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Model Checking

Standard

?
M ∣= '

a Kripke model a modal formula

For Petri Nets
M is a model corresponding either to the marking graph of an EPN or
to the concrete state graph of a TPN.
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Parametric Model Checking

Parameters can appear in:

a (timed) model1,5

a formula2,3

a model and a formula4

{p,q}start

{p}

{q}

{p,q}
x ≤ Θ1

y ≤ Θ2

x ≥ Θ1 + Θ2
y ≤ Θ1

∀Θ≤bEF (¬p ∧ EG≤Θc1)

1T. Hune, J. Romijn, M. Stoelinga, F. Vaandrager, Linear parametric model checking of timed automata, TACAS’01, LNCS
2031, 2001, pp. 189–203.
2V. Bruyére, E. Dall’Olio, J-F. Raskin, Durations and Parametric Model-Checking in Timed Automata, ACM Transactions on
Computational Logic 9(2), 2008, pp. 1–21.
3 E.A. Emerson, R. Trefler, Parametric quantitative temporal reasoning, LICS’99, 1999, pp. 336–343.
4 F. Raskin, V. Bruyère, Real-Time Model Checking: Parameters Everywhere, FSTTCS’03, LNCS 2914, 2003, pp. 100–111.
5 L-M. Tranouez, D. Lime, and O. H. Roux, Parametric model checking of time Petri nets with stopwatches using the state-class
graph, FORMATS’08, LNCS 5215, 2008, pp. 280–294.
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Time Petri Net: Timed Mutex
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Parametric Model Checking

Complexity
If parameters are in:

a model (e.g., TA, TPN), then reachability is undecidable,
a formula, then for TECTL – 3EXPTIME ,
both a model and a formula, then reachability is undecidable.

Idea
SAT-based Bounded Model Checking applied to parametric verification.

Applications

BMC for PRTCTL1:
parameters in formulas for Elementary Petri Nets2, and
parametric reachability for Time Petri Nets3.

1E.A. Emerson, R. Trefler, Parametric quantitative temporal reasoning, LICS’99, 1999, pp. 336–343.
2M. Knapik, M. Szreter, W. Penczek, Bounded Parametric Model Checking for ENS, TOPNOC 4:42-71, 2010
3M. Knapik, W. Penczek, M. Szreter, A. Polrola:, Bounded Parametric Verification for Distributed TPS with Discrete-Time
Semantics, FI, 101(1-2): 9-27, 2010
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Working example: mutual exclusion

Petri Net: MUTEX
Mutual exclusion:

n processes compete for access to
the shared resource p,
token in:

▶ wi : the i–th process is waiting,
▶ ci : the i–th process in a critical

section,
▶ ri : the i–th process is in an

unguarded section,
▶ p: the resource is available.
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Syntax and Semantics

Syntax of vRTCTL

PV – propositional formulas, containing the symbol true,
Parameters = {Θ1, . . . ,Θn} – parameter variables,
Linear expressions – � =

∑n
i=1 ciΘi + c0, where c0, . . . , cn ∈ ℕ.

vRTCTL syntax:
PV ⊆ vRTCTL,
if �, � ∈ vRTCTL, then ¬�, � ∨ �, � ∧ � ∈ vRTCTL,
if �, � ∈ vRTCTL, then EX�, EG�, E�U� ∈ vRTCTL,
if �, � ∈ vRTCTL, then EG≤��, E�U≤�� ∈ vRTCTL.

Example

'(Θ) = EF (¬p ∧ EG≤Θc1)

(EF� = EtrueU� – a derived modality)
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Syntax and semantics

Model for vRTCTL and PRTCTL
A Kripke structure M = (S,→,ℒ) is a model, where

S – a finite set of states,
→ ⊆ S × S – a transition relation s.t. ∀s∈S∃s′∈S s → s′,
ℒ : S −→ 2PV – a labelling function s.t. ∀s∈S true ∈ ℒ(s).

Parameter valuations
vRTCTL formulae are interpreted under parameter valuations:

� : Parameters → ℕ,
� is extended to the linear expressions �.

Example

For '(Θ) = EF (¬p ∧ EG≤Θc1) and � s.t. �(Θ) = 2
'(�) = EF (¬p ∧ EG≤2c1)
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Syntax and semantics

�start

�

�

�

M, start ∣= EG≤3�

�start

�

�

�

M, start ∣= E�U≤3�
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Syntax and Semantics

start

�

M, start ∣= EX�

start

�

M, start ∣= EF≤2�
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Syntax

Syntax of PRTCTL
vRTCTL ⊆ PRTCTL,
if �(Θ) ∈ vRTCTL ∪ PRTCTL, then
∀Θ�(Θ),∃Θ�(Θ),∀Θ≤a�(Θ),∃Θ≤a�(Θ) ∈ PRTCTL for a ∈ ℕ.

Notation: �(Θ1, . . . ,Θn) denotes that Θ1, . . . ,Θn are free in �.

Example

'3
1 = ∀Θ≤3EF (¬p ∧ EG≤Θc1)

We consider the closed formulae (sentences) of PRTCTL only.
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Semantics

Semantics of PRTCTL (the closed formulae)
M, s ∣= ∀Θ�(Θ) iff

⋀
0≤iΘ M, s ∣= �(Θ← iΘ),

M, s ∣= ∀Θ≤a�(Θ) iff
⋀

0≤iΘ≤a M, s ∣= �(Θ← iΘ),
M, s ∣= ∃Θ�(Θ) iff

⋁
0≤iΘ M, s ∣= �(Θ← iΘ),

M, s ∣= ∃Θ≤a�(Θ) iff
⋁

0≤iΘ≤a M, s ∣= �(Θ← iΘ).

Example

M, s ∣= '3
1 iff

⋀
iΘ≤3 M, s ∣= EF (¬p ∧ EG≤iΘc1)
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Example of a PRTCTL formula

∀Θ[AG(request ⇒ AF≤Θreceive)⇒ AG(request ⇒ AF≤2×Θgrant)]

expresses much more than the corresponding CTL formula

[AG(request ⇒ AFreceive)⇒ AG(request ⇒ AFgrant)]
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Complexity of model checking

For CTL, vRTCTL, and PRTCTL

CTL and vRTCTL can be model checked in time O(∣M∣ ⋅ ∣'∣).

PRTCTL can be model checked in time O(∣M∣k+1 ⋅ ∣'∣), where k is
the number of parameters in '.

E.A. Emerson, R. Trefler, Parametric quantitative temporal reasoning, LICS’99, 1999, pp.
336–343.
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Syntax and Semantics

Existential fragments
The logics vRTECTL and PRTECTL are defined as the restrictions of,
respectively, vRTCTL and the set of sentences of PRTCTL such that
the negation can be applied to propositions only.

Example: '4
1 = ∀Θ≤4EF (¬p ∧ EG≤Θc1)
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Syntax and semantics – back to MUTEX

Petri Net for MUTEX The marking graph

(w1,w2,p)start

(c1,w2) (w1,c2)

(r1,w2,p) (w1, r2,p)

(c1, r2) (r1,c2)

(r1, r2,p)

Let 'b
1 = ∀Θ≤bEF (¬p ∧ EG≤Θc1).

Intuitive meaning of M, start ∣= 'b
1 :

"There exists a future state, such that the resource is taken
and the first process stays in the critical section for any time
value bounded by b"
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Bounded semantics

k–models
Idea – to unwind the computation tree of a model
M up to depth k .

M – a model, k ∈ ℕ,
Pathk – the set of all sequences (s0, . . . , sk ),
where si → si+1.
Mk = (Pathk ,ℒ) is called the k-model.
If an existential formula ' holds in Mk , then '
holds in M.
The problem Mk ∣= ' is translated to
checking satisfiability of the propositional
formula [Mk ] ∧ ['] using a SAT-solver.
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Translation to boolean formula

Encoding submodels[
M
]A

k :=
⋀

j∈A
⋀k−1

i=0 T (wi,j ,wi+1,j)

Where A – a set of path indices determined by function5 fk .

V ∣=
[
M
]A

k iff V encodes k–model

Encoding formulae
' – a PRTCTL formula

⇓[
'
]

k – a propositional
formula

Testing formula[
M
]Fk (�)

k ∧ Is(w0,0) ∧
[
'
]

k

5W. Penczek, B. Woźna, A. Zbrzezny, Bounded Model Checking for the Universal Fragment of CTL, Fundamenta Informaticae,

vol. 51(1-2), 2002, pp. 135–156.
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Distributed Time Petri Nets

Time Petri Nets
A Time Petri Net (TPN) - a tuple N = (P,T ,F ,m0,Eft ,Lft), where:

P,T ,F ,m0 - like before,
Eft : T → IN, Lft : T → IN ∪ {∞} - earliest and latest firing times of
transitions (Eft(t) ≤ Lft(t) for each t ∈ T )

Distributed Time Petri Nets

A Distributed Time Petri Net (DTPN) - a set of sequential(∗) TPNs, of
pairwise disjoint sets of places, and communicating via joint transitions.
(∗) a net is sequential if none of its reachable markings concurrently enables two transitions
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Example: Fischer’s mutual exclusion protocol

waiting1

setx0_1

enter1
trying1

critical1

idle2

start2

trying2 waiting2 critical2

setx0_2

place 0

place 1

place 2

idle1 start1 setx1−copy1

setx1

setx1−copy2

setx2−copy2

setx2

enter2
setx2−copy1

[0,∞)

[0,∞)

[0,∞)

[0,∞)

[0,Δ]

[0,Δ]

[0,Δ]

[0,Δ]

[�,∞)

[0,Δ]

[0,Δ]
[�,∞)
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Parametric verification for DTPNs

Parametric reachability - a general problem
Given a property p, we want to find:

the minimal time c ∈ N at which a state satisfying p can be
reached
(corresponds to finding the minimal c s.t. EF≤cp or EF<cp holds),

Details of the verification method:
W.Penczek, A.Półrola, A.Zbrzezny: SAT-Based (Parametric)
Reachability for a Class of Distributed Time Petri Nets, T. Petri Nets
and Other Models of Concurrency 4: 72-97 (2010).
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Parametric reachability

A general solution

Searching for a minimal c ∈ IN s.t. EF≤cp:
1 test whether p is reachable
2 if so, extract the time x at which it has been reached (we know

that c ≤ ⌈x⌉)
3 check whether there is a path of a shorter time at which p is

reachable
4 if such a path exists return to 2, otherwise return ⌈x⌉
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Parametric Reachability

Solving the problem using BMC

Searching for a minimal c ∈ IN s.t. EF≤cp:
we run the standard reachability test to find the first time value x
at which p can be reached
we obtain a shortest path (of a length k0), but not necessarily of the shortest time

in order to test whether p can be reached at the time shorter than
n, we augment the net with an additional component and test
reachability of p ∧ pin

pin
t

[n,n]

pout

we can start with k = k0

in order to know that a state is unreachable, we need either to run
proving unreachability, or to find an upper bound on the path
for certain types of nets such an upper bound can be deduced
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VerICS: architecture
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Experimental Results

EPNs: mutex of NoP processes; 'b
1 = ∀Θ≤bEF (¬p ∧ EG≤Θc1)

formula NoP k PBMC MiniSAT SAT?
vars clauses sec MB sec

'1
1 3 2 1063 2920 0.01 1.3 0.003 NO

'1
1 3 3 1505 4164 0.01 1.5 0.008 YES

'2
1 3 4 2930 8144 0.01 1.5 0.01 NO

'2
1 3 5 3593 10010 0.01 1.6 0.03 YES

'2
1 30 4 37825 108371 0.3 7.4 0.2 NO

'2
1 30 5 46688 133955 0.4 8.9 0.52 YES

'3
1 4 6 8001 22378 0.06 2.5 0.04 NO

'3
1 4 7 9244 25886 0.05 2.8 0.05 YES
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DTPNs: Fischer’s protocol of 25 processes; Δ = 2, � = 1;
searching for minimal c s.t. EF≤cp,
where p - violation of mutual exclusion

tpnBMC RSat
k n variables clauses sec MB sec MB sat
0 - 840 2194 0.0 3.2 0.0 1.4 NO
2 - 16263 47707 0.5 5.2 0.1 4.9 NO
4 - 33835 99739 1.0 7.3 0.6 9.1 NO
6 - 51406 151699 1.6 9.6 1.8 13.8 NO
8 - 72752 214853 2.4 12.3 20.6 27.7 NO

10 - 92629 273491 3.0 14.8 321.4 200.8 NO
12 - 113292 334357 3.7 17.5 14.3 39.0 YES
12 7 120042 354571 4.1 18.3 45.7 59.3 YES
12 6 120054 354613 4.0 18.3 312.7 206.8 YES
12 5 120102 354763 4.0 18.3 64.0 77.7 YES
12 4 120054 354601 4.1 18.3 8.8 35.0 YES
12 3 115475 340834 3.9 17.7 24.2 45.0 YES
12 2 115481 340852 3.9 17.8 138.7 100.8 YES
12 1 115529 341008 3.9 17.7 2355.4 433.4 NO

40.1 18.3 3308.3 433.4
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Final Remarks

Final Remarks

Parametric BMC for EPN and DTPN,
New modules of VerICS are aimed at SAT-based parametric
verification of Elementary Petri Nets, Distributed Time Petri Nets,
and UML,
Avaialable at http://pegaz.ipipan.waw.pl/verics/
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The End

Thank You
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