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Inhalt und Motivation

Aus dem KVV:

In der Vorlesung werden verschiedene Logiken behandelt. Dies
sind insb. die Aussagenlogik, die Prädikatenlogik, die Modallogik
sowie die Temporallogiken CTL und LTL. Im Zentrum stehen nach
Einführung von Syntax und Semantik Ableitungsverfahren wie
das Resolutionskalkül und die Tableau-Methode sowie weitere
(Semi-)Entscheidungsverfahren, um bspw. das zentrale
(Un-)Erfüllbarkeitsproblem zu lösen. Als wichtiger
Anwendungsfall dient uns in der Vorlesung der Bereich der
(Software-)Spezifikation und der (Software-)Verifikation.
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Mit der Aussagenlogik lassen sich einfache Verknüpfungen
zwischen (atomaren) Gebilden ausdrücken z.B.

A ∧ B für A und B

A ∨ B für A oder B

Wenn A und B für etwas stehen (z.B. A ≈ ’es regnet’) lassen sich
so kompliziertere Aussagen formen.

Mit komplizierteren Logiken lassen sich dann kompliziertere
Aussagen formen.
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Man kann dann (ganz allgemein mit Logiken)

1 Etwas aus der realen Welt in der Logik abstrakt ausdrücken.

2 In der Logik Schlüsse ziehen.

3 Dies wieder in der realen Welt interpretieren.
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(Aussagen-)Logik ...

als Grundlage der Mathematik,

für Programmiersprachen (z.B. Prolog),

für künstliche Intelligenzen,

für Datenbanken,

zur Beschreibung von Schaltkreisen,

in der Verifikation

...
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Die Aussagenlogik

ist eine ganz grundlegende Logik (Basis vieler anderer Logiken
bzw. in ihnen enthalten)

an ihr lässt sich vieles einüben

ist euch u.U. schon im SAT-Problem begegnet (und ist also
ganz grundlegend für den Begriff der NP-Vollständigkeit und
der Frage, was effizient lösbar ist)
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Eine Aussage im Sinne der Aussagenlogik ist ein atomares
sprachliches Gebilde das entweder wahr oder falsch ist. Notiert
als A, B, C oder A1, A2, A3, ... Diese nennt man
Aussagensymbole.

Die Aussagenlogik betrachtet den Wahrheitsgehalt einfacher
Verknüpfungen zwischen atomaren sprachlichen Gebilden (also
Aussagen). Dies sind:

¬ für nicht (Negation)
∧ für und (Konjunktion)
∨ für oder (Disjunktion)
⇒ für wenn ... dann (Implikation)
⇔ für genau dann, wenn (Biimplikation)

Die ¬,∧,∨,⇒,⇔ nennt man Junktoren.

Frank Heitmann heitmann@informatik.uni-hamburg.de 7/80



Syntax und Semantik
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Die Syntax legt nun zunächst nur fest, wie mit atomaren Formeln
und Junktoren komplexe Formeln erstellen kann. Diese Formeln
sind zunächst nur Zeichenkette ohne Bedeutung (Semantik).
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Definition (Syntax der Aussagenlogik)

Mit ASAL sei die Menge der Aussagensymbol der Aussagenlogik
bezeichnet. Wir notieren diese üblicherweise als A1,A2,A3, . . . oder
A,B,C , . . ..
Die Menge LAL der Formeln der Aussagenlogik definieren wir
mittels

1 Jedes A ∈ ASAL ist eine (atomare) Formel.

2 Ist F eine Formel, so ist auch ¬F eine Formel.

3 Sind F und G Formeln, so sind auch
(F ∨ G ), (F ∧ G ), (F ⇒ G ) und (F ⇔ G ) Formeln.

4 Es gibt keine anderen Formeln, als die, die durch endliche
Anwendungen der Schritte 1-3 erzeugt werden.
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Noch ein paar Bezeichnungen:

Manchmal führt man noch das Alphabet ein. Dies besteht
aus den Aussagesymbolen sowie aus den Junktoren und den
Klammern ( und ).

Die ¬,∨,∧,⇒,⇔ werden als Junktoren bezeichnet. Die
entstehenden Formeln als Negation (¬), Disjunktion (∨),
Konjunktion (∧), Implikation (⇒) und Biimplikation (⇔).

Eine Formel, die beim Aufbau einer Formel F verwendet wird,
heißt Teilformel von F . Außerdem ist F Teilformel von sich
selbst.

Der Junktor, der im letzten Konstruktionsschritt verwendet
wird, heißt Hauptoperator. Nach ihm werden komplexe
Formeln benannt.
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Syntax: Beispiel

Beispiele:

((A ∨ C ) ∧ B). Dies ist eine Konjunktion, da zuletzt ∧
angewandt wurde. Teilformeln sind A,B,C , (A ∨ C ) und
((A ∨ C ) ∧ B).

(A ∨ ∨C ) ist keine Formel.

A ∨ C zunächst auch nicht (Klammerung!)
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Strukturelle Induktion und Rekursion

Den Aufbau komplexer Formeln aus einfache(re)n Formeln kann
man nutzen um

1 Eigenschafen von Formeln nachzuweisen (strukturelle
Induktion)

2 Funktionen über die Formelmenge zu definieren (strukturelle
Rekursion)
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Strukturelle Induktion

Um eine Behauptung B(F ) für jede Formel F ∈ LAL zu zeigen
genügt es:

1 Zu zeigen, dass B(F ) für jede atomare Formel F gilt
(Induktionsanfang).

2 Anzunehmen, dass B(F ) und B(G ) für zwei Formeln F und G
gilt (Induktionsannahme).

3 Zu zeigen, dass unter der Annahme bei 2. nun auch
B(¬F ),B(F ∨ G ),B(F ∧ G ),B(F ⇒ G ) und B(F ⇔ G )
gelten (Induktionsschritt).
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Strukturelle Rekursion

Um eine Funktion f : LAL → D zu definieren (D ist dabei eine
beliebige Menge) genügt es:

1 f (A) für jedes A ∈ ASAL festzulegen.

2 eine Funktion f¬ : D → D und für jeden Junktor
◦ ∈ {∨,∧,⇒,⇔} eine Funktion f◦ : D × D → D zu
definieren. Es ist dann z.B. f ((F ∧ G )) = f∧(f (F ), f (G )).
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beliebige Menge) genügt es:

1 f (A) für jedes A ∈ ASAL festzulegen.

2 eine Funktion f¬ : D → D und für jeden Junktor
◦ ∈ {∨,∧,⇒,⇔} eine Funktion f◦ : D × D → D zu
definieren. Es ist dann z.B. f ((F ∧ G )) = f∧(f (F ), f (G )).
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Grundbegriffe

Wir wollen nun die Bedeutung von Formeln definieren.

Dazu

belegen wir die atomaren Formeln mit Wahrheitswerten

berechnen daraus den Wahrheitswert einer komplexen Formel

Die Menge der Wahrheitswerte enthält genau zwei Elemente

1 (’wahr’) und

0 (’falsch’).
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Semantik

Eine Belegung weist nun jedem Aussagesymbol einen
Wahrheitswert zu.

Aussagen und Formeln können dann unter einer Belegung
wahr oder falsch sein.

Die aussagenlogische Semantik regelt u.a., wie komplexe
Formeln zu Wahrheitswerten kommen.
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Semantik

Definition (Semantik der Aussagenlogik)

Eine Belegung ist eine Funktion AAS : ASAL → {0, 1}, die jedem
Aussagesymbol einen Wahrheitswert zuordnet.
Zu dieser wird rekursiv eine Funktion A : LAL → {0, 1} definiert,
die alle Formeln bewertet. Es ist für jedes A ∈ ASAL ist
A(A) = AAS(A) und für alle Formeln F ,G ∈ LAL sei

A(¬F ) = 1 genau dann, wenn A(F ) = 0

A((F ∨ G )) = 1 gdw. A(F ) = 1 oder A(G ) = 1

A((F ∧ G )) = 1 gdw. A(F ) = 1 und A(G ) = 1

A((F ⇒ G )) = 1 gdw. A(F ) = 0 oder A(G ) = 1

A((F ⇔ G )) = 1 gdw. A(F ) = A(G )
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Semantik - Anmerkung

Anmerkung

Bspw. die Definition

A((F ∨ G )) = 1 gdw. A(F ) = 1 oder A(G ) = 1

bedeutet, dass A(F ∨ G ) zu 1 ausgewertet wird, wenn

A(F ) = 1 ist oder wenn

A(G ) = 1 ist oder wenn

beides gilt.

In allen anderen Fällen (hier nur A(F ) = A(G ) = 0) ist
A((F ∨ G )) = 0.
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Semantik - Wahrheitstafeln

Wahrheitstafeln geben für die atomaren Formeln alle möglichen
Belegungen an und für die anderen Formeln die entsprechenden
Bewertungen. Sie stellen die Definition von eben übersichtlich dar.

A B ¬A A ∨ B A ∧ B A⇒ B A⇔ B

0 0 1 0 0 1 1

0 1 1 1 0 1 0

1 0 0 1 0 0 0

1 1 0 1 1 1 1

Wichtige Anmerkung

Hier und auf den nachfolgenden Folien verwenden wir bereits Klam-
merersparnisregeln. Wir führen diese später auch noch genauer ein.
Insb. lassen wir äussere Klammern weg.
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Zur Nachbereitung

Für ¬A hätte auch die kleinere Tabelle

A ¬A

0 1

1 0

genügt, aber so wie oben hat dann alles in eine Tabelle gepasst.
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Aufgabe

A B C D A ∨ ¬B C ∧ ¬D ¬(A ∨ ¬B) ∧ (C ∧ ¬D)

0 0 0 0
0 0 0 1
0 0 1 0
0 0 1 1
0 1 0 0
0 1 0 1
0 1 1 0
0 1 1 1
1 0 0 0
1 0 0 1
1 0 1 0
1 0 1 1
1 1 0 0
1 1 0 1
1 1 1 0
1 1 1 1
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Lösung der Aufgabe

A B C D A ∨ ¬B C ∧ ¬D ¬(A ∨ ¬B) ∧ (C ∧ ¬D)

0 0 0 0 1 0 0
0 0 0 1 1 0 0
0 0 1 0 1 1 0
0 0 1 1 1 0 0
0 1 0 0 0 0 0
0 1 0 1 0 0 0
0 1 1 0 0 1 1
0 1 1 1 0 0 0
1 0 0 0 1 0 0
1 0 0 1 1 0 0
1 0 1 0 1 1 0
1 0 1 1 1 0 0
1 1 0 0 1 0 0
1 1 0 1 1 0 0
1 1 1 0 1 1 0
1 1 1 1 1 0 0
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Wahrheitstafeln: Anmerkungen

In jeder Zeile einer Wahrheitstafel steht eine Belegung.

Jede Zeile beschreibt einen (prinzipiell) möglichen Zustand der
Welt.

Enthält eine Formel n verschiedene atomare Formeln /
Aussagensymbole, so existieren 2n Zeilen in der Tafel.

Eine Spalte wird als Wahrheitswerteverlauf (WWV) der
zugehörigen Formel bezeichnet.
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Kategorien

Definition

Eine Belegung heißt passend zu einer Formel F , wenn sie
jedem Aussagesymbol in F einen Wahrheitswert zuweist.

Eine Belegung A mit A(F ) = 1 nennt man ein Modell für F
oder eine erfüllende Belegung von F . Ist A(F ) = 0, so ist A
eine falsifizierende Belegung von F .

Ist ferner M eine (evtl. sogar unendliche) Formelmenge. So
nennt man eine Belegung A, die alle Formeln F aus M wahr
macht, ebenfalls ein Modell für M und schreibt dafür
bisweilen auch kurz A(M) = 1.

Zudem ist jede Belegung Modell der leeren Menge. Die leere
Menge ist also erfüllbar.
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oder eine erfüllende Belegung von F . Ist A(F ) = 0, so ist A
eine falsifizierende Belegung von F .

Ist ferner M eine (evtl. sogar unendliche) Formelmenge. So
nennt man eine Belegung A, die alle Formeln F aus M wahr
macht, ebenfalls ein Modell für M und schreibt dafür
bisweilen auch kurz A(M) = 1.

Zudem ist jede Belegung Modell der leeren Menge. Die leere
Menge ist also erfüllbar.
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Kategorien

Definition

Besitzt F mindestens eine erfüllende Belegung (ein Modell),
so heißt F erfüllbare Formel.

Besitzt F mindestens eine falsifizierende Belegung, so heißt F
falsifizierbare Formel.

Besitzt F mindestens eine erfüllende und mindestens eine
falsifizierende Belegung so heißt F kontingente Formel.

Besitzt F kein Modell, so heißt F unerfüllbare Formel oder
Kontradiktion.

Ist F unter jeder möglichen Belegung
”
wahr“, so heißt F

(allgemein-)gültig oder Tautologie.
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(allgemein-)gültig oder Tautologie.

Frank Heitmann heitmann@informatik.uni-hamburg.de 25/80



Syntax und Semantik
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so heißt F erfüllbare Formel.

Besitzt F mindestens eine falsifizierende Belegung, so heißt F
falsifizierbare Formel.

Besitzt F mindestens eine erfüllende und mindestens eine
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Kategorien - Notationen

Notationen:

A ist Modell von F bzw. macht F wahr wird kurz geschrieben
als A |= F .

A falsifiziert F bzw. macht F falsch wird kurz geschrieben als
A 6|= F .

Ist F eine Tautologie, wird dies kurz notiert als |= F .

Ist F eine Kontradiktion, wird dies kurz notiert als F |=.
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Tautologie vs. Kontradiktion

Satz

F ist gültig genau dann, wenn ¬F unerfüllbar ist.

Beweis.

F ist gültig
gdw . jede Belegung ist ein Modell von F (Def. der Gültigkeit)
gdw . A(F ) = 1 für jede Belegung A (Def. eines Modells)
gdw . A(¬F ) = 0 für jede Belegung A (Eigenschaft von ¬)
gdw . keine Belegung ist ein Modell von ¬F (Def. eines Modells)
gdw . ¬F ist unerfüllbar (Def. der Unerfüllbarkeit)
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Zusammenfassung Syntax:

Motivation

Definition der Syntax:

Alphabet, Junktor
Aussagesymbol, atomare Formel, komplexe Formel
Hauptoperator, Teilformel
Negation, Disjunktion, Konjunktion, Implikation, Biimplikation

strukturelle Induktion

strukturelle Rekursion
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Syntax
Semantik

Zusammenfassung 2

Zusammenfassung Semantik:

Belegung, Auswertung (einer Formel)

Wahrheitstafeln, Wahrheitswerteverlauf

erfüllende Belegung, falsifizierende Belegung, Modell

kontingent, (allgemein-)gültig, unerfüllbar

Tautologie, Kontradiktion

A |= F , A 6|= F , |= F , F |=
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Folgerung

Definition (Folgerung)

Eine Formel F folgt genau dann aus einer Formelmenge M, wenn
jede Belegung, die Modell für M ist, auch Modell für F ist.
Notation: M |= F .

Anmerkung

Im Falle einer einelementigen Menge M = {G} notiert man auch
G |= F und sagt, F folgt aus G .
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Folgerbarkeit, Äquivalenz und Normalformen

Folgerbarkeit und Äquivalenz
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Folgerung: Beispiel 1

Definition (Folgerung)

Eine Formel F folgt genau dann aus einer Formelmenge M, wenn
jede Belegung, die Modell für M ist, auch Modell für F ist.

Beweis von A ∧ B |= A ∨ B mit Wahrheitstafel:

A B A ∧ B A ∨ B

0 0 0 0
0 1 0 1
1 0 0 1
1 1 1 1

Jede Belegung, die Modell für A ∧ B ist (nur die vierte Zeile) ist
auch Modell für A ∨ B, daher gilt A ∧ B |= A ∨ B. (Das A ∨ B
auch woanders wahr ist, ist egal!)
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Folgerung: Beispiel 2

Beweis von {A⇒ B,B ⇒ C} |= A⇒ C mit Wahrheitstafel:

A B C A⇒ B B ⇒ C A⇒ C

0 0 0 1 1 1
0 0 1 1 1 1
0 1 0 1 0 1
0 1 1 1 1 1
1 0 0 0 1 0
1 0 1 0 1 1
1 1 0 1 0 0
1 1 1 1 1 1

Jede Belegung, die Modell für A⇒ B und Modell für B ⇒ C ist
(erste, zweite, vierte und achte Zeile) ist auch Modell für A⇒ C ,
also gilt die Folgerbarkeitsbeziehung.
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Folgerung: Beispiel 3

Beweis von A ∧ B ∧ C ∧ D |= C ∨ ¬D ohne Wahrheitstafel:

Sei A ein Modell für A ∧ B ∧ C ∧ D. Nach der semantischen
Definition von ∧ muss dann A(A) = A(B) = A(C ) = A(D) = 1
gelten womit wegen A(C ) = 1 und der Definition der Semantik
von ∨ auch A(C ∨ ¬D) = 1 gilt. Folglich ist jedes Modell von
A ∧ B ∧ C ∧ D auch Modell von C ∨ ¬D.
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Äquivalenz

Definition (Äquivalenz)

Zwei Formeln F und G heißen äquivalent genau dann, wenn jede
Belegung beiden Formeln den gleichen Wahrheitswert zuweist,
wenn also A(F ) = A(G ) für jede Belegung A gilt.
Notation: F ≡ G .

Anmerkung

1 Alternativ: Zwei Formeln sind genau dann äquivalent, wenn
sie dieselben Modelle besitzen, also A(F ) = 1 gdw. A(G ) = 1
gilt.

2 Äquivalente Formeln haben denselben Warhheitswerteverlauf!
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Äquivalenz: Beispiel 1

Beweis von A⇔ B ≡ (A ∧ B) ∨ (¬A ∧ ¬B) mit Wahrheitstafel:

A B A⇔ B A ∧ B ¬A ∧ ¬B (A ∧ B) ∨ (¬A ∧ ¬B)

0 0 1 0 1 1
0 1 0 0 0 0
1 0 0 0 0 0
1 1 1 1 0 1

In der dritten und letzten Spalte sieht man, dass A⇔ B und
(A ∧ B) ∨ (¬A ∧ ¬B) den gleichen Wahrheitswerteverlauf haben.
Damit sind die beiden Formeln äquivalent.
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Frank Heitmann heitmann@informatik.uni-hamburg.de 35/80



Syntax und Semantik
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Folgerbarkeit, Äquivalenz und Normalformen

Folgerbarkeit und Äquivalenz
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Äquivalenz: Beispiel 2

Widerlegung von A ∧ B ≡ A ∨ B durch Angabe eines
Gegenbeispiels:

A ∧ B und A ∨ B sind nicht äquivalent, da z.B. A mit A(A) = 0
und A(B) = 1 zwar ein Modell von A ∨ B nicht aber eines von
A ∧ B ist. Damit haben die beiden Formeln nicht die gleichen
Modelle und sind damit nicht äquivalent.

Wichtige Anmerkung

Ebenso widerlegt man Folgerbarkeitsbeziehungen F |= G durch An-
gabe eines Gegenbeispiels also durch Angabe einer Belegung A, die
Modell für F ist, aber nicht für G .
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Wichtige Anmerkung

Ebenso widerlegt man Folgerbarkeitsbeziehungen F |= G durch An-
gabe eines Gegenbeispiels also durch Angabe einer Belegung A, die
Modell für F ist, aber nicht für G .

Frank Heitmann heitmann@informatik.uni-hamburg.de 36/80



Syntax und Semantik
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Wichtige Äquivalenzen

Kommutativität: (F ∧ G ) ≡ (G ∧ F )
(F ∨ G ) ≡ (G ∨ F )

Assoziativität: (F ∧ (G ∧ H)) ≡ ((F ∧ G ) ∧ H)
(F ∨ (G ∨ H)) ≡ ((F ∨ G ) ∨ H)

Distributivität: (F ∧ (G ∨ H)) ≡ ((F ∧ G ) ∨ (F ∧ H))
(F ∨ (G ∧ H)) ≡ ((F ∨ G ) ∧ (F ∨ H))

Doppelnegation: ¬¬F ≡ F

de Morgans Regeln: ¬(F ∧ G ) ≡ (¬F ∨ ¬G )
¬(F ∨ G ) ≡ (¬F ∧ ¬G )

Elimination von ⇔: (F ⇔ G ) ≡ (F ⇒ G ) ∧ (G ⇒ F )
(F ⇔ G ) ≡ (F ∧ G ) ∨ (¬F ∧ ¬G )

Elimination von ⇒: (F ⇒ G ) ≡ (¬F ∨ G )
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Weitere wichtige Äquivalenzen

Absorption: (F ∧ (F ∨ G )) ≡ F
(F ∨ (F ∧ G )) ≡ F

Idempotenz: (F ∧ F ) ≡ F
(F ∨ F ) ≡ F

Tautologieregeln (F ∧ >) ≡ F
(F ∨ >) ≡ >

Kontradiktionsregeln: (F ∧ ⊥) ≡ ⊥
(F ∨ ⊥) ≡ F

Komplement: (F ∧ ¬F ) ≡ ⊥
(F ∨ ¬F ) ≡ >
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Anmerkung

Wichtige Anmerkung

1 Auf der letzten Folien waren ⊥ und > Konstanten. Man
müsste sie streng formal als neue syntaktische Konstrukte
einführen. Sie sind dann atomare Formeln, die immer zu 0
(bei ⊥) bzw. immer zu 1 (bei >) ausgewertet werden.

2 Alle obigen Äquivalenzen kann man z.B. mit Wahrheitstafeln
schnell beweisen.
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Klammerersparnisregeln

Aufgrund der Äquivalenzen können wir uns auf folgende Regeln zur
Klammerersparnis einigen:

1 Die äußersten Klammern entfallen: A ∨ B statt (A ∨ B)

2 Bei mehrfacher Konjuktion oder Disjunktion entfällt die
mehrfache Klammerung:
((A ∨ B) ∨ C ) ≡ (A ∨ (B ∨ C )) ≡ A ∨ B ∨ C

3 Weiterhin nicht erlaubt sind A⇒ B ⇒ C oder A ∨ B ∧ C

Bemerkung

In einigen Büchern findet man auch die Regel, dass ¬ am stärksten
bindet, dann ∧ und ∨ und als dritte ⇒ und ⇔. Damit wäre dann
z.B. auch A∧B ⇒ C möglich. Wir wollen dies i.A. aber nicht benut-
zen. Eine Ausnahme sind Hornformeln in Implikationsschreibweise,
zu denen wir evtl. später noch kommen.
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Folgerung und Äquivalenz (Wdh.)

Definition (Folgerung)

Eine Formel F folgt genau dann aus einer Formelmenge M, wenn
jede Belegung, die Modell für M ist, auch Modell für F ist.
Notation: M |= F bzw. G |= F , wenn M = {G}.

Definition (Äquivalenz)

Zwei Formeln F und G heißen äquivalent genau dann, wenn jede
Belegung beiden Formeln den gleichen Wahrheitswert zuweist,
wenn also A(F ) = A(G ) für jede Belegung A gilt.
Notation: F ≡ G .
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Einige Sätze

Satz

1 Wenn F ≡ G und |= G gilt, dann gilt auch |= F

2 Wenn F ≡ G und G |= gilt, dann gilt auch F |=
3 Wenn |= F und |= G gilt, dann gilt F ≡ G

4 Wenn F |= und G |= gilt, dann gilt F ≡ G

Beweis.

1. und 4. nachfolgend. 2. und 3. zur Übung.
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Einige Sätze

Satz

Wenn F ≡ G und |= G gilt, dann gilt auch |= F .

Beweis.

Sie A eine zu F und G passende Belegung. Da G eine Tautologie
ist, gilt A(G ) = 1. Da ferner F ≡ G gilt, gilt A(F ) = A(G ), also
auch A(F ) = 1. Damit ist jede Belegung Modell für F und folglich
F eine Tautologie.

Frank Heitmann heitmann@informatik.uni-hamburg.de 43/80



Syntax und Semantik
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Normalformen

Einige Sätze

Satz

Wenn F ≡ G und |= G gilt, dann gilt auch |= F .

Beweis.

Sie A eine zu F und G passende Belegung. Da G eine Tautologie
ist, gilt A(G ) = 1. Da ferner F ≡ G gilt, gilt A(F ) = A(G ), also
auch A(F ) = 1. Damit ist jede Belegung Modell für F und folglich
F eine Tautologie.

Frank Heitmann heitmann@informatik.uni-hamburg.de 43/80



Syntax und Semantik
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F ≡ G genau dann, wenn F |= G und G |= F

Beweis.

Sei F ≡ G und sei A ein Modell für F . Wegen F ≡ G ist A auch
ein Modell für G und damit gilt F |= G . Analog gilt auch G |= F .
Gelte nun andersherum F |= G und G |= F und sei A ein Modell
für F . Wegen F |= G gilt dann auch A(G ) = 1. Ist A′ ein Modell
für G , dann ist A′ wegen G |= F auch ein Modell für F . Damit
haben F und G genau dieselben Modelle und folglich gilt F ≡ G .
(Verallgemeinerung als Übungsaufgabe.)
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Folgerbarkeit, Äquivalenz und Normalformen

Folgerbarkeit und Äquivalenz
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Frank Heitmann heitmann@informatik.uni-hamburg.de 45/80



Syntax und Semantik
Folgerbarkeit, Äquivalenz und Normalformen

Folgerbarkeit und Äquivalenz
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Folgerbarkeit, Äquivalenz und Normalformen

Folgerbarkeit und Äquivalenz
Normalformen

Drei wichtige Sätze

Satz

1 F ≡ G genau dann, wenn |= F ⇔ G

2 F |= G genau dann, wenn |= F ⇒ G

3 F |= G genau dann, wenn F ∧ ¬G |=

Beweis.

1. zur Übung. Zu 2: Gelte F |= G und sei A eine zu F und G
passende Belegung. Ist A(F ) = 0, so ist A(F ⇒ G ) = 1 aufgrund
der Definition der Semantik von ⇒. Ist A(F ) = 1, so ist wegen
F |= G auch A(G ) = 1 und damit wieder A(F ⇒ G ) = 1 und
folglich gilt |= F ⇒ G .
Sei umgekehrt |= F ⇒ G und sei A ein Modell für F . Wegen der
Definition der Semantik von ⇒ folgt aus A(F ⇒ G ) = 1 (es gilt ja
|= F ⇒ G ) sofort A(G ) = 1 und damit ist jedes Modell von F
auch Modell von G und wir sind fertig.
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1. zur Übung. Zu 2: Gelte F |= G und sei A eine zu F und G
passende Belegung. Ist A(F ) = 0, so ist A(F ⇒ G ) = 1 aufgrund
der Definition der Semantik von ⇒. Ist A(F ) = 1, so ist wegen
F |= G auch A(G ) = 1 und damit wieder A(F ⇒ G ) = 1 und
folglich gilt |= F ⇒ G .
Sei umgekehrt |= F ⇒ G und sei A ein Modell für F . Wegen der
Definition der Semantik von ⇒ folgt aus A(F ⇒ G ) = 1 (es gilt ja
|= F ⇒ G ) sofort A(G ) = 1 und damit ist jedes Modell von F
auch Modell von G und wir sind fertig.

Frank Heitmann heitmann@informatik.uni-hamburg.de 46/80



Syntax und Semantik
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Beweis.

3. folgt aus 2. sofort aus der Äquivalenz F ⇒ G ≡ ¬F ∨ G und da
die Negation einer Tautologie eine Kontradiktion ist (und
umgekehrt) und da ¬(¬F ∨ G ) ≡ F ∧ ¬G .
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Normalformen

Drei wichtige Sätze

Satz

1 F ≡ G genau dann, wenn |= F ⇔ G

2 F |= G genau dann, wenn |= F ⇒ G

3 F |= G genau dann, wenn F ∧ ¬G |=

Beweis.

3. folgt aus 2. sofort aus der Äquivalenz F ⇒ G ≡ ¬F ∨ G und da
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Drei wichtige Sätze

Satz
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Verallgemeinerung

Die Aussagen

1 F |= G genau dann, wenn |= F ⇒ G

2 F |= G genau dann, wenn F ∧ ¬G |=

können verallgemeinert werden. Sei M eine beliebige Formelmenge,
dann gilt:

1 M ∪ {F} |= G genau dann, wenn M |= F ⇒ G

2 M |= G genau dann, wenn M ∪ {¬G} unerfüllbar ist.

Dabei ist eine Formelmenge unerfüllbar, wenn es keine Belegung
gibt, die alle Formeln der Menge wahr macht.
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Alle Sätze im Überblick

Satz

1 Wenn F ≡ G und |= G gilt, dann gilt auch |= F

2 Wenn F ≡ G und G |= gilt, dann gilt auch F |=
3 Wenn |= F und |= G gilt, dann gilt F ≡ G

4 Wenn F |= und G |= gilt, dann gilt F ≡ G

5 F ≡ G genau dann, wenn F |= G und G |= F

6 Wenn F1 ≡ F2 und G1 ≡ G2 gilt, dann gilt F1 |= G1 genau
dann, wenn F2 |= G2 gilt.

7 F ≡ G genau dann, wenn |= F ⇔ G

8 F |= G genau dann, wenn |= F ⇒ G

9 F |= G genau dann, wenn F ∧ ¬G |=
10 M ∪ {F} |= G genau dann, wenn M |= F ⇒ G

11 M |= G genau dann, wenn M ∪ {¬G} unerfüllbar ist.
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Folgerbarkeit, Äquivalenz und Normalformen

Folgerbarkeit und Äquivalenz
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Zur Übung

Zur Übung

Die Nummern 2, 3, 6, 7, 10 und 11 aus der Auflistung von eben
sind zur Übung.
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Normalformen

Wir wollen jetzt

die Äquivalenzen nutzen, um Teilformeln zu ersetzen und

so zu einer Normalform kommen

Die Normalform hat verschiedene Vorteile:

Einfach strukturiert (daher gut für Beweis, Algorithmen, ...)

Eigenschaften lassen sich bisweilen leichter ablesen/ermitteln.
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Folgerbarkeit, Äquivalenz und Normalformen

Folgerbarkeit und Äquivalenz
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Ersetzungen

Unser Ziel ist es zunächst Teilformeln ersetzen zu dürfen, also aus

A ∧ (B ⇒ C )

z.B.
A ∧ (¬B ∨ C )

zu machen. Die Rechtfertigung dafür wird die Äquivalenz
B ⇒ C ≡ ¬B ∨ C sein. Dass wir dies aber tatsächlich in
Teilformeln so ersetzen dürfen, sagt uns das Ersetzbarkeitstheorem.
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Normalformen

Ersetzungen
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Normalformen

Ersetzbarkeitstheorem

Satz (Ersetzbarkeitstheorem)

Seien F und G äquivalente Formeln und sei H eine Formel mit
(mindestens) einem Vorkommen der Formel F als Teilformel. Gehe
H ′ aus H hervor, indem ein Vorkommen von F (in H) durch G
ersetzt wird. Dann sind H und H ′ äquivalent.

Ersetzt man also eine Teilformel F einer Formel H durch eine
äquivalente Formel, so ist die entstehende Formel H ′ zur
ursprünglichen H äquivalent.

Der Satz ist die Rechtfertigung für die Schreibweise
A ∧ (B ⇒ C ) ≡ A ∧ (¬B ∨ C ).

Der Beweis erfolg nun mittels struktureller Induktion...
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Ersetzbarkeitstheorem

Seien F und G äquivalente Formeln und sei H eine Formel mit
(mindestens) einem Vorkommen der Formel F als Teilformel. Gehe
H ′ aus H hervor, indem ein Vorkommen von F (in H) durch G
ersetzt wird. Dann sind H und H ′ äquivalent.

Beweis

Induktionsanfang. Sei H eine atomare Formel und gehe H ′ durch
ersetzen von F durch G aus H hervor. Dann muss H = F und
H ′ = G gelten und aus F ≡ G folgt dann sofort H = F ≡ G = H ′

also H ≡ H ′.
Induktionsannahme. Wir nehmen an, dass H1 und H2 Formeln
sind, für die gilt: Für jede Formel H ′1 bzw. H ′2, die durch Ersetzung
von F durch G aus H1 bzw. H2 hervorgegangen ist, gilt H1 ≡ H ′1
bzw. H2 ≡ H ′2.
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Ersetzbarkeitstheorem

Seien F und G äquivalente Formeln und sei H eine Formel mit
(mindestens) einem Vorkommen der Formel F als Teilformel. Gehe
H ′ aus H hervor, indem ein Vorkommen von F (in H) durch G
ersetzt wird. Dann sind H und H ′ äquivalent.

Induktionsschritt. Ist F = H, so verfahren wir wie im
Induktionsanfang und sind fertig. Nachfolgend genügt es also den
Fall zu betrachten, dass F eine echte Teilformel von H ist.
Fall H = ¬H1. Dann ist F eine Teilformel von H1 und es gibt H ′1,
das aus H1 durch Ersetzen von F durch G entsteht und so, dass
H ′ = ¬H ′1 gilt. Nach Induktionsannahme gilt H1 ≡ H ′1. Sei nun A
eine beliebige Belegung. Dann ist A(H ′1) = A(H1) wegen H1 ≡ H ′1
und wegen der Definition der Semantik von ¬ ist dann auch
A(¬H ′1) = A(¬H1) also auch A(H) = A(H ′) und damit H ≡ H ′.
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Normalformen

Beweis des Ersetzbarkeitstheorems

Ersetzbarkeitstheorem
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Induktionsschritt. Ist F = H, so verfahren wir wie im
Induktionsanfang und sind fertig. Nachfolgend genügt es also den
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Folgerbarkeit, Äquivalenz und Normalformen

Folgerbarkeit und Äquivalenz
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Folgerbarkeit und Äquivalenz
Normalformen

Beweis des Ersetzbarkeitstheorems

Induktionsschritt (Fortsetzung). Fall H = H1 ∨ H2.
Angenommen F ist eine Teilformel von H1 (der andere Fall ist
analog). Dann gibt es wieder ein H ′1, das aus H1 durch Ersetzen
von F durch G entsteht und so, dass H ′ = H ′1 ∨ H2 gilt. Nach
Induktionsannahme gilt H1 ≡ H ′1. Sei nun A eine beliebige
Belegung. Dann ist A(H ′1) = A(H1) wegen H1 ≡ H ′1 und ähnlich
wie eben folgt wegen der Definition der Semantik von ∨ dann
A(H ′) = A(H ′1 ∨ H2) = A(H1 ∨ H2) = A(H) und damit H ′ ≡ H.
Die anderen Fälle gehen ganz analog, was den Beweis abschließt.

Anmerkung

Wichtig ist hier, dass A(H ′
1 ∨ H2) = A(H1 ∨ H2) gilt. Dies folgt aus der

Definition von ∨ und wegen A(H ′
1) = A(H1). Man überlegt sich, was

passiert, wenn die einzelnen Teilformeln zu 0 oder 1 ausgewertet werden
und dass tatsächlich immer das gleiche rauskommt.
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wie eben folgt wegen der Definition der Semantik von ∨ dann
A(H ′) = A(H ′1 ∨ H2) = A(H1 ∨ H2) = A(H) und damit H ′ ≡ H.
Die anderen Fälle gehen ganz analog, was den Beweis abschließt.

Anmerkung

Wichtig ist hier, dass A(H ′
1 ∨ H2) = A(H1 ∨ H2) gilt. Dies folgt aus der

Definition von ∨ und wegen A(H ′
1) = A(H1). Man überlegt sich, was

passiert, wenn die einzelnen Teilformeln zu 0 oder 1 ausgewertet werden
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Folgerbarkeit und Äquivalenz
Normalformen

Äquivalenzumformungen

Ergebnis

Wir dürfen nun dank des Ersetzbarkeitstheorems Teilformeln durch
andere Formeln ersetzen, sofern diese zu der gewählten Teilformel
äquivalent sind.

¬A⇒ ¬¬B ≡ ¬A⇒ B ≡ ¬¬A ∨ B ≡ A ∨ B
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Normalformen

Normalformen - Motivation

Wir wollen nun eine Normalform für aussagenlogische Formeln
einführen, d.h. eine Form

in die wir jede aussagenlogische Formel durch
Äquivalenzumformungen bringen können und

die eine praktische Form hat (z.B. für Berechnungen)

Dazu erst ein paar Begriffe ...
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Normalformen - Begriffe

Definition

1 Ein Literal ist eine atomare Formel oder eine negierte
atomare Formel.

2 Ein positives Literal ist eine atomare Formel, ein negatives
Literal eine negierte atomare Formel.

3 Zwei Literale heißen komplementär, wenn sie positives und
negatives Literal der gleichen atomaren Formel sind. Bspw. ist
A das komplementäre Literal zu ¬A und umgekehrt.

4 Literale und Disjunktionen von Literalen werden als Klauseln
bezeichnet.

5 Literale und Konjunktionen von Literalen werden als duale
Klauseln bezeichnet.
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Folgerbarkeit, Äquivalenz und Normalformen

Folgerbarkeit und Äquivalenz
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Normalformen - Begriffe 2

Definition

1 Eine Formel F ist in konjunktiver Normalform (KNF), wenn
sie eine Konjunktion von Klauseln ist, also eine Konjunktion
von Disjunktionen von Literalen, z.B.

(¬A ∨ B ∨ ¬C ) ∧ B ∧ (¬C ∨ ¬B) ∧ (A ∨ B ∨ C )

2 Eine Formel F ist in disjunktiver Normalform (DNF), wenn
sie eine Disjunktion von dualen Klauseln ist, also eine
Disjunktion von Konjunktionen von Literalen, z.B.

(A ∧ B) ∨ (¬A ∧ ¬C ) ∨ (B ∧ ¬A ∧ C )
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Syntax und Semantik
Folgerbarkeit, Äquivalenz und Normalformen

Folgerbarkeit und Äquivalenz
Normalformen

Eigenschaften der KNF und DNF

Merkhilfe

KNF: (¬A ∨ B ∨ ¬C ) ∧ B ∧ (¬C ∨ ¬B)
DNF: (A ∧ B) ∨ (¬A ∧ ¬C ) ∨ (B ∧ ¬A ∧ C )

Satz

1 Eine KNF ist gültig gdw. alle ihre Klauseln gültig sind gdw. in
allen Klauseln mindestens ein Paar komplementäre Literale
vorkommt.

2 Eine DNF ist unerfüllbar gdw. alle ihre dualen Klauseln
unerfüllbar sind gdw. in allen dualen Klauseln mindestens ein
Paar komplementäre Literale vorkommt.

3 Ein Erfüllbarkeitstest für DNFs ist effizient implementierbar
(Laufzeit ist in P). (Für KNFs gilt dies wahrscheinlich nicht!
Dies Problem ist NP-vollständig.)
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unerfüllbar sind gdw. in allen dualen Klauseln mindestens ein
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Folgerbarkeit, Äquivalenz und Normalformen

Folgerbarkeit und Äquivalenz
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Syntax und Semantik
Folgerbarkeit, Äquivalenz und Normalformen

Folgerbarkeit und Äquivalenz
Normalformen

KNF und DNF

Satz

Zu jeder Formel F gibt es (mindestens) eine konjunktive
Normalform und (mindestens) eine disjunktive Normalform, d.h. es
gibt Formeln K in konjunktiver Normalform und D in disjunktiver
Normalform mit F ≡ K ≡ D.

Beweis.

Der Beweis ist wieder mittels struktureller Induktion möglich. Siehe
z.B. Logik für Informatiker von U. Schöning.
Wir verfahren hier anders und geben eine Konstruktion an...
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Syntax und Semantik
Folgerbarkeit, Äquivalenz und Normalformen

Folgerbarkeit und Äquivalenz
Normalformen

KNF und DNF - Existenzbeweis

Wir konstruieren zu F die KNF K und die DNF D mittels
Äquivalenzumformungen wie folgt:

1 Forme F so um, dass nur die Junktoren ¬,∧ und ∨
vorkommen.

2 Forme weiter so um, dass Negationen nur vor atomaren
Formeln vorkommen.

3 Forme mittels der Distributivgesetze weiter so um, dass eine
DNF bzw. KNF entsteht.
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Syntax und Semantik
Folgerbarkeit, Äquivalenz und Normalformen

Folgerbarkeit und Äquivalenz
Normalformen

KNF und DNF - Existenzbeweis

Die Schritte im einzelnen:
Schritt 1. Forme F so um, dass nur die Junktoren ¬,∧ und ∨
vorkommen, indem die anderen Junktoren durch sie ausgedrückt
werden. Z.B. kann F ⇒ G durch ¬F ∨ G ersetzt werden und
F ⇔ G durch (¬F ∨ G ) ∧ (¬G ∨ F ). Wir erhalten die Formel F1.
Schritt 2. Wir formen F1 durch wiederholte Anwendung von
’doppelte Negation’ (¬¬F ≡ F ) und ’de Morgan’
(¬(F ∧ G ) ≡ ¬F ∨ ¬G und ¬(F ∨ G ) ≡ ¬F ∧ ¬G ) so um, dass
Negationen nur noch vor den Atomen vorkommen. Wir erhalten die
Formel F2.
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Syntax und Semantik
Folgerbarkeit, Äquivalenz und Normalformen

Folgerbarkeit und Äquivalenz
Normalformen

KNF und DNF - Existenzbeweis

Schritt 3b. KNF. Wir formen F2 durch wiederholte Anwendung
des Distributivgesetzes in eine KNF um:

(F ∨ (G ∧ H)) ≡ ((F ∨ G ) ∧ (F ∨ H))

((F ∧ G ) ∨ H) ≡ ((F ∨ H) ∧ (G ∨ H))

Schritt 3b. DNF. Wir formen F2 durch wiederholte Anwendung
des Distributivgesetzes in eine DNF um:

(F ∧ (G ∨ H)) ≡ ((F ∧ G ) ∨ (F ∧ H))

((F ∨ G ) ∧ H) ≡ ((F ∧ H) ∨ (G ∧ H))
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Syntax und Semantik
Folgerbarkeit, Äquivalenz und Normalformen

Folgerbarkeit und Äquivalenz
Normalformen

KNF und DNF - Existenzbeweis

Man beachte, dass

1 In jedem Schritt Äquivalenzumformungen vorgenommen werden.
Die entstehenden Formeln sind also zur ursprünglichen äquivalent
(Ersetzbarkeitstheorem).

2 Jeder Schritt terminiert:

1 Im ersten Schritt gibt es nur endlich viele ⇒ und ⇔ zu
ersetzen.

2 Im zweiten Schritt ’rutschen’ die Negationen stets eine Ebene
tiefer, so dass nur endlich oft umgeformt werden kann.

3 Im dritten Schritt ’rutschen’ die Disjunktionen (bei der DNF)
bzw. die Konjunktionen (bei der KNF) eine Ebene höher, so
dass nur endlich oft umgeformt werden kann.

3 Am Ende nach Konstruktion eine DNF bzw. eine KNF steht.

Damit haben wir ein Verfahren, das terminiert, eine äquivalente Formel
liefert, die zudem in DNF bzw. KNF ist. Damit ist das Verfahren korrekt.
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(Ersetzbarkeitstheorem).

2 Jeder Schritt terminiert:

1 Im ersten Schritt gibt es nur endlich viele ⇒ und ⇔ zu
ersetzen.

2 Im zweiten Schritt ’rutschen’ die Negationen stets eine Ebene
tiefer, so dass nur endlich oft umgeformt werden kann.

3 Im dritten Schritt ’rutschen’ die Disjunktionen (bei der DNF)
bzw. die Konjunktionen (bei der KNF) eine Ebene höher, so
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1 In jedem Schritt Äquivalenzumformungen vorgenommen werden.
Die entstehenden Formeln sind also zur ursprünglichen äquivalent
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Folgerbarkeit und Äquivalenz
Normalformen

Verfahren für die Erstellung von KNF und DNF

1 Ersetze alle Teilformeln der Form

(G ⇔ H) durch (¬G ∨ H) ∧ (¬H ∨ G )
bzw. (G ∧ H) ∨ (¬G ∧ ¬H) [Elimination von ⇔]

(G ⇒ H) durch (¬G ∨ H) [Elimination von ⇒]
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¬(G ∨ H) durch (¬G ∧ ¬H) [de Morgan]
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Verallgemeinerte Äquivalenzen

Anmerkung

Oft ist es hilfreich mit Verallgemeinerungen der Distributivgesetze
und der Regel von de Morgan zu arbeiten. Diese können nämlich
auf größere Formeln verallgemeinert werden. Für de Morgan:

¬(G ∧ H ∧ I ) ≡ (¬G ∨ ¬H ∨ ¬I )

¬(G ∨ H ∨ I ) ≡ (¬G ∧ ¬H ∧ ¬I )

Und bei den Distributivgesetzen z.B.

(F ∧ I ) ∨ (G ∧ H) ≡ (F ∨ G ) ∧ (F ∨ H) ∧ (I ∨ G ) ∧ (I ∨ H)

(F ∨ I ) ∧ (G ∨ H) ≡ (F ∧ G ) ∨ (F ∧ H) ∨ (I ∧ G ) ∨ (I ∧ H)

Dies ist dann weiter auf beliebig viele Teilformeln erweiterbar.
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Beispiel

Wir erstellen eine KNF zu (A ∧ (B ⇒ C ))⇒ D:

(A ∧ (B ⇒ C ))⇒ D Elimination von ⇒
≡ (A ∧ (¬B ∨ C ))⇒ D Elimination von ⇒
≡ ¬(A ∧ (¬B ∨ C )) ∨ D de Morgan
≡ (¬A ∨ ¬(¬B ∨ C )) ∨ D de Morgan
≡ (¬A ∨ (¬¬B ∧ ¬C )) ∨ D Doppelte Negation
≡ (¬A ∨ (B ∧ ¬C )) ∨ D Distributivität
≡ ((¬A ∨ B) ∧ (¬A ∨ ¬C )) ∨ D Distributivität
≡ ((¬A ∨ B) ∨ D) ∧ ((¬A ∨ ¬C ) ∨ D) Klammern
≡ (¬A ∨ B ∨ D) ∧ (¬A ∨ ¬C ∨ D)

Bemerkung

Zum Schluss (und auch zwischendurch) können Kommutativgesetze, As-
soziativgesetze und Regeln wie Absorption, Idempotenz, Tautologieregeln,
Kontradiktionsregeln und Komplementregeln angewendet werden, um die
Formel zu vereinfachen.
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Folgerbarkeit, Äquivalenz und Normalformen

Folgerbarkeit und Äquivalenz
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Folgerbarkeit, Äquivalenz und Normalformen

Folgerbarkeit und Äquivalenz
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Wahrheitstafelmethode

Eine weitere Möglichkeit eine DNF und eine KNF zu einer Formel
zu konstruieren, geht mit Wahrheitstafeln.

Anmerkung

Hier ist das Problem, dass die Wahrheitstafeln sehr groß werden
können und das Verfahren daher ineffizient.
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Folgerbarkeit und Äquivalenz
Normalformen

Wahrheitstafelmethode - DNF

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1

1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

Idee für die DNF?
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Wahrheitstafelmethode - DNF

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1 ¬A ∧ B ∧ C

1 0 0 1 A ∧ ¬B ∧ ¬C
1 0 1 0
1 1 0 0
1 1 1 1 A ∧ B ∧ C

(¬A ∧ B ∧ C ) ∨
(A ∧ ¬B ∧ ¬C ) ∨

(A ∧ B ∧ C )
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Normalformen

Wahrheitstafelmethode - DNF

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1 ¬A ∧ B ∧ C

1 0 0 1 A ∧ ¬B ∧ ¬C
1 0 1 0
1 1 0 0
1 1 1 1 A ∧ B ∧ C

(¬A ∧ B ∧ C ) ∨
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Wahrheitstafelmethode - KNF

A B C F

0 0 0 0
0 0 1 0
0 1 0 0
0 1 1 1

1 0 0 1
1 0 1 0
1 1 0 0
1 1 1 1

KNF ... ?
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Wahrheitstafelmethode - KNF

A B C F

0 0 0 0 A ∨ B ∨ C
0 0 1 0 A ∨ B ∨ ¬C
0 1 0 0 A ∨ ¬B ∨ C
0 1 1 1

1 0 0 1
1 0 1 0 ¬A ∨ B ∨ ¬C
1 1 0 0 ¬A ∨ ¬B ∨ C
1 1 1 1

(A ∨ B ∨ C ) ∧
(A ∨ B ∨ ¬C ) ∧
(A ∨ ¬B ∨ C ) ∧

(¬A ∨ B ∨ ¬C ) ∧
(¬A ∨ ¬B ∨ C )
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Wahrheitstafelmethode - DNF

Herstellung der DNF:

1 Erstelle pro Zeile, die zu 1 ausgewertet wird, eine duale Klausel:

1 Wird ein Aussagesymbole A zu 1 ausgewertet, nehme A in die
Klausel

2 Wird ein Aussagesymbole A zu 0 ausgewertet, nehme ¬A in
die Klausel

2 Verknüpfe alle so gewonnenen dualen Klauseln mit ∨
3 Gibt es keine Zeile, die zu 1 ausgewertet wird, nimm die Formel

A ∧ ¬A
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Wahrheitstafelmethode - KNF

Herstellung der KNF:

1 Erstelle pro Zeile, die zu 0 ausgewertet wird, eine Klausel:

1 Wird ein Aussagesymbole A zu 1 ausgewertet, nehme ¬A in
die Klausel

2 Wird ein Aussagesymbole A zu 0 ausgewertet, nehme A in die
Klausel

2 Verknüpfe alle so gewonnenen Klauseln mit ∧
3 Gibt es keine Zeile, die zu 0 ausgewertet wird, nimm die Formel

A ∨ ¬A
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Wahrheitstafelmethode

Korrektheit

Bei der Wahrheitstafelmethode werden offensichtlich DNFs
bzw. KNFs erstellt.
Diese sind zudem äquivalent zur ursprünglichen Formel, wie man
sich schnell überlegt. So erzeugt man bei der DNF mit den
einzelnen dualen Klauseln gerade Formeln, die genau an der Stelle
der Zeile zu 1 (sonst 0en) ausgewertet werden. Durch die
∨-Verknüpfung hat man dann gerade eine zur ursprünglichen
Formel äquivalente Formel. Bei der Erstellung der KNF hat
zunächst die einzelne Klausel gerade an der Stelle der Zeile eine 0
(sonst 1en). Durch die ∧-Verknüpfung hat man dann gerade
wieder eine zur ursprünglichen Formel äquivalente Formel.
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Folgerbarkeit, Äquivalenz und Normalformen

Folgerbarkeit und Äquivalenz
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∨-Verknüpfung hat man dann gerade eine zur ursprünglichen
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Normalformen

Wahrheitstafelmethode

Korrektheit

Bei der Wahrheitstafelmethode werden offensichtlich DNFs
bzw. KNFs erstellt.
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wieder eine zur ursprünglichen Formel äquivalente Formel.
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Probleme ...

Definition (SAT, CNF und 3CNF)

SAT = {〈φ〉 | φ ist eine erfüllbare aussagenlogische Formel}
CNF = {〈φ〉 | 〈φ〉 ∈ SAT und φ ist in KNF}
3CNF = {〈φ〉 | 〈φ〉 ∈ CNF und jede Klausel von φ

hat genau drei verschiedene Literale}

Theorem

SAT, CNF und 3CNF sind NP-vollständig.
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Ausblick

Ausblick

Im weiteren Verlauf wird es darum gehen trotz dieser Hürde
sinnvolle Entscheidungsverfahren für das zentrale
(Un-)Erfüllbarkeitsproblem der Aussagenlogik und weiterer Logiken
zu finden.

In späteren Logiken sind es meist nur noch Semientscheidungsver-
fahren. Dennoch sind auch diese wichtig, insb. da das Problem in so
wichtigen Bereichen wie z.B. Datenbanken, KI und Verifikation eine
zentrale Rolle spielt.
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Zusammenfassung

1 Syntax & Semantik der Aussagenlogik

2 Folgerbarkeit, Äquivalenz (+ Beweise)
3 Normalformen (KNF, DNF)

Ersetzbarkeitstheorem (+ Beweis)
KNF und DNF erstellen (+ Beweis)

4 SAT ist NP-vollständig
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