![]() |
|
---|---|
Description | |
Role: | Beyond LEO, back-up for commercial cargo and crew to the ISS[1] |
Crew: | 2–6[2] |
Carrier rocket: | Space Launch System[3] (planned-deep space),
Delta IV (test flight), Ares I (cancelled) |
Launch date: | September 2014 (uncrewed test launch)[4] |
Dimensions | |
Height: | |
Diameter: | 5 m (16.5 ft) |
Pressurized volume: | 19.56 m3 (691 cu ft) [5] |
Habitable volume: | 8.95 m3 (316 cu ft) [5] |
Capsule mass: | 8,913 kg (19,650 lb) |
Service Module mass: | 12,337 kg (27,198 lb) |
Total mass: | 21,250 kg (46,848 lb) |
Service Module propellant mass: | 7,907 kg (17,433 lb) |
Performance | |
Total delta-v: | 1,595 m/s |
Endurance: | 21.1 days[2][5] |
Orion Multi-Purpose Crew Vehicle (MPCV) is a planned beyond-low-Earth-orbit manned spacecraft that is being built by Lockheed Martin for NASA and Astrium for the European Space Agency[6] for crewed missions to the Moon, asteroids and Mars. It is planned to be launched by the Space Launch System.[7] Each Orion spacecraft is projected to carry a crew of 2-6 astronauts.[2] It is also planned as a backup for ISS cargo and crew delivery.[8]
The MPCV was announced by NASA on 24 May 2011,[9] aided by designs and tests already completed for a spacecraft of the cancelled Constellation program, development for which began in 2005 as the Crew Exploration Vehicle. It was formerly going to be launched by the tested-but-cancelled Ares I launch vehicle.[10]
The MPCV's debut unmanned multi-hour test flight, known as Exploration Flight Test 1 (EFT-1), is scheduled for a launch aboard a Delta IV Heavy rocket in 2014.[4][11][12] The first manned mission is expected to take place after 2020.[13] In January 2013, ESA and NASA announced that the Orion Service Module will be built by European space company Astrium for the European Space Agency.[14]
![]() |
|
Problems playing this file? See media help. |
The MPCV is being developed for crewed missions to the Moon, to an asteroid, and Mars. It is also a backup vehicle for cargo and crewed missions to the International Space Station. It is intended to be launched by the Space Launch System.[7][15] A modified Advanced Crew Escape Suit is planned to be worn by the crew during the launch and re-entry of the mission.[16]
The spacecraft is named for the Orion constellation.[17]
On 14 January 2004, U.S. President George W. Bush announced the Orion spacecraft, known then as the Crew Exploration Vehicle (CEV), as part of the Vision for Space Exploration:
“ | Our second goal is to develop and test a new spacecraft, the Crew Exploration Vehicle, by 2008, and to conduct the first manned mission no later than 2014. The Crew Exploration Vehicle will be capable of ferrying astronauts and scientists to the Space Station after the shuttle is retired. But the main purpose of this spacecraft will be to carry astronauts beyond our orbit to other worlds. This will be the first spacecraft of its kind since the Apollo Command Module.[18] | ” |
The proposal to create the Orion spacecraft was partly a reaction to the Space Shuttle Columbia accident, the subsequent findings and report by the Columbia Accident Investigation Board (CAIB), and the White House's review of the American space program. The Orion spacecraft effectively replaced the conceptual Orbital Space Plane (OSP), which itself was proposed after the failure of the Lockheed Martin X-33 program to produce a replacement for the space shuttle.
The name is derived from the constellation of Orion, and was also used on the Apollo 16 Lunar Module that carried astronauts John W. Young and Charlie Duke to the lunar surface in April 1972.
After the replacement of Sean O'Keefe, NASA's procurement schedule and strategy changed, as described above. In July 2004, before he was named NASA administrator, Michael Griffin participated in a study called "Extending Human Presence Into the Solar System"[19] for The Planetary Society, as a co-team leader. The study offers a strategy for carrying out Project Constellation in an affordable and achievable manner. Griffin's actions as administrator supported the goals of the plan.
According to the executive summary, the study was built around "a staged approach to human exploration beyond low Earth orbit (LEO)."[19] It recommends that Project Constellation be carried out in three distinct stages. These are:
Several changes to the original CEV acquisition strategy were explained in a NASA study called the Exploration Systems Architecture Study. The results were presented at a news conference held on 19 September 2005.[20] The ESAS recommends strategies for flying the manned Orion by 2014, and endorses a Lunar Orbit Rendezvous approach to the Moon. The LEO versions of Orion were intended carry crews of four to six to the ISS. Cargo would also be carried aboard an unmanned version of Orion, similar to the Russian Progress cargo ships. The contractor for the Orion is Lockheed Martin, which was selected by NASA in September, 2006 and is the current contractor for the Space Shuttle's External Tank and the Atlas V EELV.
Orion is Apollo-like, not a lifting body or winged vehicle like the now retired Shuttle. Like the Apollo Command Module, Orion would be attached to a service module for life support and propulsion. It is intended to land in water but past versions had included plans for it to land on land. Landing on the west coast would allow the majority of the reentry path to be flown over the Pacific Ocean rather than populated areas. Orion will have an AVCOAT ablative[21] heat shield that would be discarded after each use.
The Orion spacecraft (CEV) will weigh about 25 tons (23 tonnes), less than the mass of the Apollo Command/Service Module at 33 tons (30 tonnes). The Orion Crew Module will weigh about 9.8 tons (8.9 tonnes), greater than the equivalent Apollo Command Module at 6.4 tons (5.8 tonnes). With a diameter of 16.5 feet (5 metres) as opposed to 12.8 feet (3.9 metres), it will provide 2.5 times greater volume.[22]
Accelerated lunar mission development was slated to start by 2010, once the Shuttle was retired. The Lunar Surface Access Module (LSAM) and heavy-lift boosters were to be developed in parallel and would both be ready for flight by 2018. However, these developments were cancelled in 2010 as part of the Constellation program cancellation.
In late July 2006 NASA's second design review resulted in major changes to the spacecraft design.[23] Originally, NASA wanted to use liquid methane (LCH4) as the SM fuel, but due to the infancy of oxygen/methane-powered rocket technologies and the need to launch the Orion by 2012, the switch to hypergolic propellants was mandated in late July 2006. This switch will allow NASA to man-rate the Orion and Ares I stack by no later than 2011,[citation needed] and eliminate one potential cause of the gap between the shuttle's retirement in 2010 and the first manned Orion flight.[24]
On 20 April 2007 NASA and Lockheed-Martin signed a modification to the Orion contract. The updated contract adds two years to the Orion project design phase, adds two test flights of Orion's launch abort system, and deletes from the initial design phase production of a pressurized cargo carrier for the International Space Station.[25]
An article in "Aerospace Daily & Defense Report" indicates that in the latest Orion design revision, called configuration "606" by Lockheed Martin, the service module will have exterior panels that are jettisoned shortly after the second stage engine of the Ares I ignites. This configuration will save 1,000 pounds of the mass compared with the prior "605" configuration.[26]
On 5 August, a report surfaced stating that the airbag landing system was removed from the next Orion design cycle ("607") in a weight saving measure, opting to return to an Apollo-style splashdown for the vehicle's end of mission.[27]
On 8 September 2009, the Human Space Flight Plans Committee was scheduled to release a report proposing a short list of different long term plans for the US Government's human space flight program. The review was commissioned by the Obama Administration to take into account several objectives. These include support for the International Space Station, development of missions beyond low Earth orbit (including the Moon) and use of commercial space industry. These objectives must fit within a defined budget profile.[28]
Among the parameters to be considered in the course of the review are "crew and mission safety, life-cycle costs, development time, national space industrial base impacts, potential to spur innovation and encourage competition, and the implications and impacts of transitioning from current human space flight systems". The review considered the appropriate amounts of research and development and "complementary robotic activity necessary to support various human space flight activities". It also "explores options for extending International Space Station operations beyond 2016".[29]
On 11 October 2010, with the cancellation of the Constellation Program, the Ares program ended and development of the original Orion vehicle was renamed as the MPCV, planned to be launched on top of an alternative Space Launch System. Following cost overruns and schedule delays caused by insufficient funding, the Obama Administration proposed cancellation of the Constellation program in February 2010 which was signed into law 11 October.[30] However, the Orion spacecraft continued to be developed because it supported new presidential goals.
An inflatable seal between the clean room and the Orion space capsule which is superior to the ones used on Apollo and the shuttle was tested on December 3, 2012.[31]
The Orion Crew and Service Module (CSM) stack consists of two main parts: a conical Crew Module (CM), and a cylindrical Service Module (SM) holding the spacecraft's propulsion system and expendable supplies. Both are based substantially on the Apollo Command and Service Modules (Apollo CSM) flown between 1967 and 1975, but include advances derived from the space shuttle program. "Going with known technology and known solutions lowers the risk," according to Neil Woodward, director of the integration office in the Exploration Systems Mission Directorate.[32]
The MPCV resembles its Apollo-era predecessors, but its technology and capability are more advanced. It is designed to support long-duration deep space missions of up to six months. The spacecraft's life support, propulsion, thermal protection and avionics systems are designed to be upgradeable as new technologies become available.
The MPCV spacecraft includes both crew and service modules, and a spacecraft adaptor.
The MPCV's crew module is larger than Apollo's and can support more crew members for short or long-duration spaceflight missions. The service module fuels and propels the spacecraft as well as storing oxygen and water for astronauts. The service module's structure is also being designed to provide locations to mount scientific experiments and cargo.
The Orion CM will hold four crew members, compared to a maximum of three in the smaller Apollo CM or seven in the larger space shuttle. Despite its conceptual resemblance to the 1960s-era Apollo, Orion's CM will use several improved technologies, including:
Another feature will be the partial reusability of the Orion CM.[needs update] Both the CM and SM will be constructed of the aluminium lithium (Al/Li) alloy like that was used on the shuttle's external tank, and is in use on the Delta IV and Atlas V rockets. The CM itself will be covered in the same Nomex felt-like thermal protection blankets used on parts on the shuttle not subject to critical heating, such as the payload bay doors. The reusable recovery parachutes will be based on the parachutes used on both the Apollo spacecraft and the Space Shuttle Solid Rocket Boosters, and will also use the same Nomex cloth for construction. Water landings will be the exclusive means of recovery for the Orion CM.[27][34]
To allow Orion to mate with other vehicles it will be equipped with the NASA Docking System, which is somewhat similar to the APAS-95 docking mechanism used on the Shuttle fleet. Both the spacecraft and docking adapter will employ a Launch Escape System (LES) like that used in Mercury and Apollo, along with an Apollo-derived "Boost Protective Cover" (made of fiberglass), to protect the Orion CM from aerodynamic and impact stresses during the first 2 1⁄2 minutes of ascent.
The Orion Crew Module (CM) is a 57.5° frustum shape, similar to that of the Apollo Command Module. As projected, the CM will be 5.02 meters (16 ft 6 in) in diameter and 3.3 meters (10 ft 10 in) in length,[35] with a mass of about 8.5 metric tons (19,000 lb). It is to be built by the Lockheed Martin Corporation.[36] It will have more than 1.5 times the volume of an Apollo capsule, which had an interior volume of 5.9 m3 (210 cu ft), and will carry four to six astronauts.[37] After extensive study, NASA has selected the Avcoat ablator system for the Orion crew module. Avcoat, which is composed of silica fibers with a resin in a honeycomb made of fiberglass and phenolic resin, was previously used on the Apollo missions and on select areas of the space shuttle for early flights.[38]
The crew module is the transportation capsule that provides a habitat for the crew, provides storage for consumables and research instruments, and serves as the docking port for crew transfers. The crew module is the only part of the MPCV that returns to Earth after each mission.
The crew module will have 316 cubic feet (8.9 m3) and capabilities of carrying four astronauts for 21 day flights itself which could be expanded through additional service modules.[39] Its designers claim that the MPCV is designed to be 10 times safer during ascent and reentry than the Space Shuttle.[15]
Orion ground test article in Colorado on 13 May 2011.
The Orion MPCV ground test vehicle is lifted into the acoustic chamber at Lockheed Martin’s facilities near Denver in preparation for the Launch Abort Vehicle Configuration Test.
Orion Service Module serves as the primary power and propulsion component of the spacecraft system, but is discarded at the end of each mission. In January 2013, the European ATV based service module was announced.[14]
In May 2011 the ESA director general announced a possible collaboration with NASA to work on a successor to the ATV.[40] On 21 June 2012, Astrium announced that they had been awarded two separate studies, each worth €6.5 million, to evaluate the possibilities of using technology and experience gained from ATV and Columbus related work for future missions. The first looked into the possible construction of a service module which would be used in tandem with the Orion capsule.[41] The second examined the possible production of a versatile multi purpose orbital vehicle.[42]
On November 21, 2012, the ESA decided they will construct an ATV derived Service Module ready to support the Orion capsule on the maiden flight of the Space Launch System in 2017.[43] The service module will likely be manufactured by EADS Astrium in Bremen, Germany.[44]
NASA announced on January 16, 2013, that ESA will construct the service module for Exploration Mission-1 in 2017.[14] The European Space Agency will use hardware from their current Automated Transfer Vehicle to construct a compatible service module to the spacecraft.
In the event of an emergency on the launch pad or during ascent, a launch escape system called the Launch Abort System (LAS) will separate the Crew Module from the launch vehicle using a solid rocket-powered launch abort motor (AM), which is more powerful than the Atlas 109-D booster that launched astronaut John Glenn into orbit in 1962.[45] There are two other propulsion systems in the LAS stack: the attitude control motor (ACM) and the jettison motor (JM). On 10 July 2007, Orbital Sciences, the prime contractor for the LAS, awarded Alliant Techsystems (ATK) a $62.5 million sub-contract to, "design, develop, produce, test and deliver the launch abort motor." ATK, which had the prime contract for the first stage of the Ares I rocket, intended to use an innovative "reverse flow" design for the motor.[46] On 9 July 2008 NASA announced that ATK had completed a vertical test stand at a facility in Promontory, Utah to test launch abort motors for the Orion spacecraft.[47] Another long-time space motor contractor, Aerojet, was awarded the jettison motor design and development contract for the LAS. As of September 2008 Aerojet has, along with team members Orbital Sciences, Lockheed Martin and NASA, successfully demonstrated two full-scale test firings of the jettison motor. This motor is important to every flight in that it functions to pull the LAS tower away from the vehicle after a successful launch. The motor also functions in the same manner for an abort scenario.
NASA performed environmental testing of Orion from 2007 to 2011 at the Glenn Research Center Plum Brook Station in Sandusky, Ohio. The Center's Space Power Facility is the world's largest thermal vacuum chamber.[48]
On March 2, 2009, the LAS Pathfinder began its transfer from the Langley Research Center to the White Sands Missile Range, New Mexico, for launch tests. The Pathfinder is a combination of the Orion Boilerplate and LAS module. The 45 ft (14 m)-long rocket assembly will begin its first Pad Abort 1 Test on the Missile Range.[49]
![]() |
This article's factual accuracy may be compromised due to out-of-date information. (January 2013) |
NASA planned to perform a series of six Abort Flight Tests between the fall of 2008 and the end of 2011 at the United States Army's White Sands Missile Range (WSMR), New Mexico.[needs update] The Orion AFT subproject includes two pad abort tests and four ascent abort tests. Three of the four ascent aborts are planned to be flown from a special test launch vehicle, the Orion Abort Test Booster, the fourth one being performed with Ares I-Y. The Orion Abort Flight Tests are similar in nature to the Little Joe II tests performed at WSMR between September 1963 and January 1966 in support of the development of the Apollo program's Launch Escape System.[50][51][52] The LAS Pathfinder boilerplate is being used.
ATK successfully completed the first Orion launch-abort test on 20 November 2008. The abort motor will provide 500,000 lbf (2,200 kN) of thrust for an emergency on the launch pad or during the first 300,000 feet (91 km) of the rocket's climb to orbit. The test firing was the first time a motor with reverse flow propulsion technology at this scale has been tested.
This abort test firing brought together a series of motor and component tests conducted in 2008 as a preparation for the next major milestone, a full-size mock-up or boilerplate test scheduled for the spring of 2009.[53]
On May 10, 2010, NASA successfully executed the PAD-Abort-1 test at White Sands New Mexico, launching a boilerplate Orion capsule to an altitude of approximately 6000 feet. The test used three solid-fuel rocket motors - a main thrust motor, an attitude control motor and the jettison motor.[54]
![]() |
This section needs to be updated. (September 2013) |
Under the Constellation progam the Post-landing Orion Recovery Test (PORT) was designed to determine and evaluate methods of crew rescue and what kind of motions the astronaut crew can expect after landing. This will include conditions outside the capsule for the recovery team. The evaluation process will support NASA's design of landing recovery operations including equipment, ship and crew necessities.
The Port Test used full-scale boilerplate of NASA's Orion crew module and will be tested in water under simulated and real weather conditions. Tests began 23 March 2009 with a Navy-built, 18,000-pound boilerplate when it was placed in a test pool at the Naval Surface Warfare Center's Carderock Division in West Bethesda, Md. Full sea testing rann 6–30 April 2009, at various locations off the coast of NASA's Kennedy Space Center with media coverage.[55]
Under the Orion program testing a series of tests was implemented to evaluate hardware and procedures used to recover the Orion Crew Module at the end of the mission. Orion continued the "crawl, walk, run" approach used in PORT testing. The "crawl" phase was performed August 12–16, 2013 with the Stationary Recovery Test (SRT).
The SRT demonstrated the recovery hardware and techniques that will be employed for the recovery of the Orion Crew Module in the protected waters of Naval Station Norfolk utilizing the USS ARLINGTON as the recovery ship. The USS ARLINGTON is a LPD 17 Amphibious Assault ship. The recovery of the Orion Crew Module utilizes unique features of the LPD 17 class ship to safely and economically recovery the Orion Crew Module and eventually its astronaut crew.[56]
The "walk" and "run" phases will be performed with the Underway Recovery Test (URT). Also Utilizing the LPD 17 class ship, the URT will be performed in more realistic sea conditions off the coast of California in early 2014 to prepare the US Navy / NASA team for recovering the uncrewed Exploration Flight Test 1 (EFT-1) Orion Crew Module.
List only includes relatively near missions, more missions are planned than are listed below.
Acronym | Mission name | Launch Date | Rocket | Duration | Remarks |
---|---|---|---|---|---|
EFT-1 | Exploration Flight Test-1 | 2014 | Delta IV Heavy | Uncrewed high apogee trajectory test flight of the Orion Crew Module in Earth Orbit. | |
EM-1 | Exploration Mission-1[57] | 2017[57] | SLS Block I[57] | 7–10 days[58] | Send an uncrewed Orion on a circumlunar trajectory.[58] |
EM-2 | Exploration Mission-2[57] | As early as 2021[59] | SLS Block I[57] | Send Orion with a crew of two to rendezvous with a captured asteroid in lunar orbit.[59] | |
EM-3 | Exploration Mission-3[57] | 2022[60] | SLS Block IA[57] | Destination TBA[60] |
Debates over Orion's destination in the near future are ongoing.[72][73] In particular, the United States House Science Subcommittee on Space is exploring the merits of an Apollo-like return to the Moon as compared with an asteroid rendezvous mission.[72]
The crux of ongoing debates hinges upon answers to these following questions:[72]
Presently, the United States House Science Subcommittee on Space is debating two possible paths,[72][73] whether to first:
prior to launching a manned mission to Mars.[72]
Regardless of which of the following alternatives is selected, "the ultimate goal of human exploration is to chart a path for human expansion into the solar system."[72]
These are the primary reasons for returning to the Moon:[72]
The reasons provided for exploring an asteroid, as follows, versus returning to the Moon, above, appear to revolve around reduced cost[77] and technical advancement:[78]
Orion Lite was an unofficial name used in the media for a lightweight crew capsule proposed by Bigelow Aerospace in collaboration with Lockheed Martin. It was to be based on the Orion spacecraft that Lockheed Martin was developing for NASA. It would be a lighter, less capable and cheaper version of the full Orion.
MPCV Related:
CCDev 1 and 2 and CCiCap (formerly CCDev 3) Related:
COTS Related:
Other countries:
This article incorporates public domain material from websites or documents of the National Aeronautics and Space Administration.
|month=
ignored (help)|coauthors=
ignored (|author=
suggested) (help)|coauthors=
ignored (|author=
suggested) (help)![]() |
Wikimedia Commons has media related to Orion (spacecraft). |