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Preface

The aim of this book is to present a broad spectrum of current research in
hybrid neural systems, and advance the state of the art in neural networks and
artificial intelligence. Hybrid neural systems are computational systems which
are based mainly on artificial neural networks but which also allow a symbolic
interpretation or interaction with symbolic components.

This book focuses on the following issues related to different types of rep-
resentation: How does neural representation contribute to the success of hybrid
systems? How does symbolic representation supplement neural representation?
How can these types of representation be combined? How can we utilize their
interaction and synergy? How can we develop neural and hybrid systems for new
domains? What are the strengths and weaknesses of hybrid neural techniques?
Are current principles and methodologies in hybrid neural systems useful? How
can they be extended? What will be the impact of hybrid and neural techniques
in the future?

In order to bring together new and different approaches, we organized an
international workshop. This workshop on hybrid neural systems, organized by
Stefan Wermter and Ron Sun, was held during December 4–5, 1998 in Denver.
In this well-attended workshop, 27 papers were presented. Overall, the work-
shop was wide-ranging in scope, covering the essential aspects and strands of
hybrid neural systems research, and successfully addressed many important is-
sues of hybrid neural systems research. The best and most appropriate paper
contributions were selected and revised twice. This book contains the best re-
vised papers, some of which are presented as state-of-the-art surveys, to cover
the various research areas of the collection.

This selection of contributions is a representative snapshot of the state of the
art in current approaches to hybrid neural systems. This is an extremely active
area of research that is growing in interest and popularity. We hope that this
collection will be stimulating and useful for all those interested in the area of
hybrid neural systems.

We would like to thank Garen Arevian, Mark Elshaw, Steve Womble and
in particular Christo Panchev, from the Hybrid Intelligent Systems Group of
the University of Sunderland for their important help and assistance during the
preparations of the book. We would like to thank Alfred Hofmann from Springer
for his cooperation. Finally, and most importantly, we thank the contributors to
this book.

January 2000
Stefan Wermter
Ron Sun
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An Overview of Hybrid Neural Systems

Stefan Wermter1 and Ron Sun2

1 University of Sunderland, Centre for Informatics, SCET
St. Peter’s Way, Sunderland, SR6 0DD, UK
2 University of Missouri, CECS Department

Columbia, MO, 65211-2060, USA

Abstract. This chapter provides an introduction to the field of hybrid
neural systems. Hybrid neural systems are computational systems which
are based mainly on artificial neural networks but also allow a symbolic
interpretation or interaction with symbolic components. In this overview,
we will describe recent results of hybrid neural systems. We will give
a brief overview of the main methods used, outline the work that is
presented here, and provide additional references. We will also highlight
some important general issues and trends.

1 Introduction

In recent years, the research area of hybrid and neural processing has seen
a remarkably active development [62, 50, 21, 4, 48, 87, 75, 76, 25, 49, 94, 13, 74, 91].
Furthermore, there has been an enormous increase in the successful use of hy-
brid intelligent systems in many diverse areas such as speech/natural language
understanding, robotics, medical diagnosis, fault diagnosis of industrial equip-
ment and financial applications. Looking at this research area, the motivation
for examining hybrid neural models is based on different viewpoints.

First, from the point of view of cognitive science and neuroscience, a purely
neural representation may be most attractive but symbolic interpretation of
a neural architecture is also desirable, since the brain has not only a neuronal
structure but has the capability to perform symbolic reasoning. This leads to the
question how different processing mechanisms can bridge the large gap between,
for instance, acoustic or visual input signals and symbolic reasoning. The brain
uses specialization of different structures. Although a lot of the functionality of
the brain is not yet known in detail, its architecture is highly specialized and
organized at various levels of neurons, networks, nodes, cortex areas and their
respective connections [10]. Furthermore, different cognitive processes are not
homogeneous and it is to be expected that they are based on different represen-
tations [73]. Therefore, there is evidence from cognitive science and neuroscience
that multiple architectural representations are involved in human processing.

Second, from the point of view of knowledge-based systems, hybrid sym-
bolic/neural representations have some advantages, since different, mutually
complementary properties can be combined. Symbolic representations have ad-
vantages of easy interpretation, explicit control, fast initial coding, dynamic



variable binding and knowledge abstraction. On the other hand, neural rep-
resentations show advantages for gradual analog plausibility, learning, robust
fault-tolerant processing, and generalization. Since these advantages are mu-
tually complementary, a hybrid symbolic neural architecture can be useful if
different processing strategies have to be supported. While from a neuroscience
or cognitive science point of view it is most desirable to explore exclusively neu-
ral network representations, for knowledge engineering in complex real-world
systems, hybrid symbolic/neural systems may be very useful.

2 Various Forms of Hybrid Neural Architectures

Various classification schemes of hybrid systems have been proposed [77, 76,
89, 47]. Other characterizations of architectures covered specific neural ar-
chitectures, for instance recurrent networks [38, 52], or they covered expert
systems/knowledge-based systems [49, 29, 75]. Essentially, a continuum of hybrid
neural architectures emerges which contains neural and symbolic knowledge to
various degrees. However, as a first introduction to the field, we present a simpli-
fied taxonomy here: unified neural architectures, transformation architectures,
and hybrid modular architectures.

2.1 Unified Neural Architectures

Unified neural architectures are a type of hybrid neural system. They have also
been referred to as unified hybrid systems [47]. They rely solely on connectionist
representations but symbolic interpretations of nodes or links are possible. Often,
specific knowledge of the task is built into a unified neural architecture.

Much early research on unified neural architectures can be traced back to
work by Feldman and Ballard, who provided a general framework of structured
connectionism [16]. This framework was extended in many different directions
including, for instance, parsing [14], explanation [12], and logic reasoning [30, 40,
70–72]. Recent work along these lines focuses also on the so-called NTL, Neural
Theory of Language, which attempts to bridge the large gap between neurons
and cognitive behavior [17, 65].

A question that naturally arises is: why should we use neural models for
symbol processing, instead of symbolic models? Possible reasons may include:
neural models are a more apt framework for capturing a variety of cognitive
processes, as is argued in [15, 66, 86, 72]. Some inherent processing characteristics
of neural models, such as similarity-based processing, [72, 6] make them more
suitable for certain tasks such as cognitive modeling. Learning processes may
be more easily developed in neural models, such as gradient descent [63] and its
various approximations, Expectation-Maximization, and even Inductive Logic
Programming methods [26].

There can be two types of representations [77]: Localist connectionist archi-
tectures contain one distinct node for representing each concept [42, 71, 67, 3, 58,



31, 66]. Distributed neural architectures comprise a set of non-exclusive, overlap-
ping nodes for representing each concept [60, 50, 27].

The work of researchers such as Feldman [16, 17], Ajjanagadde and Shastri
[67], Sun [72], and Smolensky [69] has demonstrated why localist connectionist
networks are suitable for implementing symbolic processes usually associated
with higher cognitive functions. On the other hand, “radical connectionism” [13]
is a distributed neural approach to modeling intelligence. Usually, it is easier to
incorporate prior knowledge into localist models since their structures can be
made to directly correspond to that of symbolic knowledge [19]. On the other
hand, neural learning usually leads to distributed representation. Furthermore
there has been work on integrating localist and distributed representations [28,
72, 87].

2.2 Transformation Architectures

Hybrid transformation architectures transform symbolic representations into
neural representations or vice versa. The main processing is performed by neural
representations but there are automatic procedures for transferring neural rep-
resentations to symbolic representations or vice versa. Using a transformation
architecture it is possible to insert or extract symbolic knowledge into or from a
neural architecture. Hybrid transformation architectures differ from unified neu-
ral architectures by the automatic transfer. While certain units in unified neural
architectures may be interpreted symbolically by an observer, hybrid transfor-
mation architectures actually allow the knowledge transfer into symbolic rules,
symbolic automata, grammars, etc.

Examples of such transformation architectures include the work on
activation-based automata extraction from recurrent networks [54, 90]. Alter-
natively, a weight-based transformation between symbolic rules and feedforward
networks has been extensively examined in knowledge-based artificial neural net-
works [68, 20].

The most common transformation architectures are rule extraction archi-
tectures where symbolic rules are extracted from neural networks [19, 1]. These
architectures have received a lot of attention since rule extraction discovers the
hyperplane positions of units in neural networks and transforms them to if-
then-else rules. Rule extraction has been performed mostly with multi-layer per-
ceptron networks [79, 5, 8, 11], Kohonen networks, radial basis functions [2, 33]
and recurrent networks [53, 90]. Extraction of symbolic knowledge from neural
networks has also played an important aspect in this current volume, e.g. [81, 7,
84]. Furthermore, insertion of symbolic knowledge can be either gradual through
practice [23] or one-shot.

2.3 Hybrid Modular Architectures

Hybrid modular architectures contain both symbolic and neural modules appro-
priate to the task. Here, symbolic representations are not just initial or final
representations as in a transformation architecture. Rather, they are combined



and integrated with neural representations in many different ways. Examples in
this class, for instance, contain CONSYDERR [72], SCREEN [95] or robot nav-
igators where sensors and neural processing are fused with symbolic top-down
expectations [37]. A variety of distinctions can be made. Neural and symbolic
modules in hybrid modular architectures can be loosely coupled, tightly coupled
or completely integrated [48].

Loosely Coupled Architectures A loosely coupled hybrid architecture has
separate symbolic and neural modules. The control flow is sequential in the sense
that processing has to be finished in one module before the next module can
begin. Only one module is active at any time, and the communication between
modules is unidirectional.

There are several loosely coupled hybrid modular architectures for semantic
analysis of database queries [9] or dialog processing [34] or simulated navigation
[78]. Another example of a loosely coupled architecture has been described in a
model for structural parsing [87] combining a chart parser and feedforward net-
works. Other examples of loose coupling, which is sometimes also called passive
coupling, include [45, 36].

In general, this loose coupling enables various loose forms of cooperation
among modules [73]. One form of coupling is in terms of pre/postprocessing
vs. main processing: while one or more modules take care of pre/postprocessing,
such as transforming input data or rectifying output data, a main module focuses
on the main part of the processing task. Commonly, while pre/post processing
is done using a neural network, the main task is accomplished through the use
of symbolic methods. Another form of cooperation is through a master-slave
relationship: while one module maintains control of the task at hand, it can
signal other modules to handle some specific aspects of the task. Yet another
form of cooperation is the equal partnership of multiple modules.

Tightly Coupled Architectures A tightly coupled hybrid architecture con-
tains separate symbolic and neural modules where control and communication
are via common shared internal data structures in each module. The main dif-
ference between loosely and tightly coupled hybrid architectures are common
data structures which allow bidirectional exchanges of knowledge between two
or more modules. This makes communication faster and more active but also
more difficult to control. Therefore, tightly coupled hybrid architectures have
also been referred to as actively coupled hybrid architectures [47].

As examples of tightly coupled architectures, systems for neural determinis-
tic parsing [41] and inferencing [28] have been built where the control changes
between symbolic marker passing and neural similarity determination. Further-
more, a hybrid system developed by Tirri [83] consists of a rule base, a fact base
and a neural network of several trained radial basis function networks [57, 59].

In general, a tightly coupled hybrid architecture allows multiple exchanges of
knowledge between two or more modules. The result of a neural module can have
a direct influence on a symbolic module or vice versa before it finishes its global



processing. For instance, CDP is a system for deterministic parsing [41], SCAN
contains a tightly coupled component for structural processing and semantic
classification [87]. While the neural network chooses which action to perform,
the symbolic module carries out the action. During the process of parsing, control
is switched back and forth between these modules. Other tightly coupled hybrid
architectures for structural processing have been described in more detail in [89].
CLARION is also a system that couples symbolic and neural representations to
explore their synergy.

Fully Integrated Architectures In a fully integrated hybrid architecture there
is no discernible external difference between symbolic and neural modules, since
the modules have the same interface and they are embedded in the same archi-
tecture. The control flow may be parallel. Communication may be bidirectional
between many modules, although not all possible communication channels have
to be used.

One example of an integrated hybrid architecture is SCREEN, which was
developed for exploring integrated hybrid processing for spontaneous language
analysis [95, 92]. In fully integrated and interleaved systems, the constituent mod-
ules interact through multiple channels (e.g., various possible function calls), or
may even have node-to-node connections across two modules, such as CONSY-
DERR [72] in which each node in one module is connected to a corresponding
node in the other module. Another hybrid system designed by Lees et al [43]
interleaves case-based reasoning modules with several neural network modules.

3 Directions for Hybrid Neural Systems

In Feldman and Bailey’s paper, it was proposed that there are the following dis-
tinct levels [15]: cognitive linguistic level, computational level, structured con-
nectionist level, computational biology level and biological level. A condition for
this vertical hybridization is that it should be possible to bridge the different
levels, and the higher levels should be reduced to, or grounded in, lower levels. A
top-down research methodology is advocated and examined for concepts towards
a neural theory of language.

Although the particulars of this approach are not universally agreed upon,
researchers generally accept the overall idea of multiple levels of neural cognitive
modeling. In this view, models should be constructed entirely of neural com-
ponents; both symbolic and subsymbolic processes should be implemented in
neural networks.

Another view, horizontal hybridization, argues that it may be beneficial, and
sometimes crucial, to “mix” levels so that we can make better progress on under-
standing cognition. This latter view is based on realistic assessment of the state of
the art of neural model development, and the need to focus on the essential issues
(such as the synergy between symbolic and subsymbolic processes [78]) rather
than nonessential details of implementation. Horizontal approaches have been
used successfully for real-world hybrid systems, for instance in speech/language



analysis [95]. Purely neural systems in vertical hybridization are more attractive
for neuroscience but hybrid systems of horizontal hybridization are currently
also a tractable way of building large-scale hybrid neural systems.

Representation, learning and their interaction represent some of the major is-
sues for developing symbol processing neural networks. Neural networks designed
for symbolic processing often involve complex internal structures consisting of
multiple components and several different representations [67, 71, 3]. Thus learn-
ing is made more difficult. There is a need to address the problems of what type
of representation to adopt, how the representational structure in such systems is
built up, how the learning processes involved affect the representation acquired
and how the representational constraints may facilitate or hamper learning.

In terms of what is being learned in hybrid neural systems, we can have (1)
learning contents for a fixed architecture, (2) learning architectures for given
contents, or (3) we can learn both contents and architecture at the same time.
Although most hybrid neural learning systems fall within the first two categories,
e.g. [18, 46], there are some hybrid models that belong to the third category, e.g.
[50, 92].

Furthermore, there is some current work on parallel neural and symbolic
learning, which includes using (1) two separate neural/symbolic algorithms ap-
plied simultaneously [78], (2) two separate algorithms applied in succession, (3)
integrated neural/symbolic learning [80, 35], and (4) purely neural learning of
symbolic knowledge, e.g. [46, 51].

The issues described above are important for making progress in theories and
applications of hybrid systems. Currently, there is not yet a theory of “hybrid
systems”. There has been some preliminary early work towards a theoretical
framework for neural/symbolic representations, but to date there is still a lack
of an overall theoretical framework that abstracts away from the details of par-
ticular applications, tasks and domains. One step towards such a direction may
be the research into the relationship between automata theory and neural rep-
resentations [39, 24, 88].

Processing natural language has been and will continue to be a very impor-
tant test area for exploring hybrid neural architectures. It has been argued that
“language is the quintessential feature of human intelligence” [85]. While certain
learning and architectures in humans may be innate, most researchers in neural
networks argue for the importance of development and environment during lan-
guage learning [87, 94]. For instance, it was argued [51] that syntax is not innate
and that it is a process rather than representation, and abstract categories, like
subject, can be learned bottom-up.

The dynamics of learning natural language is also important for designing
parsers using techniques like SRN and RAAM. SARDSRN and SARDRAAM
were presented in the context of shift-reduce parsing [46] to avoid the problem
associated with SRN and RAAM (that is, losing constituent information). In-
terestingly, it has been argued that compositionality and systematicity in neural
networks arise from an associationistic substrate [61] based on principles from
evolution.



Also, research into improving WWW use by using neural networks may be
promising [93]. While currently most search engines only employ fairly tradi-
tional search strategies, machine learning and neural networks could improve
processing of heterogeneous unstructured multimedia data.

Another important promising research area is knowledge extraction from
neural networks in order to support text mining and information retrieval [81].
Inductive learning techniques from neural networks and symbolic machine learn-
ing algorithms could be combined to analyze the underlying rules for such data.

A crucial task for applying neural systems, especially for applying learning
distributed systems, is the design of appropriate vector representations for scal-
ing up to real-world tasks. Large context vectors are also essential for learning
document retrieval [22]. Due to the size of the data, only linear computations
are useful for full-scale information retrieval. However, vector representations
are still often restricted to co-occurances, rather than focusing on syntax, dis-
course, logic and so on [22]. However, complex representations may be formed
and analyzed using fractal approaches [82].

Hard real-world applications are important. A system was built for foreign
exchange rate prediction that uses a SOM for reduction and that generates a
symbolic representation as input for a recurrent network which can produce
rules [55]. Another self-organizing approach for symbol processing was described
for classifying Usenet texts and presenting the classification as a hierarchical
two-dimensional map [32]. Related neural classification work for text routing
has been described [93]. Neural network representations have also been used for
important parts of vision and association [56].

Finally, there is promising progress in neuroscience. Computational neuro-
science is still in its infancy but it may be very relevant to the long-term progress
of hybrid symbolic neural systems. Related to that, more complex high order
neurons may be one possibility for building more powerful functionality [44].
Another way would be to focus more on global brain architectures, for instance
for building biological inspired robots with rooted cognition [64].

It was argued [85] that in 20 years computer power will be sufficient to match
human capabilities, at least in principle. But meaning and deep understanding
are still lacking. Other important issues are perception, situation assessment and
action [78], although perceptual pattern recognition is still in a very primitive
state. Rich perception also requires links with rich sets of actions. Furthermore,
it has been argued that language is the “quintessential feature” of human intel-
ligence [85] since it is involved in many intelligent cognitive processes.

4 Concluding Remarks

In summary, further work towards a theory and fundamental principles of hybrid
neural systems is needed. First of all, there is promising work towards relating
automata theory with neural networks, or logics with such networks. Further-
more, the issue of representation needs more focus. In order to tackle larger real
world tasks using neural networks, for instance in information retrieval, learning



internet agents, or large-scale classification, further research on the underlying
vector representations for neural networks is important. Vertical forms of neu-
ral/symbolic hybridization models are widely used in cognitive processing, logic
representation and language processing. Horizontal forms of neural/symbolic hy-
bridization exist for larger tasks, such as speech/language integration, knowledge
engineering, intelligent agents or condition monitoring. Furthermore, it will be
interesting to see in the future to what extent computational neuroscience will
offer further ideas and constraints for building more sophisticated forms of neural
systems.
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