classes in Java expressions. In
addition, this release is capable of reading drawing files created with the later release 2.2
(with some minor exceptions).

Additions
The AppleUI plugin now supports building a Mac OS X application bundle.

32

2.9.13 Changes in Version 2.2
Modifications

Java 1.5 is now required for compiling and running Renew.

The Gui now uses the Graphics2D Framework that came with Java 1.2, so some of the
figures might be drawn a little bit different when it comes to size and style. Tokens are now
displayed on a white opaque background in the token game to increase readability. Scrolling
now continues if the mouse is moved outside a drawing while a button is pressed.

Modifier keys (Ctrl, Shift) have been added to several commands and tools on drawing
figures. These enable users to resize figures to equal width and height, to adjust polygon
vertices at right angles with their adjacent edges, and to restrict polygon transformations to
either scaling or rotation. Keyboard movement of figures with arrow keys can now be sped
up using the Shift modifier.

The behavior of Search and Replace has been fixed so that multiple instances of the search
string in the same figure are now found and replaced correctly. The Drawing Load Server
has been restricted to accept local connection requests only.

Additions

Renew now includes and uses the VectorGraphics packages of the FreeHEP project to ac-
complish graphical export of drawings. Additional supported export formats are PDF, SVG,
and PNG. EPS export now exports non-standard fonts correctly (at the price of larger files).
EPS files now always have a rectangular white canvas.

A new pie figure allows to draw segments of arcs and ellipses. Line styles (dotted, dashed,
etc.) can now be applied to boxes, ellipses and other figures with outlines. A transparency
attribute has been added to all figure, font and pen colors. This breaks compatibility with
older Renew versions, so that drawings saved with version 2.2 can not be opened by pre-
vious versions (except release 2.1.1). The transparency attribute is currently ignored when
exporting drawings to EPS and this feature might not be implemented in future versions.
For drawings with transparency use one of the two new export formats SVG or PDF, which
handle transparency correctly.

The hotkey Ctrl+M now brings the menu and toolbar frame to front. Added “show net
pattern/instance element” options to the context menu in the simulation trace window. The
net stub compiler now additionally supports stub objects that wrap themselves around an
existing net instance during instantiation (before, a stub object always created its own net
instance).

We provide a Mac OS X application bundle as well as configuration files for the FreeDesk-
top (e.g. Gnome) environment that allow desktop integration with separate icons and mime-
types for Renew document files. However, there is still no such support for the Windows
family of operating systems.

Relevant for developers only

GUI and simulation have been separated so that they use different threads now. All calls to
the simulation are decoupled and executed in specialized simulation threads. All calls to the
GUI are delegated to or synchronized with the AWT event thread. Simulation threads can
now be configured with a separate priority. Loading of user-supplied classes in the context
of simulations has been improved.

A new parameter “netpath” has been added to the Ant task to create shadow net systems.
The Ant build environment has been enhanced to support separate source code trees for
JUnit tests and Cobertura coverage reports. However, there still are nearly no test cases
implemented. Several tools that form the Renew build environment are now required in
newer releases. Please refer to the readme file in the source package.

33

2.9.14 Changes in Version 2.3
Modifications

Java 1.6 is now required for compiling and running Renew.

Renew now includes and uses the 2.2 version of the FreeHEP project for graphical exports
of drawings.

Renew offers a better syntax check for Java reference net models. If a Java inscription
references a non-existing method or field of an object, a proposal for existing methods or
fields is made instead of just pointing out the syntax error (see also Section [7T]).

Minor modifications to the graphical editor functionality of Renew consist of the following.
The names and colors of place figures are now transferred to their virtual places. The editor
prevents adding more than one arc inscription by right-clicking on an arc with the mouse
as this happened rather by accident than on purpose. However, it is still possible to add
multiple arc inscriptions by using the inscription tool.

Additions

On startup Renew displays a splashscreen that gives information about the loaded plugins.

There are two new entries in the File menu. The first addition is a list of recently saved
drawings. The second addition is the possibility to open the Renew Navigator, which allows
to import file folders and show their content in a tree view. A more detailed description of
how to use the navigator can be found in Section 4.T]

It is now possible to define re-usable Net Components. A net component consists of a set
of net elements that typically fulfill some generic function and can be treated as a whole in
a larger net model. More details can be found in Section

The background of expanded tokens in instance/simulation drawings can be changed to
be transparent by setting the property de.renew.gui.noTokenBackground.

Several keyboard shortcuts have been changed and more have been added, especially for
selecting the main drawing tools. A comprehensive list of existing shortcuts can be found in
Appendix

Relevant for Developers only

Generics are now used throughout the code.

The RMI functionality which was formerly included in the Simulator plugin was extracted
into a new Remote plugin.

The lock functionality was moved from the Simulator to the Util plugin.

There are several changes to the Ant build environment. The Ant target clean in the meta
build file now iterates over all subdirectories instead of having a fixed list of plugins. Source
files of nets (.rnw) can optionally be included in the generated plugin archives (.jars) with the
Ant target rnw. To activate this function you need to set the property option.include.rnws
in your Ant properties (build.xml of the plugin in question or ant local.properties). The
property option.sns.compile switches the syntax check for shadow net files (.sns) on and
off. The Ant target javac accepts an encoding parameter which is set via the property
option.compile.encoding and defaults to utf-8. The Ant task createpng allows to export
net drawings to .png files.

2.9.15 Changes in Version 2.4

Modifications

The support for the .xrn format is discontinued. We encourage the use of PNML instead.
We fixed the remote server connection (RMI) by providing configuration (see the User Guide
Section 2.6.) We have fixed the simulation database backing and adapted the mechanism
for MySQL with InnoDB. Remaining AWT dialogues have been converted to Swing. The

34

Logging GUI has been improved by decoupling the Simulator from the GUI. The loadrenew
script now starts a regular Renew instance if the connection to a Drawing Load Server is not
possible. The desktop integration for Linux and Windows have been improved. We provide
new unified icons for all operating systems.

Many minor bugs have been fixed. Some of these were:

e Rare problems with locating nets relative to the classpath have been solved.
e Changes on the line style now affects all figures.

e The font style underlined now also affects small font sizes.

e Export to PNML now always produces files in UTF-8 character encoding.

e The Logging tab of the Configure Simulation dialog has been revised.

e The log4j PatternLayout can now be set from within the GUI

e Custom file appenders created in Logging GUI are now functional.

e Net components are more robust if attached figures are manipulated.

e It is now possible to escape whitespaces in command line commands. In that way it
is possible to open drawings with whitespaces in the path from command line.

Additions

The Navigator now offers a button to recursively expand a directory sub-tree. The Navigator
now loads directories without locking the GUI. PNML and ARM files are shown in the
Navigator. The keyboard shortcut Ctri+FEnter closes the text editor overlay.

The background transparency of EPS files can now be controlled by setting the property
de.renew.io.export.eps-transparency. For Windows, the installation script installre-
new.bat creates reg files that associate and disassociate Renew drawing files with loadrenew.bat
and register icons. We provide deb packages for Debian-based systems.

Relevant for Developers

We refactored large parts of the code base. Many Java compiler warnings have been re-
solved and Javadoc documentation have been improved. A few more JUnit tests have been
introduced. Logging and the simulator have been partially reworked to allow deadlock-free
real-time (GUI) logging with only minimal time delay. Several tools that were originally
mandatory to build Renew are now optional: these are Cobertura, Jalopy, JUnit and Latex.

2.9.16 Changes in Version 2.4.1

This is a maintenance release that provides a fix for a race condition that occurs - under rare
conditions - during the termination of the simulation.

2.9.17 Changes in Version 2.4.2

This is a maintenance release that provides a fix for the import of reference nets from PNML
format (RefNet).

2.9.18 Changes in Version 2.4.3

This is a maintenance release that provides an update of the FreeHEP library and a new
version of the Mac OS X application bundle. It fixes issues concerning the export functionality
with newer Java versions. This version requires at least Java 7.

35

2.9.19 Changes in Version 2.5
Modifications

We have modified several features of Renew. Most obvious is the complete reimplementation
of the Navigator plugin. It is now persistent, extensible and the tree view can now be filtered.
We optionally provide some convenient extensions, such as the integration of the drawing’s
diff feature (ImageNetDiff), which can now be triggered directly from the Navigator GUI.
The FreeHEP library has been upgraded to version 2.4. The quick—dra\xﬂ feature has been
improved, which results in a reduction to half the amount of mouse clicks during quickly
drawing net elements. Some key-bindings are now configurable.

The log4j configuration and the configuration GUI have been improved. The individual
log4j configuration file now resides in folder .renew, which is located in the users home folder.
The default location for log files moved there, as well. The loading of plugins at startup
can now be black-listed or white-listed. The PDF export produces PDF documents with
bounding boxes; configuration has been fixed. The grid can now be adapted and it can be
activated as default. Several console commands have been improved, including the following
plugin commands: list, load, unload and also export command ex. Type help to print a
synopsis of all commands.

Additions

The Console plugin replaces the Prompt plugin. It employs the well-established JLine2 libray
and provides several improvements: tab-completion for commands and attributes, command
history and editable command line. The Quick Fix feature improves the reporting of syntax
errors by providing suitable proposals for remedies and their automatic realization. The
Refactoring plugin (optional) provides features such as renaming of variable or renaming
of synchronous channels. Drag & drop now works for Renew drawings. Simply pull the
drawing over Renew’s main window. Drawings and also folders can also be dragged into the
Navigator Window. Additionally you can add images to a drawing by dragging it on the
drawing’s window. Two new text tools have been added. One is the target text tool, which
allows to add hyperlinks to any drawing element. The targets can be other model artifacts,
for instance a net, or external resources referenced by a URL. The hyperlink is activated by
using the Ctrl modifier key together with a mouse click. The comment tool allows to quickly
add comments to a drawing element.

Removals

e Macao format has been removed, since its usability was very limited.

e The PostScript export has been removed. Use EPS export or PDF export instead.

IThe possibility to quickly draw an arc and a n node by using the arc handle (see Section E3.3).

36

Chapter 3

Reference Nets

First, we are going to take a look at Petri nets with Java as an inscription language. Then
we look at synchronous channels and net references, two extensions that greatly add to the
expressiveness of Petri nets as described in [9] and [I0]. Finally, we are going to see how
nets and Java can seamlessly interact with each other. Reference nets and their theoretical
foundation as a whole are defined in [II] (in German).

3.1 Net Elements

Reference nets consist of places, transitions, and arcs.

There are many types of arcs. Firstly, ordinary input or output arcs that come with a
single arrow head. These behave just like in ordinary Petri nets, removing or depositing
tokens at a place. Secondly, there are reserve arcs, which are simply a shorthand notation
for one input and one output arc. Effectively, these arcs reserve a token during the firing of
a transition. Thirdly, there are test arcs, which have no arrowheads at all. A single token
may be accessed, i.e. tested, by several test arcs at once. This is important, because an
extended period of time might be needed before a transition can complete its firing. For a
more detailed treatment of test arcs see [6].

Besides these basic arc types, there are arc types that add greatly to the expressiveness
of nets, but are not as easy to understand. We postpone the description of these arcs until
Section B.10l

Each place or transition may be assigned a name. Currently, this name is used only for
the output of trace messages. By default, names are displayed in bold type.

Figure 3.1: The net elements

37

In Fig. Bl you can see a net that uses all net elements that were mentioned so far. You
can find it in the directory samples/simple of the Renew distribution. A single place p is
surrounded by six transitions. Initially, the place is unmarked. Assume that transition a fires,
which is always possible, because all its arcs are output arcs. Now one token is placed in p,
and all transitions except c¢ are activated. Transition c is still disabled, because it reserves
two tokens from p while it fires. In contrast to this, transition e may fire, because it is allowed
to test a single token twice. If a fires again, transition ¢ becomes activated, too, because a
second token is now available. A firing of the transitions b, c, e, and £ does not change the
current marking. However, transition d will remove one token from p during each firing.

Every net element can carry semantic inscriptions. Places can have an optional place
type and an arbitrary number of initialization expressions. The initialization expressions are
evaluated and the resulting values serve as initial markings of the places. In an expression,
[1 denotes a simple black token. By default, a place is initially unmarked.

Arcs can have an optional arc inscription. When a transition fires, its arc expressions are
evaluated and tokens are moved according to the result.

Transitions can be equipped with a variety of inscriptions. Fapression inscriptions are
ordinary expression that are evaluated while the net simulator searches for a binding of the
transition. The result of this evaluation is discarded, but in such expressions you can use the
equality operator = to influence the binding of variables that are used elsewhere.

Guard inscriptions are expressions that are prefixed with the reserved word guard. A
transition may only fire if all of its guard inscriptions evaluate to true.

int

42 guard x!=y

X=XX

Figure 3.2: The net colored

With these additions we cover the basic colored Petri net formalism. In Fig. B2 which is
also provided in the directory samples/simple, we find a net that uses the basic place and
arc inscriptions. At the left, we have a place that is typed int, which means that it can only
take integers as tokens. In this case, it has an initial marking of one integer 42 token. The
other places are untyped and initially unmarked. The leftmost transition will take 42 out of
the place and deposit one 4 and one 2 into the respective places. The upper middle transition
takes some x, which happens to be 4 in this case, out of its input places and copies it into
its two output places. The lower middle transition is similar, but here the equality of input
and output arc variables is established by the transition inscription x=xx. The rightmost
transition has a guard that ensures that x # y, written guard x!=y. Therefore it can only
take a 2 out of the upper place and a 4 out of the lower place or vice versa.

Action inscriptions are expression inscriptions preceded with the keyword action. Con-
trary to expression inscriptions, action inscriptions are guaranteed to be evaluated exactly
once during the firing of a transition. Action inscriptions cannot be used to calculate the
bindings of variables that are used on input arcs, because input arc expressions must be
fully evaluated before a transition can fire. However, action inscriptions can help to calculate
output tokens and they are required for expressions with side effects.

Then there are creation inscriptions that deal with the creation of net instances (see
Section B0l and synchronous channels (see Section B.7). But first we will look closer at the
expression syntax, which is very similar to a subset of Java. In fact, we have to look carefully
to spot the differences.

38

boolean boolean values (true, false)

byte 8-bit signed integers

short 16-bit signed integers

int 32-bit signed integers

long 64-bit signed integers

char 16-bit unsigned Unicode characters

float 32-bit IEEE floating point numbers
double 64-bit IEEE floating point numbers

Table 3.1: The primitive data types of Java

3.2 I do not Want to Learn Java

Even if you do not want to learn Java, Renew might be a useful tool for you, although it
looses some of its expressiveness. In many cases it is enough to learn how to write numbers,
strings, variables, and the simplest operators.

Reference nets provide extensions that go well beyond simple high-level Petri nets with
Java inscriptions. After you have read the next sections, you can use these extensions to
generate complex models without the need to incorporate Java code.

But remember that there are always subproblems that are easier to express in a program-
ming language rather than Petri nets. Reference nets work together seamlessly with Java
programs and gain a lot from utilizing the Java libraries. So once you do learn Java, you can
choose the appropriate modeling method for each task at hand.

3.3 A Thimble of Java

If you are already familiar with Java, you will want to skip to Section [3.4] where we discuss
the differences between Java and the inscription language used in reference nets. Here we
give a most rudimentary introduction to Java.

Java is an object-oriented programming language, but not everything is an object in Java.
There are eight non-object data types in Java which are listed in Table[BIl The types byte,
short, char, int, and long are called integral types here. Together with float and double
they form the number types.

In Figure 3.3l you can see two type hierarchies. On the left the ordinary Java subtype
relation is depicted. You can see that long is a subtype of float although some loss of preci-
sion might occur during the conversion. Nevertheless, Java will silently insert this conversion
whenever it is required in a program.

Although this is helpful for Java programs, it poses several problems in the context of
Petri nets, where the direction of information transfer is not always immediately obvious.
Hence such conversions are not done by the simulator. Instead we introduced the relation of
lossless conversions, which you can find on the right hand side of Figure [3:3] This relation
governs the type constraints between places and their neighboring arcs.

All other types except primitive types are reference types, i.e., references to some object.
Every object belongs to a class. When a class is declared, it may receive an arbitrary number
of field declarations and method declarations. Fields are variables that exist once per object
or once per class. The binding of the fields of an object captures the state of that object.
Methods describe the possible actions of an object. Each method has a name, a list of
parameters, and a body, i.e. a sequence of statements that are executed if the method is
invoked.

Method declarations and field declarations are nested in the declaration of the class to
which they belong. It is possible to use the predefined classes without writing new ones,
when working with Renew. We are going to see later how nets themselves can be regarded

39

double long double

float
int float
IOfg
int
char short
char short
byte byte

Figure 3.3: The Java type hierarchy and the hierarchy of lossless conversions

as classes. For a detailed discussion of the Java type system and the Java system libraries
we refer the reader to the literature.

Now we are going to look at the syntax of Java expressions. We only deal with the subset
of Java that is relevant to reference nets.

Variables are represented by identifiers. Identifiers are alphanumeric strings starting with
a non-numeral character. E.g., renew, WRZLGRMF, go4it, and aLongVariableName are all
valid variable names. By convention, variable names should start with a lower case character.
The declaration of a variable is denoted by prefixing the variable name with the type name,
e.g. int i. Variables were already silently assumed in Fig.

The Java language provides literals for integers (123), long integers (123L), floats (12. 3F),
and doubles (12.3). Furthermore, there are the boolean literals true and false, string literals
("string"), and character literals (’c’). Java uses 16-bit Unicode characters and strings.
There are no literals for the primitive types byte and short.

There is also one literal of reference type named null. Every variable of a reference type
may take null as a value. null equals only itself and no other reference. Trying to invoke a
method of the null reference will fail with a runtime exception.

A sizable set of operators is provided in Java. Here we are going to discuss those operators
that are still present in reference nets. The binary operators are listed in Table 3.2 where
we also note their interpretation and the operand types to which each operator is applicable.

Most of the operators are defined for primitive types only, but you can also check if two
references are identical with == and !=.

the Java-method equals(...) asin sl.equals(s2) or you will get strange results.
This is a peculiarity that annoys many Java beginners, but we are not in a position
to change this behavior.

% Never use == or != to compare the equality of strings, like in s1==s2. Always use

The operator + is also used to concatenate strings. If only one operand of + is a string, the
other operand is first converted to a string and the two strings are concatenated afterward,
e.g. "7x8="+42 results in the string "7x8=42".

If multiple operators are present, they are grouped according to their precedence. *, /,
and % have the highest precedence, | has the lowest precedence. The expression a+b%c*d | e is
equivalent to the fully parenthesized expression (a+((b%c)*d)) |e. The order of precedence
for each operator can be found in Tab. If in doubt, make the parentheses explicit.

An operand of a small type (byte, short, or char) is automatically converted to int
before any operator is applied. If you need the result as a small type, you have to make an

40

* multiply number

/ divide number

% modulo number

+ plus number, String

- minus number

<< shift left integral

>> shift right integral

>>> signed shift right integral

< less than number

> greater than number

<= less than or equal number

>= greater than or equal number

== equal primitive, reference
'= unequal primitive, reference
& and primitive

- exclusive or primitive

| or primitive

Table 3.2: Java binary operators, rules separate operators of equal precedence

- negate number
bit complement integral
! not boolean

Table 3.3: Java unary operators

explicit cast. E.g., (byte)bl+b2 adds the two bytes bl and b2 and truncates the result to
8 bits. You might also want to reduce the precision of a floating point number by saying
(float)dl where d1 is a double variable. The opposite case where precision is added, e.g.
(long)bl, is helpful, too, but usually this kind of conversion is added automatically in the
places where it is needed.

Casts between reference types are also possible, but here no conversion takes place. In-
stead, it is checked that the operand is indeed of the given reference type, either at compile
time or at run time, if required. E.g., if a variable o of type Object is declared, we can say
(String)o to ensure that o does indeed hold an object of type String.

There are a few unary operators, too. They are listed in Table B.3l Unary operators and
casts have a higher operator precedence than any binary operator.

A last operator that must be mentioned is instanceof. Its left operand is an expression
as usual, but its right operand must be the name of a class or interface. It evaluates to
true, if the result of the expression is a reference to an object of the given class or one of its
subclasses or of a class that implements the given interface.

With an object reference you can also inspect fields and invoke methods. E.g., if there is
an object o with a field £, you can access the field by writing o.f inside a Java expression.
The result will be the current value of that field.

For an object o, a call of the method m with the parameters 1 and x would look like
o.m(1,x). This has the result of binding the formal variables to the parameter values and
executing the body statements of the method. Unless the method is of the return type void,
a return value will be calculated and returned.

Due to overloading, there might be more than one method of a given name within some
class. In that case, the method that matches the parameter types most closely is invoked.

In order to create a new instance of a class, you can use the new operator. E.g., the
expression new java.lang.StringBuffer() will create a new object that belongs to the

41

class java.lang.StringBuffer and invoke its constructor. A constructor can be seen as a
special method that initializes a new object. The new operator can take arguments inside
the parentheses. The arguments are then passed to the constructor just as in an ordinary
method call.

3.4 The Inscription Language

Because we are dealing with a colored Petri net formalism, the net simulator must determine
which kind of token is moved for each arc.

The possible kinds of tokens are Java values or references. By default, an arc will transport
a black token, denoted by []. But if you add an arc inscription to an arc, that inscription
will be evaluated and the result will determine which kind of token is moved.

3.4.1 Expressions and Variables

Arc inscriptions are simply Java expressions, but there are a few differences. The first dif-
ference concerns the operators that are used in expressions. In Java the binary operators
&& (logical and) and || (logical or) are short-circuit operators. Ie., if the result of the left
operand determines the result of the operator, the right operand is not even evaluated. This
would imply an order of execution, which we tried to avoid in our net formalism. Hence, the
two operators are not implemented. The same holds for the ternary selection operator 7:.
An additional benefit of its exclusion from the language is that this frees up the colon for
other syntactic constructs. Possibly, these three operators might still occur in later releases
of Renew.

In Java variables receive their value by assignment. After a second assignment, the value
from the first assignment is lost. This flavor of variables is not well-suited for high-level Petri
nets. Instead variables are supposed to be bound to one single value during the firing of
a transition and that value must not change. However, during the next firing of the same
transition, the variables may be bound to completely different values. This is quite similar
to the way variables are used in logical programming, e.g. in Prolog.

guard i>=j & j>0
i 1%j

Figure 3.4: The net gcd

In Fig. B4l we show an example net that uses expressions as arc inscriptions and also as
guard inscriptions. The example is provided in the directory samples/simple. Some numbers
are put into a place and the net will compute the greatest common divisor of all these numbers
and terminate with no more enabled transitions. The upper central transition is the most
interesting. It removes two tokens from the pool of numbers, but a guard makes sure that the
two numbers are greater than zero and correctly ordered. The transition outputs the smaller
number and the remainder (denoted by the operator %) of the division of the greater number
by the smaller number. The lower central transition simply puts the new numbers back into
the pool and the left transition discards zeroes.

Note how a single variable can be bound to different values at different times. Note that
the simulator will automatically search for possible bindings of the variables.

42

3.4.2 Types

For reference nets, types play two roles. A type may be an inscription of a place. This means
that the place can hold only values of that type. The net simulator can statically detect
many situations where type errors might occur, i.e., when transitions try to deposit tokens
of the wrong type into a place. Furthermore, variables may be typed. This means that the
variable can only be bound to values of that type.

In Java every variable needs to be declared. There are of course many good reasons to
demand this, but there are times when it is valuable to write programs without having to
worry about a type declaration. One of these cases are throw-away prototypes, which are
supposed to be developed very quickly. Petri nets are generally usable for prototyping, so we
wanted to be able to write nets without having to declare variables.

But for stable code that will be used in a production application types are a must. There-
fore reference nets provide the option to create a declaration node. In the declaration node,
an arbitrary number of Java import statements and Java variable declarations are allowed. If
a declaration node is present, then all variables must be declared. This means that you have
the choice between complete liberty (no variables can be declared) and complete security (all
variables must be declared).

Note that an undeclared variable does not have a type. Therefore, the type of an ex-
pression can only be determined at runtime, if it contains undeclared variables. Worse, if a
method is overloaded, the choice of the actual method must be delayed until runtime when
all operator types are known. This is contrary to ordinary Java, where overloaded methods
are disambiguated at compile time.

guard i>=j;
int j guardj>0 o int o
int i;
int j;

Figure 3.5: The net gcdtyped

Fig. BB shows a typed variation of the greatest common divisor algorithm. First, you can
see the type inscriptions of the places that are all int in this case. Second, you will notice
the declaration node where the two variables are declared. As in Java, declarations consist
of the type followed by the name of the variable.

Places can be typed, too. This allows the simulator to catch some difficult situations before
the actual simulation. For input arcs, the type of the arc inscription should be comparable
to the type of the place, i.e. either a subtype or a supertype. Otherwise it is probable that
the expression yields a value that cannot be a token in the place. Note that for this type
check we have to use the lossless conversion rules as depicted in Figure [3.3]

For output arcs we require that the type of the arc expression is narrower than the type of
the place, so that the place can always take the resulting token. This is important, because the
values of the output expressions might only be determined during the firing of the transition
when it is too late to declare the transition disabled. For input arcs we can simply ignore
any binding that would result in a token of a bad type.

As a special case it is required that an output arc expression for a typed place must be
typed. In practice this means that you have to declare your variables as soon as you assign
types to places. On the other hand, you can type the variables without having to type the
places.

43

Sometimes it is required to convert an expression of one type to an expression of a different
type. Reference nets support Java’s concept of casts. A cast is indicated by prefixing an
expression with the desired type enclosed in parentheses. E.g., (Object)"string" would be
an expression of type Object, even though it will always result in "string", which is of type
String.

On the other hand, if you know that a variable o of type Object will always hold a
string, you can say (String)o to inform the type system of this fact. For primitive types, a
conversion takes place, e.g., (byte)257 converts the 32-bit integer 257 into the 8-bit integer
1 by truncating the most-significant bits.

In Fig.B5lwe also illustrated that you can make multiple inscriptions to a single