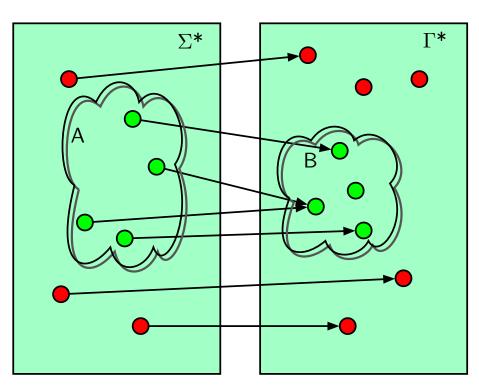
Reduktion

- Seien $A \subset \Sigma^*$ und $B \subset \Gamma^*$.
- Man sagt "A ist reduzierbar auf B" ($A \le B$) gdw.

$$\exists f: \Sigma^* \to \Gamma^*: \forall x \in \Sigma^*: x \in A \iff f(x) \in B$$



von speziellem Interesse:

Polynomialzeitreduktion

$$(\leq_{\mathrm{pol}})$$
,

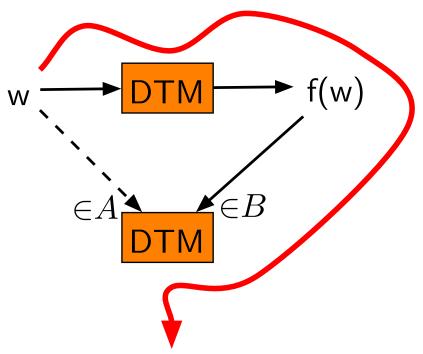
logarithmische-Platz-

Reduktion

$$(\leq_{\log})$$
.

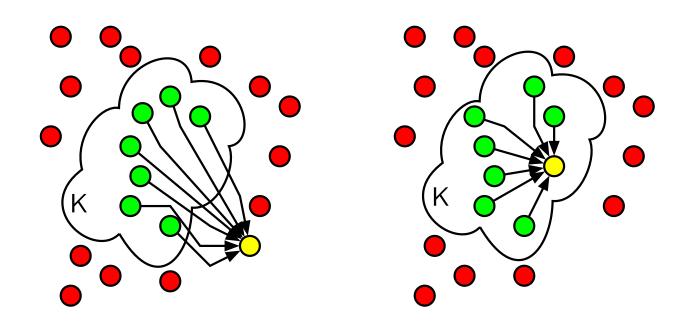
Reduktion (2)

- Zurückführen der Entscheidbarkeit von A auf die Entscheidbarkeit von B:
- Voraussetzung $A \leq B$.



\mathcal{K} -Vollständigkeit

- Eine Menge $A\subseteq \Sigma^*$ heißt **hart** (oder besser: **schwer**) für eine Klasse $\mathcal K$ gdw. $\forall b\in \mathcal K: B\leq A$
- Eine Menge $A\subseteq \Sigma^*$ heißt **vollständig** für eine Klasse $\mathcal K$ gdw. $A\in \mathcal K \ \land \ \forall b\in \mathcal K.B\leq A$



\mathcal{NP} -Vollständigkeit

- besonders interessannter Spezialfall der Vollständigkeit:
- lacksquare Eine Menge $A\subseteq \Sigma^*$ heißt \mathcal{NP} -vollständig gdw.

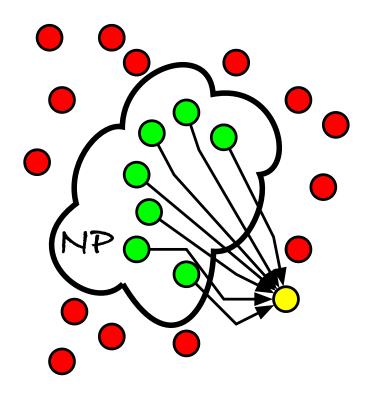
$$A \in \mathcal{NP} \land \forall B \in \mathcal{NP} : B \leq_{\text{pol}} A$$

- Ein \mathcal{NP} -vollständiges Problem ist somit eines der schwersten bzw. umfassendsten Probleme innerhalb der Klasse \mathcal{NP} .
- lacksquare Wichtige Eigenschaft: Transitivität von \leq_{pol} .
- Ist $A \in \mathcal{NP}$ -vollständiges Problem und gilt $A \leq_{\text{pol}} B$, so ist auch $B \mathcal{NP}$ -vollständig.

\mathcal{NP} -hart

lacksquare Eine Menge $A\subseteq \Sigma^*$ heißt \mathcal{NP} -hart gdw.

 $\forall b \in \mathcal{NP} : B \leq_{\text{pol}} A$



o ist NP-hart gdw.

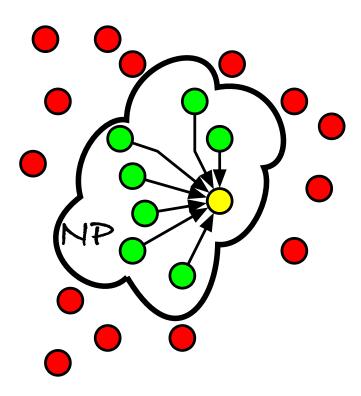
für alle O aus NP

gilt ○ ≤pol ○

\mathcal{NP} -vollständig

lacksquare Eine Menge $A\subseteq \Sigma^*$ heißt \mathcal{NP} -vollständig gdw.

$$A \in \mathcal{NP} \land \forall b \in \mathcal{NP} : B \leq_{\text{pol}} A$$



- o ist NP-vollständig gdw.
 - 1. O liegt in NP und
 - 2. Oist NP-hart

Ein \mathcal{NP} -vollständiges Problem

- Bisher nur Definition der \mathcal{NP} -Vollständigkeit
- Aber: Gibt es überhaupt solche Probleme?
 - Diese Frage war lange Zeit ungeklärt!
 - Nach dem ersten folgten aber sofort viele \mathcal{NP} -vollständige Probleme.
 - Warum?!
- Idee für ein erstes \mathcal{NP} -vollständiges Problem:
 - Codierung aller Polynomialzeit-TM-Rechnungen
 - als Formel (SAT)
 - als Kachelproblem (2D-Domino)

Das Kachelproblem ist in \mathcal{NP}

Gegeben: Eine Menge von r Kacheltypen $\mathcal{R} =$

 $\{K_1,K_2,\ldots,K_r\}$, $n\in\mathbb{N}$ (beliebig

viele Kacheln von jedem Typ)

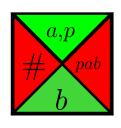
Gesucht: Kann man eine Fläche der Größe $n \times n$

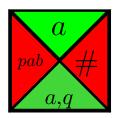
n korrekt kacheln?

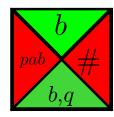
Antwort: JA oder NEIN

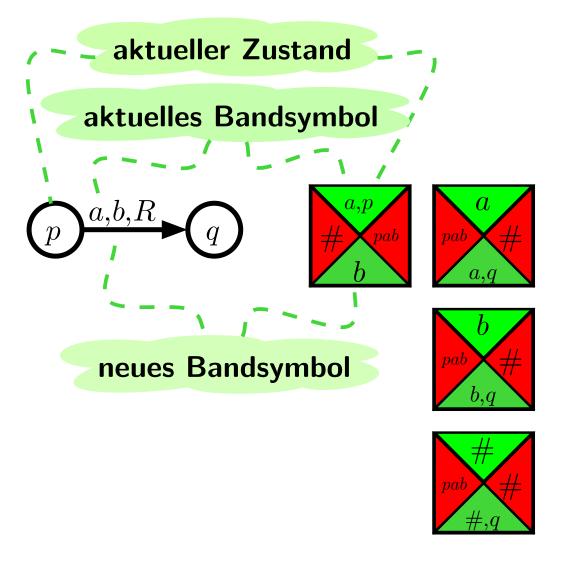
- nur gleichfarbige Seiten dürfen aneinandergelegt werden!
- Steine dürfen nicht gedreht werden!

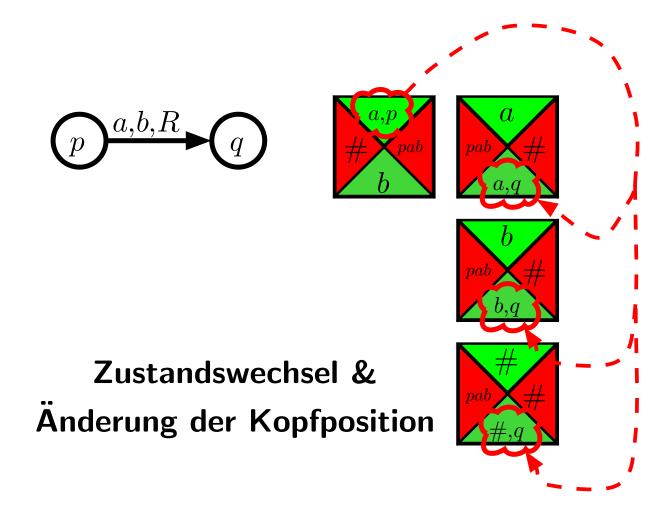
- endlicher Satz von Kacheln
- lacksquare endliches Spielfeld der Größe $n \times n$
- erste Zeile festgelegt
 - hier: durch die Anfangskonfiguration einer (polynomialzeitbeschränkten) TM
 - Zeilenwechsel entspricht Konfigurationswechsel der TM
- Dieser Spezialfall des Kachelproblems wird nun als \mathcal{NP} -vollständig nachgewiesen.

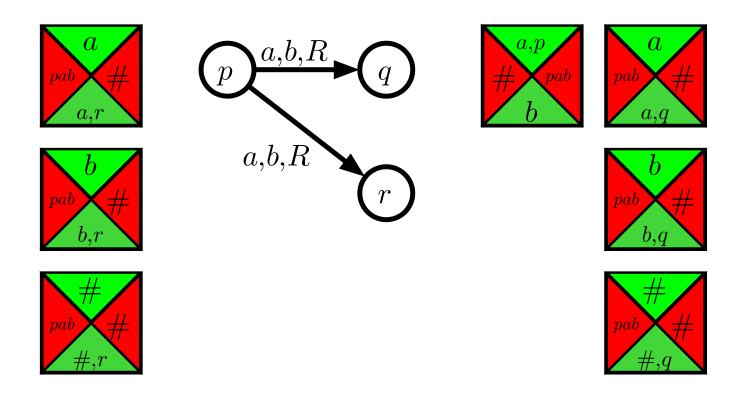


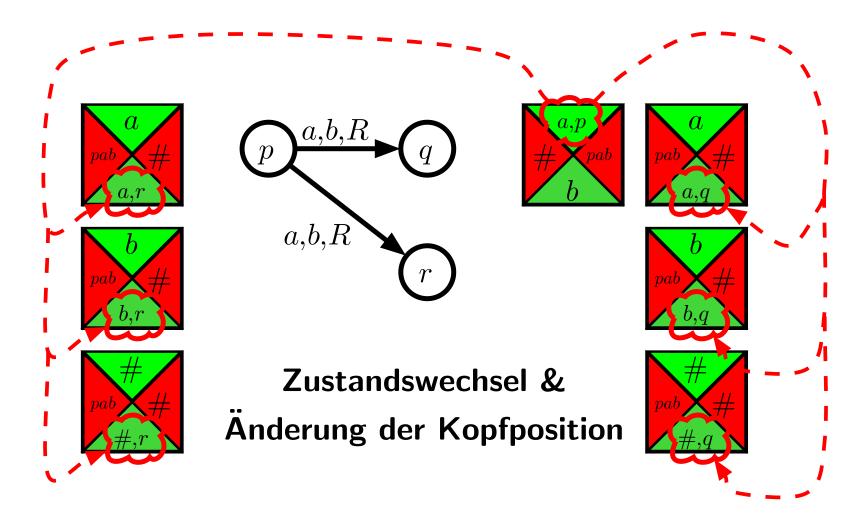


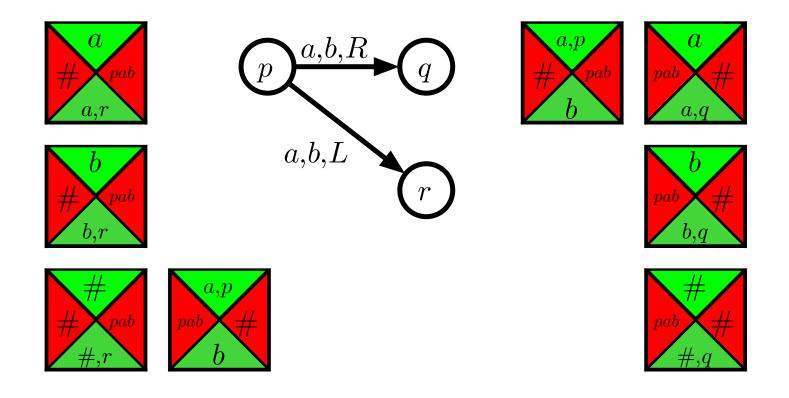






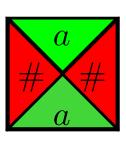




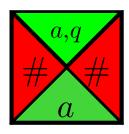


Formale Transformation

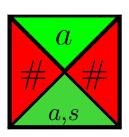
Für alle $a{\in}\Gamma$:



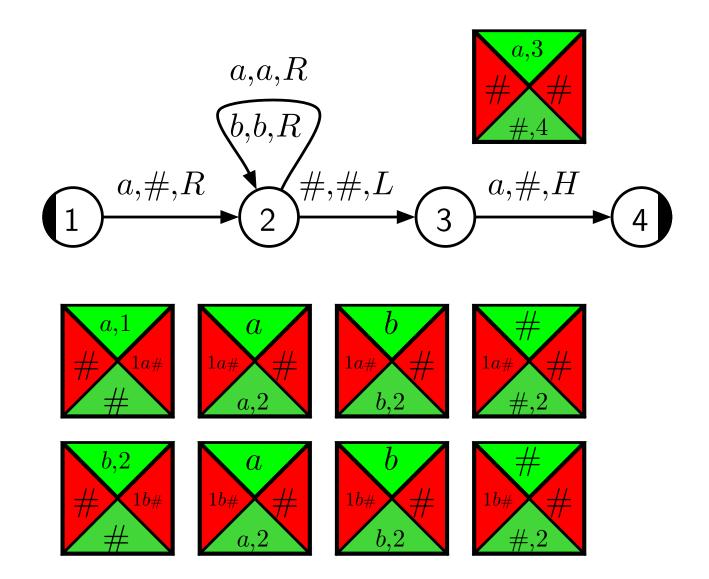
Für alle $q{\in}Z$ end und $a{\in}\Gamma$:



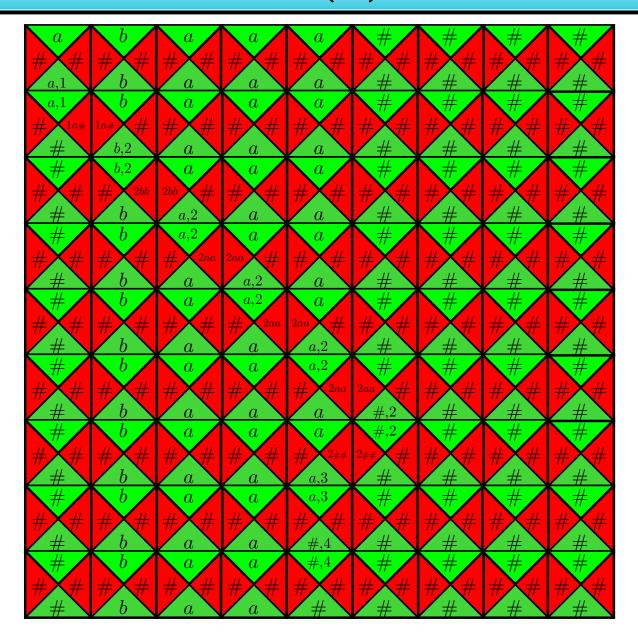
Für Startzustand s und alle $a{\in}\Gamma$:



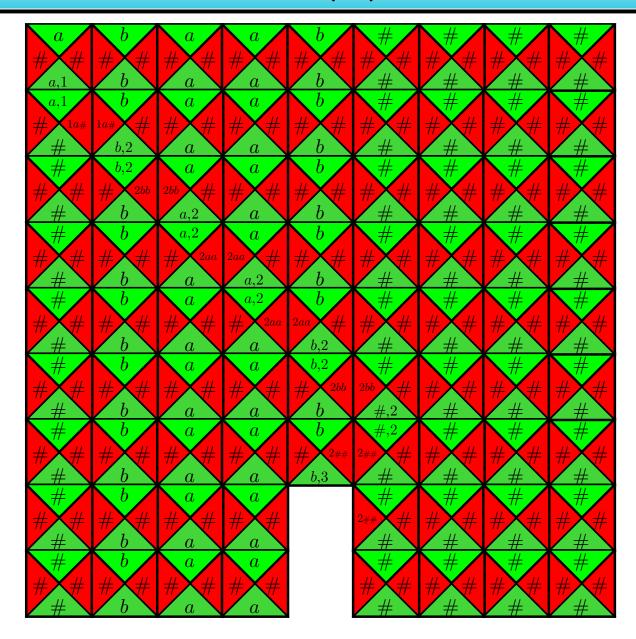
Eine TM M mit $L(M) \in \mathcal{P}$



Beispiel-TM (2)



Beispiel-TM (3)



SAT

Definition: $SAT := \{w \in X^* \mid w \text{ ist ein erfüllbarer boolescher Ausdruck }\}$ ist das **Erfüllbarkeitsproblem**:

Gegeben: Eine Menge V von Variablen und

eine boolesche (aussagenlogische)

Formel $B \in X^*$ mit

 $X := V \cup \{0, 1, \vee, \wedge, \neg, (,)\}.$

Gesucht: Gibt es eine Belegung der Variablen

mit TRUE (1) und FALSE (0), so dass

B zu TRUE (1) evaluiert?

Antwort: JA oder NEIN

\mathcal{NP} -Vollständigkeit von SAT

Theorem: SAT ist \mathcal{NP} -vollständig.

Beweisidee:

- **Solution** Es ist einfach zu sehen, dass $SAT \in \mathcal{NP}$ gilt.
 - Zu einer gegebenen Formel B mit den Variablen $x_1, x_2, \ldots x_n$ wird in Linearzeit nichtdeterministisch eine Belegung der Variablen mit TRUE oder FALSE geraten.
 - Es wird geprüft, ob *B* mit dieser Belegung den Wert TRUE bekommt. Dies ist in Polynomzeit möglich.
- Bleibt zu Zeigen, dass jedes andere Problem aus \mathcal{NP} in Polynomialzeit auf SAT reduzierbar ist.

Reduktion auf SAT

- FELD(i, j, t) $\hat{=}$ In Konfiguration k_t steht das Zeichen x_j in Feld i.
- **ZUSTAND**(r,t) $\hat{=}$ In der Konfiguration k_t befindet sich die TM A_L im Zustand z_r .
- **SOPF** $(i, t) = In der Konfiguration <math>k_t$ steht der LSK auf dem Feld i.
- Anzahl dieser Variablen in $O(p(n)^2)$, wenn p(n) die Zeitschranke ist. Wir definieren die Formel $\oplus (a_1, a_2, \ldots, a_r) := (a_1 \vee a_2 \vee \ldots \vee a_r) \wedge \bigwedge_{i \neq j} (\neg a_i \vee \neg a_j)$. Die Länge dieser Formel ist von der Ordnung $O(r^2)$.
- Die Formel F_w hat die Form $F_w := A \wedge B \wedge C \wedge D \wedge E \wedge F \wedge G.$

Reduktion auf SAT (2)

Die einzelnen Teilformeln bedeuten:

- A = In jeder Konfiguration k_t steht der LSK auf genau einem Feld.
- $B \triangleq \text{In } k_t$ enthält jedes Feld genau ein Zeichen.
- $C \triangleq \text{In } k_t$ befindet sich A_L in genau einem Zustand.
- $D \triangleq \text{Bei jedem Übergang wird genau das Feld verändert,}$ auf das der LSK zeigt.
- $E \,\,\hat{=}\,\, {\sf Jeder}\,\, {\sf Übergang}\,\, {\sf entspricht}\,\, {\sf der}\,\, {\sf Turing-Tafel}.$
- $F \, \hat{=} \, \mathsf{Die} \, \mathsf{erste} \, \mathsf{Konfiguration} \, \mathsf{ist} \, k_0 = q_0 w \# \dots \#.$
- $G \triangleq \text{Der Zustand in der letzten Konfiguration } k_{p(n)}$ ist Endzustand aus Z_{end} .

Beispiel einer Teilformel

Es ist
$$A:=A_1\wedge A_2\wedge\ldots\wedge A_{p(n)}$$
 und $\forall t\leq p(n):A_t:=\oplus(\mathsf{KOPF}(1,t),\mathsf{KOPF}(2,t),\ldots,\mathsf{KOPF}(p(n),t)$

Auch B und C sind zusammengesetzte Formeln:

$$B := \bigwedge_{1 \leq i, t \leq p(n)} B(i, t) \text{ mit}$$
 $B(i, t) := \bigoplus (\mathsf{FELD}(i, 1, t), \dots, \mathsf{FELD}(i, m, t)), \ m := |Y|$
 $C := \bigwedge_{1 \leq t \leq p(n)} C_t \text{ mit}$
 $C_t := \bigoplus (\mathsf{ZUSTAND}(1, t), \dots, \mathsf{ZUSTAND}(s, t)),$
 $s := |Z|$

Einfache Folgerungen

Lemma: Sei L \mathcal{NP} -vollständig, $L \leq_{pol} M$ und $M \in \mathcal{NP}$.

Dann ist auch M \mathcal{NP} -vollständig

Beweis: Das Lemma folgt direkt aus der Definition von \mathcal{NP} -Vollständigkeit und der Transitivität der Polynomzeitreduktionen.

- **B**eispiel im Skript: KNF ist \mathcal{NP} -vollständig.
- $Mathbb{M} KNF := \{w \in X^* \mid w \text{ ist eine erfüllbare boolesche Formel in konjunktiver Normalform}\}$

andere \mathcal{NP} -vollständige Probleme

Definition: Das Erfüllbarkeitsproblem boolescher Formeln in konjunktiver Normalform dargestellt als Sprache:

 $KNF := \{w \in X^* \mid w \text{ ist eine erfüllbare boolesche Formel in konjunktiver Normalform}\}$

Theorem: KNF ist \mathcal{NP} -vollständig.

Definition: Die Sprache 3- $SAT \subsetneq KNF \subsetneq SAT$ ist gegeben durch:

 $3\text{-}SAT := \{w \in X^* \mid w \text{ ist erfüllbare boolesche Formel in konjunktiver Normalform mit genau 3 Literalen in jeder Klausel }.$

Theorem: 3-SAT ist \mathcal{NP} -vollständig.

\mathcal{NP} -vollständige Probleme (2)

Theorem:

- Das Hamilton-Kreis Problem H_c ist \mathcal{NP} -vollständig.
- Das Problem L_w ("Längster Weg zwischen zwei Knoten") ist NP-vollständig.
- lacksquare Das Rucksackproblem ist \mathcal{NP} -vollständig.
- Das Partitionierungsproblem von Graphen ist \mathcal{NP} -vollständig.
- lacksquare Das Problem CLIQUE ist \mathcal{NP} -vollständig.

\mathcal{NP} -vollständige Probleme in \mathcal{P} ?

- Daß $\mathcal{P} \subseteq \mathcal{NP}$ gilt ist klar!
- lacksquare Könnte auch das Gegenteil, also $\mathcal{P} \subseteq \mathcal{NP}$, gelten?
 - Man bräuchte nur von einem einzigen \mathcal{NP} -vollständigen Problem A zeigen, dass es in \mathcal{P} liegt!
 - Dann würde nämlich sofort folgen:

$$\forall B \in \mathcal{NP} : B \leq_{\text{pol}} A \quad \Rightarrow \quad \forall B \in \mathcal{NP} : B \in \mathcal{P}$$

Dies ist bislang noch niemandem gelungen!!!

