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Abstract 

 
In order to produce robots which can interact more 

effectively with humans we propose that it is necessary 
for their cognitive processes to be grounded in the 
same perceptual elements as humans deal with. 
Perceptual Symbol Systems offer an attractive 
mechanism for capturing the symbolic properties of the 
senses and for integrating them into higher level 
cognitive processes. We have designed a Perceptual 
Symbol System where the robot learns about objects 
through interaction and reinforcement and have 
carried out experiments to assess the merits of this 
approach. We show that the use of human perceptual 
elements combined with interactive reinforcement 
leads to intuitive learning and interpretable knowledge 
structures.  
 
 
1. Introduction 
 

In many restricted or industrial scenarios robots are 
able to outperform humans but in terms of natural 
interactivity robots lag behind even young children. 
Even sophisticated robots rely heavily on pre-
programmed behaviour and the performance of such 
robots is dependent on the limitations of the pre-
programming [1]. 

The interactive abilities of robots can be enhanced 
by developing their ability to learn from both the 
environment around them and the individuals they 
interact with. This can trigger inferences about the 
nature of the environment, learning actions or 
behaviours under human instruction. Both activities 
require a robot to learn from various modalities of 
sensory data which may be presented simultaneously 
or perhaps more likely, sequentially [2]. 

In order to learn, interpret and use acquired sensory 
data in some form of cognitive process it is necessary 

to form associations between modalities at a low level 
of abstractions, and to form hierarchies of these linked 
representations to form higher level, more abstract 
concepts [3]. Once these concepts are learnt they can 
be utilized to construct behaviour when the robot is 
faced with a particular scenario. 

Some work exists on robot systems which have the 
desired ability to learn and adapt and which are 
grounded in the components of human perception. Roy 
et al [4][5] use high level visual information to aid 
speech recognition, but this is not based on human 
perceptual features, but instead on features such as 
colour and shape histograms.  

One attractive mechanism for capturing sensory 
features, forming conceptual representations and using 
them is the concept of Perceptual Symbol Systems 
(PSS) as originally proposed by Baralou [6] and further 
described by Niedenthal et al [3]. Limited work has 
been undertaken on implementing PSSs. Cangelosi et 
al [7] developed a system which captures the symbolic 
behaviour of neural activity during a simple vision 
task. Pezzulo and Calvi [8] pursued an approach where 
the symbols took the form of visual and motor schemas 
which were combined to form multimodal frames that 
describe the execution of a particular task.  

Rather than building a system which is based on 
neural architectures for direct processing of low level 
sensory input, we begin by using well established 
machine vision techniques to produce a simple percept 
from an incoming scene. This is combined with 
linguistic input and a simple implementation of a PSS 
to allow an agent to learn about the presented objects. 
We then use interaction with a human user combined 
with reinforcement learning to refine these learned 
perceptual representations. Both reinforcement-based 
learning and interaction are essential elements for 
learning and have been identified by Cognitive 
Scientists as key factors in the development of human 
infants and children [9]. 



The remainder of the paper is structured as follows. 
The vision system used is outlined in section 2, the 
language system in section 3 and the implementation 
of the PSS in section 4. Sections 5 and 6 describe the 
application of reinforcement learning and section 7 
concludes the paper with discussion of the results.  
 
2. Vision system 
 

The primary objective of the vision system is to 
provide a symbolic representation of an incoming 
scene. This is achieved by first detecting simple shapes 
in the image. Once a shape has been determined its 
colour is estimated by averaging the RGB values 
within its boundary.  

Incoming scenes can be analysed from either live 
video, recorded video or from a still image. The first 
stage of processing is the generation of an edge image 
using a Canny edge detector [10]. The resultant edge 
image is then subjected to two parallel Hough 
transforms [11], one to detect circles in the image and 
one to detect squares.  

The result of the Hough transforms is a pair of three 
dimensional images which indicate the likelihood of 
detecting a circle or square of a given size at a given 
position within the image. A two stage approach is 
used to determine the most likely location. Firstly the 
peak position is determined, which is then refined by 
examining the overall likelihood based on position 
alone accumulating the evidence for all feature sizes.  

This results in the most likely location for a circle 
and a square within the frame along with a likelihood 
of each. If the likelihood of either exceeds a preset 
threshold then they are labelled as such and the average 
RGB values are computed within the features. These 
are compared with the RGB values for the three 
available colours: Red (255,0,0), Yellow (255,255,0) 
and Blue (0,0,255). Each detected circle or square is 
assigned a colour based on the closest match. 

Figure 1 shows the stages of the vision system, the 
edge map (a), the overall positional likelihood for a 
circle derived from the Hough transform (b), the 
inferred position (c) and the perceptual output (d). The 
vision system is implemented using the OpenCV 
library. 

 
 

 
a) Edge map 

 
b) Hough transform 

 
c) Detected circle 

 
 

 
 
 

d) Percept 
Figure 1. Vision System 

 
3. Language system 
 

We propose that a simple “language system” is 
essential to provide some feedback for learning. We 
believe that simple language input still allows the user 
to interact with the agent in a rich and complex 
manner. Language input is currently simulated using a 
selection of buttons which the user clicks to trigger 
spoken utterances. A limited vocabulary consisting of 
the following words is used: 

• ‘This is’ 
• ‘Circle’ 
• ‘Square’ 
• ‘Red’ 
• ‘Yellow’ 
• ‘Blue’ 

 
In order to allow testing of the system the following 

utterances are also available: 
• ‘What is’ 
• ‘Colour’ 
• ‘Shape’ 

 
4. Perceptual symbol system design 
 

The perceptual symbol system used consists of two 
categories of symbol, visual symbol and linguistic 
symbol. The visual system can currently deal with two 
shapes and three colours as described above. The 
linguistic symbols consist of those utterances described 
above. There is no predefined link between the visual 
symbols and the related linguistic symbols. 



Each symbol carries an activation value α. When a 
symbol is activated by the appropriate perceptual 
system i.e. vision or language, its activation is set to 1. 
When a perceptual symbol is activated, its activation 
spreads to adjacent symbols using the connections 
described later. 

Barsalou identifies working memory as the forum in 
which symbols are combined and in which perceptual 
simulations are run [6]. The working memory 
architecture proposed by Barsalou and which will be 
adopted here is that proposed by Baddeley and Hitch 
[12] and extended by Baddeley [13]. The working 
memory is modelled as a set of limited capacity 
buffers. The Baddeley model contains the following 
elements: 

• A phonological loop which stores auditory 
and linguistic information. This element also involves 
a rehearsal loop which revives the auditory information 
in the loop. 

• A visual sketchpad which is involved in the 
storage and processing of visual and spatial 
information. 

• An episodic buffer which handles the 
integration of information from different modalities 
into coherent temporal episodes. 

• A central executive which manages the other 
systems within working memory and regulates 
attention. 

One of the key aspects of working memory is that it 
is a limited resource. Various theories have been put 
forward regarding the limitations of resources. Case et 
al [14] proposed that working memory is a limited 
resource shared between processing and storage. 
Towse and Hitch [15] suggested an alternative view 
that items stored in working memory decay in time. 
Both the resource sharing and time decay hypotheses 
are contained in the model proposed by Barrouillet et 
al [16]. In this model attention is the limited resource. 
Items within working memory decay unless they are 
refreshed. This refreshing can only occur when 
attention is not focused on some processing task.  

In our implementation, working memory is a buffer 
which can hold up to seven symbols in line with 
established estimates of working memory capacity 
[17]. Each symbol in the working memory has an 
associated weight denoted as β. This is used solely to 
represent the duration the object has been held in 
working memory. Two independent threads of 
execution are used to process the contents of the 
working memory. A decay thread is used to decay the 
activation of the symbols within the buffer 
exponentially with an approximate decay time of 30 
seconds. Simultaneously an attention thread will 
process any new symbols, and if none are present it 

will refresh the linguistic symbols in working memory 
using the following update rule: 

 
)05.0(1 k−=β                         (1) 

 
k is the number of times that the linguistic symbol 

has been refreshed. 
Categories of objects are represented by a frame 

which consists of associations between symbols. 
Symbols can not only be associated with the frame 
itself, e.g. the visual symbol for a round object is 
associated with the circle frame, but symbols can be 
associated with each other to represent patterns within 
the instances of the objects which are perceived – e.g. 
if balls are either large and blue, or small and red, this 
association between colour and size will be captured. 
Associations can be excitory or inhibitory such as to 
further capture combinational classes within a frame.  

When an instance of a known object is presented to 
the frame representing the appropriate class, the 
frame’s representation of the class in question is 
refined. This occurs by reinforcing all the appropriate 
associations within the frame. If a symbol is attached 
to either end of any of the associations that make up 
the frame, then that association is updated. If the 
association is between contradictory symbols of the 
same class, red and blue for example, then the 
association strength c is weakened: 

 
111 −−+ −= ttt ccc α                         (2) 

 
If the association is not between contradictory 

symbols then the association is strengthened: 
 

111 −−+ += ttt cscc                          (3) 

 
In addition to updating the strengths of the 

associations, the instance of the object is added to a list 
of experienced instances of the frame.  

While this system functions and learns the 
representations through demonstration, a large number 
of training examples are needed. We propose that even 
limited human interaction offers more effective 
learning if used in a targeted manner.  
 
5. Applying reinforcement learning to a 
perceptual symbol system 
 

In order to improve the learning of the system we 
extend a reinforcement learning (RL) algorithm. As 
previously stated, reinforcement involves increasing 
the likelihood of a behaviour, based on some feedback 



presented in response to the execution of the said 
behaviour. In terms of simple single stage tasks such as 
object recognition, this can be achieved using simple 
learning techniques such as Hebbian learning. 
However for more complex sequential learning tasks 
involving multiple decisions, the machine learning 
paradigm of reinforcement learning becomes relevant. 
Here the difficulty is assigning the credit to the correct 
decisions and not to any sub-optimal stages.  

Various algorithms exist to tackle this problem. 
Typically reinforcement learning algorithms function 
by learning a reward function which attempts to 
capture the amount of reward available at each stage of 
the behaviour. We apply the Q-Learning algorithm 
proposed by Watkins [18]. In Q-Learning an action-
value function Q(s,a) is used to select the correct 
action a based on the current state s.  

In order to apply Q-Learning it is necessary to 
define the system state, the available actions and the Q 
function. The objective is to present the system with a 
stimulus and ask it a question, before providing reward 
based on the answer. Our state consists of two 
elements. Firstly the request that has been made by the 
user which will either be the shape or the colour of the 
presented object. The second element of the system 
state is the encoding of the concepts in the associations 
within the frames.  

The available actions are simply the available 
linguistic utterances. In order to obtain the available 
actions the system determines which frame is most 
active following presentation of the object. The 
linguistic symbols within the frame form the candidate 
actions. For each of these a Q value is inferred as the 
product of the association between the candidate 
utterance and the request, and the activation of the 
candidate utterance: 

 
   ( ) ( ) ( )utteranceutterancerequestcasQ α×−=,  (4) 
 
The inference of Q values from more complex 

systems is a common problem in reinforcement 
learning since it is often undesirable to tabulate all 
combinations of state and action.  

Once all candidate utterances have been examined 
the one with the highest Q value is presented to the 
user as the answer to the question. The user then 
responds with either ‘Correct’ or ‘Wrong’. If the 
answer is correct then a reward of 1 is delivered. If the 
answer is wrong then a reward of -0.1 occurs. This bias 
towards positive learning is designed to allow the agent 
to move on quickly once the correct answer is 
established since an incorrect answer does not 
necessarily specify where the error lies and which 

components that produced the Q value are at fault. The 
update rule for Q learning is: 
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This equation is used to derive the new Q value. 

The challenge is to update the system in such a way as 
to achieve this new Q value. As stated in equation 4 the 
Q value for the chosen action is derived from the 
association between request and utterance and the 
activation of the utterance. In order to update these two 
components an update factor, j, is determined from the 
ratio of the previous and new Q values: 

 

                          
t

t

Q
Qj 1+=                                   (6) 

 
The association between the utterances and the 

request simply has its strength multiplied by the above 
factor. Modifying the activation of the utterance is, 
however, more problematic, since the goal is to modify 
the activation that would result if the same stimulus 
was presented again.  

The activation of a symbol is determined by the 
sum of the products of the activation of associated 
symbols and the association strengths. Thus the 
association strengths are the correct target for 
modification. Since we are aiming to update 
connection strengths based on the current activation we 
bias the update to these associations by the strength of 
the activation of the symbol on the other end of the 
association. We do not wish to update associations 
with symbols which are not active since they have not 
participated in the current, incorrect, activation and 
may actually be correct. The update on the connection 
strength is: 

 
 ( )ωα ××+= ccc                       (7) 

 
ω is set such that: 
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                     (8) 

 
Thus ω scales the update to produce the desired 

corrected activation value. 
The system was tested by first training it with three 

objects: a blue circle, a red square and a yellow square.  
The system was then refined by showing the system 
the objects and making queries.  



In order to assess the learning, two metrics are 
employed. The Request Connection Strength, RCS, is 
the sum of the associations between the request 
symbols, for colour and shape, and the linguistic 
symbols with which each should be associated. The 
Linguistic Symbol Grounding, LSG, is the sum of the 
associations between the visual symbols and the 
appropriate linguistic symbols.  The value of these two 
metrics through time during a series of trials is shown 
in Figures 2 and 3.  
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Figure 2 RCS for standard RL 
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Figure 3 LSG for standard RL 

It can be seen that the RCS falls initially quite 
heavily. This occurs when the agent selects the correct 
instance from the wrong category, e.g. when asked for 
the colour of a red square, the agent replies ‘square’. 
This deficiency is addressed in the next section.  

 
6. Interactive reinforcement learning 
 

The use of targeted feedback for reward has been 
explored by Thomaz [19] in a simulated environment 
where the timing of feedback is used to infer correct 
assignment of the reward function. We go beyond this 
by using verbal feedback from the user for inferring the 
desired assignment of the reward. Furthermore we 
incorporate a means for our agent to refine its 
knowledge under restricted guidance from human users 
rather than simply punishing or rewarding the agent.  

In order to achieve guided interaction, two further 
feedback options are added, ‘wrong concept’ or ‘wrong 
instance’. Thus if the request is ‘what colour’ and the 
answer is ‘round’ then the reward can be targeted as 
such – i.e. at the link between the utterance and the 
request. Alternatively, if the answer is ‘blue’ but the 
object is red then the reward is targeted at the 
associations that led to the activation of the ‘blue’ 
utterance. In such a case the update factor used is j2 
since only one factor in the Q value is being updated 
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Figure 4 RCS for targetted RL (red) and 

standard RL (grey) 
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Figure 5 LSG for targetted RL (red) and 

standard RL (grey)  
The results of a trial of the guided interaction 

following the same procedure as for the unguided 
interaction are shown in Figures 4 and 5, along with 
the results for the unguided interaction for comparison. 
It can be seen that although the LSG has a dip, due in 
this case to a repeated wrong guess, it learns at the 
same rate otherwise. It can also be seen RCS learning 
is greatly improved since correct associations are not 
targeted by reward application.  

 

7. Conclusions 
 

We have demonstrated that grounding human-robot 
interaction at a perceptual level leads to agents which 
begin to learn high level concepts immediately without 
having to learn first to process sensory data. 
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Furthermore we have demonstrated the importance of 
using reinforcement combined with human interaction 
in guiding machine learning to speed the process by 
correctly targeting the update of the agent knowledge.  

This constitutes an important first step in the 
development of perceptual grounded agents and future 
work must focus on further refining the perceptual 
basis of learning guided by studies of human 
perception as well as scaling up these concepts. 
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