Gedächtnisprotokoll STO09-2: Unterschied zwischen den Versionen

Aus Fachschaft_Informatik
Zur Navigation springen Zur Suche springen
(Die Seite wurde neu angelegt: STO Die Klausur von Herrn Drees fand am 6.10.2009 im Zeitraum von 9.00 bis 12.00 Uhr statt. Die Bearbeitungszeit war 120 Minuten. Als...)
 
Zeile 33: Zeile 33:
== Aufgabe 5) ==
== Aufgabe 5) ==


Ergänzen!
Gegen war eine gemeinsame Verteilungsfunktion von X und Y. f_{x,y}(x, y) = 9c(x,y)^?
a.) Zeigen sie das die Verteilungsfunktion von X f_{x}(x) = 3cx^? ist.
b.) Berechnen Sie den Erwartungswert, die Varianz und die Kovanianz von X.
c.) Bestimmen sie den mittleren quadratischen Fehler.


== Aufgabe 6) ==
== Aufgabe 6) ==


Ergänzen!
Ergänzen!

Version vom 12. Oktober 2009, 20:16 Uhr

Die Klausur von Herrn Drees fand am 6.10.2009 im Zeitraum von 9.00 bis 12.00 Uhr statt. Die Bearbeitungszeit war 120 Minuten. Als Hilfsmittel waren nur nicht-programmierbare Taschenrechner erlaubt. Skripte, Notizen oder Bücher waren nicht erlaubt.

Aufgabe 1)

Seien <math>A</math>, <math>B</math>, <math>C</math> drei Ereignisse in einem Wahrscheinlichkeitsraum, so dass <math>P(A \cap C) = 0,1</math>, rest der Wahrscheinlichkeiten nachtragen!! . Berechnen Sie möglichst genaue Grenzen?

a) <math>P((A \cup B \cup C)^c)</math> b) <math>P(A \cap B \cap C) </math> c) ergänzen!

Aufgabe 2)

Ergänzen!


Aufgabe 3)

Bundestagswahl. Für Partei A stimmen 45%, B 35% und C 15% der Bevölkerung.Es werden 1000 Personen befragt! Bestimmen sie die Wahrscheinlichkeit, dass mindestens die Hälfte der Befragten für Partei A stimmen.

a) Geben sie eine nicht numerische Form an! b) Appoximieren sie!

Aufgabe 4)

Sei <math>X</math> eine <math>\lbrace 1, 2 \rbrace</math>-wertige Zufallsvariable und <math>Y</math> eine <math>\lbrace 1, 2, 3 \rbrace</math>-wertige Zufallsvariable. In der nachfolgenden Tabelle sind die Wahrscheinlichkeiten <math>P\lbrace X = x, Y = y \rbrace</math> gegeben.


a) Geben Sie für a,b,c Wahrscheinlichkeiten an, sodass X und Y stochastisch unabhängig sind. b) Ergänzen!


Aufgabe 5)

Gegen war eine gemeinsame Verteilungsfunktion von X und Y. f_{x,y}(x, y) = 9c(x,y)^? a.) Zeigen sie das die Verteilungsfunktion von X f_{x}(x) = 3cx^? ist. b.) Berechnen Sie den Erwartungswert, die Varianz und die Kovanianz von X. c.) Bestimmen sie den mittleren quadratischen Fehler.

Aufgabe 6)

Ergänzen!