
Concurrent Finite Automata

Matthias Jantzen∗ Manfred Kudlek∗ Georg Zetzsche∗

January 22, 2009

Abstract

We present a generalization of finite automata using Petri nets as
control. Acceptance is defined by final markings of the Petri net. The
class of languages obtained by λ-free concurrent finite automata con-
tains both the class of regular sets and the class of Petri net languages
defined by final marking.

1 Introduction

In classical finite automata, the input is read by one head that moves across
one symbol in every step. In order to investigate the impact of concurrency
on automata accepting languages, our generalization of finite automata al-
lows arbitrarily many heads that can move concurrently. These heads are
distributed across the input and in particular, different parts of the input
can be processed at the same time. A similar model, that applies the idea of
multiple independent heads to Turing machines instead of finite automata
is investigated in [FKR06].

The concurrency is achieved by using a Petri net that describes the
movement of the heads. For every position on the input, there is a multiset
of heads, which is interpreted as a marking of the Petri net. If a transition
fires at some position of the input, the corresponding preset is removed from
that position and the postset is added at the next position. In contrast to
multi-head automata, there is no global state, since the ability to fire only
depends on the heads at the respective position. Therefore, different parts
of the word can be processed concurrently.

It turns out that this model is equivalent to an automaton which, for
every symbol on the input, solves a system of algebraic equations and applies

∗Department Informatik, Universität Hamburg, E-Mail:
{jantzen,kudlek,3zetzsch}@informatik.uni-hamburg.de

1

some homomorphism to the solution to obtain the next configuration. These
two definitions are presented in section 2. Section 3 and 4 give an overview
of the results obtained so far concerning the languages accepted by CFA.

2 Definitions

Definition 1. A set M with an operation + : M ×M →M is a monoid, if
the operation is associative and there is a neutral element 0 ∈M for which
0+x = x+0 = x for every x ∈M . M is called commutative, if x+y = y+x
for all x, y ∈M . For x, y ∈M , let x v y iff there is a z ∈M with y = x+z.

For every set A, we have the set A⊕ of mappings µ : A → N. The
elements of A⊕ are called multisets over A. With the operation ⊕, defined
by (µ ⊕ ν)(a) = µ(a) + ν(a), A⊕ becomes a commutative monoid with the
neutral element 0, 0(a) := 0 for every a ∈ A. In the case µ v ν we can define
(ν	µ)(a) := ν(a)−µ(a) for all a ∈ A. If A is finite, let |µ| :=

∑
a∈A µ(a).

These definitions are carried over to Nk by noting that Nk ∼= {a1, . . . , ak}⊕.

A concurrent finite automaton is given by the following data.

Definition 2. A CFA is a sextuple C = (Σ, N, σ, µ0,F ,#), where

• Σ is an alphabet and # /∈ Σ is the end marker symbol,

• N = (P, T, ∂0, ∂1) is a Petri net, where P (T) is the set of places
(transitions) and ∂0, ∂1 : T⊕ → P⊕ are homomorphisms that specifiy
the pre- and post-multisets. Furthermore, ∂0(t) 6= 0 for every t ∈ T .
In the case that ∂1(t) 6= 0 for every t ∈ T , C is called non-erasing.

• σ : T → Σ∪{λ} defines the corresponding symbol for every transition.
A transition t ∈ T is called λ-transition, if σ(t) = λ. C is called
λ-free, if it does not contain λ-transitions.

• µ0 ∈ P⊕ is the initial marking and F is a finite set of final markings.

Now we give two definitions of the accepted language that are equivalent,
that is, the same language classes result from these definitions. The first one
directly describes the firing of the transitions in the underlying net.

Definition 3. Let C = (Σ, N, σ, µ0,F ,#) a CFA, where N = (P, T, ∂0, ∂1).
Then a configuration is a tuple (ν0, a1, ν1, . . . , an, νn,#, νn+1), where ν0, . . . , νn+1 ∈
P⊕ and a1, . . . , an ∈ Σ. On the set of configurations of C, we define the bi-
nary relation −→

C
. It describes the firing of one transition. Let

(ν0, a1, ν1, . . . , an, νn,#, νn+1) −→
C

(ν ′0, a1, ν
′
1, . . . , an, ν

′
n,#, ν

′
n+1)

2

Operator C0 C′0 Cλ0
∩R + + +

L1 · L2 + ? +
∪ + + +
∩ + + +
h−1 + + ?
h - - -

λ-free h ? ? + L0

CSS = LN
0

REG

CF

Lλ0 C0

C′0

Cλ0 = C′λ0 CS

RE

6
�
���

6

�
���

�
���

@
@@

6

6
�
���

�
���

@
@@I

Figure 1: Closure properties and relations of the language classes.

iff there are t ∈ T, j ∈ {1, . . . , n + 1} and one of the following conditions
holds:

• σ(t) = aj (where an+1 = #), ν ′j−1 = νj−1	∂0(t), ν ′j = νj ⊕∂1(t), and
ν ′i = νi for every i 6= j.

• σ(t) = λ and ∂0(t) v νj, ν ′j = νj 	 ∂0(t)⊕ ∂1(t) and ν ′i = νi for every
i 6= j.

So the firing of a non-λ-transition moves tokens across one symbol whereas
λ-transitions work like ordinary Petri net transitions on the multiset at one
position. Then for w ∈ Σ∗, w = a1 · · · an, a1, . . . , an ∈ Σ, it is w ∈ L1(C)
iff (µ0, a1,0, . . . , an,0,#,0) ∗−→

C
(0, a1,0, . . . , an,0,#, µ) for some µ ∈ F ,

where ∗−→
C

denotes the reflexive transitive closure of −→
C

. Thus, a word is

accepted if all the heads are on the rightmost position and a final marking
has been reached.

One possible variant is to accept a word also if the final marking is
reached in a distributed manner. So for w ∈ Σ∗, w = a1 · · · an, a1, . . . , an ∈
Σ, let w ∈ L2(C) iff (µ0, a1,0, . . . , an,0,#,0) ∗−→

C
(ν0, a1, ν1, . . . , an, νn,#, νn+1),

where ν0 ⊕ · · · ⊕ νn+1 ∈ F and νn+1 6= 0.

Now we present another definition, where the automaton solves a system
of algebraic equations and obtains the next configuration by applying a
homomorphism to the solution.

3

Definition 4. Using the notation Tx := {t ∈ T | σ(t) = x} for x ∈ Σ∪ {λ},
we define for every CFA C the binary relation =⇒

C
on Σ∗ × P⊕ by

(w, µ) =⇒
C

(wa, µ′) if ∃v ∈ T⊕a : ∂0(v) = µ ∧ ∂1(v) = µ′,

for w ∈ (Σ ∪ {#})∗, a ∈ Σ, µ, µ′ ∈ P⊕ and

(w, µ) =⇒
C

(w, µ′) if ∃t ∈ Tλ : ∂0(t) v µ ∧ µ′ = µ	 ∂0(t)⊕ ∂1(t),

for w ∈ (Σ ∪ {#})∗ and µ, µ′ ∈ P⊕. If ∗=⇒
C

denotes the reflexive transitive

closure of =⇒
C

, then the accepted language of C is

L3(C) := {w ∈ Σ∗ | ∃µ ∈ F : (λ, µ0) ∗=⇒
C

(w#, µ)}.

Now it is not hard to see that L3(C) = L1(C) for every CFA C. Fur-
thermore, it can be shown that the following definitions of language classes
accepted by different types of CFA do not depend on whether one chooses
L1(C) or L2(C) as the language of C. By C0 we denote the class of languages
accepted by non-erasing λ-free CFA. C′0 is the class of languages accepted
by λ-free CFA, Cλ0 the class of languages accepted by non-erasing CFA, and
C′λ0 the class of languages accepted by arbitrary CFA. REG, CF, CS, RE
denotes the class of regular, context-free, context-sensitive, recursively enu-
merable languages, respectively. Then let Lλ0 , (L0) be the class of Petri net
languages generated by (λ-free) Petri nets with final marking, as defined
in [Hack76]. For alphabets Σ,Γ, a homomorphism h : Σ∗ → Γ∗ is called
coding, if h(a) ∈ Γ for all a ∈ Σ. For a language class L, let Ĥ(L) (Hcod(L))
be the class of all languages h(L) with L ∈ L, where h is an arbitrary
homomorphism (coding).

3 Relations To Other Language Classes

By a simple construction, one obtains C′0 ⊆ Cλ0 and Cλ0 = C′λ0 . Furthermore,
it is easy to see that (λ-free) Petri nets can be simulated by (λ-free) CFA.
These inclusion is even proper, so we have L0 ⊂ C0 and Lλ0 ⊂ Cλ0 . While
it is still open whether all context-free languages are accepted by CFA, the
application of codings allows a construction similar to one used for push-
down-automata: For every context-free language L, there is a coding h and
a non-erasing λ-free CFA C such that L = h(L(C)). Thus, CF ⊆ Hcod(C0).
Applying arbitrary homomorphisms to languages accepted by CFA leads to

4

the whole class of recursively enumerable languages: For every recursively
enumerable language L, there is a (possibly erasing) homomorphism h and
a non-erasing λ-free CFA C such that L = h(L(C)). Thereby, h and C are
effectively constructible. In particular, it is RE = Ĥ(C0) and the emptiness
problem is undecidable even for non-erasing λ-free CFA. In contrast, the
word problem is decidable for every type of CFA and therefore we have the
proper inclusion C0 ⊂ RE. For every language of a λ-free CFA, there is
an algorithm accepting it in linear space and quadratic time, so we have
C′0 ⊆ NTimeSpace(n2, n) ⊂ CS.

4 Closure Properties

An easy consequence from C0 ⊆ C′0 ⊆ Cλ0 ⊂ RE and RE = Ĥ(C0) is the fact
that C0, C′0, Cλ0 are not closed under arbitrary homomorphisms. Nevertheless,
at least the class Cλ0 is closed under non-erasing homomorphisms. This and
CF ⊆ Hcod(C0) imply CF ⊆ Cλ0 .

In order to prove that the CFA-languages are closed unter inverse ho-
momorphisms, a lemma about finitely generated monoids was needed. For
a commutative monoid M , a subset S ⊆ M is called quasi-invertible iff for
every a, b ∈ M , a ∈ S and a + b ∈ S imply b ∈ S. For example, kernels
of homomorphisms are quasi-invertible. Now the lemma states that quasi-
invertible submonoids of finitely generated monoids are finitely generated
as well. With this lemma, one can prove that C0 and C′0 are closed unter
inverse homomorphisms.

An overview of the closure properties and the known relations of the
language classes is given in figure 1. Thereby, ∩R, L1 · L2, ∪, ∩, h−1,
h, λ-free h stand for intersection with regular languages, concatenation,
union, intersection, inverse homomorphism, arbitrary homomorphism and
non-erasing homomorphism, respectively.

References

[FKR06] Berndt Farwer, Manfred Kudlek, and Heiko Rölke. Concurrent
turing machines. Fundamenta Informaticae, 79(3-4):303-317, 2007.

[Hack76] M. Hack. Petri Net Languages. Cambridge, Mass.: MIT, Labora-
tory Computer Science, TR-159, 1976.

5

