Frank Heitmann
heitmann@informatik.uni-hamburg.de

12. Oktober 2015



. Syntax und Semantik
Folgerbarkeit, Aquivalenz und Normalformen

Inhalt und Motivation

Aus dem KVV:

In der Vorlesung werden verschiedene Logiken behandelt. Dies
sind insb. die Aussagenlogik, die Pradikatenlogik, die Modallogik
sowie die Temporallogiken CTL und LTL. Im Zentrum stehen nach
Einfiilhrung von Syntax und Semantik Ableitungsverfahren wie
das Resolutionskalkiil und die Tableau-Methode sowie weitere
(Semi-)Entscheidungsverfahren, um bspw. das zentrale
(Un-)Erfiillbarkeitsproblem zu I6sen. Als wichtiger
Anwendungsfall dient uns in der Vorlesung der Bereich der
(Software-)Spezifikation und der (Software-)Verifikation.
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. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Motivation

Mit der Aussagenlogik lassen sich einfache Verkniipfungen
zwischen (atomaren) Gebilden ausdriicken z.B.

e AN B fur Aund B
@ AV B fir A oder B

Wenn A und B fiir etwas stehen (z.B. A = 'es regnet’) lassen sich
so kompliziertere Aussagen formen.

Mit komplizierteren Logiken lassen sich dann kompliziertere
Aussagen formen.
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Man kann dann (ganz allgemein mit Logiken)

© Etwas aus der realen Welt in der Logik abstrakt ausdriicken.

@ In der Logik Schliisse ziehen.

© Dies wieder in der realen Welt interpretieren.




(Aussagen-)Logik ...

o als Grundlage der Mathematik,

e fiir Programmiersprachen (z.B. Prolog),
o fiir kiinstliche Intelligenzen,

o fiir Datenbanken,

@ zur Beschreibung von Schaltkreisen,

@ in der Verifikation




. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Motivation

Die Aussagenlogik

e ist eine ganz grundlegende Logik (Basis vieler anderer Logiken
bzw. in ihnen enthalten)
@ an ihr lasst sich vieles einiiben

@ ist euch u.U. schon im SAT-Problem begegnet (und ist also
ganz grundlegend fiir den Begriff der NP-Vollstandigkeit und
der Frage, was effizient I6sbar ist)
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@ Eine Aussage im Sinne der Aussagenlogik ist ein atomares
sprachliches Gebilde das entweder wahr oder falsch ist. Notiert
als A, B, C oder A1, Ay, Az, ... Diese nennt man
Aussagensymbole.
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@ Die Aussagenlogik betrachtet den Wahrheitsgehalt einfacher
Verkniipfungen zwischen atomaren sprachlichen Gebilden (also
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Die =, A, V, =, < nennt man Junktoren.
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. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Motivation

@ Eine Aussage im Sinne der Aussagenlogik ist ein atomares
sprachliches Gebilde das entweder wahr oder falsch ist. Notiert
als A, B, C oder Ay, Ay, Az, ... Diese nennt man
Aussagensymbole.

@ Die Aussagenlogik betrachtet den Wahrheitsgehalt einfacher
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Aussagen). Dies sind:

e — fiir nicht (Negation)

o A fiir und (Konjunktion)

e V fiir oder (Disjunktion)

e = fiir wenn ... dann (Implikation)

e & fiir genau dann, wenn (Biimplikation)

Die =, A, V, =, < nennt man Junktoren.
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Die Syntax legt nun zunichst nur fest, wie mit atomaren Formeln
und Junktoren komplexe Formeln erstellen kann. Diese Formeln
sind zunachst nur Zeichenkette ohne Bedeutung (Semantik).




. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Syntax: Definition

Definition (Syntax der Aussagenlogik)

Mit ASa; sei die Menge der Aussagensymbol der Aussagenlogik
bezeichnet. Wir notieren diese iiblicherweise als A, Az, As, ... oder
AB,C,...
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mittels

Q@ Jedes A € ASy, ist eine (atomare) Formel.

@ Ist F eine Formel, so ist auch —F eine Formel.

© Sind F und G Formeln, so sind auch

(FVG),(FAG),(F= G)und (F < G) Formeln.
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. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Syntax: Definition

Definition (Syntax der Aussagenlogik)

Mit ASa; sei die Menge der Aussagensymbol der Aussagenlogik
bezeichnet. Wir notieren diese iiblicherweise als A1, Ay, Az, ... oder
AB,C,...
Die Menge L4, der Formeln der Aussagenlogik definieren wir
mittels

Q@ Jedes A € ASy, ist eine (atomare) Formel.

@ Ist F eine Formel, so ist auch —F eine Formel.

© Sind F und G Formeln, so sind auch

(FVG),(FAG),(F= G)und (F < G) Formeln.

@ Es gibt keine anderen Formeln, als die, die durch endliche
Anwendungen der Schritte 1-3 erzeugt werden.
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Noch ein paar Bezeichnungen:

@ Manchmal fiihrt man noch das Alphabet ein. Dies besteht
aus den Aussagesymbolen sowie aus den Junktoren und den
Klammern (und ).

@ Die =, V, A,=, < werden als Junktoren bezeichnet. Die
entstehenden Formeln als Negation (=), Disjunktion (V),
Konjunktion (A), Implikation (=) und Biimplikation (<).

@ Eine Formel, die beim Aufbau einer Formel F verwendet wird,
heiBt Teilformel von F. AuBerdem ist F Teilformel von sich
selbst.

@ Der Junktor, der im letzten Konstruktionsschritt verwendet
wird, heiBt Hauptoperator. Nach ihm werden komplexe
Formeln benannt.
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Beispiele:

@ ((AV C) A B). Dies ist eine Konjunktion, da zuletzt A
angewandt wurde. Teilformeln sind A, B, C,(AV C) und
((AVC)AB).

e (AV V() ist keine Formel.

@ AV C zunichst auch nicht (Klammerung!)
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. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Strukturelle Induktion und Rekursion

Den Aufbau komplexer Formeln aus einfache(re)n Formeln kann
man nutzen um

@ Eigenschafen von Formeln nachzuweisen (strukturelle
Induktion)
@ Funktionen iiber die Formelmenge zu definieren (strukturelle

Rekursion)
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Um eine Behauptung B(F) fiir jede Formel F € L, zu zeigen
genugt es:

© Zu zeigen, dass B(F) fiir jede atomare Formel F gilt
(Induktionsanfang).

@ Anzunehmen, dass B(F) und B(G) fiir zwei Formeln F und G
gilt (Induktionsannahme).

© Zu zeigen, dass unter der Annahme bei 2. nun auch
B(—F),B(FV G),B(F A G),B(F = G) und B(F & G)
gelten (Induktionsschritt).




Um eine Behauptung B(F) fiir jede Formel F € L, zu zeigen
genugt es:

@ Zu zeigen, dass B(F) fiir jede atomare Formel F gilt
(Induktionsanfang).
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© Zu zeigen, dass B(F) fiir jede atomare Formel F gilt
(Induktionsanfang).
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gilt (Induktionsannahme).
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Um eine Funktion f : £4; — D zu definieren (D ist dabei eine
beliebige Menge) geniigt es:

@ f(A) fiir jedes A € ASp, festzulegen.

@ eine Funktion -, : D — D und fiir jeden Junktor
o€ {V,A,=,<} eine Funktion f, : D x D — D zu
definieren. Es ist dann z.B. f((F A G)) = fA(f(F), f(G)).




Um eine Funktion f : £4; — D zu definieren (D ist dabei eine
beliebige Menge) geniigt es:

Q f(A) fiir jedes A € ASx festzulegen.
eine Funktion f- : D — D und fiir jeden Junktor

o€ {V,A,=, <} eine Funktion f, : D x D — D zu

definieren. Es ist dann z.B. f((F A G)) = fA(f(F), f(G)).
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Strukturelle Rekursion

Um eine Funktion f : £4; — D zu definieren (D ist dabei eine
beliebige Menge) geniigt es:

@ f(A) fiir jedes A € ASp, festzulegen.

@ cine Funktion £, : D — D und fiir jeden Junktor
o € {V,A,=, <} eine Funktion f, : D x D — D zu
definieren. Es ist dann z.B. f((F A G)) = fA(f(F), f(G)).
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Wir wollen nun die Bedeutung von Formeln definieren.

Dazu

@ belegen wir die atomaren Formeln mit Wahrheitswerten

@ berechnen daraus den Wahrheitswert einer komplexen Formel

Die Menge der Wahrheitswerte enthilt genau zwei Elemente

e 1 ("wahr’) und
e 0 ('falsch’).
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Grundbegriffe

Wir wollen nun die Bedeutung von Formeln definieren.

Dazu

@ belegen wir die atomaren Formeln mit Wahrheitswerten

@ berechnen daraus den Wahrheitswert einer komplexen Formel
Die Menge der Wahrheitswerte enthdlt genau zwei Elemente

e 1 (‘'wahr’) und
e 0 ('falsch’).
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@ Eine Belegung weist nun jedem Aussagesymbol einen
Wahrheitswert zu.

@ Aussagen und Formeln kénnen dann unter einer Belegung
wahr oder falsch sein.

@ Die aussagenlogische Semantik regelt u.a., wie komplexe
Formeln zu Wahrheitswerten kommen.
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Semantik
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Eine Belegung ist eine Funktion Aas : ASa. — {0,1}, die jedem
Aussagesymbol einen Wahrheitswert zuordnet.

Zu dieser wird rekursiv eine Funktion A : £La; — {0, 1} definiert,
die alle Formeln bewertet. Es ist fiir jedes A € AS,; ist

A(A) = Aas(A) und fiir alle Formeln F, G € L sei
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Semantik

Definition (Semantik der Aussagenlogik)

Eine Belegung ist eine Funktion Aas : ASa. — {0,1}, die jedem
Aussagesymbol einen Wahrheitswert zuordnet.

Zu dieser wird rekursiv eine Funktion A : £La; — {0,1} definiert,
die alle Formeln bewertet. Es ist
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Eine Belegung ist eine Funktion Aas : ASa. — {0,1}, die jedem
Aussagesymbol einen Wahrheitswert zuordnet.

Zu dieser wird rekursiv eine Funktion A : £La; — {0,1} definiert,
die alle Formeln bewertet. Es ist fiir jedes A € AS,; ist

A(A) = Aas(A) und fiir alle Formeln F, G € L4, sei

e A(—F) =1 genau dann, wenn A(F) =0

e A((FV G))=1gdw. A(F) =1 oder A(G) =1
e A(FAG))=1gdw. A(F)=1und A(G) =1
e A((F= G))=1gdw. A(F) =0 oder A(G) =1
o A((F & G)) =1 gdw. A(F) = A(G)
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Bspw. die Definition

A((FV G)) =1 gdw. A(F) =1 oder A(G) =1

bedeutet, dass A(F V G) zu 1 ausgewertet wird, wenn
e A(F) =1 ist oder wenn
e A(G) =1 ist oder wenn
@ beides gilt.

In allen anderen Fillen (hier nur A(F) = A(G) = 0) ist
A((F v G)) =0.




. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Semantik - Anmerkung

Anmerkung
Bspw. die Definition

A((FV G)) =1 gdw. A(F) =1 oder A(G) =1

bedeutet, dass A(F V G) zu 1 ausgewertet wird, wenn
e A(F) =1 ist oder wenn
e A(G) =1 ist oder wenn
@ beides gilt.
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. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Semantik - Anmerkung

Anmerkung
Bspw. die Definition

A((FV G)) =1 gdw. A(F) =1 oder A(G) =1

bedeutet, dass A(F V G) zu 1 ausgewertet wird, wenn
e A(F) =1 ist oder wenn
e A(G) =1 ist oder wenn
@ beides gilt.

In allen anderen Féllen (hier nur A(F) = A(G) = 0) ist
A((FV G))=0.
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N Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Semantik - Wahrheitstafeln

Wabhrheitstafeln geben fiir die atomaren Formeln alle méglichen
Belegungen an und fiir die anderen Formeln die entsprechenden
Bewertungen. Sie stellen die Definition von eben (ibersichtlich dar.

A B|-AlAVB|AANB|A=B|A& B
0|0 1 0 0 1 1
0|1 1 1 0 1 0
110 O 1 0 0 0
1114 0 1 1 1 1

|

Wichtige Anmerkung

Hier und auf den nachfolgenden Folien verwenden wir bereits Klam-
merersparnisregeln. Wir fiihren diese spater auch noch genauer ein.
Insb. lassen wir dussere Klammern weg.
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Fir —A hitte auch die kleinere Tabelle

A

-A

0

1

1

0

geniigt, aber so wie oben hat dann alles in eine Tabelle gepasst.




. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Aufgabe

AlB]C]

| AV-B| CA=D|~(AV-B)A(CA-D)

e R L el el el ol ol ol Hol N o)

c|D
00
01
1]0
1)1
00
01
1]0
1)1
00
01
1]0
1)1
0|0
01
110
1)1

PR PR RO OO FHEFREFR OO oo

—_
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. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Losung der Aufgabe
A|B|C|D|Av-B|CA=D|~(AV=B)A(CA-D)

0/0(0|O0 1 0 0
01001 1 0 0
00|10 1 1 0
01011 1 0 0
0|j1]0/|0 0 0 0
0101 0 0 0
0O(1]1/|0 0 1 1
0|1 1|1 0 0 0
110100 1 0 0
1/0|0]|1 1 0 0
11010 1 1 0
11011 1 0 0
111,010 1 0 0
11|01 1 0 0
111,110 1 1 0
11|11 1 0 0
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. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Wabhrheitstafeln: Anmerkungen

@ In jeder Zeile einer Wahrheitstafel steht eine Belegung.

@ Jede Zeile beschreibt einen (prinzipiell) moglichen Zustand der
Welt.

e Enthilt eine Formel n verschiedene atomare Formeln /
Aussagensymbole, so existieren 2" Zeilen in der Tafel.

e Eine Spalte wird als Wahrheitswerteverlauf (WWV) der
zugehorigen Formel bezeichnet.
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@ Eine Belegung heiBt passend zu einer Formel F, wenn sie
jedem Aussagesymbol in F einen Wahrheitswert zuweist.

e Eine Belegung A mit A(F) = 1 nennt man ein Modell fiir F
oder eine erfiillende Belegung von F. Ist A(F) =0, so ist A
eine falsifizierende Belegung von F.

@ Ist ferner M eine (evtl. sogar unendliche) Formelmenge. So
nennt man eine Belegung A, die alle Formeln F aus M wahr
macht, ebenfalls ein Modell fiir M und schreibt dafiir
bisweilen auch kurz A(M) = 1.

@ Zudem ist jede Belegung Modell der leeren Menge. Die leere
Menge ist also erfiillbar.




. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Kategorien

Definition
@ Eine Belegung heit passend zu einer Formel F, wenn sie
jedem Aussagesymbol in F einen Wahrheitswert zuweist.
@ Eine Belegung A mit A(F) =1 nennt man ein Modell fiir F
oder eine erfiillende Belegung von F. Ist A(F) =0, so ist A
eine falsifizierende Belegung von F.
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. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Kategorien

Definition

@ Eine Belegung heit passend zu einer Formel F, wenn sie
jedem Aussagesymbol in F einen Wahrheitswert zuweist.

@ Eine Belegung A mit A(F) =1 nennt man ein Modell fiir F
oder eine erfiillende Belegung von F. Ist A(F) =0, so ist A
eine falsifizierende Belegung von F.

@ Ist ferner M eine (evtl. sogar unendliche) Formelmenge. So
nennt man eine Belegung A, die alle Formeln F aus M wahr
macht, ebenfalls ein Modell fir M und schreibt dafiir
bisweilen auch kurz A(M) = 1.
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. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Kategorien

Definition

@ Eine Belegung heit passend zu einer Formel F, wenn sie
jedem Aussagesymbol in F einen Wahrheitswert zuweist.

@ Eine Belegung A mit A(F) =1 nennt man ein Modell fiir F
oder eine erfiillende Belegung von F. Ist A(F) =0, so ist A
eine falsifizierende Belegung von F.

@ Ist ferner M eine (evtl. sogar unendliche) Formelmenge. So
nennt man eine Belegung A, die alle Formeln F aus M wahr
macht, ebenfalls ein Modell fir M und schreibt dafiir
bisweilen auch kurz A(M) = 1.

@ Zudem ist jede Belegung Modell der leeren Menge. Die leere
Menge ist also erfiillbar.
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@ Besitzt F mindestens eine erfiillende Belegung (ein Modell),
so heiBt F erfiillbare Formel.

@ Besitzt F mindestens eine falsifizierende Belegung, so heit F
falsifizierbare Formel.

@ Besitzt F mindestens eine erfiillende und mindestens eine
falsifizierende Belegung so heit F kontingente Formel.

@ Besitzt F kein Modell, so hei3t F unerfullbare Formel oder
Kontradiktion.

@ Ist F unter jeder méglichen Belegung ,,wahr", so heift F
(allgemein-)giiltig oder Tautologie.




. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Kategorien

Definition
@ Besitzt F mindestens eine erfiillende Belegung (ein Modell),
so heiBt F erfiillbare Formel.

@ Besitzt F mindestens eine falsifizierende Belegung, so heiBit F
falsifizierbare Formel.

Frank Heitmann heitmann@informatik.uni-hamburg.de 25/80



. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Kategorien

Definition
@ Besitzt F mindestens eine erfiillende Belegung (ein Modell),
so heiBt F erfiillbare Formel.

@ Besitzt F mindestens eine falsifizierende Belegung, so heiBit F
falsifizierbare Formel.

@ Besitzt F mindestens eine erfiillende und mindestens eine
falsifizierende Belegung so heit F kontingente Formel.
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. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Kategorien

Definition
@ Besitzt F mindestens eine erfiillende Belegung (ein Modell),
so heiBt F erfiillbare Formel.

@ Besitzt F mindestens eine falsifizierende Belegung, so heiBit F
falsifizierbare Formel.

@ Besitzt F mindestens eine erfiillende und mindestens eine
falsifizierende Belegung so heit F kontingente Formel.

@ Besitzt F kein Modell, so heiBt F unerfiillbare Formel oder
Kontradiktion.
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. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Kategorien

Definition
@ Besitzt F mindestens eine erfiillende Belegung (ein Modell),
so heiBt F erfiillbare Formel.

@ Besitzt F mindestens eine falsifizierende Belegung, so heiBit F
falsifizierbare Formel.

@ Besitzt F mindestens eine erfiillende und mindestens eine
falsifizierende Belegung so heit F kontingente Formel.

@ Besitzt F kein Modell, so heiBt F unerfiillbare Formel oder
Kontradiktion.

@ Ist F unter jeder moglichen Belegung ,,wahr", so heiBt F
(allgemein-)giiltig oder Tautologie.
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. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Kategorien - Notationen

Notationen:

@ A ist Modell von F bzw. macht F wahr wird kurz geschrieben

als A= F.

o A falsifiziert F bzw. macht F falsch wird kurz geschrieben als
A= F.
@ Ist F eine Tautologie, wird dies kurz notiert als |= F.

@ Ist F eine Kontradiktion, wird dies kurz notiert als F =.
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. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Tautologie vs. Kontradiktion

Satz

F ist giiltig genau dann, wenn —F unerfiillbar ist.

Beweis.

F ist giiltig
gdw. jede Belegung ist ein Modell von F (Def. der Giiltigkeit)
gdw. A(F) =1 fiir jede Belegung A (Def. eines Modells)
gdw. A(—F) = 0 fiir jede Belegung A (Eigenschaft von —)
gdw. keine Belegung ist ein Modell von =F (Def. eines Modells)
gdw. —F ist unerfiillbar (Def. der Unerfiillbarkeit)

O
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. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Zusammenfassung 1

Zusammenfassung Syntax:

@ Motivation
@ Definition der Syntax:

e Alphabet, Junktor

o Aussagesymbol, atomare Formel, komplexe Formel

e Hauptoperator, Teilformel

e Negation, Disjunktion, Konjunktion, Implikation, Biimplikation

@ strukturelle Induktion

@ strukturelle Rekursion
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. Syntax und Semantik Syntax
Folgerbarkeit, Aquivalenz und Normalformen Semantik

Zusammenfassung 2

Zusammenfassung Semantik:

Belegung, Auswertung (einer Formel)
Woahrheitstafeln, Wahrheitswerteverlauf

erfiillende Belegung, falsifizierende Belegung, Modell
kontingent, (allgemein-)giiltig, unerfiillbar
Tautologie, Kontradiktion
AEF AFEF EF FE

Frank Heitmann heitmann@informatik.uni-hamburg.de 29/80



Eine Formel F folgt genau dann aus einer Formelmenge M, wenn
jede Belegung, die Modell fiir M ist, auch Modell fiir F ist.
Notation: M = F.




Eine Formel F folgt genau dann aus einer Formelmenge M, wenn
jede Belegung, die Modell fiir M ist, auch Modell fiir F ist.
Notation: M = F.

Im Falle einer einelementigen Menge M = {G} notiert man auch
G = F und sagt, F folgt aus G.




Eine Formel F folgt genau dann aus einer Formelmenge M, wenn
jede Belegung, die Modell fiir M ist, auch Modell fiir F ist.

Beweis von AA B = AV B mit Wabhrheitstafel: J




. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Folgerung: Beispiel 1
Definition (Folgerung)

Eine Formel F folgt genau dann aus einer Formelmenge M, wenn
jede Belegung, die Modell fiir M ist, auch Modell fiir F ist.

Beweis von AA B |= AV B mit Wahrheitstafel: J
A B||ANB AVB
0 O 0 0
0 1 0 1
1 0 0 1
1 1 1 1

Jede Belegung, die Modell fiir AA B ist (nur die vierte Zeile) ist
auch Modell fir AV B, daher gilt ANB= AV B. (Das AV B
auch woanders wahr ist, ist egal!)
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Beweis von {A = B,B = C} = A = C mit Wahrheitstafel: J




Beweis von {A = B,B = C} = A = C mit Wahrheitstafel: J

A B C|A=B B=C A=C
0 0 O 1 1 1
0 0 1 1 1 1
0 1 0 1 0 1
0 1 1 1 1 1
1 0 O 0 1 0
1 0 1 0 1 1
1 1 0 1 0 0
1 1 1 1 1 1




. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Folgerung: Beispiel 2

Beweis von {A = B,B = C} = A= C mit Wahrheitstafel: )

A=B B=C A=C
1 1 1

H R R RPR,ROOOODND™
H R OOR R~ OOWm
H O R ORFORF O N

H = OO K Pk
H O R R FHOR
R ORrRORKRRR

Jede Belegung, die Modell fiir A = B und Modell fiir B = C ist
(erste, zweite, vierte und achte Zeile) ist auch Modell fiir A= C,
also gilt die Folgerbarkeitsbeziehung.
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Beweis von AA B A CAD | CV =D ohne Wahrheitstafel: J

Sei A ein Modell fiir AN B A C A D. Nach der semantischen
Definition von A muss dann A(A) = A(B) = A(C) = A(D) =1
gelten womit wegen A(C) = 1 und der Definition der Semantik
von V auch A(CV =D) =1 gilt. Folglich ist jedes Modell von
AN B A CA D auch Modell von CV —D.




Beweis von AA B A CAD | CV =D ohne Wahrheitstafel: J

Sei A ein Modell fir AABACAD. "o cor ooy
Definition von A muss dann A(A) = A(B) = A(C) = A(D) =1
gelten womit wegen A(C) = 1 und der Definition der Semantik
von V auch A(CV —D) =1 gilt. Folglich ist jedes Modell von
AN B A CA D auch Modell von CV =D.




Beweis von AA BA CA D = CV =D ohne Wahrheitstafel:

J

Sei A ein Modell fir AA B A C A D. Nach der semantischen
Definition von A muss dann A(A) = A(B) = A(C) = A(D) =1
gelten




. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Folgerung: Beispiel 3

Beweis von AA B A C A D = CV —D ohne Wahrheitstafel: J

Sei A ein Modell fiir AN B A C A D. Nach der semantischen
Definition von A muss dann A(A) = A(B) = A(C) = A(D) =1
gelten womit wegen A(C) = 1 und der Definition der Semantik
von V auch A(CV =D) =1 gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 33/80



. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Folgerung: Beispiel 3

Beweis von AA B A C A D = CV —D ohne Wahrheitstafel: |

Sei A ein Modell fir AA B A C A D. Nach der semantischen
Definition von A muss dann A(A) = A(B) = A(C) = A(D) =1
gelten womit wegen A(C) = 1 und der Definition der Semantik
von V auch A(CV —=D) =1 gilt. Folglich ist jedes Modell von
AN B A CA D auch Modell von C Vv —D.
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Zwei Formeln F und G heien dquivalent genau dann, wenn jede
Belegung beiden Formeln den gleichen Wahrheitswert zuweist,
wenn also A(F) = A(G) fiir jede Belegung A gilt.

Notation: F = G.




. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Aquivalenz

Definition (Aquivalenz)

Zwei Formeln F und G heiBen dquivalent genau dann, wenn jede
Belegung beiden Formeln den gleichen Wahrheitswert zuweist,
wenn also A(F) = A(G) fiir jede Belegung A gilt.

Notation: F = G.

Anmerkung

© Alternativ: Zwei Formeln sind genau dann aquivalent, wenn
sie dieselben Modelle besitzen, also A(F) =1 gdw. A(G) =1

gilt.
@ Aquivalente Formeln haben denselben Warhheitswerteverlauf!
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Beweis von A < B = (A A B) V (-A A —=B) mit Wahrheitstafel: J




Beweis von A < B = (A A B) V (-A A —=B) mit Wahrheitstafel: J

B|A<B AAB —-AA-B (AAB)V(-AA-B)
0 1 0 1 1
1
0
1

= = O Ol

0 0 0 0
0 0 0 0
1 1 0 1




. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Aquivalenz: Beispiel 1

Beweis von A < B = (A A B) V (-A A —=B) mit Wahrheitstafel: |

A B|AsB AAB -AA-B (AAB)V(-AA-B)
0 0 1 0 1 1
0 1 0 0 0 0
1 0 0 0 0 0
11 1 1 0 1

In der dritten und letzten Spalte sieht man, dass A < B und
(AN B)V (-A A —=B) den gleichen Wahrheitswerteverlauf haben.
Damit sind die beiden Formeln dquivalent.
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Gegenbeispiels:

Widerlegung von AA B = AV B durch Angabe eines J




Gegenbeispiels:

Widerlegung von AA B = AV B durch Angabe eines J

AN B und AV B sind nicht dquivalent, da




. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Aquivalenz: Beispiel 2

Widerlegung von AA B = AV B durch Angabe eines
Gegenbeispiels: J

AA B und AV B sind nicht dquivalent, da z.B. A mit A(A) =0
und A(B) =1 zwar ein Modell von AV B
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Aquivalenz: Beispiel 2

Widerlegung von AA B = AV B durch Angabe eines
Gegenbeispiels:

AA B und AV B sind nicht dquivalent, da z.B. A mit A(A) =0

und A(B) = 1 zwar ein Modell von AV B nicht aber eines von
AN B ist.
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Aquivalenz: Beispiel 2

Widerlegung von AA B = AV B durch Angabe eines
Gegenbeispiels:

AA B und AV B sind nicht dquivalent, da z.B. A mit A(A) =0
und A(B) = 1 zwar ein Modell von AV B nicht aber eines von
A A B ist. Damit haben die beiden Formeln nicht die gleichen
Modelle und sind damit nicht dquivalent.
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Aquivalenz: Beispiel 2

Widerlegung von AA B = AV B durch Angabe eines
Gegenbeispiels: J

AA B und AV B sind nicht dquivalent, da z.B. A mit A(A) =0
und A(B) = 1 zwar ein Modell von AV B nicht aber eines von
A A B ist. Damit haben die beiden Formeln nicht die gleichen
Modelle und sind damit nicht dquivalent.

Wichtige Anmerkung

Ebenso widerlegt man Folgerbarkeitsbeziehungen F = G durch An-
gabe eines Gegenbeispiels also durch Angabe einer Belegung A, die
Modell fiir F ist, aber nicht fiir G.
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Syntax und Semantik Folgerbarkeit und Aquivalenz

Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Wichtige Aquivalenzen

Kommutativitat: (FAG)
(FVG)

Assoziativitat: (FA(GAH))
(FV(GVH))

Distributivitat: (FA(GVH))
(FV(GAH))

Doppelnegation: -—F
de Morgans Regeln: -(FAG)
-(FVG)

Elimination von < (F & G)
(F & G)

Elimination von = (F=G)

Frank Heitmann heitmann@informatik.uni-hamburg.de
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(FV G)VH)

(FAG)V(FAH))
(F V G)A(FVH))

ﬁFvﬁG)
F=G)AN(G=F)
FAG)V(—FA-G)
-FVG)
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Absorption: (FA(FVG)

(FV(FA G);

Idempotenz: (FAF)
(FVF)

Tautologieregeln (FAT)
(FVT)

Kontradiktionsregeln: (FAL)
(Fv L)

Komplement: (FA—F)
)

4k Mk 4TmTmTm AT




. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Anmerkung

Wichtige Anmerkung

© Auf der letzten Folien waren | und T Konstanten. Man
miisste sie streng formal als neue syntaktische Konstrukte
einfiihren. Sie sind dann atomare Formeln, die immer zu 0
(bei L) bzw. immer zu 1 (bei T) ausgewertet werden.

@ Alle obigen Aquivalenzen kann man z.B. mit Wahrheitstafeln
schnell beweisen.
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Klammerersparnisregeln

Aufgrund der Aquivalenzen kénnen wir uns auf folgende Regeln zur
Klammerersparnis einigen:

@ Die duBersten Klammern entfallen: AV B statt (AV B)

@ Bei mehrfacher Konjuktion oder Disjunktion entfallt die
mehrfache Klammerung:
(AvB)vC)=(Av(Bv(C)=AvBVC

© Weiterhin nicht erlaubt sind A= B = C oder AVBAC
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Klammerersparnisregeln

Aufgrund der Aquivalenzen kénnen wir uns auf folgende Regeln zur
Klammerersparnis einigen:

@ Die duBersten Klammern entfallen: AV B statt (AV B)

@ Bei mehrfacher Konjuktion oder Disjunktion entfallt die
mehrfache Klammerung:
(AvB)vC)=(Av(Bv(C)=AvBVC

© Weiterhin nicht erlaubt sind A= B = C oder AVBAC

In einigen Biichern findet man auch die Regel, dass = am starksten
bindet, dann A und V und als dritte = und <. Damit ware dann
z.B. auch AAB = C mdaglich. Wir wollen dies i.A. aber nicht benut-
zen. Eine Ausnahme sind Hornformeln in Implikationsschreibweise,
zu denen wir evtl. spater noch kommen.
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Folgerung und Aquivalenz (Wdh.)

Definition (Folgerung)

Eine Formel F folgt genau dann aus einer Formelmenge M, wenn
jede Belegung, die Modell fiir M ist, auch Modell fiir F ist.
Notation: M |= F bzw. G = F, wenn M = {G}.

Definition (Aquivalenz)

Zwei Formeln F und G heiBen dquivalent genau dann, wenn jede
Belegung beiden Formeln den gleichen Wahrheitswert zuweist,
wenn also A(F) = A(G) fiir jede Belegung A gilt.

Notation: F = G.
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@ Wenn F = G und |= G gilt, dann gilt auch = F
@ Wenn F = G und G [ gilt, dann gilt auch F |=

© Wenn = F und |= G gilt, dann gilt F = G
@ Wenn F = und G = gilt, dann gilt F = G

1. und 4. nachfolgend. 2. und 3. zur Ubung.




Wenn F = G und |= G gilt, dann gilt auch |= F. '

Sie A eine zu F und G passende Belegung. oo
ist, gilt A(G) = 1. Da ferner F = G gilt, gilt A(F) = A(G), also
auch A(F) = 1. Damit ist jede Belegung Modell fiir F und folglich
F eine Tautologie. Ol




Wenn F = G und |= G gilt, dann gilt auch |= F. '

Sie A eine zu F und G passende Belegung. Da G eine Tautologie
ist, gilt A(G) = 1. Da ferner F = G gilt, gilt A(F) = A(G), also
auch A(F) = 1. Damit ist jede Belegung Modell fiir F und folglich
F eine Tautologie. [




Wenn F = G und |= G gilt, dann gilt auch |= F. '

Sie A eine zu F und G passende Belegung. Da G eine Tautologie
ist, gilt A(G) = 1. Da ferner F = G gilt, gilt A(F) = A(G), also
auch A(F) = 1. Damit ist jede Belegung Modell fiir F und folglich
F eine Tautologie. [




Wenn F = G und |= G gilt, dann gilt auch |= F. l

Sie A eine zu F und G passende Belegung. Da G eine Tautologie
ist, gilt A(G) = 1. Da ferner F = G gilt, gilt A(F) = A(G),
auch A(F) = 1. Damit ist jede Belegung Modell fiir F und folglich
F eine Tautologie. [




Wenn F = G und |= G gilt, dann gilt auch |= F. l

Sie A eine zu F und G passende Belegung. Da G eine Tautologie
ist, gilt A(G) = 1. Da ferner F = G gilt, gilt A(F) = A(G), also
auch A(F) = 1. Damit ist jede Belegung Modell fiir F und folglich
F eine Tautologie. [




Wenn F = G und |= G gilt, dann gilt auch |= F. I

Sie A eine zu F und G passende Belegung. Da G eine Tautologie
ist, gilt A(G) = 1. Da ferner F = G gilt, gilt A(F) = A(G), also
auch A(F) = 1. Damit ist jede Belegung Modell fiir F und folglich
F eine Tautologie. O




Wenn F |= und G |= gilt, dann gilt F = G

Wir zeigen, dass A(F) = A(G) fiir jede Belegung A gilt. Sei dazu
A eine zu F und G passende Belegung. Da sowohl F als auch G
Kontradiktionen sind, gilt stets A(F) = A(G) = 0 womit bereits
alles gezeigt ist. O




Wenn F |= und G |= gilt, dann gilt F = G

Wir zeigen, dass A(F) = A(G) fiir jede Belegung A gilt.
A eine zu F und G passende Belegung. Da sowohl F als auch G
Kontradiktionen sind, gilt stets A(F) = A(G) = 0 womit bereits
alles gezeigt ist. O




Wenn F |= und G |= gilt, dann gilt F = G l

Wir zeigen, dass A(F) = A(G) fiir jede Belegung A gilt. Sei dazu
A eine zu F und G passende Belegung. o 0

Kontradiktionen sind, gilt stets A(F) = A(G) = 0 womit bereits
alles gezeigt ist. []




Wenn F |= und G |= gilt, dann gilt F = G l

Beweis.
Wir zeigen, dass A(F) = A(G) fiir jede Belegung A gilt. Sei dazu
A eine zu F und G passende Belegung. Da sowohl F als auch G
Kontradiktionen sind, gilt stets A(F) = A(G) = 0 womit bereits
alles gezeigt ist. []




Wenn F |= und G |= gilt, dann gilt F = G

Wir zeigen, dass A(F) = A(G) fiir jede Belegung A gilt. Sei dazu
A eine zu F und G passende Belegung. Da sowohl F als auch G
Kontradiktionen sind, gilt stets A(F) = A(G) = 0 womit bereits
alles gezeigt ist. O




F = G genau dann, wenn F |= G und G = F l

Beweis.
Sei F = G und sei A ein Modell fiir F. vcoon - 0o L onoh
ein Modell fiir G und damit gilt F = G. Analog gilt auch G = F.
Gelte nun andersherum F = G und G = F und sei A ein Modell
fir F. Wegen F |= G gilt dann auch A(G) = 1. Ist A’ ein Modell
fir G, dann ist A’ wegen G |= F auch ein Modell fir F. Damit
haben F und G genau dieselben Modelle und folglich gilt F = G.
(Verallgemeinerung als Ubungsaufgabe.) O]




F = G genau dann, wenn F |= G und G = F I

Beweis.
Sei F = G und sei A ein Modell fiir F. Wegen F = G ist A auch
ein Modell fiir G und damit gilt F = G. Analog gilt auch G = F.
Gelte nun andersherum F = G und G = F und sei A ein Modell
fir F. Wegen F |= G gilt dann auch A(G) = 1. Ist A" ein Modell
fir G, dann ist A" wegen G |= F auch ein Modell fiir F. Damit
haben F und G genau dieselben Modelle und folglich gilt F = G.
(Verallgemeinerung als Ubungsaufgabe.) O]




F = G genau dann, wenn F |= G und G = F I

Beweis.
Sei F = G und sei A ein Modell fiir F. Wegen F = G ist A auch
ein Modell fir G und damitgilt F=G6. .
Gelte nun andersherum F = G und G = F und sei A ein Modell
fir F. Wegen F |= G gilt dann auch A(G) = 1. Ist A" ein Modell
fir G, dann ist A" wegen G |= F auch ein Modell fiir F. Damit
haben F und G genau dieselben Modelle und folglich gilt F = G.
(Verallgemeinerung als Ubungsaufgabe.) O]




F = G genau dann, wenn F |= G und G = F I

Beweis.
Sei F = G und sei A ein Modell fiir F. Wegen F = G ist A auch
ein Modell fiir G und damit gilt F = G. Analog gilt auch G = F.
Gelte nun andersherum F = G und G = F und sei A ein Modell
fur F. Wegen F |= G gilt dann auch A(G) = 1. Ist A’ ein Modell
fir G, dann ist A" wegen G |= F auch ein Modell fiir F. Damit
haben F und G genau dieselben Modelle und folglich gilt F = G.
(Verallgemeinerung als Ubungsaufgabe.) O]




. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Satze mit Folgerbarkeit

Satz
F = G genau dann, wenn F = G und G = F J

Beweis.

Sei F = G und sei A ein Modell fiir F. Wegen F = G ist A auch
ein Modell fiir G und damit gilt F = G. Analog gilt auch G = F.
Gelte nun andersherum F = G und G = F und sei A ein Modell
fur F.
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Satze mit Folgerbarkeit

Satz
F = G genau dann, wenn F = G und G = F J

Beweis.

Sei F = G und sei A ein Modell fiir F. Wegen F = G ist A auch
ein Modell fiir G und damit gilt F = G. Analog gilt auch G = F.
Gelte nun andersherum F = G und G = F und sei A ein Modell
fir F. Wegen F |= G gilt dann auch A(G) = 1.
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Satze mit Folgerbarkeit

Satz
F = G genau dann, wenn F = G und G = F

Beweis.

Sei F = G und sei A ein Modell fiir F. Wegen F = G ist A auch
ein Modell fiir G und damit gilt F = G. Analog gilt auch G = F.
Gelte nun andersherum F = G und G = F und sei A ein Modell
fir F. Wegen F |= G gilt dann auch A(G) = 1. Ist A" ein Modell
fir G,
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Satze mit Folgerbarkeit

Satz
F = G genau dann, wenn F = G und G = F

Beweis.

Sei F = G und sei A ein Modell fiir F. Wegen F = G ist A auch
ein Modell fiir G und damit gilt F = G. Analog gilt auch G = F.
Gelte nun andersherum F = G und G = F und sei A ein Modell
fir F. Wegen F |= G gilt dann auch A(G) = 1. Ist A" ein Modell
fir G, dann ist A" wegen G = F auch ein Modell fiir F.
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Satze mit Folgerbarkeit

Satz
F = G genau dann, wenn F = G und G = F

Beweis.

Sei F = G und sei A ein Modell fiir F. Wegen F = G ist A auch
ein Modell fiir G und damit gilt F = G. Analog gilt auch G = F.
Gelte nun andersherum F = G und G = F und sei A ein Modell
fir F. Wegen F |= G gilt dann auch A(G) = 1. Ist A" ein Modell
fir G, dann ist A" wegen G = F auch ein Modell fiir F. Damit

haben F und G genau dieselben Modelle und folglich gilt F = G.
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Satze mit Folgerbarkeit

Satz
F = G genau dann, wenn F = G und G = F

Beweis.

Sei F = G und sei A ein Modell fiir F. Wegen F = G ist A auch
ein Modell fiir G und damit gilt F = G. Analog gilt auch G = F.
Gelte nun andersherum F = G und G = F und sei A ein Modell
fir F. Wegen F |= G gilt dann auch A(G) = 1. Ist A" ein Modell
fir G, dann ist A" wegen G = F auch ein Modell fiir F. Damit

haben F und G genau dieselben Modelle und folglich gilt F = G.

(Verallgemeinerung als Ubungsaufgabe.) O]
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© F = G genau dann, wenn E F & G
@ F E G genau dann, wenn E F = G
© F | G genau dann, wenn F A =G =

Ist A(F) =0, soist A(F = G) =1 aufgrund
der Definition der Semantik von =. Ist A(F) = 1, so ist wegen
F | G auch A(G) =1 und damit wieder A(F = G) =1 und
folglich gilt = F = G.
Sei umgekehrt = F = G und sei A ein Modell fiir F. Wegen der
Definition der Semantik von = folgt aus A(F = G) =1 (es gilt ja
= F = G) sofort A(G) =1 und damit ist jedes Modell von F
auch Modell von G und wir sind fertig. O



. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Drei wichtige Satze

Satz
@ F = G genau dann, wenn = F < G
@ F | G genau dann, wenn = F = G
© F | G genau dann, wenn F A =G |

Beweis.

1. zur Ubung. Zu 2: Gelte F = G und sei A eine zu F und G
passende Belegung.
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Drei wichtige Satze

Satz
@ F = G genau dann, wenn = F < G
@ F | G genau dann, wenn = F = G
© F | G genau dann, wenn F A =G |

Beweis.

1. zur Ubung. Zu 2: Gelte F = G und sei A eine zu F und G
passende Belegung. Ist A(F) =0, so ist A(F = G) =1 aufgrund
der Definition der Semantik von =-.
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Drei wichtige Satze

Satz
@ F = G genau dann, wenn = F < G
@ F | G genau dann, wenn = F = G
© F | G genau dann, wenn F A =G |

Beweis.

1. zur Ubung. Zu 2: Gelte F = G und sei A eine zu F und G
passende Belegung. Ist A(F) =0, so ist A(F = G) =1 aufgrund
der Definition der Semantik von =. Ist A(F) = 1, so ist wegen

F = G auch A(G) =1 und damit wieder A(F = G) =1
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Drei wichtige Satze

Satz
@ F = G genau dann, wenn = F < G
@ F | G genau dann, wenn = F = G
© F | G genau dann, wenn F A =G |

Beweis.

1. zur Ubung. Zu 2: Gelte F = G und sei A eine zu F und G
passende Belegung. Ist A(F) =0, so ist A(F = G) =1 aufgrund
der Definition der Semantik von =. Ist A(F) = 1, so ist wegen
F | G auch A(G) =1 und damit wieder A(F = G) =1 und
folglich gilt = F = G.
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Drei wichtige Satze

Satz
@ F = G genau dann, wenn = F < G
@ F | G genau dann, wenn = F = G
© F | G genau dann, wenn F A =G |

Beweis.

1. zur Ubung. Zu 2: Gelte F = G und sei A eine zu F und G
passende Belegung. Ist A(F) =0, so ist A(F = G) =1 aufgrund
der Definition der Semantik von =. Ist A(F) = 1, so ist wegen

F | G auch A(G) =1 und damit wieder A(F = G) =1 und
folglich gilt = F = G.

Sei umgekehrt = F = G und sei A ein Modell fiir F.
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
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Drei wichtige Satze

Satz
@ F = G genau dann, wenn = F < G
@ F | G genau dann, wenn = F = G
© F | G genau dann, wenn F A =G |

Beweis.

1. zur Ubung. Zu 2: Gelte F = G und sei A eine zu F und G
passende Belegung. Ist A(F) =0, so ist A(F = G) =1 aufgrund
der Definition der Semantik von =. Ist A(F) = 1, so ist wegen

F | G auch A(G) =1 und damit wieder A(F = G) =1 und
folglich gilt = F = G.

Sei umgekehrt = F = G und sei A ein Modell fiir F. Wegen der
Definition der Semantik von = folgt aus A(F = G) =1 (es gilt ja
E F = G) sofort A(G) =1
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Drei wichtige Satze

Satz
@ F = G genau dann, wenn = F < G
@ F | G genau dann, wenn = F = G
© F | G genau dann, wenn F A =G |

Beweis.

1. zur Ubung. Zu 2: Gelte F = G und sei A eine zu F und G
passende Belegung. Ist A(F) =0, so ist A(F = G) =1 aufgrund
der Definition der Semantik von =. Ist A(F) = 1, so ist wegen

F | G auch A(G) =1 und damit wieder A(F = G) =1 und
folglich gilt = F = G.

Sei umgekehrt = F = G und sei A ein Modell fiir F. Wegen der
Definition der Semantik von = folgt aus A(F = G) =1 (es gilt ja
= F = G) sofort A(G) =1 und damit ist jedes Modell von F
auch Modell von G und wir sind fertig. Ol

Frank Heitmann heitmann@informatik.uni-hamburg.de 46/80



@ F = G genau dann, wenn = F & G

@ F E G genau dann, wenn E F = G
© F = G genau dann, wenn F A =G =

3. folgt aus 2. sofort aus der Aquivalenz F = G = —~F V G und da
die Negation einer Tautologie eine Kontradiktion ist (und
umgekehrt) und da =(=F VvV G) = F A G, O




@ F = G genau dann, wenn = F & G

@ F E G genau dann, wenn E F = G
© F = G genau dann, wenn F A =G =

3. folgt aus 2. sofort aus der Aquivalenz F = G =—-FV G und -
die Negation einer Tautologie eine Kontradiktion ist (und
umgekehrt) und da =(=F VvV G) = F A G, O




@ F = G genau dann, wenn = F & G

@ F E G genau dann, wenn E F = G
© F = G genau dann, wenn F A =G =

3. folgt aus 2. sofort aus der Aquivalenz F = G = —F V G und da
die Negation einer Tautologie eine Kontradiktion ist (und
umgekehrt)und =~ O




. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Drei wichtige Satze

Satz
@ F = G genau dann, wenn = F & G
@ F | G genau dann, wenn = F = G
© F | G genau dann, wenn F A =G |

Beweis.

3. folgt aus 2. sofort aus der Aquivalenz F = G = =F VV G und da
die Negation einer Tautologie eine Kontradiktion ist (und
umgekehrt) und da =(=F VvV G) = F A —G. O

Frank Heitmann heitmann@informatik.uni-hamburg.de 47/80



Die Aussagen

O F E G genau dann, wenn E F = G
@ F | G genau dann, wenn FA =G =

kdnnen verallgemeinert werden. Sei M eine beliebige Formelmenge,
dann gilt:




. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Verallgemeinerung

Die Aussagen

@ F = G genau dann, wenn = F = G
@ F | G genau dann, wenn F A =G =

kdnnen verallgemeinert werden. Sei M eine beliebige Formelmenge,
dann gilt:

@ MU{F} = G genau dann, wenn M = F = G
@ M = G genau dann, wenn M U {—G} unerfiillbar ist.

Dabei ist eine Formelmenge unerfiillbar, wenn es keine Belegung
gibt, die alle Formeln der Menge wahr macht.
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Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Alle Sitze im Uberblick

Satz

2]
o
o
o
o

© 6000

Wenn F = G und |= G gilt, dann gilt auch = F
Wenn F = G und G = gilt, dann gilt auch F =
Wenn |= F und = G gilt, dann gilt F = G
Wenn F |= und G = gilt, dann gilt F = G
F = G genau dann, wenn F |= G und G = F

Wenn F; = F, und G = G, gilt, dann gilt F1 = Gy genau
dann, wenn F, = G, gilt.

F = G genau dann, wenn E F & G

F = G genau dann, wenn = F = G

F = G genau dann, wenn F \ =G |=

MU{F} = G genau dann, wenn M = F = G

M = G genau dann, wenn M U {—=G} unerfiillbar ist.
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Die Nummern 2, 3, 6, 7, 10 und 11 aus der Auflistung von eben
sind zur Ubung.




. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Normalformen

Wir wollen jetzt

o die Aquivalenzen nutzen, um Teilformeln zu ersetzen und

@ so zu einer Normalform kommen
Die Normalform hat verschiedene Vorteile:

e Einfach strukturiert (daher gut fiir Beweis, Algorithmen, ...)
e Eigenschaften lassen sich bisweilen leichter ablesen/ermitteln.
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Unser Ziel ist es zunachst Teilformeln ersetzen zu diirfen, also aus

AN(B= ()

z.B.
AN (—=BV Q)

zu machen. Die Rechtfertigung dafiir wird die Aquivalenz
B = C = —-B V C sein. Dass wir dies aber tatsiachlich in
Teilformeln so ersetzen diirfen, sagt uns das Ersetzbarkeitstheorem.




. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Ersetzungen

Unser Ziel ist es zunachst Teilformeln ersetzen zu diirfen, also aus
AN(B= ()

z.B.
AN (=BV ()

zu machen. Die Rechtfertigung dafiir wird die Aquivalenz
B = C =BV C sein. Dass wir dies aber tatsichlich in

Teilformeln so ersetzen diirfen, sagt uns das Ersetzbarkeitstheorem.
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" Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Ersetzbarkeitstheorem

Satz (Ersetzbarkeitstheorem)

Seien F und G aquivalente Formeln und sei H eine Formel mit
(mindestens) einem Vorkommen der Formel F als Teilformel. Gehe
H'" aus H hervor, indem ein Vorkommen von F (in H) durch G
ersetzt wird. Dann sind H und H' dquivalent.

Ersetzt man also eine Teilformel F einer Formel H durch eine
dquivalente Formel, so ist die entstehende Formel H' zur
urspriinglichen H aquivalent.

Der Satz ist die Rechtfertigung fiir die Schreibweise
AN(B=C)=AA(—-BV Q).
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" Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Ersetzbarkeitstheorem

Satz (Ersetzbarkeitstheorem)

Seien F und G aquivalente Formeln und sei H eine Formel mit
(mindestens) einem Vorkommen der Formel F als Teilformel. Gehe
H'" aus H hervor, indem ein Vorkommen von F (in H) durch G
ersetzt wird. Dann sind H und H' dquivalent.

Ersetzt man also eine Teilformel F einer Formel H durch eine
dquivalente Formel, so ist die entstehende Formel H' zur
urspriinglichen H aquivalent.

Der Satz ist die Rechtfertigung fiir die Schreibweise
AN(B=C)=AA(—-BV Q).

Der Beweis erfolg nun mittels struktureller Induktion...
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Beweis des Ersetzbarkeitstheorems

Seien F und G &quivalente Formeln und sei H eine Formel mit
(mindestens) einem Vorkommen der Formel F als Teilformel. Gehe
H" aus H hervor, indem ein Vorkommen von F (in H) durch G
ersetzt wird. Dann sind H und H’ dquivalent.

Beweis

Induktionsanfang.
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Beweis des Ersetzbarkeitstheorems
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Beweis des Ersetzbarkeitstheorems

Seien F und G &quivalente Formeln und sei H eine Formel mit
(mindestens) einem Vorkommen der Formel F als Teilformel. Gehe
H" aus H hervor, indem ein Vorkommen von F (in H) durch G
ersetzt wird. Dann sind H und H’ dquivalent.

Beweis

Induktionsanfang. Sei H eine atomare Formel und gehe H' durch
ersetzen von F durch G aus H hervor. Dann muss H = F und

H' = G gelten und aus F = G folgt dann sofot H=F = G = H’
also H=H'.

Induktionsannahme. Wir nehmen an, dass H; und H> Formeln
sind, fiir die gilt: Fir jede Formel Hj bzw. Hj, die durch Ersetzung
von F durch G aus H; bzw. Hy hervorgegangen ist, gilt H; = Hj
bzw. Hy = Hj.
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Beweis des Ersetzbarkeitstheorems

Seien F und G &dquivalente Formeln und sei H eine Formel mit
(mindestens) einem Vorkommen der Formel F als Teilformel. Gehe
H' aus H hervor, indem ein Vorkommen von F (in H) durch G
ersetzt wird. Dann sind H und H’ dquivalent.

v

Induktionsschritt. Ist F = H, so verfahren wir wie im
Induktionsanfang und sind fertig.
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(mindestens) einem Vorkommen der Formel F als Teilformel. Gehe
H' aus H hervor, indem ein Vorkommen von F (in H) durch G
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v

Induktionsschritt. Ist F = H, so verfahren wir wie im
Induktionsanfang und sind fertig. Nachfolgend geniigt es also den
Fall zu betrachten, dass F eine echte Teilformel von H ist.
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(mindestens) einem Vorkommen der Formel F als Teilformel. Gehe
H' aus H hervor, indem ein Vorkommen von F (in H) durch G
ersetzt wird. Dann sind H und H’ dquivalent.

v

Induktionsschritt. Ist F = H, so verfahren wir wie im
Induktionsanfang und sind fertig. Nachfolgend geniigt es also den
Fall zu betrachten, dass F eine echte Teilformel von H ist.

Fall H = —H;.
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Beweis des Ersetzbarkeitstheorems

Seien F und G &dquivalente Formeln und sei H eine Formel mit
(mindestens) einem Vorkommen der Formel F als Teilformel. Gehe
H' aus H hervor, indem ein Vorkommen von F (in H) durch G
ersetzt wird. Dann sind H und H’ dquivalent.

v

Induktionsschritt. Ist F = H, so verfahren wir wie im
Induktionsanfang und sind fertig. Nachfolgend geniigt es also den
Fall zu betrachten, dass F eine echte Teilformel von H ist.

Fall H = —H;. Dann ist F eine Teilformel von H;
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H' aus H hervor, indem ein Vorkommen von F (in H) durch G
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v

Induktionsschritt. Ist F = H, so verfahren wir wie im
Induktionsanfang und sind fertig. Nachfolgend geniigt es also den
Fall zu betrachten, dass F eine echte Teilformel von H ist.

Fall H = —H;. Dann ist F eine Teilformel von H; und es gibt Hj,
das aus H; durch Ersetzen von F durch G entsteht und so, dass
H" = =Hj gilt.
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Beweis des Ersetzbarkeitstheorems

Seien F und G &dquivalente Formeln und sei H eine Formel mit
(mindestens) einem Vorkommen der Formel F als Teilformel. Gehe
H' aus H hervor, indem ein Vorkommen von F (in H) durch G
ersetzt wird. Dann sind H und H’ dquivalent.

v

Induktionsschritt. Ist F = H, so verfahren wir wie im
Induktionsanfang und sind fertig. Nachfolgend geniigt es also den
Fall zu betrachten, dass F eine echte Teilformel von H ist.

Fall H = —H;. Dann ist F eine Teilformel von H; und es gibt Hj,
das aus H; durch Ersetzen von F durch G entsteht und so, dass
H" = —=Hj gilt. Nach Induktionsannahme gilt H; = H;.
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Beweis des Ersetzbarkeitstheorems

Seien F und G &dquivalente Formeln und sei H eine Formel mit
(mindestens) einem Vorkommen der Formel F als Teilformel. Gehe
H' aus H hervor, indem ein Vorkommen von F (in H) durch G
ersetzt wird. Dann sind H und H’ dquivalent.

v

Induktionsschritt. Ist F = H, so verfahren wir wie im
Induktionsanfang und sind fertig. Nachfolgend geniigt es also den
Fall zu betrachten, dass F eine echte Teilformel von H ist.

Fall H = —H;. Dann ist F eine Teilformel von H; und es gibt H{,
das aus H; durch Ersetzen von F durch G entsteht und so, dass
H" = —Hj gilt. Nach Induktionsannahme gilt H; = Hj. Sei nun A
eine beliebige Belegung.
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(mindestens) einem Vorkommen der Formel F als Teilformel. Gehe
H' aus H hervor, indem ein Vorkommen von F (in H) durch G
ersetzt wird. Dann sind H und H’ dquivalent.

v

Induktionsschritt. Ist F = H, so verfahren wir wie im
Induktionsanfang und sind fertig. Nachfolgend geniigt es also den
Fall zu betrachten, dass F eine echte Teilformel von H ist.

Fall H = —H;. Dann ist F eine Teilformel von H; und es gibt H{,
das aus H; durch Ersetzen von F durch G entsteht und so, dass
H" = —Hj gilt. Nach Induktionsannahme gilt H; = Hj. Sei nun A
eine beliebige Belegung. Dann ist A(H;) = A(H1) wegen H; = Hj
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v
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Fall zu betrachten, dass F eine echte Teilformel von H ist.

Fall H = —H;. Dann ist F eine Teilformel von H; und es gibt H{,
das aus H; durch Ersetzen von F durch G entsteht und so, dass
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Beweis des Ersetzbarkeitstheorems

Seien F und G &dquivalente Formeln und sei H eine Formel mit
(mindestens) einem Vorkommen der Formel F als Teilformel. Gehe
H' aus H hervor, indem ein Vorkommen von F (in H) durch G
ersetzt wird. Dann sind H und H’ dquivalent.

v

Induktionsschritt. Ist F = H, so verfahren wir wie im
Induktionsanfang und sind fertig. Nachfolgend geniigt es also den
Fall zu betrachten, dass F eine echte Teilformel von H ist.

Fall H = —H;. Dann ist F eine Teilformel von H; und es gibt H{,
das aus H; durch Ersetzen von F durch G entsteht und so, dass
H" = —Hj gilt. Nach Induktionsannahme gilt H; = Hj. Sei nun A
eine beliebige Belegung. Dann ist A(H;) = A(H1) wegen H; = Hj
und wegen der Definition der Semantik von — ist dann auch

A(=Hy) = A(=Hi)
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H' aus H hervor, indem ein Vorkommen von F (in H) durch G
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v

Induktionsschritt. Ist F = H, so verfahren wir wie im
Induktionsanfang und sind fertig. Nachfolgend geniigt es also den
Fall zu betrachten, dass F eine echte Teilformel von H ist.
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Beweis des Ersetzbarkeitstheorems

Seien F und G &dquivalente Formeln und sei H eine Formel mit
(mindestens) einem Vorkommen der Formel F als Teilformel. Gehe
H' aus H hervor, indem ein Vorkommen von F (in H) durch G
ersetzt wird. Dann sind H und H’ dquivalent.

v

Induktionsschritt. Ist F = H, so verfahren wir wie im
Induktionsanfang und sind fertig. Nachfolgend geniigt es also den
Fall zu betrachten, dass F eine echte Teilformel von H ist.

Fall H = —H;. Dann ist F eine Teilformel von H; und es gibt H{,
das aus H; durch Ersetzen von F durch G entsteht und so, dass
H" = —Hj gilt. Nach Induktionsannahme gilt H; = Hj. Sei nun A
eine beliebige Belegung. Dann ist A(H;) = A(H1) wegen H; = Hj
und wegen der Definition der Semantik von — ist dann auch
A(=Hj) = A(—Hy) also auch A(H) = A(H’) und damit H = H'.
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Beweis des Ersetzbarkeitstheorems

Induktionsschritt (Fortsetzung). Fall H = H; V Ha.
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Beweis des Ersetzbarkeitstheorems
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Angenommen F ist eine Teilformel von H; (der andere Fall ist
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analog). Dann gibt es wieder ein Hj, das aus H; durch Ersetzen
von F durch G entsteht und so, dass H' = Hj V H, gilt. Nach
Induktionsannahme gilt Hy = Hj. Sei nun A eine beliebige
Belegung. Dann ist A(H;) = A(H1) wegen H; = Hj und 3hnlich
wie eben folgt wegen der Definition der Semantik von V dann
A(H") = A(H; V Hy) = A(H1 V Ho) = A(H)

Frank Heitmann heitmann@informatik.uni-hamburg.de 56/80



" Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Beweis des Ersetzbarkeitstheorems

Induktionsschritt (Fortsetzung). Fall H = H; V Ha.
Angenommen F ist eine Teilformel von H; (der andere Fall ist
analog). Dann gibt es wieder ein Hj, das aus H; durch Ersetzen
von F durch G entsteht und so, dass H' = Hj V H, gilt. Nach
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Belegung. Dann ist A(H;) = A(H1) wegen H; = Hj und 3hnlich
wie eben folgt wegen der Definition der Semantik von V dann
A(H") = A(H; V Hy) = A(H1 V H2) = A(H) und damit H' = H.
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Angenommen F ist eine Teilformel von H; (der andere Fall ist
analog). Dann gibt es wieder ein Hj, das aus H; durch Ersetzen
von F durch G entsteht und so, dass H' = Hj V H, gilt. Nach
Induktionsannahme gilt Hy = Hj. Sei nun A eine beliebige
Belegung. Dann ist A(H;) = A(H1) wegen H; = Hj und 3hnlich
wie eben folgt wegen der Definition der Semantik von V dann
A(H") = A(H; V Hy) = A(H1 V H2) = A(H) und damit H' = H.
Die anderen Fille gehen ganz analog, was den Beweis abschlieBt.
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Beweis des Ersetzbarkeitstheorems

Induktionsschritt (Fortsetzung). Fall H = H; V Ha.
Angenommen F ist eine Teilformel von H; (der andere Fall ist
analog). Dann gibt es wieder ein Hj, das aus H; durch Ersetzen
von F durch G entsteht und so, dass H' = Hj V H, gilt. Nach
Induktionsannahme gilt Hy = Hj. Sei nun A eine beliebige
Belegung. Dann ist A(H;) = A(H1) wegen H; = Hj und 3hnlich
wie eben folgt wegen der Definition der Semantik von V dann
A(H") = A(H; V Hy) = A(H1 V H2) = A(H) und damit H' = H.
Die anderen Fille gehen ganz analog, was den Beweis abschlieBt.

Anmerkung

Wichtig ist hier, dass A(H; V Hy) = A(H: V H) gilt. Dies folgt aus der
Definition von V und wegen A(H;) = A(H1). Man iiberlegt sich, was
passiert, wenn die einzelnen Teilformeln zu 0 oder 1 ausgewertet werden
und dass tatsachlich immer das gleiche rauskommt.
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Wir diirfen nun dank des Ersetzbarkeitstheorems Teilformeln durch
andere Formeln ersetzen, sofern diese zu der gewdhlten Teilformel
dquivalent sind.




Wir diirfen nun dank des Ersetzbarkeitstheorems Teilformeln durch
andere Formeln ersetzen, sofern diese zu der gewdhlten Teilformel
dquivalent sind.

A= -—-B=-A=B=-—-AvB=AVB




. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Normalformen - Motivation

Wir wollen nun eine Normalform fiir aussagenlogische Formeln
einfiihren, d.h. eine Form

@ in die wir jede aussagenlogische Formel durch
Aquivalenzumformungen bringen kénnen und

e die eine praktische Form hat (z.B. fiir Berechnungen)

Dazu erst ein paar Begriffe ...
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@ Ein Literal ist eine atomare Formel oder eine negierte
atomare Formel.

@ Ein positives Literal ist eine atomare Formel, ein negatives
Literal eine negierte atomare Formel.

© Zwei Literale heiBen komplementar, wenn sie positives und
negatives Literal der gleichen atomaren Formel sind. Bspw. ist
A das komplementare Literal zu =A und umgekehrt.

© Literale und Disjunktionen von Literalen werden als Klauseln
bezeichnet.

© Literale und Konjunktionen von Literalen werden als duale
Klauseln bezeichnet.
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Normalformen - Begriffe

Definition
© Ein Literal ist eine atomare Formel oder eine negierte
atomare Formel.

@ Ein positives Literal ist eine atomare Formel, ein negatives
Literal eine negierte atomare Formel.
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© Ein Literal ist eine atomare Formel oder eine negierte
atomare Formel.

@ Ein positives Literal ist eine atomare Formel, ein negatives
Literal eine negierte atomare Formel.

© Zwei Literale heiBen komplementar, wenn sie positives und
negatives Literal der gleichen atomaren Formel sind. Bspw. ist
A das komplementére Literal zu =A und umgekehrt.

@ Literale und Disjunktionen von Literalen werden als Klauseln
bezeichnet.
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Literal eine negierte atomare Formel.

© Zwei Literale heiBen komplementar, wenn sie positives und
negatives Literal der gleichen atomaren Formel sind. Bspw. ist
A das komplementére Literal zu =A und umgekehrt.

@ Literale und Disjunktionen von Literalen werden als Klauseln
bezeichnet.

© Literale und Konjunktionen von Literalen werden als duale
Klauseln bezeichnet.
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" Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Normalformen - Begriffe 2

Definition
© Eine Formel F ist in konjunktiver Normalform (KNF), wenn
sie eine Konjunktion von Klauseln ist, also eine Konjunktion
von Disjunktionen von Literalen, z.B.

(FAVBV-C)ABA(=CV-B)A(AVBVC)
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Normalformen - Begriffe 2

Definition
© Eine Formel F ist in konjunktiver Normalform (KNF), wenn

sie eine Konjunktion von Klauseln ist, also eine Konjunktion
von Disjunktionen von Literalen, z.B.

(FAVBV-C)ABA(=CV-B)A(AVBVC)

@ Eine Formel F ist in disjunktiver Normalform (DNF), wenn
sie eine Disjunktion von dualen Klauseln ist, also eine
Disjunktion von Konjunktionen von Literalen, z.B.

(AAB)V (~AA-C)V (BA-AAC)
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Syntax und Semantik Folgerbarkeit und Aquivalenz

Folgerbarkeit, Aquivalenz und Normalformen Normalformen
Eigenschaften der KNF und DNF
Merkhilfe

KNF: (wAV BV -C)ABA (=CV —B)
DNF: (AAB)V (mAA-C)V(BA-ANAC)

Satz

Q@ Eine KNF ist giiltig gdw. alle ihre Klauseln giiltig sind gdw. in
allen Klauseln mindestens ein Paar komplementare Literale
vorkommt.
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Folgerbarkeit, Aquivalenz und Normalformen Normalformen
Eigenschaften der KNF und DNF
Merkhilfe

KNF: (wAV BV -C)ABA (=CV —B)
DNF: (AAB)V (mAA-C)V(BA-ANAC)

Satz

© Eine KNF ist giiltig gdw. alle ihre Klauseln giiltig sind gdw. in
allen Klauseln mindestens ein Paar komplementare Literale
vorkommt.

@ Eine DNF ist unerfiillbar gdw. alle ihre dualen Klauseln
unerfiillbar sind gdw. in allen dualen Klauseln mindestens ein
Paar komplementéare Literale vorkommt.

© Ein Erfiillbarkeitstest fiir DNFs ist effizient implementierbar
(Laufzeit ist in P). (Fiir KNFs gilt dies wahrscheinlich nicht!
Dies Problem ist NP-vollstindig.)
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Zu jeder Formel F gibt es (mindestens) eine konjunktive
Normalform und (mindestens) eine disjunktive Normalform, d.h. es
gibt Formeln K in konjunktiver Normalform und D in disjunktiver
Normalform mit F = K = D.




" Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

KNF und DNF

Satz

Zu jeder Formel F gibt es (mindestens) eine konjunktive
Normalform und (mindestens) eine disjunktive Normalform, d.h. es
gibt Formeln K in konjunktiver Normalform und D in disjunktiver
Normalform mit F = K = D.

Beweis.

Der Beweis ist wieder mittels struktureller Induktion méglich. Siehe
z.B. Logik fiir Informatiker von U. Schoning.

Wir verfahren hier anders und geben eine Konstruktion an... O
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Wir konstruieren zu F die KNF K und die DNF D mittels
Aquivalenzumformungen wie folgt:

© Forme F so um, dass nur die Junktoren =, A und V
vorkommen.

© Forme weiter so um, dass Negationen nur vor atomaren
Formeln vorkommen.

© Forme mittels der Distributivgesetze weiter so um, dass eine
DNF bzw. KNF entsteht.




. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

KNF und DNF - Existenzbeweis

Wir konstruieren zu F die KNF K und die DNF D mittels
Aquivalenzumformungen wie folgt:

© Forme F so um, dass nur die Junktoren —, A und V
vorkommen.
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

KNF und DNF - Existenzbeweis

Die Schritte im einzelnen:
Schritt 1. Forme F so um, dass nur die Junktoren —, A und V

vorkommen, indem die anderen Junktoren durch sie ausgedriickt

werden.
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KNF und DNF - Existenzbeweis
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Schritt 1. Forme F so um, dass nur die Junktoren —, A und V
vorkommen, indem die anderen Junktoren durch sie ausgedriickt
werden. Z.B. kann F = G durch =F V G ersetzt werden und

F < G durch (=FV G) A (=G V F). Wir erhalten die Formel F;.
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vorkommen, indem die anderen Junktoren durch sie ausgedriickt
werden. Z.B. kann F = G durch =F V G ersetzt werden und

F < G durch (=FV G) A (=G V F). Wir erhalten die Formel F;.
Schritt 2. Wir formen F; durch wiederholte Anwendung von
'doppelte Negation' (——F = F)
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vorkommen, indem die anderen Junktoren durch sie ausgedriickt
werden. Z.B. kann F = G durch =F V G ersetzt werden und

F < G durch (=FV G) A (=G V F). Wir erhalten die Formel F;.
Schritt 2. Wir formen F; durch wiederholte Anwendung von
'doppelte Negation’ (——F = F) und 'de Morgan’
(=(FAG)=-FV -G und =(FV G)=-FA-G)
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" Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

KNF und DNF - Existenzbeweis

Die Schritte im einzelnen:

Schritt 1. Forme F so um, dass nur die Junktoren —, A und V
vorkommen, indem die anderen Junktoren durch sie ausgedriickt
werden. Z.B. kann F = G durch =F V G ersetzt werden und

F < G durch (=FV G) A (=G V F). Wir erhalten die Formel F;.
Schritt 2. Wir formen F; durch wiederholte Anwendung von
'doppelte Negation’ (——F = F) und 'de Morgan’
(=(FAG)=-FV -G und =(FV G) =—~F A—G) so um, dass
Negationen nur noch vor den Atomen vorkommen. Wir erhalten die
Formel F».
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

KNF und DNF - Existenzbeweis

Schritt 3b. KNF. Wir formen F, durch wiederholte Anwendung
des Distributivgesetzes in eine KNF um:
(FV(GAH)) = ((FVG)A(FVH))
(FAG)VH) = ((FVH)A(GVH))
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" Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

KNF und DNF - Existenzbeweis

Schritt 3b. KNF. Wir formen F, durch wiederholte Anwendung
des Distributivgesetzes in eine KNF um:

(FV(GAH) = ((FVG)A(FVH))
(FAG)VH) = ((FVH)A(GVH))

Schritt 3b. DNF. Wir formen F» durch wiederholte Anwendung
des Distributivgesetzes in eine DNF um:
(FA(GVH) = (FAG)V(FAH))
(FVG)AH) = ((FAH)V(GAH))
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Man beachte, dass

@ In jedem Schritt Aquivalenzumformungen vorgenommen werden.
Die entstehenden Formeln sind also zur urspriinglichen dquivalent
(Ersetzbarkeitstheorem).

@ Jeder Schritt terminiert:

© Am Ende nach Konstruktion eine DNF bzw. eine KNF steht.

Damit haben wir ein Verfahren, das terminiert, eine dquivalente Formel
liefert, die zudem in DNF bzw. KNF ist. Damit ist das Verfahren korrekt.

—
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KNF und DNF - Existenzbeweis
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(Ersetzbarkeitstheorem).
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KNF und DNF - Existenzbeweis

Man beachte, dass

@ In jedem Schritt Aquivalenzumformungen vorgenommen werden.
Die entstehenden Formeln sind also zur urspriinglichen dquivalent
(Ersetzbarkeitstheorem).

@ Jeder Schritt terminiert:

@ Im ersten Schritt gibt es nur endlich viele = und < zu
ersetzen.
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KNF und DNF - Existenzbeweis
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@ In jedem Schritt Aquivalenzumformungen vorgenommen werden.
Die entstehenden Formeln sind also zur urspriinglichen dquivalent
(Ersetzbarkeitstheorem).

@ Jeder Schritt terminiert:

@ Im ersten Schritt gibt es nur endlich viele = und < zu
ersetzen.

@ Im zweiten Schritt 'rutschen’ die Negationen stets eine Ebene
tiefer, so dass nur endlich oft umgeformt werden kann.
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@ Im ersten Schritt gibt es nur endlich viele = und < zu
ersetzen.

@ Im zweiten Schritt 'rutschen’ die Negationen stets eine Ebene
tiefer, so dass nur endlich oft umgeformt werden kann.

© Im dritten Schritt 'rutschen’ die Disjunktionen (bei der DNF)
bzw. die Konjunktionen (bei der KNF) eine Ebene héher, so
dass nur endlich oft umgeformt werden kann.
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© Am Ende nach Konstruktion eine DNF bzw. eine KNF steht.

Damit haben wir ein Verfahren, das terminiert, eine dquivalente Formel

liefert, die zudem in DNF bzw. KNF ist. Damit ist das Verfahren korrekt. /
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. Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Verfahren fiir die Erstellung von KNF und DNF

@ Ersetze alle Teilformeln der Form
e (G & H)durch (-G V H)A(=HV G)
bzw. (G A H) V (=G A =H) [Elimination von <]
e (G = H) durch (=G V H) [Elimination von =]
@ Ersetze alle Teilformeln der Form

e =G durch G [Doppelte Negation]
e —(G A H) durch (=G Vv —=H) [de Morgan]
e —(G V H) durch (-G A —=H) [de Morgan]
© Um die KNF zu bilden ersetze alle Teilformeln der Form
o (FV (G AH))durch ((FV G)A(FV H)) [Distributivitat]
o ((FAG)V H)durch ((FV H)A(GV H)) [Distributivitat]
@ Um die DNF zu bilden ersetze alle Teilformeln der Form

o (FA(GV H)) durch ((FA G)V (F A H)) [Distributivitat]
o ((FV G) A H) durch ((F A H) V (G A H)) [Distributivitit]
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Syntax und Semantik Folgerbarkeit und Aquivalenz
Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Verallgemeinerte Aquivalenzen

Anmerkung

Oft ist es hilfreich mit Verallgemeinerungen der Distributivgesetze
und der Regel von de Morgan zu arbeiten. Diese konnen namlich
auf groBere Formeln verallgemeinert werden. Fiir de Morgan:

e (GAHAI)=(-GV—-HV-I)
e (GVHVI)=(-GA-HA-I)
Und bei den Distributivgesetzen z.B.
o (FANV(GAH)Y=(FVG)A(FVH)A(IVG)A(IVH)
o (FVOA(GVH)=(FAG)V(FAH)V(IAG)V(IAH)
Dies ist dann weiter auf beliebig viele Teilformeln erweiterbar.
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Wir erstellen eine KNF zu (AA (B = C)) = D:

(AN(B=C))=D Elimination von =
Elimination von =

de Morgan

de Morgan

Doppelte Negation

Distributivitat

Distributivitat

Klammern




Syntax und Semantik Folgerbarkeit und Aquivalenz

Folgerbarkeit, Aquivalenz und Normalformen Normalformen
Beispiel
Wir erstellen eine KNF zu (AA (B = C)) = D:
(AN(B=C))=D Elimination von =
=(AN(-BV C))=D Elimination von =
de Morgan
de Morgan

Doppelte Negation
Distributivitat
Distributivitat

Klammern
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=(-AV (——BA-C))VvD Doppelte Negation
=(-AV(BA=C))VvD Distributivitat
=((mAVB)A(mAV-C))VvD Distributivitat
=((-AVB)VD)A((-AV-C)V D) Klammern
=(-AVBVD)A(-AV-CVD)

Frank Heitmann heitmann@informatik.uni-hamburg.de 69/80



Syntax und Semantik Folgerbarkeit und Aquivalenz

Folgerbarkeit, Aquivalenz und Normalformen Normalformen
Beispiel
Wir erstellen eine KNF zu (AA (B = C)) = D:
(AN(B=C))=D Elimination von =
=(AN(—-BV(C))=D Elimination von =
=-(AAN(-BVC(C))VvD de Morgan
=(-AvV-(-BV(C))VvD de Morgan
=(-AV(=—BA-C))VD Doppelte Negation
=(-AV(BA-C))VD Distributivitdt
=((mAVB)A(mAV-=C))V D Distributivitat
=((wAVvB)VD)A((-AV—=C)V D) Klammern

=(-AVBVD)A(-AV-CVD)

Zum Schluss (und auch zwischendurch) kénnen Kommutativgesetze, As-
soziativgesetze und Regeln wie Absorption, Idempotenz, Tautologieregeln,
Kontradiktionsregeln und Komplementregeln angewendet werden, um die
Formel zu vereinfachen.
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Eine weitere Moglichkeit eine DNF und eine KNF zu einer Formel
zu konstruieren, geht mit Wahrheitstafeln.

Hier ist das Problem, dass die Wahrheitstafeln sehr groB werden
kdnnen und das Verfahren daher ineffizient.




Idee fiir die DNF?

A B C|F
0 0
0 1
10
11
0 0
0 1
10
11




—ANBAC
1 AN-BA-C
ANBAC

0
0
0
1

A B C|F
0 0
0 1
10
11
0 0
0 1
10
11




A B C|F

0 0 0O (~FAABAC) V
0 0 1)0 (AAN=BA-C) V
0 1 0740 (AABAC)
01 1|1 —AABAC

1 0 0|1 AAN-BA-C

1 0 110

1 1 0/0

1 1 1|1 AABAC




A B C|F

KNF ...

0

0




AVvBvVC
AV BV-C
AV-BvVC

—AV BV -C
-AV-BVvVC

0
0
0
1
1
0
0
1

A B C|F
0 0
0 1
10
11
0 0
0 1
10
11




A B C|F

0 0 0JO AV BV C (AVBVC) A
0 0 1|0 AvBv-C (AVBV-C) A
8 1 (1) (1) AV-BVC (AV-BVC) A
T o o1 (~AVBV-C) A
10 1]l0 -AvBvV=C (—AV =BV ()

1 1 0/0 -Av=BVvVC

11 11
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Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Wahrheitstafelmethode - DNF

Herstellung der DNF:

@ Erstelle pro Zeile, die zu 1 ausgewertet wird, eine duale Klausel:

@ Wird ein Aussagesymbole A zu 1 ausgewertet, nehme A in die
Klausel

@ Wird ein Aussagesymbole A zu 0 ausgewertet, nehme —A in
die Klausel

@ Verkniipfe alle so gewonnenen dualen Klauseln mit Vv

© Gibt es keine Zeile, die zu 1 ausgewertet wird, nimm die Formel
AN-A
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Wahrheitstafelmethode - KNF

Herstellung der KNF:

@ Erstelle pro Zeile, die zu 0 ausgewertet wird, eine Klausel:

@ Wird ein Aussagesymbole A zu 1 ausgewertet, nehme —A in
die Klausel

@ Wird ein Aussagesymbole A zu 0 ausgewertet, nehme A in die
Klausel

@ Verkniipfe alle so gewonnenen Klauseln mit A

© Gibt es keine Zeile, die zu 0 ausgewertet wird, nimm die Formel
AV -A
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Bei der Wahrheitstafelmethode werden offensichtlich DNFs

bzw. KNFs erstellt.

Diese sind zudem &quivalent zur urspriinglichen Formel, wie man
sich schnell {iberlegt. So erzeugt man bei der DNF mit den
einzelnen dualen Klauseln gerade Formeln, die genau an der Stelle
der Zeile zu 1 (sonst Oen) ausgewertet werden. Durch die
V-Verkniipfung hat man dann gerade eine zur urspriinglichen
Formel dquivalente Formel. Bei der Erstellung der KNF hat
zunachst die einzelne Klausel gerade an der Stelle der Zeile eine 0
(sonst 1len). Durch die A-Verkniipfung hat man dann gerade
wieder eine zur urspriinglichen Formel dquivalente Formel.
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Folgerbarkeit, Aquivalenz und Normalformen Normalformen

Wahrheitstafelmethode

Korrektheit

Bei der Wahrheitstafelmethode werden offensichtlich DNFs

bzw. KNFs erstellt.

Diese sind zudem &quivalent zur urspriinglichen Formel, wie man
sich schnell iiberlegt. So erzeugt man bei der DNF mit den
einzelnen dualen Klauseln gerade Formeln, die genau an der Stelle
der Zeile zu 1 (sonst Oen) ausgewertet werden.
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Wahrheitstafelmethode

Korrektheit

Bei der Wahrheitstafelmethode werden offensichtlich DNFs

bzw. KNFs erstellt.

Diese sind zudem &quivalent zur urspriinglichen Formel, wie man
sich schnell iiberlegt. So erzeugt man bei der DNF mit den
einzelnen dualen Klauseln gerade Formeln, die genau an der Stelle
der Zeile zu 1 (sonst Oen) ausgewertet werden. Durch die
V-Verkniipfung hat man dann gerade eine zur urspriinglichen
Formel dquivalente Formel.
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Wahrheitstafelmethode

Korrektheit

Bei der Wahrheitstafelmethode werden offensichtlich DNFs

bzw. KNFs erstellt.

Diese sind zudem &quivalent zur urspriinglichen Formel, wie man
sich schnell iiberlegt. So erzeugt man bei der DNF mit den
einzelnen dualen Klauseln gerade Formeln, die genau an der Stelle
der Zeile zu 1 (sonst Oen) ausgewertet werden. Durch die
V-Verkniipfung hat man dann gerade eine zur urspriinglichen
Formel dquivalente Formel. Bei der Erstellung der KNF hat
zundchst die einzelne Klausel gerade an der Stelle der Zeile eine 0
(sonst len).
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Wahrheitstafelmethode

Korrektheit

Bei der Wahrheitstafelmethode werden offensichtlich DNFs

bzw. KNFs erstellt.

Diese sind zudem &quivalent zur urspriinglichen Formel, wie man
sich schnell iiberlegt. So erzeugt man bei der DNF mit den
einzelnen dualen Klauseln gerade Formeln, die genau an der Stelle
der Zeile zu 1 (sonst Oen) ausgewertet werden. Durch die
V-Verkniipfung hat man dann gerade eine zur urspriinglichen
Formel dquivalente Formel. Bei der Erstellung der KNF hat
zundchst die einzelne Klausel gerade an der Stelle der Zeile eine 0
(sonst len). Durch die A-Verkniipfung hat man dann gerade
wieder eine zur urspriinglichen Formel dquivalente Formel.
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SAT = {(¢) | ¢ ist eine erfiillbare aussagenlogische Formel}
CNF = {(¢) | (4) € SAT und ¢ ist in KNF}
3CNF = {(¢) | (¢) € CNF und jede Klausel von ¢
hat genau drei verschiedene Literale}




SAT = {(¢) | ¢ ist eine erfiillbare aussagenlogische Formel}
CNF = {(¢) | (4) € SAT und ¢ ist in KNF}
3CNF = {(¢) | (¢) € CNF und jede Klausel von ¢
hat genau drei verschiedene Literale}

SAT, CNF und 3CNF sind NP-vollstandig.
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Ausblick

Ausblick

Im weiteren Verlauf wird es darum gehen trotz dieser Hiirde
sinnvolle Entscheidungsverfahren fiir das zentrale
(Un-)Erfiillbarkeitsproblem der Aussagenlogik und weiterer Logiken
zu finden.

In spateren Logiken sind es meist nur noch Semientscheidungsver-
fahren. Dennoch sind auch diese wichtig, insb. da das Problem in so
wichtigen Bereichen wie z.B. Datenbanken, Kl und Verifikation eine
zentrale Rolle spielt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 79/80
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Zusammenfassung

@ Syntax & Semantik der Aussagenlogik

@ Folgerbarkeit, Aquivalenz (+ Beweise)
© Normalformen (KNF, DNF)

o Ersetzbarkeitstheorem (4 Beweis)
o KNF und DNF erstellen (+ Beweis)

@ SAT ist NP-vollstandig
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