Universitat (&)
Rostock « ‘;"t Traditio et Innovatio

Petri Net State Spaces

Karsten Wolf

Universitat ﬁ:’”
Rostock il

“ale e/ Traditio et Innovatio

My experience with
state spaces

-INA Integrated Net Analyzer
-LoLA A Low Level Analyzer

-The service-technology.org tool family

Case studies and applications:

-Finding hazards in a GALS wrapper

-Integration into Pathway Logic Assistent

-Soundness check for 700+ industrial business process models in (avg) 2 msec
-Verification of web service choreographies

-Verification of parameterized Boolean programs

-Solving Al planning challenges

-Integration into BP related tools like ProM, Oryx

-Integration into model checking platforms (MC Kit, PEP, CPN-AMI,...)

-....To be continued

Universitat (&
RO Sto C k H"'.., Traditio et Innovatio

Why state spaces? Why Petri nets?

Verification based on state space

. _ '-‘"ﬁ““
Universitat (¢ {-lgﬁ,wﬁ;}
Rostock 1 Traditio et Innovatio

-Consider asynchronously communicating
components rather than global state changes

Why state spaces?

-Consider causality of events rather than their
ordering in time!

o

Universitat & 0 Petri net principles

La0h/ Traditio et Innovatio

Presence or absence of ressources
<: rather than reading / writing variables

74 o

Linearity of firing rule -Considerasynchronously communicating >
<components Tather than global state changes

74

Q-Consider causality of events rather than their

Monotonicity of firing

Locality

. R
Partially ordered ordering in time!

event structures

Universitat ()

'J!,-L vl

Rostock il

/" Traditio et Innovatio

Monotonicity of firing

Linearity of firing rule

Locality

Partially ordered
event structures

Petri net specific

verification

Coverability graphs
Siphons / traps

invariants

Net reduction

Branching prefixes

a l."*a_\

universitat 1_\ State space generation

/" Traditio et Innovatio

1. Checking enabledness

2. Firing a transition

3. Backtracking

4. Managing the visited states

Universitat (&)

Rostock ‘it State space generation

/' Traditio et Innovatio

......

1. Checking enabledness

After firing, only check:
previously enabled transitions which have lost tokens
previously disabled transitions which have gained tokens

... managed through explicitly stored lists

... typical: reduction from linear to constant time ’
2. Firing a transition ‘

3. Backtracking

4. Managing the visited states

Universitat (&)
ROStock Wt

/' Traditio et Innovatio

State space generation

1. Checking enabledness

2. Firing a transition

Marking changed via list of pre-, list of post-places
- effort does not depend on size of net

- Typically: constant effort &

3. Backtracking

4. Managing the visited states

Universitat (.4
Rostock Traditio et Innovatio

State space generation

1. Checking enabledness
2. Firing a transition

3. Backtracking

In depth-first search: fire transition backwards

O

In breadth-first search: implemented as incremental depth-first search

4. Managing the visited states ‘

Universitat ({ &) _
Rostock il _ C(‘?nsequence. |
Jwrite-only* storage of markings

\#/ Traditio et Innovatio

current marking E:>
fire M <o|d/new |

-fire backwards

Set of visited markings

Search

stack t1

t2
t3

Universitat { <)
Rostock ‘it

/' Traditio et Innovatio

......

only performed actions: search, insert

4. Managing the visited states

pl |p P

p4

p5

alp1+a2p2+ a3 p3 = const.

b2 p2 + b4 p4 + b6 p6 = const.

c3 b3 + c7 p7 + c8 p8 = const.

30-60% less memory
preprocessing <1sec
run time gain: 30-60%

.

S

Place
invariants

Universitat (@) . :
Rostock 1L\. Traditio et Innovatio R e d U Ctl on te C h Nl q ues

1. Linear Algebra
2. The Sweep-Line Method
3. Symmetries

4. Stubborn Sets

Universitat (&)

Rostock Sl matoet ot 1. Linear algebra

« The invariant calculus
— originally invented for replacing state spaces
— In LoLA: used for optimizing state spaces

Already seen: place invariants

Transition invariant: firing vector of a potential cycle

Unl‘g{%';%ggls 4/; Traditio et Innavatio TranS|t|On Inva :

for termination sufficient: store one state per cycle of occurrence graph

implementation in LOLA:
transition invariants
- set of transitions that occur in every cycle
- store states where those transitions enabled

saves space, if applied in connection with stubborn sets, costs time

Universitat ()

Rostock | Traditio et Innovatio 2 . T h e swee p- | | Ne m eth Od

* Relies on progress measure '
LoLA computes measure automatically: ‘

m4: p4O
t3 e .
. transition invariant
p2=p1+At1 m3: p3go
3 = p2+At2 t2
p P m2: p2 t

m1: p1

Universitat (&) 3. The symmetry method

Rostock ,. _.,; Traditio et Innovatio

LoLA: A symmetry = a graph automorphism of the PT-Net

All graph automorphisms = a group (up to exponentially many members)
- stored in LoLA: polynomial generating set

A marking class: all markings that can be transformed into each other by a
symmetry

- executed in LoLA: polynomial time approximation

Universitat @
ROStOCk 4,/3 Traditio et Innovatio Exam ple

: :ﬁf‘i\

Universitat / X ‘*.\ :
ROStOCk f- ‘, * Traditio et Innovatio | aS derlved from a program

O O O OO« [«©®

Universitat { <)
Rostock ‘it

4. Stubborn set method

/' Traditio et Innovatio

......

 Dedicated method for each supported property

traditional LTL-preserving method:
- one enabled transition
- the basic stubborness principal
- only invisible transitions
- at least once, on every cycle, all enabled transitions

LoLA:
- can avoid some of the criteria, depending on property

Uniyersitat (& Conclusion

Rostock il 7/ Traditio et Innovatio

Why state spaces? Why Petri nets?

That's why

Further reading:
 Tools: www.service-technoloqgy.org
 Group/Papers: www.informatik.uni-rostock.de/tpp/

http://www.service-technology.org/
http://www.informatik.uni-rostock.de/tpp/

	Petri Net (versus) State Spaces���Karsten Wolf
	Foliennummer 2
	Foliennummer 3
	Foliennummer 4
	Petri net principles
	Petri net specific�verification
	State space generation
	State space generation
	State space generation
	State space generation
	Consequence: �„write-only“ storage of markings
	4. Managing the visited states
	Reduction techniques
	1. Linear algebra
	Transition invariants
	2. The sweep-line method
	3. The symmetry method
	Example
	… as derived from a program
	4. Stubborn set method
	Conclusion

