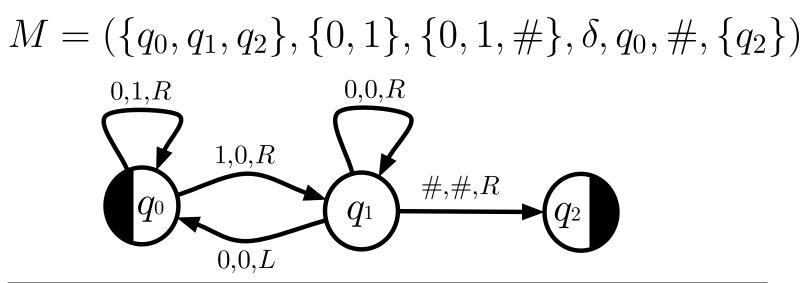
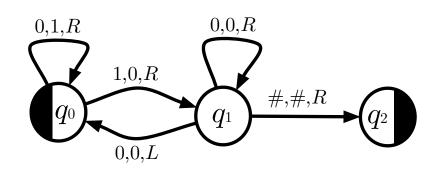
Beispiel: NTM



Zustand	0	1	#
q_0	$\{(1,R,q_0)\}$	$\{(0,R,q_1)\}$	Ø
q_1	$\{(0,R,q_1),(0,L,q_0)\}$	$\{(1, R, q_1), (1, L, q_0)\}$	$\{(\#, R, q_2)\}$
q_2	Ø	Ø	Ø

Aufgabe: Welche Konfigurationen sind bei Eingabe von 01 (bzw. 100) erreichbar?

Beispiel: NTM-Konfigurationen



Eingabe: 01 (bzw. 100)

$$[q_0]01 \downarrow_M 1[q_0]1 \downarrow_M 10[q_1] \downarrow_M 10\#[q_2]$$

$$[q_0]100 \downarrow_M 0[q_1]00 \downarrow_M 00[q_1]0 \downarrow_M 000[q_1] \downarrow_M 000 \# [q_2]$$

$$[q_0]100 \downarrow_M 0[q_1]00 \downarrow_M [q_0]000 \downarrow_M 1[q_0]00 \downarrow_M 11[q_0]0 \downarrow_M 111[q_0]$$

$$[q_0]100 \downarrow_M 0[q_1]00 \downarrow_M 00[q_1]0 \downarrow_M 0[q_0]00 \downarrow_M 01[q_0]0 \downarrow_M 011[q_0]$$

$$[q_0]100 \downarrow_M 0[q_1]00 \downarrow_M 00[q_1]0 \downarrow_M 000[q_1] \downarrow_M 000[q_0]0 \downarrow_M 001[q_0]$$

Entscheidbare vs. rekursiv aufzählbare Mengen

Akzeptierung/Berechnung

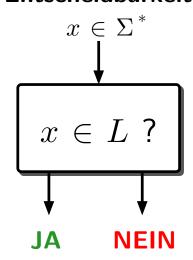
- ...ein kurzer Rückblick:
 - Sprache L wird durch eine TM M akzeptiert gdw. **nur** Wörter aus L eine Erfolgsrechnung auf M haben.
 - Funktion f wird von DTM M berechnet, gdw. M für **jede** Eingabe w in einer Endkonfiguration $q_e f(w)$ hält bzw. nicht hält, falls $w \notin Def(f)$.

Definition: rekursiv

Eine Menge $L \subseteq \Sigma^*$ heißt (relativ zu Σ^*) entscheidbar oder rekursiv gdw. ihre charakteristische Funktion $\chi_L : \Sigma^* \to \{0, 1\}$ berechenbar ist.

Die *Klasse aller entscheidbaren Mengen* wird mit \mathcal{REC} (recursive sets) bezeichnet.

Entscheidbarkeit

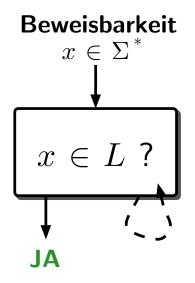


Definition: rekursiv aufzählbar

Eine Menge $L\subseteq \Sigma^*$ heißt **beweisbar** oder **rekursiv aufzählbar** gdw. $L=\emptyset$ ist, oder eine totale Turing-berechenbare Funktion $g: I\!\!N \to \Sigma^*$ existiert, für die $g(I\!\!N)=L$ ist.

Die Klasse aller aufzählbaren Mengen wird mit \mathcal{RE} (recursively enumerable sets) bezeichnet.

...oder anders dar-gestellt:



Eigenschaften

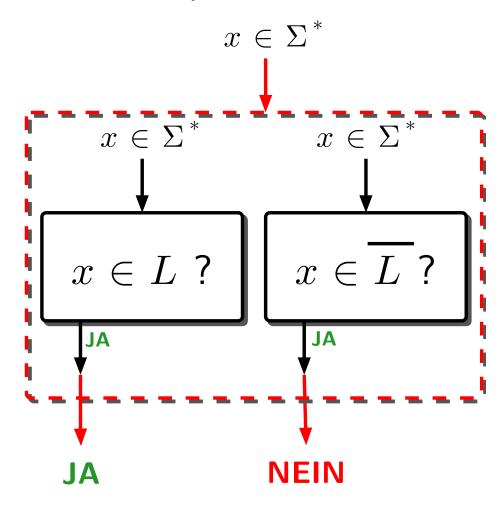
Theorem: L ist rekursiv aufzählbar gdw. eine TM M mit L = L(M) existiert. **Beweisidee:** $L = L(M) \Rightarrow \exists$ TM A, die alle Wörter aus L auf die Ausgabe schreibt:

- Generiere sukzessive Paare aus $(i, j) \in \mathbb{N}^2$.
- Simuliere M auf dem i-ten Wort w_i .
- Falls M nach j Schritten hält, schreibe w_i und ein Trennsymbol.
- \exists TM A, die alle Wörter aus L schreibt $\Rightarrow L = L(M)$
 - Verwende Zähler i
 - Montrolliere, ob w_i (Ausgabe von A) das Eingabewort w ist? Ja: akzeptiere! Nein: inkrementiere i.

Analog: L rekursiv aufzählbar $\Rightarrow \exists \mathsf{TM}\ M : L = L(M)$

Eigenschaften

Theorem: Ist eine Menge L und ihr Komplement \overline{L} rekursiv aufzählbar, so ist L auch rekursiv.



Hierarchie

Folgende Beziehungen wollen wir zeigen:

Klasse der regulären Mengen

- ≠ Klasse der überabzählbaren Mengen

Existenz überabzählbarer Mengen ist bekannt.

(z.B. aus Diagonalbeweis).

Abschlusseigenschaften

Theorem: Die Klasse der entscheidbaren Mengen bildet eine *boolesche Mengen-Algebra*.

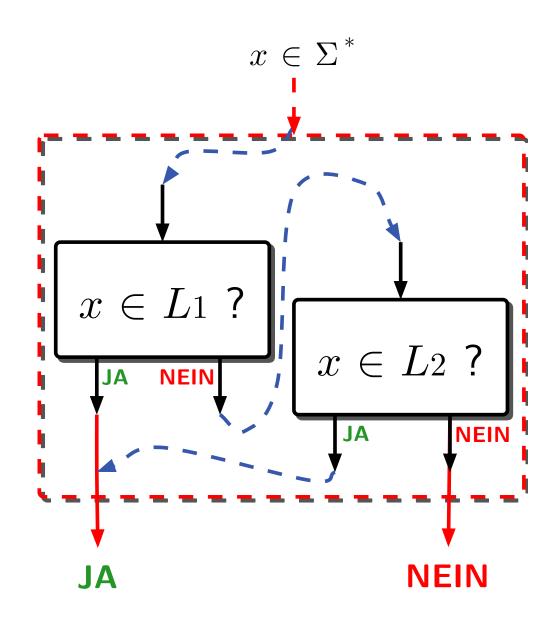
Beweisidee: Z.z. ist der Abschluss gegen

- Komplementbildung,
- Durchschnitt,
- Vereinigung.

Komplementabschluss:

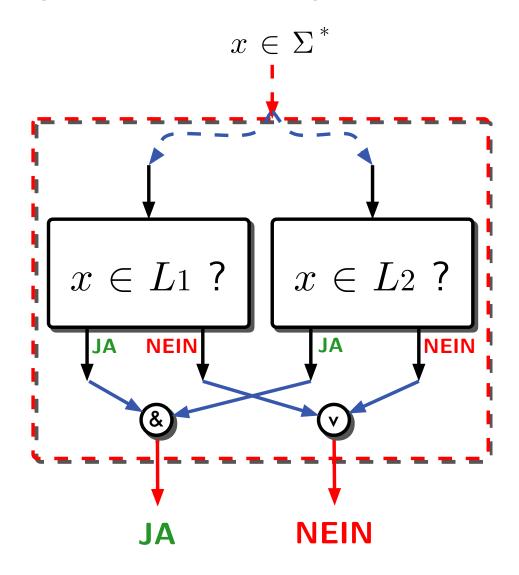
... einfach JA und NEIN vertauschen.

Vereinigung

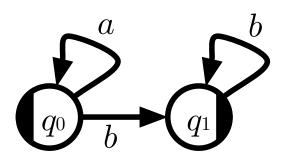


Durchschnitt

... folgt nach De Morgan, oder direkt:



Gödelisierung von FA's



... wird kodiert durch:

a	X
b	XX
q_0	Z
q_1	ZZ

Kante (q_0, b, q_1) :

-ZXXZZ

Insgesamt:

-ZXZ-ZXXZZ+ZZXXZZ

... ähnlich auch für Turing-Maschinen!

nicht aufzählbare Menge

Wir zeigen, dass es Mengen gibt, die nicht rekursiv aufzählbar sind:

Theorem: Sei G ein Alphabet zur Kodierung von Turing-Maschinen bzw. Wörtern, sowie w_i das i-te Wort und M_i die i-te DTM in der lexikalischen Aufzählung der Wörter $\langle M_i \rangle \in G^*$.

Dann ist die Menge $L_d := \{w_i \mid w_i \notin L(M_i)\}$ nicht aufzählbar.

(Selbstanwendbarkeitsproblem)

Beweis: $L_d \notin \mathcal{RE}$

Charakteristische Funktion für $L(M_i)$ und L_d :

	w_0	w_1	w_2		w_n	
M_0	0	1	1		0	
M_1	1	1	0		1	
M_2	1	0	0		1	
:	:	:		14.	:	
M_n	1	1	0		1	
:	:	:	:	:	:	•
L_d	1	0	1		0	

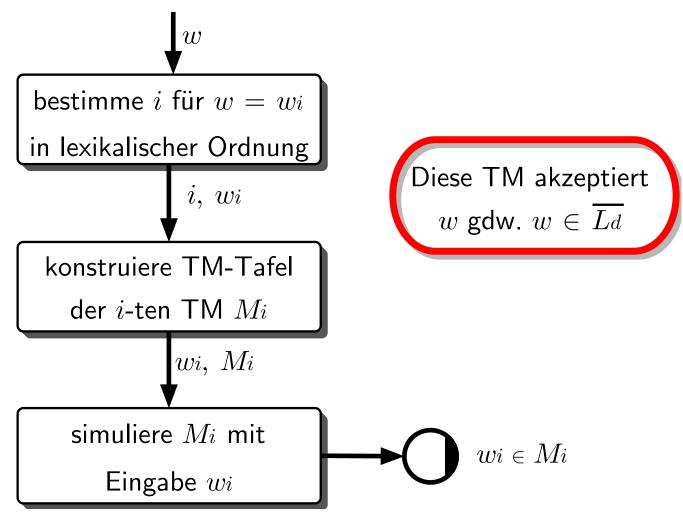
Also: $\forall i \in I\!\!N : w_i \in L(M_i) \iff w_i \not\in L_d$.

Somit $\forall i \in IN : L(M_i) \neq L_d$

und L_d nicht aufzählbar!

Das Komplement von L_d

...ist aufzählbar:



Definition: UTM

- Sei M eine DTM mit Anfangskonfiguration k_0 .
- Sei $\langle M \rangle$ die Kodierung über dem Alphabet $G := \{0, 1\}$ von M und $\langle k_0 \rangle$ jene von k_0 .

Eine DTM $U:=(Z,\Sigma,\Gamma,\delta,q_0,Z_{\text{end}})$ heißt universelle Turing-Maschine (UTM), wenn für die Anfangskonfiguration $q_0\langle M\rangle\langle k_0\rangle$ gilt:

 $k_i \mid_{\overline{M}} k_j \Rightarrow \langle A \rangle \langle k_i \rangle \mid_{\overline{U}}^* \langle A \rangle \langle k_j \rangle$, wobei hier nur die relevante Bandinschrift von U gemeint ist, ohne die Stellungen ihres LSK und der Zustände.

Existenz einer UTM

Definition der universellen Turing-Maschine macht noch keine Aussage darüber, ob so etwas auch tatsächlich existiert!

Lemma: Es gibt universelle Turing-Maschinen.

- Lesen der Kodierung einer TM und eines Eingabewortes,
- Simulation der Einzelschritte der kodierten TM.
- hier kein Beweis (durch Angabe einer UTM)

Das Halteproblem

Das Halteproblem lautet:

Gegeben: Ein Computerprogramm P und

ein Eingabe x für P.

Gesucht: Kommt P für x jemals in einen

Stop-bzw. Endzustand?

Antwort: ?

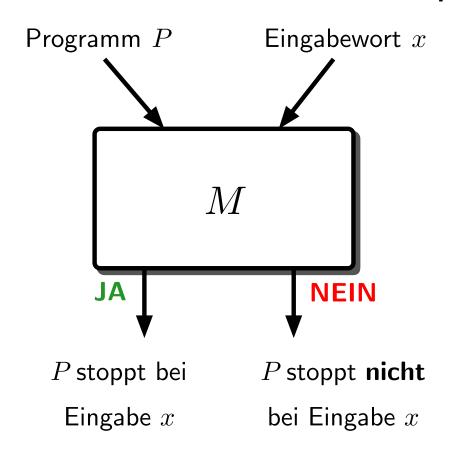
 $H = \{\langle M \rangle \langle w \rangle \mid \mathsf{TM} \; M \; \mathsf{h\"{a}lt} \; \mathsf{auf} \; w\}$

Wichtig zur Erkennung von Endlosschleifen!

Aber: H ist unentscheidbar.

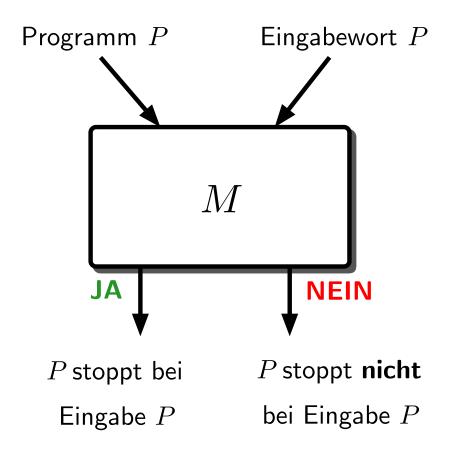
Beweis: Halteproblem $\notin \mathcal{REC}$

Erster Beweis: Konstruktion mit Widerspruch Angenommen M löst das Halteproblem:



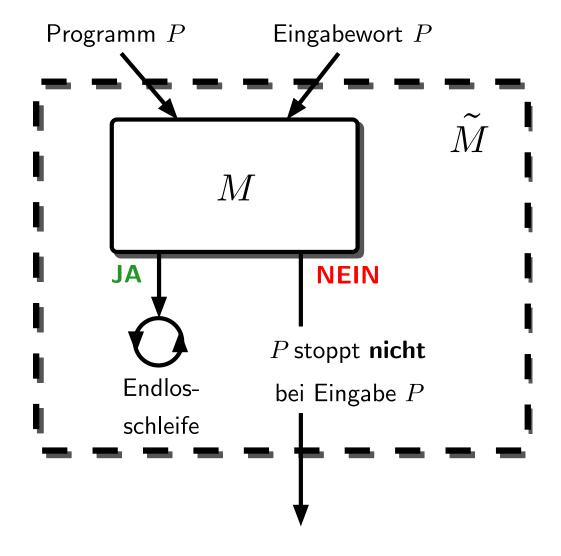
Halteproblem (2)

Eingabewort *x* ersetzt durch das Programm *P*:



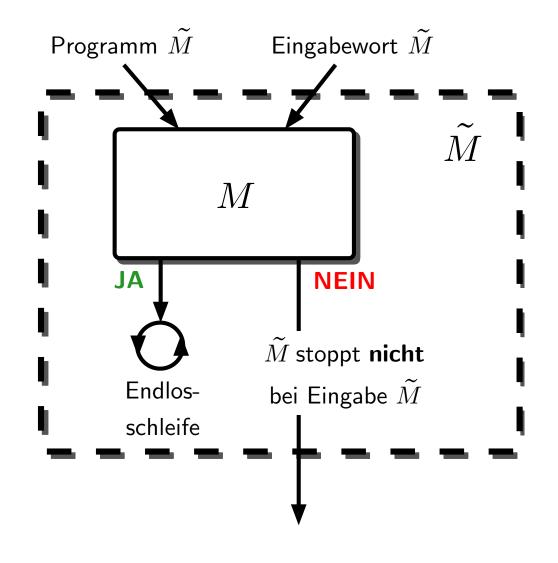
Halteproblem (3)

Neue Maschine \tilde{M} mit Endlosschleife bei JA:



Halteproblem (4)

Als Programm P verwenden wir jetzt \tilde{M} :



Halteproblem und L_d

- Kodieren wir L_d und H mit dem Alphabet $\{0,1\}$.
- Die Unentscheidbarkeit des Halteproblems H kann dann durch Reduktion von $L_d^{\{0,1\}}$ auf H gezeigt werden (bei geeigneter Kodierung):

$$w \in L_d^{\{0,1\}} \iff \langle w \rangle \langle w \rangle \not\in H$$

ALSO: Wenn H entscheidbar, dann auch $L_d^{\{0,1\}}$.

Halteproblem ist aufzählbar

 $H = \{\langle M \rangle \langle w \rangle \mid \mathsf{TM} \ M \ \mathsf{hält} \ \mathsf{auf} \ w \} \ \mathsf{ist} \ \mathsf{rekursiv} \ \mathsf{aufzählbar}.$

Die Begründung dafür ist Übungsaufgabe 3.2!

Ausblick

- Weitere wichtige Unentscheidbarkeitsresultate
- Weitere Berechenbarkeitsmodelle
- Realistische Maschinenmodelle

