
Renew � User Guide

Olaf Kummer

Frank Wienberg

Mi
hael Duvigneau

Lawren
e Caba

Mi
hael Haustermann

David Mosteller

University of Hamburg

Department for Informati
s

Theoreti
al Foundations Group

Release 2.6

April 28, 2022

This manual is

©2022 by Olaf Kummer, Frank Wienberg, Mi
hael Duvigneau, Lawren
e Caba
, Mi
hael Haustermann, David

Mosteller.

Arbeitsberei
h TGI

� Renew �

Fa
hberei
h Informatik

Universität Hamburg

Vogt-Kölln-Straÿe 30

D-22527 Hamburg

Germany

Apple is a registered trademark of Apple Computer, In
.

Java is a registered trademark of Ora
le Corporation.

JavaCC is a trademark of Ora
le Corporation.

LAT

E

X is a trademark of Addison-Wesley Publishing Company.

LibreO�
e is a trademark of The Do
ument Foundation.

Ma
OS is a trademark of Apple Computer In
.

Mi
rosoft O�
e is a registered trademark of Mi
rosoft Corporation.

MySQL is a trademark of Ora
le Corporation.

Ora
le is a registered trademark of Ora
le Corporation.

PostS
ript is a registered trademark of Adobe Systems In
.

Sun is a registered trademark of Ora
le Corporation.

T

E

X is a trademark of the Ameri
an Mathemati
al So
iety.

UML is a trademark of the Obje
t Management Group.

Uni
ode is a registered trademark of Uni
ode, In
.

UNIX is a registered trademark of AT&T.

Windows is a registered trademark of Mi
rosoft Corporation.

X Windows System is a trademark of X Consortium, In
.

The trademarks may be
laimed in one or more
ountries.

Other trademarks are trademarks of their respe
tive owners.

The use of su
h trademarks does not indi
ate that they
an be freely used.

Please refer to the li
ense se
tion of the Renew user guide for more information about
opyright and liability issues.

This do
ument was prepared using the LAT

E

X typesetting system.

This do
ument is
ontained in the �le do
/renew.pdf as distributed together with Renew 2.6.

Contents

1 Introdu
tion 8

1.1 Should I Use Renew? . 8

1.2 How to Read This Manual . 9

1.3 A
knowledgements . 9

2 Installation 11

2.1 Prerequisites . 11

2.2 Possible Collisions . 11

2.3 Upgrade Notes . 11

2.3.1 General . 11

2.3.2 Upgrade from Renew 1.5 or earlier . 11

2.3.3 Upgrade from Renew 1.6 or earlier . 12

2.3.4 Upgrade from Renew 2.0/2.0.1 or earlier 12

2.3.5 Upgrade from Renew 2.1/2.1.1 or earlier 12

2.3.6 Upgrade from Renew 2.2 or earlier . 12

2.3.7 Upgrade from Renew 2.3 or earlier . 13

2.3.8 Upgrade from Renew 2.4.3 or earlier 13

2.3.9 Upgrade from Renew 2.5 or earlier . 13

2.3.10 Upgrade from Renew 2.5.1 or earlier 13

2.4 Installing Renew . 13

2.4.1 Base Installation . 13

2.4.2 Sour
e Installation . 14

2.5 Platform-spe
i�
 Hints . 14

2.5.1 Ma
OS . 14

2.5.2 Unix . 15

2.5.3 Windows . 15

2.6 Spe
ial Con�guration Options . 16

2.6.1 Ways of
on�guring Renew . 16

2.6.2 Drawing Load Server . 17

2.6.3 Multipro
essor Mode . 18

2.6.4 Sequential Mode . 18

2.6.5 Class Loading (and Reloading) . 19

2.6.6 Net Loading . 20

2.6.7 Database Ba
king . 20

2.6.8 Remote Simulation A

ess . 21

2.6.9 Logging . 22

2.7 Plug-ins . 23

2.7.1 Install Plug-ins . 23

2.7.2 Ex
lude Plug-ins Temporarily . 24

2.7.3 System Termination . 24

2.7.4 Commands . 24

2.7.5 Console . 27

3

2.7.6 Net Components . 27

2.8 Troubleshooting . 28

2.9 History . 28

2.9.1 Changes in Version 1.1 . 28

2.9.2 Changes in Version 1.2 . 29

2.9.3 Changes in Version 1.3 . 29

2.9.4 Changes in Version 1.4 . 29

2.9.5 Changes in Version 1.5 . 30

2.9.6 Changes in Version 1.5.1 . 30

2.9.7 Changes in Version 1.5.2 . 30

2.9.8 Changes in Version 1.6 . 30

2.9.9 Changes in Version 2.0 . 30

2.9.10 Changes in Version 2.0.1 . 31

2.9.11 Changes in Version 2.1 . 31

2.9.12 Changes in Version 2.1.1 . 32

2.9.13 Changes in Version 2.2 . 32

2.9.14 Changes in Version 2.3 . 33

2.9.15 Changes in Version 2.4 . 34

2.9.16 Changes in Version 2.4.1 . 35

2.9.17 Changes in Version 2.4.2 . 35

2.9.18 Changes in Version 2.4.3 . 35

2.9.19 Changes in Version 2.5 . 35

2.9.20 Changes in Version 2.5.1 . 36

2.9.21 Changes in Version 2.6 . 36

3 Referen
e Nets 37

3.1 Net Elements . 37

3.2 I do not Want to Learn Java . 39

3.3 A Thimble of Java . 39

3.4 The Ins
ription Language . 42

3.4.1 Expressions and Variables . 42

3.4.2 Types . 43

3.4.3 The Equality Operator . 44

3.4.4 Method Invo
ations . 45

3.5 Tuples, Lists, and Uni�
ation . 46

3.6 Net Instan
es and Net Referen
es . 47

3.7 Syn
hronous Channels . 48

3.8 Manual Transitions . 51

3.9 Calling Nets from Java . 52

3.9.1 Net Methods . 52

3.9.2 Event Listeners . 54

3.9.3 Automati
 Generation . 55

3.10 Additional Ar
 Types . 59

3.10.1 Flexible Ar
s . 59

3.10.2 Clear Ar
s . 61

3.10.3 Inhibitor Ar
s . 62

3.11 Timed Nets . 63

3.12 Pitfalls . 64

3.12.1 Reserve Ar
s and Test Ar
s . 65

3.12.2 Unbound Variables . 65

3.12.3 Side E�e
ts . 65

3.12.4 Boolean Conditions . 66

3.12.5 Custom Classes . 66

3.12.6 Net Stubs . 66

4

3.12.7 Exe
ution of syn
hronized Java Code 67

3.12.8 Case of Class and Variable Names in Untyped Nets 67

4 Using Renew 68

4.1 Basi
 Con
epts . 68

4.2 Tools . 69

4.2.1 The Sele
tion Tool . 70

4.2.2 Drawing Tools . 71

4.2.3 Net Drawing Tools . 76

4.3 Menu
ommands . 79

4.3.1 File . 79

4.3.2 Edit . 85

4.3.3 Layout . 87

4.3.4 Attributes . 90

4.3.5 Net . 93

4.3.6 Simulation . 98

4.3.7 Windows . 104

4.3.8 Additional Top-Level Menus . 104

4.4 Net Simulations . 104

4.4.1 Net Instan
e Windows . 104

4.4.2 Current Marking Windows . 105

4.4.3 Simulation Control . 105

4.5 Simulation Server . 106

4.6 Error Handling . 107

4.6.1 Qui
k Fix . 107

4.6.2 Parser Error Messages . 108

4.6.3 Early Error Messages . 108

4.6.4 Late Error Messages . 113

A Conta
ting the Team 116

B File Types 117

C Keyboard Short
uts 118

D Li
ense 122

D.1 Contributed Parts . 122

D.1.1 The
olle
tions Pa
kage . 122

D.1.2 The JHotDraw Pa
kage . 122

D.1.3 Code Generated from JavaCC . 122

D.1.4 Bill's Java Grammar . 123

D.1.5 Graph Layout Algorithm . 123

D.1.6 The Log4j Pa
kage . 124

D.1.7 The FreeHEP Ve
torGraphi
s pa
kage 125

D.1.8 JLine2 . 125

D.1.9 Commons CLI . 125

D.1.10 Other Libraries . 125

D.2 Original Parts . 125

D.2.1 Example Nets . 125

D.2.2 Java Sour
e Code and Exe
utables . 125

D.3 Created Parts . 126

D.4 Dis
laimer . 126

D.5 Open Sour
e . 126

5

List of Figures

3.1 The net elements . 37

3.2 The net
olored . 38

3.3 The Java type hierar
hy and the hierar
hy of lossless
onversions 40

3.4 The net g
d . 42

3.5 The net g
dtyped . 43

3.6 The net equality . 44

3.7 The net frame . 45

3.8 The net so
ks . 46

3.9 The net reverse . 47

3.10 The net
reator . 48

3.11 The net othernet . 48

3.12 The net syn
hro . 48

3.13 The net multi . 50

3.14 The net param . 50

3.15 The net santa . 50

3.16 The net bag . 50

3.17 The net mutex . 51

3.18 The net a

ount . 52

3.19 The net
ustomer . 54

3.20 The net buttonmaker . 56

3.21 The net size
hanger . 56

3.22 The net enumbag . 58

3.23 The net enumsanta . 58

3.24 The net flexible . 60

3.25 The net ele
tion . 60

3.26 The net visualele
tion . 61

3.27 The net juggler . 62

3.28 The net filetypes . 63

3.29 The net port . 64

3.30 The net reserve . 65

3.31 The net buffer . 66

4.1 The Renew Window . 68

4.2 The Petri Net Toolbar in its own Window . 69

4.3 The Renew Navigator . 80

4.4 An Example of Browsing Token Obje
ts in Expanded Tokens Mode 94

4.5 The net i
onsanta . 96

4.6 The net i
onbag . 96

4.7 The Santa Claus Example with I
ons During Simulation. 97

6

List of Tables

2.1 The startup and stub s
ripts. 15

2.2 Properties to
on�gure database ba
king . 21

2.3 Properties to
on�gure a remote simulation 22

3.1 The primitive data types of Java . 39

3.2 Java binary operators, rules separate operators of equal pre
eden
e 41

3.3 Java unary operators . 41

4.1 Summary of sele
tion tool operations . 71

7

Chapter 1

Introdu
tion

On the following pages, you will learn about Renew, the Referen
e Net Workshop. The most

important topi
s are:

• installing the tool (Chapter 2),

• the referen
e net formalism (Chapter 3),

• using Renew (Chapter 4),

Both referen
e nets and their supporting tools are based on the programming language Java.

To be able to use them to their full
apa
ity, some knowledge of Java is required. While

the basi

on
epts of Java will be explained in this do
ument, there are plenty of books and

Websites that will serve as a more in-depth introdu
tion to Java.

If you en
ounter any problem during your work with Renew, we will try to help you. See

Appendix A for our address. At the same address, you
an make suggestions for improvements

or you
an request information on the latest release of Renew. If you want to submit example

models or extensions to the tool, that would be espe
ially wel
ome.

1.1 Should I Use Renew?

The main strength of Renew lies in its openness and versatility.

• Renew has been written in Java, so it will run on all major modern operating systems

without
hanges.

• Renew
omes
omplete with sour
e, so its algorithms may be freely extended and

improved. It is in fa
t possible to add spe
ial net ins
riptions qui
kly. It is even possible

to implement
ompletely new net formalisms without
hanging the basi
 stru
ture of

Renew.

• Renew
an make use of any Java
lass. Today there exist Java
lasses that
over

almost all aspe
ts of programming.

• Referen
e nets are themselves Java obje
ts. Making
alls from Java
ode to nets is

just as easy as to make
alls from nets to Java
ode.

The Petri net formalism of Renew, too, might be very interesting for developers.

• Renew supports syn
hronous
hannels. Channels are a powerful
ommuni
ation me
h-

anism and they
an be used as a reliable abstra
tion
on
ept.

• Net instan
es allow obje
t-oriented modeling with Petri nets. While a few other net

formalisms provide net instan
es, it is their
onsistent integration with the other fea-

tures that makes them useful.

• Referen
e nets were spe
i�
ally designed with garbage
olle
tion of net instan
es in

mind, whi
h is indispensable for good obje
t-oriented programming.

8

• Many ar
 types are available that
over almost all net formalisms. Simulation time

with an earliest �ring time semanti
s is integrated.

There are, however, a few points to be aware of.

• There are
urrently only rudimentary analysis tools for Renew. Although a few export

interfa
es have already been implemented, useful analysis seems a long way o�. Cur-

rently, Renew relies entirely on simulation to explore the properties of a net, where

you
an dynami
ally and intera
tively explore the state of the simulation.

However, for many appli
ations, analysis does not play a prominent role. Petri nets are

often used only be
ause of their intuitive graphi
al representation, their expressiveness,

and their pre
ise semanti
s.

• During simulation, the user
annot
hange the
urrent marking of the simulated net

ex
ept by �ring a transition. This
an make it somewhat more di�
ult to set up a

desired test
ase.

• In our formalism, there is no notion of �ring probabilities or priorities. By exploiting

the open ar
hite
ture of Renew, these features may be added later on, possibly as

third-party
ontributions.

• Renew is an a
ademi
 tool. Support will be given as time permits, but you must be

aware that it might take some time for us to pro
ess bug reports and even more time

to pro
ess feature requests.

But sin
e Renew is provided with sour
e
ode, you
an do many
hanges on your own.

And your feature requests have a high probability to be satis�ed if you
an already

provide an implementation.

1.2 How to Read This Manual

It is generally re
ommended to read all
hapters in the order in whi
h they are presented.

However, when somebody else has installed Renew for you, you should skip Chapter 2 entirely.

Renew

2.6

If you are already familiar with a previous version of Renew, you should simply skim

the manual and look for the Renew 2.6 i
ons as shown to the left. The paragraphs

that are tagged with this i
on elaborate on new features of the
urrent version.

You should also
onsult Se
tion 2.3 for some notes on the upgrade pro
ess. The

upgrade might require some expli
it a
tions on your part.

Advan
ed users may want to
onsult the ar
hite
ture guide do
/ar
hite
ture.pdf in

the sour
e pa
kage of Renew, if it is intended to modify Renew. It is not re
ommended for the

asual user to spend mu
h time reading this manual, as it is quite te
hni
al and of little help

in the day-to-day use of Renew. The ar
hite
ture guide is not up to date with the
urrent

version of Renew, but may still be helpful to developers.

1.3 A
knowledgements

We would like to thank Prof. Dr. Rüdiger Valk and Dr. Daniel Moldt from the University of

Hamburg for interesting dis
ussions, help, and en
ouraging
omments.

We would also like to thank Marvin Brendel, Mar
el Hansson, Jonte Johnsen, Tim Kowal-

zyk, Hamed Mohammadi, Tim Radke, Miriam Strulik, Thorwin Vogt, Lukas Voÿ and Sven

Willrodt for their work during the preparation of this release.

We would like to thank Jörn S
huma
her for the prototype of the plug-in system (2.0),

Benjamin S
hleinzer for his work during the preparation of former releases (2.1-2.2) and

Berndt Müller who has been of great help with respe
t to previous Renew releases for Ma
OS

(≤ 2.0). Some ni
e extensions of Renew were suggested or programmed by Mi
hael Köhler-

Buÿmeier and Heiko Rölke.

9

We are indebted to the authors of various freeware libraries, namely Mark Donszelmann,

Eri
h Gamma, Doug Lea, David Megginson, Bill M
Keeman and Sriram Sankar.

Dr. Maryam Purvis, Dr. Da Deng, and Selena Lemalu from the Department of Informa-

tion S
ien
e (http://infos
i.otago.a
.nz/), University of Otago, Dunedin, New Zealand,

kindly aided us in the translation of parts of the do
umentation and are involved in an

interesting appli
ation proje
t.

Valuable
ontributions and suggestions were made by students and s
ienti�
 workers at the

University of Hamburg, most notably Hannes Ahrens, Tobias Betz, Jan Bolte, Lars Brauba
h,

Timo Carl, Domini
 Dibbern, Friedri
h Delgado Friedri
hs, Matthias Ernst, Matthias Feld-

mann, Max Friedri
h, Daniel Friehe, Olaf Groÿler, Julia Hagemeister, Sven Heits
h, Mar
in

Hewelt, Jan Hi
ken, Thomas Ja
ob, Andreas Kanzlers, Lutz Kirsten, Till Kothe, Annette

Laue, Matthias Liedtke, Mar
el Martens, Klaus Mitreiter, Konstantin Möllers, Eva Müller,

Jens Norgall, Sven O�ermann, Felix Ortmann, Martin Pfei�er, Alexander Pokahr, Tobias

Rathjen, Dennis Reher, Christian Röder, Heiko Rölke, Benjamin S
hleinzer, Jan S
hlüter,

Mar
 S
hönberg, Jörn S
huma
her, Mi
hael Simon, Fabian Sobanski, Volker Tell, Benjamin

Teuber, Thomas Wagner, Matthias Wester-Ebbinghaus, Martin Win
ierz, and Eberhard

Wol�.

We would like to thank the numerous users of Renew who provided hints and
onstru
tive

riti
ism. They helped greatly in improving the quality of the
ode and the do
umentation.

In parti
ular, we would like to name Alun Champion and Za
harias Tsiatsoulis.

10

Chapter 2

Installation

In this
hapter we will give a short overview of the installation pro
ess. It is not di�
ult

espe
ially if you are already at ease with the Java environment. But even as a novi
e you

should be able to
omplete the pro
ess su

essfully.

2.1 Prerequisites

You must have Java 11 or higher installed. If you have not done this yet, we suggest that you

get the latest Java Development Kit (JDK) from Ora
le (https://www.ora
le.
om/java/)

or from Adoptium (https://adoptium.net/) where versions for Windows, Linux, Ma
OS

are available. Renew only requries the Java Runtime Environment (JRE), but it is no longer

distributed separately. All development kits are available free of
harge for personal use. We

re
ommend using the version JDK 11 (LTS) or the latest available version.

If you intend to do a sour
e installation, you also need to install a
ouple of software

pa
kages from third parties. See Se
tion 2.4.2 for details.

2.2 Possible Collisions

While Renew is based on the JHotDraw pa
kage by Gamma [8℄, the pa
kage is distributed with

Renew. The pa
kage has been substantially improved, so that it is impossible to substitute

a di�erent version for it. If you have the original JHotDraw installed, this might result in a

problem.

2.3 Upgrade Notes

These notes are supposed to help you when you have already installed an earlier version of

Renew. In Se
tion 2.9 you
an �nd a list of di�eren
es, if you are interested in further details.

2.3.1 General

Note that you
annot usually read nets
reated with a later version by older versions of

Renew. However, newer versions of Renew
an read older �les without problems. I.e., an

upgrade to the
urrent version is simple, but irreversible.

2.3.2 Upgrade from Renew 1.5 or earlier

Serialized shadow net systems exported by Renew 1.5 or earlier
annot be used with any later

versions. You
an simply re-export the net system.

11

https://www.oracle.com/java/
https://adoptium.net/

A new keyword manual was added to the ins
ription language. In rare
ases, you will

have to rename a variable or pa
kage to a

ount for this
hange.

2.3.3 Upgrade from Renew 1.6 or earlier

The required Java version has
hanged, you need at least Java 1.4 to run newer versions of

Renew.

You do not any longer need to install a separate XML parser (like Xer
es) be
ause Renew

now uses the built-in parser of Java 1.4.

Saved simulation states exported by Renew 1.6
annot be used with the
urrent version

of Renew.

Stubs
ompiled with Renew 1.6 or earlier
annot be used with the
urrent version. You

an simply re
ompile the stubs and the resulting Java �les.

Several
lasses of the Renew framework were moved or renamed. In parti
ular, the
lass

de.renew.simulator.NetInstan
e has now be
ome de.renew.net.NetInstan
e. If you

use typed variables for net referen
es in your nets, you must adapt the variable de
larations

or pa
kage imports.

When a new net is
reated, the :new() is no longer impli
itly invoked. It is only invoked

when you
reate the net using the notation n:new NetName() as opposed to n:new NetName.

You might have to rewrite some nets as a result of this
hange.

The way of in
luding
ustom
lasses in a Renew simulation has
hanged, please read

Se
tion 2.6.5 for more details.

2.3.4 Upgrade from Renew 2.0/2.0.1 or earlier

The main appli
ation
lass has been
hanged from de.renew.plugin.PluginManager to

de.renew.plugin.Loader. There are now two
on�guration �le lo
ations: �rst, the per-

installation
on�guration �le renew2.6/
onfig/renew.properties is read, then the user-

spe
i�
 �le �/.renew.properties is
onsulted. The property pluginLo
ations has been

hanged to a
lasspath-like syntax (see Se
tion 2.7.1).

The net loader priorities have
hanged: instead of preferring .sns �les over .rnw �les

regardless of the order of their dire
tories in the de.renew.netPath property, now the order

of dire
tories is
onsidered �rst, while the order of �le types is undetermined.

The Renew
ode has been modi�ed to
ompile without warnings under Java 1.5, but

we still use Java 1.4.2. The
onformity with Java 1.5 also implies the use of an up-to-date

version of JavaCC during
ompilation. The old
olle
tions pa
kage has been removed from

all
omponents ex
ept FS. The pa
kage is no longer distributed with the base ar
hive, but

in
luded in the FS plug-in.

2.3.5 Upgrade from Renew 2.1/2.1.1 or earlier

The required Java version has
hanged, you need at least Java 1.5 to run newer versions of

Renew.

Saved simulation states exported by Renew 2.1.1 or earlier
annot be used with the
urrent

version of Renew. The Drawing Load Server (see 2.6.2 now a

epts
onne
tions from the lo
al

loopba
k interfa
e only (this has been introdu
ed as a se
urity measure).

The JUnit test
lasses that were sparsely s
attered in the Renew
ode have been migrated

from JUnit 3.x to JUnit 4.x ar
hite
ture.

2.3.6 Upgrade from Renew 2.2 or earlier

The required Java version has
hanged, you need at least Java 6 to run newer versions of

Renew.

12

2.3.7 Upgrade from Renew 2.3 or earlier

Files exported to the experimental .xrn format
annot be used anymore. Its support has

been dis
ontinued. We en
ourage the use of PNML, instead.

2.3.8 Upgrade from Renew 2.4.3 or earlier

The logging
on�guration �les and the default logging dire
tory moved from the home folder

to a subdire
tory .renew in the home folder. In order to use your old
on�guration, you should

move the .log4j.properties �le to the .renew subdire
tory in your home folder (you may

need to
reate the dire
tory �rst). For the logs you now have to look in .renew/renewlogs

in your home folder (if not
on�gured di�erently).

2.3.9 Upgrade from Renew 2.5 or earlier

The required Java version has
hanged, you need at least Java 11 to run newer versions of

Renew.

2.3.10 Upgrade from Renew 2.5.1 or earlier

The PNML export and import were reimplemented be
ause the old implementation based

on a pre�nal standard of PNML. The new version implements the standard in version 2009

from http://www.pnml.org/. PNML �les
reated with earlier versions may produ
e errors

in Renew 2.6 during import. If you en
ounter su
h problems, save your �les as .rnw with

the old version to import them in Renew 2.6.

2.4 Installing Renew

The two zip-�les renew2.6base.zip and renew2.6sour
e.zip form the standard Renew

distribution. While the former �le
ontains all �les that are required for the operation of

Renew, the latter �le in
ludes the sour
e �les, whi
h are generally not needed unless you

intend to modify Renew or learn about its algorithms. In addition to the base distribution,

we provide some plug-ins at our web page.

2.4.1 Base Installation

In the following, we assume Unix �lename
onventions, i.e., dire
tories separated by / (slash).

For other operating systems you might need to
hange it to \ (ba
kslash). Also, the list

separation
hara
ter di�ers: In Unix-based environments, : is used, while on Windows, the

: is reserved for drive letters, so ; is used for lists.

Extra
t the base distribution to a dire
tory of your
hoi
e. A dire
tory renew2.6 will be

reated in the
urrent dire
tory. Do
umentation �les, for example this manual, are pla
ed

in the subdire
tory renew2.6/do
. The subdire
tory renew2.6/samples
ontains example

nets. The fun
tionality of Renew has been de
omposed into several plug-ins whi
h reside as

jar �les in the subdire
tory renew2.6/plugins. This is also the pla
e where you
an add

extra plug-ins (see Se
tion 2.7).

The �le renew2.6/loader.jar is a jar-�le that
ould be used to exe
ute Renew e.g., by

saying

java -jar /some /where/renew2.6/loader.jar gui

if you extra
ted the zip-�le into /some/where. On Windows, this would look something like

java -jar C:\ some \where\renew2.6\loader.jar gui

13

http://www.pnml.org/

(mind the drive letter and the use of ba
kslash instead of slash). The gui part at the end of

the line is a
ommand that tells the loader to start the graphi
al user interfa
e of Renew.

Note that for Unix and Windows we provide ready-made startup s
ripts already. They

will be generated when Renew is installed. In that
ase, you do not have to provide a loader

ommand manually, and some
lasspath-related issues (see Se
tion 2.6.5) are handled more

onveniently for most use
ases. See Se
tion 2.5 for details.

2.4.2 Sour
e Installation

Usually there is no need to do a sour
e installation. If you feel
onfused by this se
tion,

simply skip it.

Extra
ting the sour
e distribution will put �les into the dire
tories renew2.6/sr
 and

renew2.6/do
.

The sour
es are a

ompanied by build.xml �les for the Apa
he Ant tool. You should

install Ant to build Renew from sour
es, it is available at http://ant.apa
he.org/. Further

you will need the parser generator JavaCC to
ompile the sour
es. The unit testing pa
kage

JUnit is used for the development of Renew but optional for the
ompilation. E
lipse is used

as
ode formatter and optional as well.

See the �le renew2.6/sr
/README that lists the software pa
kages and versions you need

and gives some hints on how to
ompile and run the appli
ation.

After you have su

essfully built Renew, you
an test your
ompilation result. Just follow

the instru
tions in the previous se
tion, but repla
e any referen
e to renew2.6/loader.jar

by renew2.6/sr
/dist/loader.jar. The plugins dire
tory is relo
ated from its distribution

position to renew2.6/sr
/dist/plugins, too.

If you su

eed to run the
ompiled Renew, you
an delete the �le renew2.6/loader.jar

and the dire
tory renew2.6/pluginswith the original
lass-�les. You should then
onsider

to edit the start s
ripts for your platform, so that they be
ome aware of the �le lo
ation

hanges.

Please note that the
lean target de�ned in the Ant build.xml �le
ompletely removes

the renew2.6/sr
/dist dire
tory tree. Therefore any modi�
ations (like installed plug-ins)

made in that dire
tory tree get lost every time you run ant
lean.

2.5 Platform-spe
i�
 Hints

For a few platforms we provide spe
ial installation support. Even in these
ases you
ould

install Renew as des
ribed above, but your task will be easier if you read this se
tion.

The installation s
ript is typi
ally
alled installrenew or similar. Start this s
ript to

install Renew. The s
ript will
reate the a
tual startup s
ripts for Renew. You have to start

the one
alled renew or similar to get the basi
 version of Renew running. Other s
ripts

allow you to load drawings into a running Renew editor or provide help for the generation

and
ompilation of stubs, as summarized in Table 2.1.

In the next subse
tions we will only des
ribe the usage of the basi
 s
ript. The other

s
ripts have a similar behavior when it
omes to the interpretation of environment variables,

while their spe
i�
 e�e
ts are explained in other Se
tions of this manual.

2.5.1 Ma
OS

We provide a Ma
OS appli
ation bundle, whi
h is installed the usual way by dragging it to

the Appli
ation folder. The Renew App is not signed, whi
h may result in a gatekeeper error

message during startup. You need to expli
itly allow the start of Renew in the Se
urity &

Priva
y Settings (see https://support.apple.
om/en-us/HT202491). The appli
ation is

on�gured in GUI-only mode without
onsole output or prompt
apabilities. It also provides

Finder integration for Renew drawing �les.

14

http://ant.apache.org/
https://support.apple.com/en-us/HT202491

s
ript name use

renew starts the Renew editor

loadrenew Java drawing load
lient

(see Subse
tion 2.6.2 for details)

makestub generates a net stub from a Java interfa
e

ompilestub
ompiles a net stub to Java
ode

j
ompile wrapper for java
 that in
ludes some

Renew
lasses in the CLASSPATH

(see Subse
tion 3.9.1 for details)

renewexport exports a drawing to an image

run as renewexport input.rnw output.pdf

where input.rnw is a path to a Renew drawing �le

and output.pdf the path of the output �le.

guesses the format from extension (pdf, eps, png, svg)

Table 2.1: The startup and stub s
ripts.

Sin
e Ma
OS is built upon a Unix
ore, you
an alternatively follow the installation dire
-

tions for Unix. To do so, open the Terminal appli
ation whi
h
an be found in /Appli
ations/

Utilities.

We provide an AppleUI plug-in as optional download, whi
h is already in
luded in the

appli
ation bundle. This plug-in adds rudimentary support for native Ma
 OS look&feel

to Renew. It allows the
md-q (or apple-q) short
ut to
lose the editor properly (with

safety questions for unsaved
hanges) and it slightly modi�es the Ma
 OS menu bar. See

Se
tion 2.7.1 on how to install the plug-in.

Short
uts listed in this manual with the Ctrl modi�er key should be used on
omputers

running Ma
OS with the Cmd modi�er key instead. Some reserved short
uts di�er slightly

under Ma
OS (see Appendix C).

2.5.2 Unix

We supply a simple install s
ript at renew2.6/bin/unix/installrenew that will handle the

installation on most �avors of Unix. Run that s
ript with

d renew2.6/bin/unix

sh installrenew

and it will
reate the shell s
ripts renew, loadrenew,
ompilestub, makestub, j
ompile,

and renewexport in the same dire
tory (see Table 2.1).

However, you must make sure that java
an be
alled with your
urrent setting of the

PATH environment variable. It is also required that you start the installation s
ript from the

bin/unix dire
tory, otherwise it
annot �nd the lo
ation of the pa
kage.

We distribute some �les to support desktop integration in FreeDesktop-based environ-

ments su
h as Gnome. In the dire
tory renew2.6/bin/unix/freedesktop, there is a README

�le that explains how su
h desktop integration
an be a
hieved. However, desktop integration

still requires a manual
on�guration pro
ess. The installdesktop and uninstalldesktop

s
ripts automati
ally install and uninstall the desktop integration in the FreeDesktop envi-

ronment.

2.5.3 Windows

For Windows we provide an installation s
ript in the dire
tory renew2.6\bin\win for your

onvenien
e. This bat
h �le has to be started from its own dire
tory.

15

d renew2.6\bin\win

installrenew

This will
reate the bat
h �les renew.bat, loadrenew.bat, makestub.bat,
ompilestub.bat,

j
ompile.bat, and renewexport.bat in the same dire
tory (see Table 2.1).

However, you must make sure that java
an be
alled with your
urrent setting of the

PATH environment variable. It is also required that you start the installation s
ript from the

bin\win dire
tory, otherwise it
annot �nd the lo
ation of the pa
kage.

Please
he
k your
lasspath variable for any unquoted whitespa
e in it be
ause bat
h

s
ripts will interpret paths with it as two arguments.

The installrenew s
ript additionally
reates some registry �les for the �le type as-

so
iation of Renew �les (addregistry.reg and removeregistry.reg). addregistry.reg

ontains the registry entries to asso
iate Renew �le types (.rnw, .draw, .aip, .sns) with the

loadrenew.bat s
ript. You
an perform this asso
iation by double
li
king addregistry.reg.

With removeregistry.reg you
an remove the
orresponding entries from the registry. Ad-

min rights are required to edit registry entries. The update of the i
ons for the Renew �le

types may need a restart to take e�e
t.

2.6 Spe
ial Con�guration Options

There are several options that
an help to adapt Renew to your spe
i�
 needs. Usually you

should not need to use these options, so it is best to skip this se
tion on the �rst reading.

2.6.1 Ways of
on�guring Renew

There are at least two ways to
on�gure any of the options mentioned in the following se
tions.

In Java terminology, an option is
on�gured by setting a property to a value.

At startup. You
an supply property values on the Java
ommand line with the -D option

when you start Renew (this is the way you
ould
on�gure previous Renew releases). For

example, to
on�gure that Renew uses a sequential simulator instead of the default
on
urrent

one, you
an set the property de.renew.simulatorMode to the value -1. This is done by

starting Renew with the
ommand line:

java -Dde.renew.simulatorMode =-1 -jar loader.jar gui

It is important that you do not insert any spa
es between the -D option, the property, the =

sign and the value. Also, property names are
ase sensitive.

This way, you
an
on�gure any property for just one run of Renew. However, you lose

the simpli
ity provided by the platform-dependent startup s
ripts. You will have to enter the

Java
ommand line dire
tly, in
luding the full path to loader.jar and the initial
ommand

gui for the loader.

Permanently. To
on�gure properties permanently, you
an
reate or edit either the �le

renew.properties in the installation dire
tory renew2.6/
onfigor the .renew.properties

�le (note the initial dot!) in your home dire
tory. The former
on�gures the Renew instal-

lation, while the latter provides
on�guration on a per-user basis. The user settings may

override installation-wide values. In the following, the text .renew.properties refers to

both �les. A template for a .renew.properties �le
an be found in the
onfig dire
tory of

your Renew installation. The �le
ontains several out-
ommented properties.

The lo
ation of your home dire
tory depends on the operating system (for Windows, it

even di�ers between versions). If you do not know where it is, just run Renew. The �rst two

lines of the appli
ation log (that is usually printed to the Java
onsole) tell you where Renew

expe
ts the
on�guration �les.

16

One note for Windows users: The Explorer will not allow you to
reate a �le name with

an initial dot. But you
an
reate su
h a �le via the
ommand line interfa
e (CMD.EXE) and

then edit it as usual.

In the .renew.properties �le, you
an for example add the line

de.renew. simulatorMode =-1

and Renew uses the sequential simulation engine by default on every run. Of
ourse, values

taken from the .renew.properties �le
an always be overridden by a -D
ommand line

option at startup.

At runtime. A third way for some (not all) of the
on�guration options is provided

by menus or dialogues in the net editor. To sti
k with our example, the dialog opened

by the menu entry Simulation/Configure Simulation...
ontains a
he
kbox named

Sequential mode and a box where you
an
hange the engine multipli
ity (for details, see

Se
tion 4.3.6). These two elements in
ombination represent the
urrent value of the property

de.renew.simulatorMode and its value is
hanged when you press the Apply or OK buttons.

As a fourth way to set properties, the plug-in system provides a set
ommand. This

ommand
omes in useful in
ombination with the s
ript
ommand (see Se
tion 2.7) or if

you installed one of the prompt plug-ins (Console or GUIPrompt). Although this
ommand

allows to set values for any known and unknown property at runtime, it is not guaranteed

that the value
hange has any e�e
t. In fa
t, many properties are evaluated only on
e at

startup time.

As a rule of thumb, all options that a�e
t the simulation behavior are evaluated at ea
h

simulation setup. For example, the
ommand

set de.renew.simulatorMode =-1

has no e�e
t on a simulation
urrently a
tive (if there is any). But the next time you start

a simulation from within the running appli
ation, it will be sequential.

When you
on�gure properties at runtime, any setting of that property from the
ommand

line or the
on�guration �le is overridden. Runtime settings are not stored permanently.

2.6.2 Drawing Load Server

Many users like to load do
uments into the
orresponding appli
ation just by double-
li
king

the do
ument in the �le manager. A typi
al problem is that this starts a new instan
e of the

whole appli
ation. This is extremely nasty when using a Java appli
ation, sin
e a new Java

Virtual Ma
hine is started every time. To avoid this problem with Renew, we added a simple

server fun
tion to Renew (the Drawing Load Server). This server fun
tion is automati
ally

on�gured to use with the loadrenew s
ript. You probably do not need to do the manual

on�guration if you just want to pass �les into a running Renew instan
e.

loadrenew s
ript

You
an use the s
ript loadrenew provided by the installation pro
ess (see Se
tion 2.4)

to
onne
t to a running Renew instan
e and pass over the names of the �les to open. The

loadrenew s
ript starts a regular Renew instan
e, if the
onne
tion to a Drawing Load Server

is not possible (e.g. if Renew is not already running). So this s
ript
an be used as default

ommand to load Renew. The s
ript uses the port
on�gured in the .renew.properties �le

(property de.renew.loadServerPort) or the default port 65111 if the property is not set.

The idea is to asso
iate the loadrenew s
ript to the Renew �le extensions (dependent on

the installed plug-ins but at least rnw). When a drawing is double-
li
ked in the �le manager,

the
lient is invoked and
an transmit the drawing's �le name, whi
h is then re
eived and

loaded by the single Renew appli
ation. This is really a ni
e feature, be
ause it o�ers a

rudimentary operation system integration.

17

manual
on�guration

By setting the property de.renew.loadServerPort to a port number, you
an tell Renew

to listen for lo
al requests to load a
ertain drawing on a TCP/IP so
ket. Just spe
ify an

unused TCP/IP port number, say 65111, either on the
ommand line or in the
on�guration

�le (see Se
tion 2.6.1). When Renew is started with this property, the �Drawing Load Server�

is set up on the given port and waits for
lients to
onne
t and transmit the full �lename of a

drawing to open (followed by an end-of-line). Changing this property's value at runtime has

no e�e
t. The port 65111 is used by default. If you do not want to start a �Drawing Load

Server',' you
an set the property to -1.

We provide a generi

lient appli
ation written in Java that
an be used as a Drawing

Load Client. Our Java
lient is started by (this example is again given in Unix syntax, the \

is used to indi
ate that the three printed lines should be
ombined into one
ommand line)

java -Dde.renew.loadServerPort =65111 -
p "*: plugins /*: libs /log4j/*" \
CH.ifa.draw .appli
ation .DrawingLoadClient <file name >

where 65111 is an example for the port number on whi
h the server is running (if you

de
ided to
on�gure the property in the .renew.properties
on�guration �le, the -D part

of the
ommand
an be omitted).

2.6.3 Multipro
essor Mode

Renew provides support for shared-memory multipro
essors. Depending on your spe
i�

appli
ation and hardware, this
an signi�
antly speed up the simulation engine. But note

that this feature is still experimental and has not been tested a
ross platforms due to la
k of

funds. It should not be used for
riti
al appli
ations at the present time. We would be very

glad to re
eive experien
e reports, so that the
ode
an be
ome more stable.

You must set the property de.renew.simulatorMode to the number of
on
urrent sim-

ulation threads you want. Note that it will usually be detrimental to performan
e, if you

on�gure a number of threads that ex
eeds the number of physi
al pro
essors. This property

is evaluated ea
h time a simulation is started. It
an also be
on�gured in the Configure

Simulation dialog (see Se
tion 4.3.6).

Before using multiple pro
essors, you should probably try to optimize performan
e with

other means. You should
on�gure Log4j to dis
ard log events (alternatively you
an disable

the generation of tra
e events for all or most net elements). You should open only very few

net instan
e windows, so that the graphi
al representation of the markings does not need to

be updated.

If you
on�gure a negative number for the property de.renew.simulatorMode, sequential

simulators are used instead of the default
on
urrent one. Although Renew will do that, it is

kind of weird to
on�gure multiple
on
urrent instan
es of the sequential simulator. Only the

spe
ial
ase of exa
tly one sequential simulator is of use and explained in the next se
tion.

2.6.4 Sequential Mode

By setting the property de.renew.simulatorMode to the value -1, you
an request a se-

quential mode where transition �rings are no longer
on
urrent. There is usually little reason

to do so, but sometimes
on
urrently exe
uted transition ins
ription might lead to strange

results. You
an then sele
t the sequential mode to
he
k your nets.

Please note that net methods as des
ribed in Se
tion 3.9
annot be used in this mode.

As you might have noted, the property used to
on�gure sequential mode is the same as

for multipro
essor mode. So the
on�guration and evaluation notes given in the previous

se
tion still apply to this property.

If we restri
t the Petri net formalism to purely sequential behavior, we
an add
ertain

Petri net extensions that were not suitable for a true
on
urren
y formalism. Most notably,

18

we
an use inhibitor ar
s and
lear ar
s. These extensions will be des
ribed in Subse
tions

3.10.2 and 3.10.3.

The sequential ar
 types
an now be added to and removed from the tool bar via the

menu entry Simulation/Show sequential-only ar
s (see Se
tion 4.3.6).

If you try to simulate nets that
ontain sequential-only features and the simulation is
on-

�gured to use a
on
urrent engine, you will en
ounter an error message. In this
ase, you just

need to set the Sequential mode in the Configure Simulation dialog (see Se
tion 4.3.6)

and restart the simulation.

2.6.5 Class Loading (and Reloading)

When you are developing an appli
ation that
onsists of Java
ode and net drawings, or if

you want to extend some Renew plug-in by supplying
ustom Java
lasses, then you need

to make your
lasses known to Renew. The Java way of doing this is to add your
lasses to

the Java
lasspath either by setting the environment variable CLASSPATH or by providing an

appropriate -
lasspath option to the java
ommand.

With the plug-in system (see Se
tion 2.7), providing
ustom
lasses via the Java
lasspath

option or variable has some issues. First, our suggested startup
ommand line uses the -jar

option, whi
h simply overrides any supplied
lasspath (see the Java tool do
umentation for

details). Se
ond, the plug-in system uses its own
lass loader to �nd plug-ins. Due to the

Java
lass loader
on
ept, the plug-in
lass loader hides all plug-in
lasses from any
lass that

is loaded via the system
lasspath. This means that Renew
an load and use your
ustom

lasses from the
lasspath, but your
lasses
annot refer to any Renew
lass. This problem

espe
ially a�e
ts net stubs � they need to refer the NetInstan
e
lass of the simulator plug-in.

To work around this, the plug-in system provides the property de.renew.
lassPath.

You
an set the property de.renew.
lassPath to any value that follows the syntax and

semanti
s of the Java
lasspath (whi
h depends on the operating system you use). The

property is evaluated on
e at startup time to
on�gure the
lass loader of the plug-in system

(
hanges at runtime are not re
ommended by Java's
lass loader
on
ept). All
lasses available

through de.renew.
lassPath
an be used in simulations and as plug-in extensions. However,

if a
lass with the same quali�ed name exists in a plug-in and in the de.renew.
lassPath,

the plug-in
lass takes pre
eden
e.

For your
onvenien
e, the renew and loadrenew startup s
ripts automati
ally transfers

the value of the CLASSPATH environment variable to the de.renew.
lassPath property at

startup. As long as you sti
k to these s
ripts, you should be able to sti
k to the
lassi
al

method of
on�guring the CLASSPATH variable to in
lude your
ustom
lasses and stubs.

When you are developing an appli
ation that
onsists of Java
ode and net drawings, you

might want to modify and re
ompile your own
lasses and use them in your nets without

restarting Renew. Therefore, we provide a
lass reloading me
hanism to simulations in Renew.

By setting the property de.renew.
lassReinit to true, you
an request that all user

lasses that are referen
ed by a net are reloaded before every
ompilation of a net. When

the
lass reloading feature is enabled, the de.renew.
lassPath property is re-read at ea
h

simulation setup, but
hanges to the
lasspath do not a�e
t the plug-in system.

However, there is a nasty
aveat with this feature: Even without
hanging the
lass-

path, you
an have two instan
es of the same
lass in the Java VM: Both are loaded from

de.renew.
lassPath, but one is known to the plug-in system while the other one is known to

the
urrent simulation only. These
lasses are never identi
al or equal, if they are
ompared

(for example when the instan
eof operator is applied to an obje
t of the other
lass)! Note

that this me
hanism may result in some problems when you a

ess the Java re�e
tion API,

too.

This property
an also be
hanged from the Configure Simulation dialog (see Se
-

tion 4.3.6). It is evaluated ea
h time a simulation is set up. If no simulation is running, the

graphi
al editor evaluates it before ea
h
ompilation.

Be
ause the reloading of
lasses might a�e
t performan
e, it is disabled by default.

19

2.6.6 Net Loading

When you are using many nets referen
ing ea
h other, you might want to try the net loading

me
hanism. When nets are missing during a syntax
he
k,
ompilation or simulation, the

engine will look for mat
hing drawing (.rnw) or shadow net (.sns) �les and automati
ally

load,
ompile and in
lude them into the net system.

The net loader is
on�gured using the property de.renew.netPath, where the value is a

list of dire
tories spe
i�ed in the same syntax as the CLASSPATH environment variable used

by Java. Currently, the net path
an
omprise dire
tories only, .jar or .zip �les are not

supported. Subdire
tories of the given dire
tories are not sear
hed, either. The order of

dire
tories in the path list matters, the �rst dire
tory
ontaining a net will be used.

It is possible to spe
ify netpath dire
tories relative to the
lasspath. This is done by

prepending the dire
tory entry with the (reserved) dire
tory name CLASSPATH. For example,

if you in
lude the dire
tory (in Unix syntax, Windows users should repla
e the slash by a

ba
kslash) CLASSPATH/nets in the de.renew.netPath property, then the net loader would

look for a missing net �le throughout all nets dire
tories relative to all
lasspath entries. The

sear
hed
lasspath in
ludes everything from the Java system
lasspath, all loaded plug-ins,

and the de.renew.
lassPath property (see Se
tion 2.6.5), in that order. When they are

in
luded in the
lasspath, .jar and .zip �les are sear
hed, too.

The behavior of the net loader di�ers depending on the type of �le it �nds when looking

for a net. If it en
ounters a shadow net system (.sns) �le, the net will be loaded into the

simulation or used for a syntax
he
k, but it will not show up in a drawing window on the

s
reen. Mat
hing shadow net system �les must
ontain a single net with the same name alone.

If more than one net is found in the shadow net system �le, it is reje
ted to avoid
onfusion

about the sour
e of
ompiled nets. There is a
ommand in the menu File/Export/Export

all (single file ea
h) to generate su
h single-net shadow net system �les for all open

drawings (see Subse
tion 4.3.1).

When the simulation has been started via the Simulation menu in the editor (and only

then!), the net loader will also look for (.rnw) �les in the netPath. If it �nds a mat
hing

drawing �le, the drawing shows up in an editor window and is immediately
ompiled into the

running simulation.

If a net
an be obtained from several di�erent sour
es at the same time, the net loader

takes the �rst one in the order of the netPath entries. If it en
ounters .sns �les in the same

dire
tory as .rnw �les with the same name, it is not de�ned whi
h one gets loaded.

The editor also uses the net loader during simulation to open drawings from .rnw �les that

are needed to display net instan
es. But you should be aware that the net loading feature

omes with a big pitfall: If .sns �les and .rnw �les are not kept up-to-date,
ompiled nets

in the running simulation may have a di�erent stru
ture than the nets shown in the editor!

Sin
e the mapping from a simulated net to its drawing is based solely on the net name, it is

possible that transitions and pla
es in a net instan
e window do not �re in a

ordan
e to the

visible net stru
ture.

The de.renew.netPath property is re-read every time a simulation is started. It is
on-

�gurable at runtime in the editor's Configure Simulation dialog (see Se
tion 4.3.6).

2.6.7 Database Ba
king

You
an run Renew using a database that keeps a persistent
opy of the
urrent simulation

state. In the
ase of a system
rash, this allows you to
ontinue the simulation from a valid

state just before the
rash when Renew is restarted. Database ba
king is only supported

when the simulation is started from the
ommand line (see Se
tion 4.5 for information on

ontrolling a simulation from
ommand line). Using database ba
king in gui mode may lead

to unexpe
ted behavior But note that this feature is still experimental and has not been

tested a
ross platforms due to la
k of funds.

The setup of the persistent database ba
king is de�nitely more tri
ky than the other

20

Renew options, but it is supported by some prede�ned s
ripts. The sour
e pa
kage
ontains

among others the SQL s
ript initTable.sql whi
h
an be found in Simulator/sr
/de/

renew/database/entitylayer/.

It
reates the required database tables for an Ora
le server. For other databases, the

s
ript will need some
hanges, but even the various versions of Ora
le di�er enough to
ause

minor problems. A database ba
kend, whi
h supports transa
tions is required (e.g. MySQL

does not support transa
tions when using the default MyISAM engine; use InnoDB instead).

Having
reated the tables, you should
on�gure a set of properties to enable the database

ba
king feature (see Table 2.2). These properties are evaluated ea
h time a simulation is set

up. The
lass names spe
i�ed for the driver and diale
t properties should be a

essible

Property name Type Comment

de.renew.simdb.driver
lass JDBC driver
lass (mandatory).

de.renew.simdb.url URL JDBC
onne
tion URL (mandatory).

de.renew.simdb.diale
t
lass Sub
lass of de.renew.database.entitylayer

.SQLDiale
t (optional).

de.renew.simdb.user string User a

ount for database login (optional).

de.renew.simdb.password string Password for database login. (ignored when

de.renew.simdb.user is not set).

Table 2.2: Properties to
on�gure database ba
king

via the de.renew.
lassPath (see Se
tion 2.6.5). The diale
t
lass is an internal
lass that

adapts Renew to the SQL diale
t of your database. The default is the generi
 SQLDiale
t, but

for some databases we already provide experimental implementations like Ora
leDiale
t,

MySqlDiale
t or MSqlDiale
t.

When using the database ba
king, your nets must
onform to
ertain restri
tions. Un-

fortunately, these restri
tions
annot be
he
ked by Renew automati
ally, so that you must

take spe
ial
are when preparing your net.

All tokens used in your net must be serializable, i.e.,
ustom
lasses must implement

java.io.Serializable. Typi
ally, all tokens are also immutable value obje
ts, whi
h a
quire

their state on
e during
reation, before these obje
ts are used as tokens in the net. For value

obje
ts, the equals() method must not be based on obje
t identity, but on the represented

value. Similarly, the hashCode() method must also be properly de�ned.

If you use mutable, stateful obje
ts in your nets, you must observe further restri
tions.

Contrary to value obje
t, stateful obje
ts must preserve the original implementations of

Obje
t.equals() and Obje
t.hashCode(). Furthermore, the stateful obje
ts must either

o

ur dire
tly as tokens in the net or there must be exa
tly one token by whi
h a given

stateful obje
t is rea
hable. Failure to do so will result in a
orrupted simulation state when

restoring the simulation from the database.

There is no garbage
olle
tion when using the database-ba
ked simulation.

2.6.8 Remote Simulation A

ess

Any Renew simulation, regardless whether it is started from the
ommand line or within the

graphi
al editor,
an be published via Java's Remote Method Invo
ation (RMI) te
hnique.

Any Renew editor
an then
onne
t to the published remote simulation, display the token

game, and
ontrol the �ring of transitions. See Se
tion 4.3.6 about how to
onne
t to a

running remote simulation. This se
tion fo
uses on how to
on�gure the simulation engine

for remote a

ess.

The �rst step is that you start an RMI registry on the ma
hine where the server will

be running. This is a program distributed together with Java that stores RMI obje
ts

and makes them a

essible to other VMs. Simply run the program rmiregistry (e.g.

as a ba
kground task). Note that the rmiregistry pro
ess either needs a
lasspath with

21

renew2.6/plugins/remote-2.6_1.1.jar in
luded or requires the simulation server has to

be
on�gured with the java.rmi.server.
odebase property (see Java RMI do
s for details).

Property name Type Comment

de.renew.remote.enable boolean Enables remote a

ess (defaults to

false).

de.renew.remote.publi
Name string Name to use for RMI registration (de-

faults to default).

de.renew.remote.serverClass
lass Implementation of the interfa
e

de.renew.remote.Server (defaults to

de.renew.remote.ServerImpl).

de.renew.remote.so
ketFa
tory
lass Implementation of the interfa
e

java.rmi.server.RMISo
ketFa
tory

(defaults to RMI's default fa
tory).

de.renew.remote.rmi-host-name string the rmi server hostname to the
or-

re
t ip if the remote server
annot be

found. It is similar to the java property

java.rmi.server.hostname

Table 2.3: Properties to
on�gure a remote simulation

The remote simulation
an be
on�gured by using the properties listed in Table 2.3. The

defaults are suitable for most
ases, so you just need to enable the remote a

ess by setting

the property de.renew.remote.enable to true.

The publi
Name property is required, if you intent to run several servers on one ma
hine.

When
onne
ting from an editor, you
an spe
ify the server to
onne
t to by its name.

The serverClass and so
ketFa
tory properties are normally not needed. Plug-in devel-

opers may use these properties to repla
e the default implementations by enhan
ed versions.

The server
lass determines the simulation
ontrol features whi
h are remotely a

essible.

The so
ket fa
tory may enhan
e RMI transmissions by
ompression and/or en
ryption of the

network tra�
.

All properties ex
ept so
ketFa
tory are re-evaluated at ea
h simulation setup. They are

on�gurable at runtime in the editor's Configure Simulation dialog (see Se
tion 4.3.6).

2.6.9 Logging

Renew uses the Log4j pa
kage (in version 1.2.x) from the Apa
he Logging Servi
es proje
t [1℄

to give detailed feedba
k about its a
tivities. The Log4j framework allows users to tailor the

logging output to �t their needs. The level of detail
an be
on�gured for every appli
ation

pa
kage or
lass individually.

The Renew base installation
ontains a binary distribution of Log4j in the renew2.6/libs

dire
tory. The pa
kage is loaded immediately at appli
ation startup, before any
on�guration

of the plug-in system is done. The early load time of this pa
kage has the
onsequen
e that the

enhan
ed
on�guration methods mentioned at the beginning of this Se
tion are not appli
able

to
on�gure the logging system.

Con�guration me
hanism

The
on�guration options of Log4j would o

upy to mu
h spa
e in this manual, please have

a look at the do
umentation se
tion of the Log4j homepage [1℄. With the Renew distribution

omes a
ommented default
on�guration �le renew2.6/
onfig/log4j.properties.

Renew looks for Log4j
on�guration �les at similar lo
ations like its own
on�guration

�les .renew.properties (see Se
tion 2.6.1). The
on�guration �les
an be in XML syntax

or in the Java properties format and must
arry appropriate �le extensions. The �rst �le

found in the following list of
andidates is used:

22

1. A �le named in the system property log4j.
onfiguration at the java
ommand line

with the -D option.

2. .log4j.xml in the .renew subdire
tory of your home dire
tory.

3. log4j.xml in the installation dire
tory renew2.6/
onfig/.

4. .log4j.properties in the .renew subdire
tory of your home dire
tory and

log4j.properties in the installation dire
tory renew2.6/
onfig/. If both �les exist,

individual settings in the user �le take pre
eden
e over settings in the installation �le.

5. A failsafe setup with a simple
onsole logger is used if all
on�guration �les are missing.

Renew provides the logs.home property that
an be referred from within the
on�guration

�les. This property by default points to the dire
tory .renew/renewlogs in your home

dire
tory, but you
an override that setting with the -D option on the java
ommand line.

Default
on�guration

The default
on�guration �le renew2.6/
onfig/log4j.propertiesuses the logs.home prop-

erty (see above) so that you get two log �les (renew.log and simulation.log) in that dire
-

tory. The former
omprises appli
ation messages while the latter stores simulation tra
es. In

the default
on�guration, appli
ation log messages are also printed to the Java
onsole, but the

simulation tra
e is not. The logging plug-in provides a graphi
al user interfa
e that displays

the simulation tra
e and allows �exible
on�guration of logged events (see Se
tion 4.3.6).

2.7 Plug-ins

As of Renew 2.0, the appli
ation is
ontrolled by a plug-in system. The system is started

through the
lass de.renew.plugin.Loader. The loader sets up some
lass libraries and then

loads the main plug-in manager. The plug-in manager �nds, loads, initializes and terminates

plug-ins, but it knows nothing about Petri nets. The Renew fun
tionality is provided by a

set of plug-ins. More plug-ins
an be installed to extend Renew.

In this se
tion, there will be a lot of examples with �le names and dire
tories. These are

all given in Unix syntax. Users of other operating systems: please transform these examples

to your appropriate syntax.

2.7.1 Install Plug-ins

There are two ways to install a plug-in. If it
omes in one single .jar �le whi
h in
ludes a �le

named plugin.
fg, you
an just
opy the �le in the renew2.6/plugins dire
tory (if you use

the Ma
OS appli
ation bundle, this dire
tory is lo
ated inside the appli
ation pa
kage at the

path Contents/Java/plugins). If the plug-in
omprises several �les, one of whi
h is the �le

plugin.
fg, then you
an
reate a subdire
tory below (e.g. renew2.6/plugins/myplugin

and
opy all �les in this dire
tory.

On the next startup, the plug-in system will �nd and in
lude the plug-ins automati-

ally. If you want to in
lude the plug-in in the running system, use the load
ommand (see

Se
tion 2.7.4) in addition.

If you do not want to install the plug-in to your renew distribution dire
tory, you
an

install it to some other dire
tory, let's say /home/myself/devel/myplugin.jar (as single-

jar plug-in) or /home/myself/devel/myplugin/ (as multi-�le plug-in). Then you again have

two possibilities: To make the plug-in system aware of the plug-in at the next startup, add

the line

pluginLo
ations =/ home /myself/devel

23

to your .renew.properties �le (see Se
tion 2.6.1 for details). When entering multiple paths,

they must be separated by the system's path separator (whi
h is ";" on Windows and ":"

on Unix systems). To load the plug-in immediately but temporarily into a running plug-in

system, use the load
ommand: Depending on the number of �les
omprising the plug-in,

it's one of the following
ommands:

load file :/ home /myself/devel/myplugin .jar

load file :/ home /myself/devel/myplugin /plugin.
fg

2.7.2 Ex
lude Plug-ins Temporarily

To hide installed plug-ins from the plug-in �nder at startup, you
an spe
ify the property

de.renew.plugin.noLoad either via -D
ommand line option or the .renew.properties �le

(see Se
tion 2.6.1 for details). The value of the property is a
omma separated list of plug-in

names. For example, the line

java -Dde.renew.plugin.noLoad="Renew JHotDraw " -jar renew2.6/loader.\
jar gui

will start the plug-in system, but terminate with the
omplaint that the gui
ommand is

unknown. Be
ause the JHotDraw plug-in has not been loaded, all dependent plug-ins
an

also not be loaded. This a�e
ts the Renew Gui plug-in whi
h would otherwise have provided

the gui
ommand. Of
ourse it would make more sense to use some non-graphi
al
ommand

like startsimulation instead.

Alternatively it is possible to spe
ify only the plug-ins you want to load at startup. For

that you have to set the property de.renew.plugin.autoLoad to false and spe
ify the

plug-ins you want to load with the de.renew.plugin.load property. The following line will

also start the plug-in system and terminate, be
ause of the missing gui
ommand.

java -Dde.renew.plugin. autoLoad =false -Dde.renew.plugin.load ="\
Console ,Renew Simulator ,Renew Formalism ,Renew Util " -jar renew\
2.6/ loader.jar gui

2.7.3 System Termination

The plug-in system tries to dete
t the situation where no plug-in is a
tive and therefore the

system
an be shut down. Plug-ins are �a
tive� if they have some long-term work to do.

This always holds for the windows of the graphi
al editor. A running simulation also
ounts

as a
tive. The Console plug-in has a spe
ial keep-alive �ag whi
h marks it as a
tive (see

Se
tion 2.7.5).

Besides automati
 termination, the plug-in system
an be terminated by request. The

exit
ommand (see Se
tion 2.7.4) has just that purpose. The editor may also terminate the

plug-in system when it's main window is
losed. The editor does this not by default, you

have to set the property de.renew.gui.shutdownOnClose to true.

The property de.renew.gui.autostart automati
ally starts the editor without the need

for an initial gui
ommand, when set to true. The
ombination of these two gui properties

frees users of the pure graphi
al editor of most
ompli
ations introdu
ed by the plug-in

system.

2.7.4 Commands

As mentioned in Se
tion 2.4, the plug-in system needs an initial
ommand to start some plug-

in. Any plug-in
an provide su
h
ommands (although the gui
ommand is the one that you

will use most of the time). In the following, we present the basi

ommands provided by the

24

plug-in manager itself and some additional
ommands provided by other plug-ins. Note that

it is also possible to de�ne a
hain of
ommands by separating the
ommands with �-. Most

of the
ommands presented here you will typi
ally not use on Renew start-up, but rather in

ombination with the Console plug-in des
ribed in the following Se
tion 2.7.5.

A basi
 set of
ommands is provided by the plug-in manager itself:

help prints a list of all available
ommands. Due to the addition or removal of plug-ins, this

list may vary from time to time.

get prints the value of a property. The property name has to be given as an argument.

-a shows all known property keys.

set sets the value of a property (as explained in Se
tion 2.6.1). This
ommand a

epts

multiple arguments of the form key=value. It is important that no spa
es are in
luded

in the key, the value, or in between.

list prints a list with the names of all loaded plug-ins. The
ommand respe
ts some mode

swit
hes:

-l (or �long) shows date and version information of plug-ins (if available).

-j (or �jar) shows the jar �le lo
ations of plug-ins and libraries.

-o (or �ordered) shows an alphabeti
ally ordered list of plug-in names.

info prints information about one plug-in. The plug-in's name has to be spe
i�ed as
om-

mand argument (use list to see the plug-in names).

load loads one plug-in dynami
ally, if possible. The argument to this
ommand is a URL

spe
ifying the plug-in's lo
ation. The plug-in lo
ation
an be given relative to the

de.renew.pluginLo
ation dire
tories. For example, load file:gui.jar would load

the gui plug-in from the renew distribution renew2.6/plugins/gui.jar. You
an use

wild
ards (e.g. load gu*), if there is an ambiguity the alternatives are prompted for

sele
tion of the
orre
t one.

unload terminates and unloads a plug-in, if possible. The plug-in's name has to be spe
i�ed

as
ommand argument (use list to see the plug-in names). If other plug-ins depend on

the given plug-in, the plug-in system will
omplain. You
an add the argument -v to

see a list of dependent plug-ins, or the argument -r to unload all re
ursively dependent

plug-ins.

Although the plug-in is terminated and all dependen
ies are
leaned, its
lasses

are still a

essible. Fixing this bug requires a di�erent plug-in
lass loader,

whi
h will hopefully be written in some future release.

pa
kageCount prints the pa
kages and the total number of pa
kages in the
lass loader.

exit terminates the plug-in system, and in
onsequen
e the whole appli
ation. If some plug-

in hangs during termination, you
an use exit for
e to kill the Java VM abruptly or

exit ifidle to exit only if all plug-ins are ina
tive.

g
 triggers the Java garbage
olle
tor.

s
ript loads
ommands from a text �le and exe
utes them. The �le name has to be given

as argument, it
an be spe
i�ed relative to the
urrent dire
tory. This
ommand is

espe
ially useful as initial
ommand, when you in fa
t need to issue several
ommands

at startup of the plug-in system.

sleep This
ommand waits for a given time until the next
ommand is exe
uted. The time

to wait is given as argument in se
onds.

25

The following
ommands are not provided by the plug-in manager, but by some Renew

plug-ins. So they are available only when the respe
tive plug-in is loaded.

gui starts the graphi
al editor and/or passes its arguments to the editor. The arguments

are supposed to be drawing �le names. This
ommand is provided by the Gui plug-in.

demonstrator opens a window with a list of drawing �le names. This plug-in is provided by

the Gui plug-in.

ex exports a drawing into various formats. The usage of the
ommand is ex <type> <drawing>

where <type> may be (but may vary depending on the installed plug-ins):

• EPS

• PDF

• PNG

• PNML-P/T-Net

• PNML-P/T-Net-with-Renew-spe
ifi
-ins
riptions

• PNML-Referen
e-Net

• SVG

• ShadowNetSystem

• Woflan

This
ommand is provided by the Export plug-in whi
h in turn uses the FreeHEP

proje
t for graphi
al exports. The
ommand respe
ts some mode swit
hes:

-a (or �a

umulate) n-to-1 export (only available for some formats, e.g. Shad-

owNetSystem).

-o (or �output) spe
ify the output �le.

You
an type just ex without any options to see the available formats.

startsimulation starts a simulation without using the graphi
al editor. See Se
tion 4.5.

This
ommand is provided by the Simulator plug-in.

simulation
ontrols a running simulation without using the graphi
al editor. Use one of

the sub
ommands help, run, step, stop or term as argument. See Se
tion 4.5. This

ommand is provided by the Simulator plug-in.

setFormalism
hooses the formalism given as argument as
urrent formalism. This is equiva-

lent to sele
ting a formalism in the menu (see Se
tion 4.3.6). This
ommand is provided

by the Formalism plug-in.

listFormalisms lists all installed formalisms. The names listed by this
ommand
an be

used as argument to the setFormalism
ommand or as value for the renew.
ompiler

property. This
ommand is provided by the Formalism plug-in.

keepalive displays and manipulates the keep-alive feature of the Console plug-in (see Se
-

tion 2.7.5).

guiprompt opens a graphi
al prompt dialog (see Se
tion 2.7.5), if the Gui Prompt plug-in is

installed.

navigator opens the Navigator window.

26

2.7.5 Console

The Console plug-in is part of the base distribution. It enhan
es the plug-in system by an

intera
tive
ommand shell in the Java
onsole window and allows to issue
ommands to the

plug-in system at runtime.

If you start the renew from a shell, you will be presented with the prompt Renew > at the

Java
onsole. Here you
an enter any of the
ommands mentioned in the previous subse
tion.

The Console plug-in itself o�ers one
ommand with two alternative arguments:

keepalive on enables the keep-alive feature. As long as this feature is on, the plug-in system

will not terminate automati
ally be
ause there is no a
tive plug-in (see Se
tion 2.7.3).

However, an expli
it termination request will still be exe
uted.

keepalive off turns the keep-alive feature o�.

keepalive without argument displays the
urrent state of the keep-alive �ag.

The initial state of the keep-alive �ag is determined from the value of the property de.renew

.
onsole.keepalive. If you tend to use the Console plug-in as your only a
tive plug-in

most of the time, you should
onsider adding the line de.renew.
onsole.keepalive=true

to your .renew.properties
on�guration �le.

As an alternative to the Console plug-in, there also exists a gui prompt plug-in for down-

load. This plug-in adds a small dialog to the Plugins menu of the editor whi
h a

epts

ommands to the plug-in system. The graphi
al prompt automati
ally keeps the plug-in sys-

tem alive as long as its dialog is open. The dialog
an also be opened by the
ommand-line

ommand guiprompt. The
ommand feedba
k is now visible in the dialog instead of the Java

onsole window.

It is possible to es
ape whitespa
e
hara
ters by surrounding double quotes or with a

pre
eding ba
kslash (e.g. gui "foo bar/file.rnw" or gui foo\ bar/file.rnw).

2.7.6 Net Components

Net Components (NC) are sets of net elements (Figures) that are grouped in a �at and weak

fashion. The aim is to be able to allow to move the whole set of net elements (the net

omponent) in
onvenient way. Weak means that, although the net
omponent
an be moved

by
li
king and dragging the mouse in between the net elements, they
an ea
h individually

be manipulated. Individual net elements
an be dragged resulting in a manipulated layout

of the net
omponent. It is also possible to edit ins
riptions of elements belonging to the net

omponent. Flat means that grouping is not hierar
hi
al. In order to provide the fun
tionality

a new Figure has been added, whi
h has no graphi
al representation of its own.

The Net Component Plugin provides two basi
 fun
tionalists. The grouping and ungroup-

ing of a sele
tion of net elements and the management of tool palettes, whi
h represent a

repository of (pre-) de�ned sets of net
omponents. A repository
onsists in a folder that

holds several Renew net drawings, an images folder and a
on�guration �le (.sequen
e). The

images folder should
ontain i
ons in gif format (24×24 pixels), whi
h are used to �ll the tool

buttons of the palettes. If no image is de�ned for a spe
i�
 net
omponent a generi
 image

(generi
.gif) will be used instead. Names of net drawings and i
on images should
orrespond.

The .sequen
e �le
ontains the names of the drawings (without extensions) and de�ne the

sequen
e in whi
h the buttons are shown in the palette. The �le may be empty but has to

be present in order for the dire
tory to be re
ognized as net
omponent repository. Further,

non-listed drawings are in
luded in the palette without spe
i�
 order.

There are two ways to use the net
omponent repositories within the plug-in. First, repos-

itory folders
an be opened dire
tly using the menu
ommand. Se
ond, plug-ins
an extend

the fun
tionality of the NC plugin by providing a repository. Su
h a plugin
an use the pro-

vided generi
 plugin fa
ade PalettePlugin or a
ustomized fa
ade
lass
an be provided. In

27

the latter
ase also other tool buttons and
ommand line
ommands
an be added to the sys-

tem. Plugins using the PalettePlugin
lass must provide two properties for the de�nition of

the dire
tory and two for the automati
 initialization swit
h: de.renew.n
.dir-prop-name,

de.renew.n
.init-prop-name. A minimal example for a plugin
on�guration �le (plu-

gin.
fg) is presented below. More information about the
on
ept and the tool
an be found

in [3℄.

mainClass = de.renew. net
omponents . PalettePlugin

name = Renew ExampleComponents

provides =
om.example .n

requires = de.renew.util ,de.renew.gui ,de.renew.n

de.renew.n
.dir -prop -name =
om.example .n
.dir

de.renew.n
.init -prop -name =
om.example .n
.init

om.example .n
.dir=tools

om.example .n
.init =false

2.8 Troubleshooting

A few possible problems and their solutions are des
ribed here. If you have problems,
onta
t

us. If you have solutions,
onta
t us, too.

• Java is not found.

Probably the shell s
ripts try to look for Java in the wrong pla
es.

Enlarge the environment spa
e for the
ommand window.

• Java
annot �nd the
lass de.renew.plugin.Loader.

This should not happen if you use -jar renew2.6/loader.jar at the Java
ommand

line. If you want to use the environment variable CLASSPATH instead,
he
k if it

in
ludes loader.jar.

• Renew starts, but the window titles are in
orre
t under the X Windows System.

• I
annot open the sample �les.

Sometimes you need to add the root dire
tory / (or \, depending on your operating

system) to your
lass path.

• Under Ma
OS, using
md-Q (apple-Q) to quit the appli
ation will not give you the

opportunity to save
hanges, even if the do
ument has re
ently been modi�ed.

The optional AppleUI plug-in (see Se
tion 2.5.1) solves that problem.

2.9 History

Version 1.0 was the �rst publi
 release. It in
luded a net editor, a referen
e net simulator, a

Java stub
ompiler, and example nets.

2.9.1 Changes in Version 1.1

Modi�
ations

Some performan
e enhan
ements were implemented and minor bugs were �xed. Some sour
e

level in
onsisten
ies were
leaned up. The thread model of Java 1.2 was adopted. The sour
e

ode was
hanged to be
ompilable with Java 1.1.3. The windowing
ode was made more

robust under Java 1.2.

The handling of null-obje
ts in the simulator was
orre
ted. The type system was made

more
ompatible with the Java type system. The tra
e �ag of netelements is now saved to

28

disk. The simulation performan
e was improved. The garbage
olle
tion of net instan
es was

improved.

The graphi
al user interfa
e was improved for some window managers. The presentation

of
urrent markings was improved. The intera
tive exe
ution of referen
e nets has been

improved a lot (see Se
tion 4.3.6).

Additions

The parallel simulation
ode was added. The
he
ks for double names and for
y
li

hannel

dependen
ies were added. Transition ins
riptions may now in
lude several parts separated

by semi
olons. Virtual pla
es may now be used in nets.

During the simulation, bindings
an be sele
ted and �red under user
ontrol. The multiset

of tokens
ontained in a pla
e instan
e
an be displayed as just the
ardinality of the multiset,

a
olle
tion of all tokens in the multiset dire
tly within the drawing, or in a separate window.

Individual
omponents of tuples
an be inspe
ted. Initial markings are hidden during the

simulation.

2.9.2 Changes in Version 1.2

Modi�
ations

The simulation engine was made more robust and �exible. Minor bugs were �xed.

A single ins
ription �gure may now
ontain multiple ar
 ins
riptions or initial marking

ins
riptions that are separated by semi
olons. Slight in
onsisten
ies in the ins
ription lan-

guage were
leaned up. The type rules were improved. The results of a
tion ins
riptions may

now be passed through syn
hronous
hannels even in the presen
e of typed variables.

Some display problems with Java 1.2 have been �xed.

Additions

Flexible ar
s were added. Clear ar
s were added. Inhibitor ar
s were added.

Marked pla
es and �ring transitions
an now be highlighted during the simulation. A

rudimentary net layout algorithm has been implemented. The state of a running simulation

an now be saved and restored. Restarting a simulation may now reload Java
lasses.

Export of En
apsulated PostS
ript was implemented. Sele
tion of groups of �gures was

improved.

2.9.3 Changes in Version 1.3

Modi�
ations

Some minor improvements of the graphi
al user interfa
e were applied.

Additions

The timed simulation mode was added. Lists were provided in addition to tuples.

Breakpoints were added in order to
ontrol the graphi
al simulation. An XML import

and export fa
ility was added. A graph layout algorithm that may help in viewing nets was

added. More
ommands for arranging �gures manually were provided. The ability to sele
t

and desele
t �gures by type was added.

2.9.4 Changes in Version 1.4

Modi�
ations

This was a maintenan
e release that provided mainly improvements in the user interfa
e,

do
umentation updates, and bug �xes.

29

Additions

You
an now inspe
t token Java obje
ts in detail and put toolbars into their own window.

You
an insert intermediate points into
onne
tions more easily.

2.9.5 Changes in Version 1.5

Modi�
ations

The
ompatibility with Java 1.2 was improved. Bugs in the simulation engine were �xed.

Some GUI problems were
orre
ted. The menu stru
ture was
leaned up and simpli�ed.

Additions

A persistent database ba
king supports the deployment of the simulator in environment with

high availability requirements.

Ar
s
an be B-splines. An alignment
an be spe
i�ed for every text �gure. Transitions

and pla
es
an be re�ned. Subnets
an be
oarsened. Nets
an be merged.

Drawings are now autosaved. A ba
kup
opy of every �le is kept. Undo and redo
om-

mands were added. Sear
h and repla
e
ommands were added.

The ar
hite
ture guide was added, whi
h is a manual that des
ribes the most important

internal algorithms and data stru
tures of Renew.

2.9.6 Changes in Version 1.5.1

Modi�
ations

This was a maintenan
e release that provided bug �xes for the simulation engine.

2.9.7 Changes in Version 1.5.2

Modi�
ations

This was a maintenan
e release that provided bug �xes for the install s
ripts and a perfor-

man
e improvement of the simulation engine.

2.9.8 Changes in Version 1.6

Modi�
ations

Java 1.2 is now required for
ompiling and running Renew. Bugs in the Java net parser,
lass

loader and simulation engine were �xed. Shadow net system serialization and rendering has

been �xed. The windows menu is sorted alphabeti
ally. Windows
an be de-i
oni�ed.

Additions

A remote layer allows the separation of the user interfa
e from the simulation engine. A net

loader allows on-demand loading and
ompilation of nets during a simulation.

A new transition ins
ription manual was introdu
ed for transitions that are not supposed

to �re automati
ally in ordinary running simulations.

2.9.9 Changes in Version 2.0

Removals

The RenewMode interfa
e provided by the GUI has been removed. In
onsequen
e, the start

s
ripts for the modes disappeared, too. The
hannel, name and isolated node
he
ks have

30

been removed from the Net menu be
ause they need to be adopted to the new simulator

ar
hite
ture.

Modi�
ations

Java 1.4 is now required for
ompiling and running Renew. The appli
ation was de
omposed

into several plug-ins. The simulation engine was restru
tured. The GUI appli
ation
lasses

were restru
tured and (partly)
onverted to use the Swing pa
kage from the Java foundation

lasses. The import and export menus have been restru
tured. The handling of the various

on�guration properties has been
anonised by the plug-in system. The
lass loader for

ustom
lasses has
hanged.

The :net()
hannel is no longer invoked impli
itly on instan
e
reation. The
lass

SequentialSimulator is repla
ed by the NonCon
urrentSimulator without deadlo
k de-

te
tion feature. The expanded token display feature has moved into the optional FS plug-in,

this option has no e�e
t unless the FS plug-in is installed.

Additions

A plug-in system was added as bottom layer of the appli
ation. The ability to swit
h simulator

modes, net formalisms, the net loader path, and the remote a

ess feature on the �y was

added. A PNML-
ompatible export format was added. The editor is able to load drawings

from URLs. The net loader
an now sear
h nets relative to the
lasspath.

2.9.10 Changes in Version 2.0.1

Modi�
ations

This was a maintenan
e release that provided bug �xes for the install s
ripts and some redraw

issues of the graphi
al net editor.

Additions

An experimental AppleUI plug-in is available as optional download. It provides rudimentary

integration with the Ma
 OS look&feel.

2.9.11 Changes in Version 2.1

Modi�
ations

Many error messages of the Java net
ompiler or about problems in a running simulation

be
ame more detailed. The
ommand-line tool ShadowTranslator and the
orresponding

Ant task now optionally in
lude the spe
i�ed formalism and a syntax
he
k. Fixed transition

modes of bool net
ompiler. Fixed manual transitions in saved simulation states.

The
olor and font attribute dialogues were improved. Whitespa
e-only ins
riptions are

now deleted automati
ally (like empty ones). The GuiPrompt plug-in now provides a text

area for
ommand feedba
k. The binding sele
tion frame is now s
rollable. Tool windows and

dialogues are now listed in the Windows menu. Breakpoints pre-set via the Net menu are now

visually tagged. Fixed some drawing edit bugs in the GUI. Fixed some rare deadlo
ks in the

token game display. Improved s
rolling e�e
t of mouse wheel in drawings. Fixed handling of

polygons.

Some important
hanges to
on�guration properties are do
umented in the upgrade notes

(see Se
tion 2.3). Developers might also have a look there be
ause of some
ode
hanges.

The set of Ant build �les that
ome with the Renew sour
e has undergone some
hanges.

The build pro
ess now stores information about the
ompilation environment with the plug-

ins. Distribution �le names
an now optionally in
lude version information. The list and

info
ommands optionally display this information.

31

Additions

All Renew
omponents (ex
ept the
onsole prompt) now use the Apa
he Log4J logging frame-

work instead of Java
onsole output. In the default
on�guration, informational and error

messages are printed to the
onsole and logged to a �le. The simulation tra
e also goes to

the logging framework (see Se
tion 2.6.9). The new Logging plug-in provides a simulation

tra
e window within the GUI.

The Net step option has been added to the simulation menu.

2.9.12 Changes in Version 2.1.1

Modi�
ations

This was a maintenan
e release that provides several minor bug �xes for PNML export, null

token display and a

ess to publi
 methods of private (inner)
lasses in Java expressions. In

addition, this release is
apable of reading drawing �les
reated with the later release 2.2

(with some minor ex
eptions).

Additions

The AppleUI plugin now supports building a Ma
OS appli
ation bundle.

2.9.13 Changes in Version 2.2

Modi�
ations

Java 1.5 is now required for
ompiling and running Renew.

The Gui now uses the Graphi
s2D Framework that
ame with Java 1.2, so some of the

�gures might be drawn a little bit di�erent when it
omes to size and style. Tokens are now

displayed on a white opaque ba
kground in the token game to in
rease readability. S
rolling

now
ontinues if the mouse is moved outside a drawing while a button is pressed.

Modi�er keys (Ctrl, Shift) have been added to several
ommands and tools on drawing

�gures. These enable users to resize �gures to equal width and height, to adjust polygon

verti
es at right angles with their adja
ent edges, and to restri
t polygon transformations to

either s
aling or rotation. Keyboard movement of �gures with arrow keys
an now be sped

up using the Shift modi�er.

The behavior of Sear
h and Repla
e has been �xed so that multiple instan
es of the sear
h

string in the same �gure are now found and repla
ed
orre
tly. The Drawing Load Server

has been restri
ted to a

ept lo
al
onne
tion requests only.

Additions

Renew now in
ludes and uses the Ve
torGraphi
s pa
kages of the FreeHEP proje
t to a
-

omplish graphi
al export of drawings. Additional supported export formats are PDF, SVG,

and PNG. EPS export now exports non-standard fonts
orre
tly (at the pri
e of larger �les).

EPS �les now always have a re
tangular white
anvas.

A new pie �gure allows to draw segments of ar
s and ellipses. Line styles (dotted, dashed,

et
.)
an now be applied to boxes, ellipses and other �gures with outlines. A transparen
y

attribute has been added to all �gure, font and pen
olors. This breaks
ompatibility with

older Renew versions, so that drawings saved with version 2.2
an not be opened by pre-

vious versions (ex
ept release 2.1.1). The transparen
y attribute is
urrently ignored when

exporting drawings to EPS and this feature might not be implemented in future versions.

For drawings with transparen
y use one of the two new export formats SVG or PDF, whi
h

handle transparen
y
orre
tly.

The hotkey Ctrl+M now brings the menu and toolbar frame to front. Added �show net

pattern/instan
e element� options to the
ontext menu in the simulation tra
e window. The

32

net stub
ompiler now additionally supports stub obje
ts that wrap themselves around an

existing net instan
e during instantiation (before, a stub obje
t always
reated its own net

instan
e).

We provide a Ma
OS appli
ation bundle as well as
on�guration �les for the FreeDesktop

(e.g. Gnome) environment that allow desktop integration with separate i
ons and mime-types

for Renew do
ument �les. However, there is still no su
h support for the Windows family of

operating systems.

Relevant for developers only

GUI and simulation have been separated so that they use di�erent threads now. All
alls to

the simulation are de
oupled and exe
uted in spe
ialized simulation threads. All
alls to the

GUI are delegated to or syn
hronized with the AWT event thread. Simulation threads
an

now be
on�gured with a separate priority. Loading of user-supplied
lasses in the
ontext

of simulations has been improved.

A new parameter �netpath� has been added to the Ant task to
reate shadow net systems.

The Ant build environment has been enhan
ed to support separate sour
e
ode trees for

JUnit tests and Cobertura
overage reports. However, there still are nearly no test
ases

implemented. Several tools that form the Renew build environment are now required in

newer releases. Please refer to the readme �le in the sour
e pa
kage.

2.9.14 Changes in Version 2.3

Modi�
ations

Java 1.6 is now required for
ompiling and running Renew.

Renew now in
ludes and uses the 2.2 version of the FreeHEP proje
t for graphi
al exports

of drawings.

Renew o�ers a better syntax
he
k for Java referen
e net models. If a Java ins
ription

referen
es a non-existing method or �eld of an obje
t, a proposal for existing methods or

�elds is made instead of just pointing out the syntax error (see also Se
tion 4.6).

Minor modi�
ations to the graphi
al editor fun
tionality of Renew
onsist of the following.

The names and
olors of pla
e �gures are now transferred to their virtual pla
es. The editor

prevents adding more than one ar
 ins
ription by right-
li
king on an ar
 with the mouse

as this happened rather by a

ident than on purpose. However, it is still possible to add

multiple ar
 ins
riptions by using the ins
ription tool.

Additions

On startup Renew displays a splashs
reen that gives information about the loaded plugins.

There are two new entries in the File menu. The �rst addition is a list of re
ently saved

drawings. The se
ond addition is the possibility to open the Renew Navigator, whi
h allows

to import �le folders and show their
ontent in a tree view. A more detailed des
ription of

how to use the navigator
an be found in Se
tion 4.3.1.

It is now possible to de�ne re-usable Net Components. A net
omponent
onsists of a set

of net elements that typi
ally ful�ll some generi
 fun
tion and
an be treated as a whole in

a larger net model. More details
an be found in Se
tion 2.7.6.

The ba
kground of expanded tokens in instan
e/simulation drawings
an be
hanged to

be transparent by setting the property de.renew.gui.noTokenBa
kground.

Several keyboard short
uts have been
hanged and more have been added, espe
ially for

sele
ting the main drawing tools. A
omprehensive list of existing short
uts
an be found in

Appendix C.

33

Relevant for Developers only

Generi
s are now used throughout the
ode.

The RMI fun
tionality whi
h was formerly in
luded in the Simulator plugin was extra
ted

into a new Remote plugin.

The lo
k fun
tionality was moved from the Simulator to the Util plugin.

There are several
hanges to the Ant build environment. The Ant target
lean in the meta

build �le now iterates over all subdire
tories instead of having a �xed list of plugins. Sour
e

�les of nets (.rnw)
an optionally be in
luded in the generated plugin ar
hives (.jars) with the

Ant target rnw. To a
tivate this fun
tion you need to set the property option.in
lude.rnws

in your Ant properties (build.xml of the plugin in question or ant lo
al.properties). The

property option.sns.
ompile swit
hes the syntax
he
k for shadow net �les (.sns) on and

o�. The Ant target java
 a

epts an en
oding parameter whi
h is set via the property

option.
ompile.en
oding and defaults to utf-8. The Ant task
reatepng allows to export

net drawings to .png �les.

2.9.15 Changes in Version 2.4

Modi�
ations

The support for the .xrn format is dis
ontinued. We en
ourage the use of PNML instead.

We �xed the remote server
onne
tion (RMI) by providing
on�guration (see the User Guide

Se
tion 2.6.) We have �xed the simulation database ba
king and adapted the me
hanism

for MySQL with InnoDB. Remaining AWT dialogues have been
onverted to Swing. The

Logging GUI has been improved by de
oupling the Simulator from the GUI. The loadrenew

s
ript now starts a regular Renew instan
e if the
onne
tion to a Drawing Load Server is not

possible. The desktop integration for Linux and Windows have been improved. We provide

new uni�ed i
ons for all operating systems.

Many minor bugs have been �xed. Some of these were:

• Rare problems with lo
ating nets relative to the
lasspath have been solved.

• Changes on the line style now a�e
ts all �gures.

• The font style underlined now also a�e
ts small font sizes.

• Export to PNML now always produ
es �les in UTF-8
hara
ter en
oding.

• The Logging tab of the Con�gure Simulation dialog has been revised.

• The log4j PatternLayout
an now be set from within the GUI

• Custom �le appenders
reated in Logging GUI are now fun
tional.

• Net
omponents are more robust if atta
hed �gures are manipulated.

• It is now possible to es
ape whitespa
es in
ommand line
ommands. In that way it

is possible to open drawings with whitespa
es in the path from
ommand line.

Additions

The Navigator now o�ers a button to re
ursively expand a dire
tory sub-tree. The Navigator

now loads dire
tories without lo
king the GUI. PNML and ARM �les are shown in the

Navigator. The keyboard short
ut Ctrl+Enter
loses the text editor overlay.

The ba
kground transparen
y of EPS �les
an now be
ontrolled by setting the property

de.renew.io.export.eps-transparen
y. For Windows, the installation s
ript installre-

new.bat
reates reg �les that asso
iate and disasso
iate Renew drawing �les with loadrenew.bat

and register i
ons. We provide deb pa
kages for Debian-based systems.

34

Relevant for Developers

We refa
tored large parts of the
ode base. Many Java
ompiler warnings have been re-

solved and Javado
 do
umentation have been improved. A few more JUnit tests have been

introdu
ed. Logging and the simulator have been partially reworked to allow deadlo
k-free

real-time (GUI) logging with only minimal time delay. Several tools that were originally

mandatory to build Renew are now optional: these are Cobertura, Jalopy, JUnit and Latex.

2.9.16 Changes in Version 2.4.1

This is a maintenan
e release that provides a �x for a ra
e
ondition that o

urs - under rare

onditions - during the termination of the simulation.

2.9.17 Changes in Version 2.4.2

This is a maintenan
e release that provides a �x for the import of referen
e nets from PNML

format (RefNet).

2.9.18 Changes in Version 2.4.3

This is a maintenan
e release that provides an update of the FreeHEP library and a new

version of the Ma
OS appli
ation bundle. It �xes issues
on
erning the export fun
tionality

with newer Java versions. This version requires at least Java 7.

2.9.19 Changes in Version 2.5

Modi�
ations

We have modi�ed several features of Renew. Most obvious is the
omplete reimplementation

of the Navigator plugin. It is now persistent, extensible and the tree view
an now be �ltered.

We optionally provide some
onvenient extensions, su
h as the integration of the drawing's

di� feature (ImageNetDi�), whi
h
an now be triggered dire
tly from the Navigator GUI.

The FreeHEP library has been upgraded to version 2.4. The qui
k-draw

1

feature has been

improved, whi
h results in a redu
tion to half the amount of mouse
li
ks during qui
kly

drawing net elements. Some key-bindings are now
on�gurable.

The log4j
on�guration and the
on�guration GUI have been improved. The individual

log4j
on�guration �le now resides in folder .renew, whi
h is lo
ated in the users home folder.

The default lo
ation for log �les moved there, as well. The loading of plugins at startup

an now be bla
k-listed or white-listed. The PDF export produ
es PDF do
uments with

bounding boxes;
on�guration has been �xed. The grid
an now be adapted and it
an be

a
tivated as default. Several
onsole
ommands have been improved, in
luding the following

plugin
ommands: list, load, unload and also export
ommand ex. Type help to print a

synopsis of all
ommands.

Additions

The Console plugin repla
es the Prompt plugin. It employs the well-established JLine2 libray

and provides several improvements: tab-
ompletion for
ommands and attributes,
ommand

history and editable
ommand line. The Qui
k Fix feature improves the reporting of syntax

errors by providing suitable proposals for remedies and their automati
 realization. The

Refa
toring plugin (optional) provides features su
h as renaming of variable or renaming

of syn
hronous
hannels. Drag & drop now works for Renew drawings. Simply pull the

drawing over Renew's main window. Drawings and also folders
an also be dragged into the

Navigator Window. Additionally you
an add images to a drawing by dragging it on the

1

The possibility to qui
kly draw an ar
 and a n node by using the ar
 handle (see Se
tion 4.2.3).

35

drawing's window. Two new text tools have been added. One is the target text tool, whi
h

allows to add hyperlinks to any drawing element. The targets
an be other model artifa
ts,

for instan
e a net, or external resour
es referen
ed by a URL. The hyperlink is a
tivated by

using the Ctrl modi�er key together with a mouse
li
k. The
omment tool allows to qui
kly

add
omments to a drawing element.

Removals

• Ma
ao format has been removed, sin
e its usability was very limited.

• The PostS
ript export has been removed. Use EPS export or PDF export instead.

2.9.20 Changes in Version 2.5.1

This is a maintenan
e release that provides
ompatibility for Java 11 and above. It also

updates the jline library, whi
h �xes an error during start, whi
h prevented the start of

Renew with some terminal emulators. This version requires at least Java 11.

2.9.21 Changes in Version 2.6

Modi�
ations

• The PNML export and import were reimplemented be
ause the old implementation

based on a pre�nal standard of PNML. The new version implements the standard in

version 2009 from http://www.pnml.org/.

• The a

idental overwriting of imported �les in the wrong format is now prevented.

• The keyboard short
ut for the Align Middles
ommand
hanged to Ctrl+Shift+-.

• The keyboard short
ut for the PNG export
hanged to Ctrl+9.

• The ba
kground for the PNG export is now transparent.

• When exporting to EPS format with ba
kground transparen
y enabled (property

de.renew.io.export.eps-transparen
y set to true), a white ba
kground is added

to in
luded PNG images be
ause images with transparen
y are not supported in EPS

format. Previous versions threw an error in this
ase. If you want to in
lude PNG

images with a transparent ba
kground, we re
ommend using the PDF export.

• Multiple smaller bug �xes and
ode improvements.

Additions

• We now provide a zooming feature, whi
h
an be triggered using keyboard short-

uts (Ctrl and +/- to zoom in/out) or by using the mousewheel while pressing Ctrl

(Ctrl+Mousewheel up to zoom in and Ctrl+Mouswheel down to zoom out). The zoom

fa
tor
an be resetted with Ctrl+0.

• The automati
 layout now provides a new option Random, whi
h uses a simulated

annealing algorithm to automati
ally
ontrol the parameters of the automati
 layout.

The algorithm produ
es quite ni
e results.

• Moving �gures with the arrow keys now
reates undo snapshots.

• The installrenew s
ript additionally generates a renewexport s
ript to export im-

ages from Renew drawing �les.

36

http://www.pnml.org/

Chapter 3

Referen
e Nets

First, we are going to take a look at Petri nets with Java as an ins
ription language. Then

we look at syn
hronous
hannels and net referen
es, two extensions that greatly add to the

expressiveness of Petri nets as des
ribed in [9℄ and [10℄. Finally, we are going to see how

nets and Java
an seamlessly intera
t with ea
h other. Referen
e nets and their theoreti
al

foundation as a whole are de�ned in [11℄ (in German).

3.1 Net Elements

Referen
e nets
onsist of pla
es, transitions, and ar
s.

There are many types of ar
s. Firstly, ordinary input or output ar
s that
ome with a

single arrow head. These behave just like in ordinary Petri nets, removing or depositing

tokens at a pla
e. Se
ondly, there are reserve ar
s, whi
h are simply a shorthand notation

for one input and one output ar
. E�e
tively, these ar
s reserve a token during the �ring of

a transition. Thirdly, there are test ar
s, whi
h have no arrowheads at all. A single token

may be a

essed, i.e. tested, by several test ar
s at on
e. This is important, be
ause an

extended period of time might be needed before a transition
an
omplete its �ring. For a

more detailed treatment of test ar
s see [6℄.

Besides these basi
 ar
 types, there are ar
 types that add greatly to the expressiveness

of nets, but are not as easy to understand. We postpone the des
ription of these ar
s until

Se
tion 3.10.

Ea
h pla
e or transition may be assigned a name. Currently, this name is used only for

the output of tra
e messages. By default, names are displayed in bold type.

a

b

c

d

e

f

p

Figure 3.1: The net elements

37

In Fig. 3.1 you
an see a net that uses all net elements that were mentioned so far. You

an �nd it in the dire
tory samples/simple of the Renew distribution. A single pla
e p is

surrounded by six transitions. Initially, the pla
e is unmarked. Assume that transition a �res,

whi
h is always possible, be
ause all its ar
s are output ar
s. Now one token is pla
ed in p,

and all transitions ex
ept
 are a
tivated. Transition
 is still disabled, be
ause it reserves

two tokens from p while it �res. In
ontrast to this, transition e may �re, be
ause it is allowed

to test a single token twi
e. If a �res again, transition
 be
omes a
tivated, too, be
ause a

se
ond token is now available. A �ring of the transitions b,
, e, and f does not
hange the

urrent marking. However, transition d will remove one token from p during ea
h �ring.

Every net element
an
arry semanti
 ins
riptions. Pla
es
an have an optional pla
e

type and an arbitrary number of initialization expressions. The initialization expressions are

evaluated and the resulting values serve as initial markings of the pla
es. In an expression,

[℄ denotes a simple bla
k token. By default, a pla
e is initially unmarked.

Ar
s
an have an optional ar
 ins
ription. When a transition �res, its ar
 expressions are

evaluated and tokens are moved a

ording to the result.

Transitions
an be equipped with a variety of ins
riptions. Expression ins
riptions are

ordinary expression that are evaluated while the net simulator sear
hes for a binding of the

transition. The result of this evaluation is dis
arded, but in su
h expressions you
an use the

equality operator = to in�uen
e the binding of variables that are used elsewhere.

Guard ins
riptions are expressions that are pre�xed with the reserved word guard. A

transition may only �re if all of its guard ins
riptions evaluate to true.

42

42

4

2

x

xx

x

x
x

x
y

x=xx

x

guard x!=y
int

Figure 3.2: The net
olored

With these additions we
over the basi

olored Petri net formalism. In Fig. 3.2, whi
h is

also provided in the dire
tory samples/simple, we �nd a net that uses the basi
 pla
e and

ar
 ins
riptions. At the left, we have a pla
e that is typed int, whi
h means that it
an only

take integers as tokens. In this
ase, it has an initial marking of one integer 42 token. The

other pla
es are untyped and initially unmarked. The leftmost transition will take 42 out of

the pla
e and deposit one 4 and one 2 into the respe
tive pla
es. The upper middle transition

takes some x, whi
h happens to be 4 in this
ase, out of its input pla
es and
opies it into

its two output pla
es. The lower middle transition is similar, but here the equality of input

and output ar
 variables is established by the transition ins
ription x=xx. The rightmost

transition has a guard that ensures that x 6= y, written guard x!=y. Therefore it
an only

take a 2 out of the upper pla
e and a 4 out of the lower pla
e or vi
e versa.

A
tion ins
riptions are expression ins
riptions pre
eded with the keyword a
tion. Con-

trary to expression ins
riptions, a
tion ins
riptions are guaranteed to be evaluated exa
tly

on
e during the �ring of a transition. A
tion ins
riptions
annot be used to
al
ulate the

bindings of variables that are used on input ar
s, be
ause input ar
 expressions must be

fully evaluated before a transition
an �re. However, a
tion ins
riptions
an help to
al
ulate

output tokens and they are required for expressions with side e�e
ts.

Then there are
reation ins
riptions that deal with the
reation of net instan
es (see

Se
tion 3.6) and syn
hronous
hannels (see Se
tion 3.7). But �rst we will look
loser at the

expression syntax, whi
h is very similar to a subset of Java. In fa
t, we have to look
arefully

to spot the di�eren
es.

38

boolean boolean values (true, false)

byte 8-bit signed integers

short 16-bit signed integers

int 32-bit signed integers

long 64-bit signed integers

har 16-bit unsigned Uni
ode
hara
ters

float 32-bit IEEE �oating point numbers

double 64-bit IEEE �oating point numbers

Table 3.1: The primitive data types of Java

3.2 I do not Want to Learn Java

Even if you do not want to learn Java, Renew might be a useful tool for you, although it

looses some of its expressiveness. In many
ases it is enough to learn how to write numbers,

strings, variables, and the simplest operators.

Referen
e nets provide extensions that go well beyond simple high-level Petri nets with

Java ins
riptions. After you have read the next se
tions, you
an use these extensions to

generate
omplex models without the need to in
orporate Java
ode.

But remember that there are always subproblems that are easier to express in a program-

ming language rather than Petri nets. Referen
e nets work together seamlessly with Java

programs and gain a lot from utilizing the Java libraries. So on
e you do learn Java, you
an

hoose the appropriate modeling method for ea
h task at hand.

3.3 A Thimble of Java

If you are already familiar with Java, you will want to skip to Se
tion 3.4 where we dis
uss

the di�eren
es between Java and the ins
ription language used in referen
e nets. Here we

give a most rudimentary introdu
tion to Java.

Java is an obje
t-oriented programming language, but not everything is an obje
t in Java.

There are eight non-obje
t data types in Java whi
h are listed in Table 3.1. The types byte,

short,
har, int, and long are
alled integral types here. Together with float and double

they form the number types.

In Figure 3.3 you
an see two type hierar
hies. On the left the ordinary Java subtype

relation is depi
ted. You
an see that long is a subtype of float although some loss of pre
i-

sion might o

ur during the
onversion. Nevertheless, Java will silently insert this
onversion

whenever it is required in a program.

Although this is helpful for Java programs, it poses several problems in the
ontext of

Petri nets, where the dire
tion of information transfer is not always immediately obvious.

Hen
e su
h
onversions are not done by the simulator. Instead we introdu
ed the relation of

lossless
onversions, whi
h you
an �nd on the right hand side of Figure 3.3. This relation

governs the type
onstraints between pla
es and their neighboring ar
s.

All other types ex
ept primitive types are referen
e types, i.e., referen
es to some obje
t.

Every obje
t belongs to a
lass. When a
lass is de
lared, it may re
eive an arbitrary number

of �eld de
larations and method de
larations. Fields are variables that exist on
e per obje
t

or on
e per
lass. The binding of the �elds of an obje
t
aptures the state of that obje
t.

Methods des
ribe the possible a
tions of an obje
t. Ea
h method has a name, a list of

parameters, and a body, i.e. a sequen
e of statements that are exe
uted if the method is

invoked.

Method de
larations and �eld de
larations are nested in the de
laration of the
lass to

whi
h they belong. It is possible to use the prede�ned
lasses without writing new ones,

when working with Renew. We are going to see later how nets themselves
an be regarded

39

Figure 3.3: The Java type hierar
hy and the hierar
hy of lossless
onversions

as
lasses. For a detailed dis
ussion of the Java type system and the Java system libraries

we refer the reader to the literature.

Now we are going to look at the syntax of Java expressions. We only deal with the subset

of Java that is relevant to referen
e nets.

Variables are represented by identi�ers. Identi�ers are alphanumeri
 strings starting with

a non-numeral
hara
ter. E.g., renew, WRZLGRMF, go4it, and aLongVariableName are all

valid variable names. By
onvention, variable names should start with a lower
ase
hara
ter.

The de
laration of a variable is denoted by pre�xing the variable name with the type name,

e.g. int i. Variables were already silently assumed in Fig. 3.2.

The Java language provides literals for integers (123), long integers (123L), �oats (12.3F),

and doubles (12.3). Furthermore, there are the boolean literals true and false, string literals

("string"), and
hara
ter literals ('
'). Java uses 16-bit Uni
ode
hara
ters and strings.

There are no literals for the primitive types byte and short.

There is also one literal of referen
e type named null. Every variable of a referen
e type

may take null as a value. null equals only itself and no other referen
e. Trying to invoke a

method of the null referen
e will fail with a runtime ex
eption.

A sizable set of operators is provided in Java. Here we are going to dis
uss those operators

that are still present in referen
e nets. The binary operators are listed in Table 3.2, where

we also note their interpretation and the operand types to whi
h ea
h operator is appli
able.

Most of the operators are de�ned for primitive types only, but you
an also
he
k if two

referen
es are identi
al with == and !=.

Never use == or != to
ompare the equality of strings, like in s1==s2. Always use

the Java-method equals(...) as in s1.equals(s2) or you will get strange results.

This is a pe
uliarity that annoys many Java beginners, but we are not in a position

to
hange this behavior.

The operator + is also used to
on
atenate strings. If only one operand of + is a string, the

other operand is �rst
onverted to a string and the two strings are
on
atenated afterward,

e.g. "7x8="+42 results in the string "7x8=42".

If multiple operators are present, they are grouped a

ording to their pre
eden
e. *, /,

and % have the highest pre
eden
e, | has the lowest pre
eden
e. The expression a+b%
*d|e is

equivalent to the fully parenthesized expression (a+((b%
)*d))|e. The order of pre
eden
e

for ea
h operator
an be found in Tab. 3.2. If in doubt, make the parentheses expli
it.

An operand of a small type (byte, short, or
har) is automati
ally
onverted to int

before any operator is applied. If you need the result as a small type, you have to make an

40

* multiply number

/ divide number

% modulo number

+ plus number, String

- minus number

� shift left integral

� shift right integral

�> signed shift right integral

< less than number

> greater than number

<= less than or equal number

>= greater than or equal number

== equal primitive, referen
e

!= unequal primitive, referen
e

& and primitive

� ex
lusive or primitive

| or primitive

Table 3.2: Java binary operators, rules separate operators of equal pre
eden
e

- negate number

� bit
omplement integral

! not boolean

Table 3.3: Java unary operators

expli
it
ast. E.g., (byte)b1+b2 adds the two bytes b1 and b2 and trun
ates the result to

8 bits. You might also want to redu
e the pre
ision of a �oating point number by saying

(float)d1 where d1 is a double variable. The opposite
ase where pre
ision is added, e.g.

(long)b1, is helpful, too, but usually this kind of
onversion is added automati
ally in the

pla
es where it is needed.

Casts between referen
e types are also possible, but here no
onversion takes pla
e. In-

stead, it is
he
ked that the operand is indeed of the given referen
e type, either at
ompile

time or at run time, if required. E.g., if a variable o of type Obje
t is de
lared, we
an say

(String)o to ensure that o does indeed hold an obje
t of type String.

There are a few unary operators, too. They are listed in Table 3.3. Unary operators and

asts have a higher operator pre
eden
e than any binary operator.

A last operator that must be mentioned is instan
eof. Its left operand is an expression

as usual, but its right operand must be the name of a
lass or interfa
e. It evaluates to

true, if the result of the expression is a referen
e to an obje
t of the given
lass or one of its

sub
lasses or of a
lass that implements the given interfa
e.

With an obje
t referen
e you
an also inspe
t �elds and invoke methods. E.g., if there is

an obje
t o with a �eld f, you
an a

ess the �eld by writing o.f inside a Java expression.

The result will be the
urrent value of that �eld.

For an obje
t o, a
all of the method m with the parameters 1 and x would look like

o.m(1,x). This has the result of binding the formal variables to the parameter values and

exe
uting the body statements of the method. Unless the method is of the return type void,

a return value will be
al
ulated and returned.

Due to overloading, there might be more than one method of a given name within some

lass. In that
ase, the method that mat
hes the parameter types most
losely is invoked.

In order to
reate a new instan
e of a
lass, you
an use the new operator. E.g., the

expression new java.lang.StringBuffer() will
reate a new obje
t that belongs to the

41

lass java.lang.StringBuffer and invoke its
onstru
tor. A
onstru
tor
an be seen as a

spe
ial method that initializes a new obje
t. The new operator
an take arguments inside

the parentheses. The arguments are then passed to the
onstru
tor just as in an ordinary

method
all.

3.4 The Ins
ription Language

Be
ause we are dealing with a
olored Petri net formalism, the net simulator must determine

whi
h kind of token is moved for ea
h ar
.

The possible kinds of tokens are Java values or referen
es. By default, an ar
 will transport

a bla
k token, denoted by [℄. But if you add an ar
 ins
ription to an ar
, that ins
ription

will be evaluated and the result will determine whi
h kind of token is moved.

3.4.1 Expressions and Variables

Ar
 ins
riptions are simply Java expressions, but there are a few di�eren
es. The �rst dif-

feren
e
on
erns the operators that are used in expressions. In Java the binary operators

&& (logi
al and) and || (logi
al or) are short-
ir
uit operators. I.e., if the result of the left

operand determines the result of the operator, the right operand is not even evaluated. This

would imply an order of exe
ution, whi
h we tried to avoid in our net formalism. Hen
e, the

two operators are not implemented. The same holds for the ternary sele
tion operator ?:.

An additional bene�t of its ex
lusion from the language is that this frees up the
olon for

other synta
ti

onstru
ts. Possibly, these three operators might still o

ur in later releases

of Renew.

In Java variables re
eive their value by assignment. After a se
ond assignment, the value

from the �rst assignment is lost. This �avor of variables is not well-suited for high-level Petri

nets. Instead variables are supposed to be bound to one single value during the �ring of

a transition and that value must not
hange. However, during the next �ring of the same

transition, the variables may be bound to
ompletely di�erent values. This is quite similar

to the way variables are used in logi
al programming, e.g. in Prolog.

Figure 3.4: The net g
d

In Fig. 3.4 we show an example net that uses expressions as ar
 ins
riptions and also as

guard ins
riptions. The example is provided in the dire
tory samples/simple. Some numbers

are put into a pla
e and the net will
ompute the greatest
ommon divisor of all these numbers

and terminate with no more enabled transitions. The upper
entral transition is the most

interesting. It removes two tokens from the pool of numbers, but a guard makes sure that the

two numbers are greater than zero and
orre
tly ordered. The transition outputs the smaller

number and the remainder (denoted by the operator %) of the division of the greater number

by the smaller number. The lower
entral transition simply puts the new numbers ba
k into

the pool and the left transition dis
ards zeroes.

Note how a single variable
an be bound to di�erent values at di�erent times. Note that

the simulator will automati
ally sear
h for possible bindings of the variables.

42

3.4.2 Types

For referen
e nets, types play two roles. A type may be an ins
ription of a pla
e. This means

that the pla
e
an hold only values of that type. The net simulator
an stati
ally dete
t

many situations where type errors might o

ur, i.e., when transitions try to deposit tokens

of the wrong type into a pla
e. Furthermore, variables may be typed. This means that the

variable
an only be bound to values of that type.

In Java every variable needs to be de
lared. There are of
ourse many good reasons to

demand this, but there are times when it is valuable to write programs without having to

worry about a type de
laration. One of these
ases are throw-away prototypes, whi
h are

supposed to be developed very qui
kly. Petri nets are generally usable for prototyping, so we

wanted to be able to write nets without having to de
lare variables.

But for stable
ode that will be used in a produ
tion appli
ation types are a must. There-

fore referen
e nets provide the option to
reate a de
laration node. In the de
laration node,

an arbitrary number of Java import statements and Java variable de
larations are allowed. If

a de
laration node is present, then all variables must be de
lared. This means that you have

the
hoi
e between
omplete liberty (no variables
an be de
lared) and
omplete se
urity (all

variables must be de
lared).

Note that an unde
lared variable does not have a type. Therefore, the type of an ex-

pression
an only be determined at runtime, if it
ontains unde
lared variables. Worse, if a

method is overloaded, the
hoi
e of the a
tual method must be delayed until runtime when

all operator types are known. This is
ontrary to ordinary Java, where overloaded methods

are disambiguated at
ompile time.

0
i

j

guard i>=j;

guard j>0 i%j

j

ii

60
42

105

int i;

int j;

int int

Figure 3.5: The net g
dtyped

Fig. 3.5 shows a typed variation of the greatest
ommon divisor algorithm. First, you
an

see the type ins
riptions of the pla
es that are all int in this
ase. Se
ond, you will noti
e

the de
laration node where the two variables are de
lared. As in Java, de
larations
onsist

of the type followed by the name of the variable.

Pla
es
an be typed, too. This allows the simulator to
at
h some di�
ult situations before

the a
tual simulation. For input ar
s, the type of the ar
 ins
ription should be
omparable to

the type of the pla
e, i.e. either a subtype or a supertype. Otherwise it is probable that the

expression yields a value that
annot be a token in the pla
e. Note that for this type
he
k

we have to use the lossless
onversion rules as depi
ted in Figure 3.3

For output ar
s we require that the type of the ar
 expression is narrower than the type of

the pla
e, so that the pla
e
an always take the resulting token. This is important, be
ause the

values of the output expressions might only be determined during the �ring of the transition

when it is too late to de
lare the transition disabled. For input ar
s we
an simply ignore

any binding that would result in a token of a bad type.

As a spe
ial
ase it is required that an output ar
 expression for a typed pla
e must be

typed. In pra
ti
e this means that you have to de
lare your variables as soon as you assign

types to pla
es. On the other hand, you
an type the variables without having to type the

pla
es.

43

Sometimes it is required to
onvert an expression of one type to an expression of a di�erent

type. Referen
e nets support Java's
on
ept of
asts. A
ast is indi
ated by pre�xing an

expression with the desired type en
losed in parentheses. E.g., (Obje
t)"string" would be

an expression of type Obje
t, even though it will always result in "string", whi
h is of type

String.

On the other hand, if you know that a variable o of type Obje
t will always hold a

string, you
an say (String)o to inform the type system of this fa
t. For primitive types, a

onversion takes pla
e, e.g., (byte)257
onverts the 32-bit integer 257 into the 8-bit integer

1 by trun
ating the most-signi�
ant bits.

In Fig. 3.5 we also illustrated that you
an make multiple ins
riptions to a single transition,

as we have two guards for a single transition.

If multiple transition ins
riptions are given in a single graphi
al �gure as in this
ase, the

ins
riptions have to be separated by semi
olons. They may also optionally be terminated

with a semi
olon.

3.4.3 The Equality Operator

If we look at the new semanti
s of variables, we might wonder what the meaning of the

operator = is. It
annot be an assignment, be
ause variables are immutable. Instead, it

is merely a spe
i�
ation of equality. You will usually want equality spe
i�
ations to o

ur

inside spe
ial ins
riptions that are atta
hed to transitions. E.g., you
an say x=2 to bind the

variable x to 2 or you
ould use x=y*z+42 for a more interesting
omputation. If you spe
ify

both x=2 and x=3 for a single transition, that transition will not be able to �re, be
ause x

annot be bound in a way that mat
hes both spe
i�
ations.

Keep in mind that = is based on equality in the sense of the equals(Obje
t)method and

not in the sense of the operator ==. This might
onfuse experien
ed Java programmers, but

it is the only possibility to avoid
ertain other anomalies.

Figure 3.6: The net equality

In the net from Fig. 3.6 you
an see two transitions that perform equivalent a
tions, as

you
an see when you load the nets from samples/simple and simulate them. The transition

on the right uses a variable z to hold the value of the
omputation x+y. At the left we see an

example where an expression o

urs on an input ar
. Su
h expressions are properly evaluated

and the simulator
he
ks whether the resulting token is available.

But expressions on input ar
s have to be used with
are. Just be
ause the simulator knows

that x+y equals 24 and x equals 22, it
annot
on
lude that y is 2. Su
h
omputations would

have been possible in some
ases, but not in others. Due to
onsisten
y we de
ided on the

general rule that expressions are not evaluated ba
kward. The only ex
eption are type
asts,

whi
h we met earlier on. A type
ast that may be performed without losing information, e.g.

(long)i for an integer i,
an be
al
ulated ba
kward. If due to an equality spe
i�
ation the

44

result of su
h a
ast is known, it is propagated ba
kward to the
asted expression, possibly

after some
onversion.

If a ba
kward
omputation is desired in the other
ases, it has to be made expli
it. In our

example, we
ould
omplement the equation z=x+y by x=z-y and y=z-x. Now the simulator

an determine y from x and z. This is allowed, exa
tly be
ause = does not mean an assignment

but an equality spe
i�
ation. If a bound variable is
al
ulated again by a redundant equation,

this does not pose a problem as long as the two bindings are equal.

If = does not assign, what do the modifying operators +=, *=, and so on mean in referen
e

nets? Simple answer: They make no sense and were therefore ex
luded from the language.

Similarly, the operators ++ and � do not appear.

3.4.4 Method Invo
ations

Referen
e nets also support method invo
ations. E.g., x.meth("a") invokes the method meth

of the obje
t referen
ed by x with the parameter string "a". All Java methods
an be used

in referen
e nets, but there are some
riti
al points.

First of all, methods
an be evaluated more than on
e. Worse, a method might be invoked

even though the transition does not �re. This is done, be
ause the result of a method

invo
ation might be needed to determine whether a transition is enabled at all. Therefore it

is best, if the invoked methods do not produ
e any side e�e
ts. If side e�e
ts are required,

then they should be invoked in a
tion ins
riptions only.

Figure 3.7: The net frame

Fig. 3.7 shows some example method
alls that are invoked by net ins
riptions. The

net is saved in the dire
tory samples/simple. The de
laration node
ontains an import

statement that instru
ts the simulator to sear
h the pa
kage java.awt for
lasses whose

names appear in the net. The variables f and b are then de
lared as a Frame and a Button.

These two
lasses are in the pa
kage java.awt, so we
ould have written java.awt.Frame

and java.awt.Button instead. The pro
edure that has been implemented here is simple.

A window and a button are
reated, the window is resized and the button is added to the

window. Now we
an show the window, let the user
li
k it some times, and remove it from

the s
reen again.

It is possible to give multiple a
tions in a single transition ins
ription in a semi
olon

separated list, e.g., a
tion y=o.m(x); a
tion x=o.m(); would be allowed. Note that the

order of exe
ution need not mat
h the textual order. In the previous example, a
tion

x=o.m() would have to be exe
uted �rst, be
ause it is required to determine the binding

for x. In the same sense, the a
tion keyword only applies to a single expression, not to

45

all following expressions. E.g., a
tion y=o.m(x); x=o.m(); would mean that x=o.m() is

evaluated early during the sear
h for a binding, be
ause it is not an a
tion.

3.5 Tuples, Lists, and Uni�
ation

The ins
ription language of referen
e nets has been extended to in
lude tuples. A tuple is

denoted by a
omma-separated list of expressions that is en
losed in square bra
kets. E.g.,

[1,"ab
",1.0℄ denotes a 3-tuple whi
h has as its
omponents the integer 1, the string "ab
",

and the double pre
ision �oat 1.0. Tuples are useful for storing a whole group of related values

inside a single token and hen
e in a single pla
e.

In ordinary Java, there are no tuples. If we want to store a group of values, we
an simply

reate a group of variables, ea
h of whi
h holds one value. But with Petri nets we want to

store arbitrarily many tokens in a pla
e, making this solution useless in many
ases.

It would of
ourse be possible to
reate a Java
lass with an appropriate set of �elds to

wrap a group of values, but this would result in an ex
essive amount of trivial fun
tionless

lasses. (By the way, this is what has to be done in Java in some
ases, too.)

Tuples are weakly typed. They are of type de.renew.unify.Tuple, but their
omponents

are untyped. It is not even spe
i�ed whether a
omponent of a tuple holds a primitive or a

referen
e type.

This does not matter mu
h, be
ause the only operation on tuples (or rather the only

operation that should be used) is uni�
ation. You
an unify tuples through an equality

spe
i�
ation. E.g., [x,y,z℄=t means that t must be a 3-tuple. Furthermore, x will be equal

to the �rst
omponent of t, y to the se
ond, and z to the third.

We already know that the bla
k token is denoted by [℄. Therefore a bla
k token is simply

a tuple without
omponents (a zero-tuple).

["green","left"]

["blue","right"]

["red","left"]

["red","left"]

["green","right"]

drawer

take socks

[]

left

right

[col,type1]

[col,type2]

[col,type1]

[col,type2]

Figure 3.8: The net so
ks

In Fig. 3.8 we
an see the so
k algorithm of the typi
al theoreti
al
omputer s
ientist.

The s
ientist will rea
h into the drawer to fet
h two so
ks. It does not matter if the so
ks are

left so
ks or right so
ks (they are topologi
ally equivalent) as long as they are of the same

olor. In the net, whi
h
an be found in the dire
tory samples/tuple, this is a
hieved by

using the variable
ol in both ar
 ins
riptions that will remove tokens from the drawer pla
e.

Tuples may be nested. [[1,2℄,[3,4,5℄℄would be a 2-tuple that has a 2-tuple as its �rst

omponent and a 3-tuple as its se
ond
omponent. This might be useful if the
omponents

are hierar
hi
ally stru
tured.

It is a
ommon task to use tuples to simulate a database, so that the number of tuples in

a pla
e
an be
onsiderable. Often one
omponent of an input ar
 tuple
an be determined

without a

essing the pla
e. In this
ase, Renew a

esses only those tokens that mat
h

the known
omponent. Be
ause few tokens need to be
he
ked, the simulation
an pro
eed

qui
kly. If two
omponents of the input ar
 tuple are known, the simulation engine will use

that
omponent as a key that results in fewer mat
hes.

In fun
tional programming nested pairs are used as a representation of lists. This
ould

be simulated by nested tuples, but it would result in nets that are hard to read. Hen
e

46

we added expli
it list support to the language. Lists are delimited by
urly bra
es, e.g.,

{1,2,3,4} would be a four element list. Lists, like tuples, support pattern mat
hing. Using

{1,2,3,4}={u,v,w,x} as a transition ins
ription, we would get u=1, v=2, and so on.

{1,2,3,4}

[{hd:tl},li][tl,{hd:li}]

li [li,{}] [{},li] li

Figure 3.9: The net reverse

In order to handle lists of unknown length, a tail expression may be added to the list. The

tail expression is separated from the ordinary list elements by a
olon. The tail expression

mat
hes an arbitrary list of elements. By requiring {1,2,3,4}={u,v:w}we get u=1, v=2, and

w={3,4}. The tail
onsists of all elements that are not expli
itly represented. The tail may

be empty as in {1,2,3,4}={u,v,w,x:y} where y={}. Note that the empty tuple [℄ and the

empty list {} are not equal.

In Fig. 3.9 you
an see an example net, whi
h reverses a list by su

essively splitting o�

the head of the original list and appending it to a result list. The remainder of the original

list and the result list are jointly
ontained in a tuple. On
e the original list is fully
onsumed,

the result list is extra
ted.

3.6 Net Instan
es and Net Referen
es

When a simulation run of a net is started, the simulator
reates a net instan
e of the net that

is simulated. A net that is drawn in the editor is a stati
 stru
ture. However, an instan
e of

the net has a marking that
an
hange over time. Whenever a simulation is started, a new

instan
e is
reated.

Most net formalisms stop here. They
reate one instan
e of a net and simulate it. Renew

allows you to
reate many instan
es of a single net. Ea
h instan
e
omes with its own marking

and
an �re independently of other instan
es.

Every net has a name. The name is derived from the �le where it is saved by removing

the dire
tory name and the su�x. E.g., a net saved in /users/foo/bar/baz.rnwwould have

baz as its name.

New net instan
es are
reated by transitions that
arry
reation ins
riptions, whi
h
onsist

of a variable name, a
olon (:), the reserved word new, and the name of the net. E.g., x:new

baz makes sure that x is bound to a fresh instan
e of the net baz.

In Figs. 3.10 and 3.11 you
an see a simple example. These nets are available in the

samples/
reation dire
tory.

When you start a simulation of
reator, the top transition
an �re and
reates two new

net instan
es of othernet. Referen
es to the two nets are deposited in the middle pla
es.

Now three transition instan
es are a
tivated, namely the two transitions in the two instan
es

of othernet and the bottom transition of
reator. The guard is satis�ed, be
ause two

di�erent
reation ins
riptions are guaranteed to
reate di�erent net instan
es. You never

reate the same instan
e twi
e.

Now the order of exe
ution is unde�ned. It might be possible that the bottom transition

of
reator �res �rst. Even in that
ase, the two transitions instan
es of othernet remain

a
tivated. A net does not disappear simply be
ause it is no longer referen
ed.

On the other hand, if a net instan
e is no longer referen
ed and none of its transition

instan
es
an possibly be
ome enabled, then it is subje
t to garbage
olle
tion. Its presen
e

47

x:new othernet

y:new othernet

x y

x y

guard x!=y

[]

[]

Figure 3.10: The net
reator Figure 3.11: The net othernet

has be
ome undete
table and hen
e we might remove it without further ado.

In Java the reserved word this denotes the obje
t whose method is
urrently exe
uted.

In referen
e nets this denotes the net instan
e in whi
h a transition �res.

We are often going to treat net instan
es like obje
ts of an obje
t-oriented programming

language. They are instan
es of a net, just like obje
ts are instan
es of a
lass. They have

an identity that
an be
he
ked with == and != just like obje
ts. They have a state that

an
hange over time and here pla
es seem to
orrespond to attributes. Net instan
es also

en
apsulate data. They
an be referen
ed from other net instan
es. The only missing
om-

ponent for full obje
ts are methods. In the next se
tion we will learn about a
ommuni
ation

on
ept that
an be substituted for method
alls sometimes. In Se
. 3.9 we will �nally see

how nets
an be equipped with methods.

3.7 Syn
hronous Channels

Currently, the idea of net instan
es might not seem interesting, be
ause there is no me
hanism

by whi
h nets
an in�uen
e ea
h other. Hen
e, although net instan
es en
apsulate data, they

en
apsulate it so well that it
annot be a

essed at all.

this:ch()

:ch()[]

Figure 3.12: The net syn
hro

In this se
tion we will establish a means of
ommuni
ation for net instan
es. There are

two fundamentally di�erent ways of
ommuni
ation. First, we have message passing where

a sender
reates a message that
an be read by a re
eiver later on. The sender
an always

send the message regardless of the state of the re
eiver. The re
eiver may or may not be

48

able to pro
ess the message. Se
ond, we have syn
hronous
ommuni
ation where sender and

re
eiver have to agree on parti
ipating in an
ommuni
ation at some point of time.

In Petri net formalisms, the former kind of
ommuni
ation is usually
aptured by so-
alled

fusion pla
es. Referen
e nets, though, implement the latter kind of
ommuni
ation in the form

of syn
hronous
hannels. This allows more expressive models
ompared to message passing,

be
ause it hides mu
h of the inherent
omplexity of syn
hronization from the developer.

Furthermore, message passing
an always be simulated using syn
hronous
ommuni
ation.

Syn
hronous
hannels were �rst
onsidered for
olored Petri nets by Christensen and

Damgaard Hansen in [5℄. They syn
hronize two transitions whi
h both �re atomi
ally at

the same time. Both transitions must agree on the name of the
hannel and on a set of

parameters, before they
an engage in the syn
hronization.

Here we generalize this
on
ept by allowing transitions in di�erent net instan
es to syn-

hronize. In asso
iation with
lassi
al obje
t-oriented languages we require that the initiator

of a syn
hronization knows the other net instan
e.

The initiating transition must have a spe
ial ins
ription, the so-
alled downlink. A down-

link makes a request at a designated subordinate net. A downlink
onsists of an expression

that must evaluate to a net referen
e, a
olon (:), the name of the
hannel, an opening

parenthesis, an optional
omma-separated list of arguments, and a
losing parenthesis. E.g.,

net:
h(1,2,3) tries to syn
hronize with another transition in the net denoted by the variable

net, the
hannel has the name
h and is passed the parameters 1, 2, and 3.

On the other side, the transition must be ins
ribed with a so-
alled uplink. An uplink

serves requests for everyone. A transition that is
alled through an uplink need not know the

identity of the initiator, just like an a
tivated method of an obje
t does not ne
essarily know

of its
aller. Therefore the expression that designates the other net instan
e is missing for

uplinks. An example uplink ins
ription would look like :
h(x,y,z), whi
h means that the

hannel name is
h and that the three
hannel parameters must mat
h the binding of the

variables x, y, and z.

The uplinks and downlinks of a transition may be given as individual transition ins
rip-

tions or in a single semi
olon separated list in one ins
ription. The list might even in
lude

a
tion ins
riptions and
reation ins
riptions simultaneously with the
hannel invo
ations.

Let us �rst look at the spe
ial
ase where two net instan
es within the same net syn-

hronize. This is done by providing the keyword this as the target of the downlink. In

Fig. 3.12 you
an see an example net with lo
al
hannels, whi
h is provided in the dire
tory

samples/
hannel like all other nets of this se
tion. The input pla
e of the left transition

is marked and the transition's downlink spe
i�
ation
an be met by syn
hronizing with the

right transition. Both transitions �re syn
hronously, su
h that one token is removed from the

left pla
e and one token is added to the right pla
e in a single step. Now no more transitions

are enabled. The left transition la
ks a token on its input pla
e, the right transition has an

uplink that is not invoked by another transition.

Generally, transitions with an uplink
annot �re without being requested expli
itly by

another transition with a mat
hing downlink. We will sometimes
all a transition without an

uplink a spontaneous transition. But even a spontaneous transition must �nd an appropriate

syn
hronization partner if it has a downlink.

It is allowed that a transition has multiple downlinks. It is also allowed that a transition

has both an uplink and downlinks. This is exempli�ed in Fig. 3.13. Again the transition on

the left initiates the syn
hronization. The required
hannel is o�ered by the middle transition

whi
h does nothing ex
ept linking to the
hannel bar twi
e. This is allowed, a transition may

�re multiple times in one syn
hronous step, although it might be
onfusing and should be

avoided when possible.

In general, multiple levels of syn
hronization are suspe
t from a methodi
al point of view,

be
ause they tend to be di�
ult to understand. Petri nets ex
el at displaying
ontrol �ow and

it seems that syn
hronous
hannels should not be used to en
apsulate
omplex
ontrol �ows

or even loops. It is best to use
hannels where they show their greatest potential, namely

syn
hronization,
ommuni
ation, and atomi
 modi�
ations.

49

this:foo()

:foo()[] :bar()

this:bar()

this:bar()

Figure 3.13: The net multi

Channels
an also take a list of parameters. Although there is a dire
tion of invo
ation,

this dire
tion need not
oin
ide with the dire
tion of information transfer. Indeed it is possible

that a single syn
hronization transfers information in both dire
tions. Fig. 3.14 shows a

possible appli
ation where the left transition
onsults a lookup table that is managed by

the right net instan
e. The parameter lists (x,y) and (a,b) mat
h if x=a and y=b. After

binding x from the left pla
e the variable a is determined and only one token of the right

pla
e mat
hes the tuple of the ar
 ins
ription. This allows to bind b and hen
e y.

this:lookup(x,y) :lookup(a,b)
42

x y [a,b]

[42,"6x7"]

[56,"8x7"]

Figure 3.14: The net param

In the previous examples we only en
ountered lo
al syn
hronizations within one net, but

Figs. 3.15 and 3.16 show two separate nets that
an
ommuni
ate. The net represents the

basi
 s
hedule of Santa Claus on the night before Christmas. He wakes up, takes a new bag

from the shelf and �lls it with presents. Later on he
an simply rea
h into his bag and get

something that he
an put into the
hildren's boots, maybe some
andy or a brand new game.

b: new bag

[]

b:deposit("sweets")

b:deposit("token game")
b

b

b:take(thing)

thing

wakeup

bag

boots

:take(thing):deposit(thing)

thing thing

Figure 3.15: The net santa
Figure 3.16: The net bag

It is possible to
reate syn
hronization loops where the invo
ation of a
hannel results

in the invo
ation of the same
hannel. This should be avoided, be
ause it might throw the

simulator into an in�nite loop. A di�erent sear
h strategy
ould have avoided this problem,

but it would have in
urred a signi�
ant performan
e
ost.

We mentioned that message passing
an be simulated by syn
hronous
hannels. The

anoni
al way would be to
reate a transition with a single-parameter uplink and a single

50

output ar
 in the re
eiving net, whi
h
an then put the argument of its uplink into its output

pla
e. Be
ause this transition is always enabled, messages
an always be sent and the state

of the re
eiver does not in�uen
e the sender in any way. After the message has been put into

the pla
e, it
an be pro
essed in an arbitrary way.

Using the spe
ial ins
ription x:new net() you
an indi
ate that you want to
reate a new

net with name net, assign it to the variable x and perform a syn
hronization with the uplink

:new() in the newly
reated net in one step. Note that, unlike earlier versions of Renew, the

hannel new is only invoked when you request it expli
itly. An impli
it invo
ation, even for

the initially
reated net instan
e, is not performed.

For additional examples, see the nets that are distributed with Renew in the dire
tory

samples. Not all of them are given a detailed dis
ussion in this manual. In dire
tory

samples/fireman you
an �nd the �reman example that is based on an idea of Petri [14℄. A

work�ow system of a law enfor
ement agen
y is the basis for the nets in samples/prose
ute.

They are based on the arti
le [17℄, where this example is attributed to W.M.P. van der Aalst.

3.8 Manual Transitions

The manual ins
ription, if atta
hed to a transition, stops the simulator from �ring the tran-

sition automati
ally. You have to �re su
h transitions with a right mouse button
li
k. This

is useful for simulating external events or for adding
ontrol swit
hes.

In the dire
tory sample/simple you
an �nd the net mutex, whi
h is also displayed in

Fig. 3.17. It shows a mutual ex
lusion algorithm that uses only a single
hannel per dire
tion

for both token transfers and token requests.

manual

notokcrit tok

request

request

toknotok crit

wait

wait

[] []

manual

Figure 3.17: The net mutex

The
riti
al se
tions that are guarded by the mutex algorithm are painted red. The left

pro
ess is shown in yellow, whereas the right pro
ess is shown in dark green. Initially, the

left pro
ess holds the token to enter the
riti
al se
tion in its pla
e tok. The right pro
ess

does not own the token.

After one of the blue manual transitions is �red, the asso
iated pro
ess tries to gain the

51

token and enter the
riti
al se
tion. To see this, run the simulation
ontinuously. The manual

transitions do not �re automati
ally, but after one of them is �red by using the middle or

right mouse button, the rest of the net pro
esses the request immediately.

3.9 Calling Nets from Java

In the previous se
tion we
onsidered the use of a Java-like ins
ription language in referen
e

nets. Now we are going to allow a

ess to referen
e nets from Java
ode. Nets are already

obje
ts and they have an identity. But up to now all nets have the same type, namely

de.renew.net.NetInstan
e, and implement the methods of de.renew.net.NetInstan
e

only.

3.9.1 Net Methods

Therefore we must
reate new
lasses that behave like nets when treated by the simulator,

but whi
h implement additional methods. Upon invo
ation, the methods
an
ommuni
ate

with the net through syn
hronous
hannels, whi
h will in turn take the required a
tions.

These
lasses will be known as stub
lasses.

Figure 3.18: The net a

ount

The net from Fig. 3.18 models a very simple bank a

ount. The
ustomer
an only deposit

and withdraw money and view the
urrent amount. But we still need to wrap the syn
hronous

hannels in methods so that we
an use the bank a

ount from Java
ode. There is a spe
ial

utility that
reates appropriate methods automati
ally. We
an input

void deposit (int amount) {

this:deposit (amount);

}

to des
ribe the a
tion asso
iated with this method. Not all methods will be so simple, e.g.,

there might be more than one
hannel invo
ation.

The translator needs to know other things besides the methods, espe
ially the name of

the net, here a

ount, and the name of the stub
lass that should be generated. In this

ase we use the
lass samples.
all.A

ount. samples.
all seems to be the right pa
kage

be
ause the pa
kage name should re�e
t the dire
tory it is in. The full stub de�nition �le

an now be presented.

pa
kage samples.
all ;

lass A

ount for net a

ount {

void deposit (int amount) {

this :deposit(amount);

}

void withdraw (int amount) {

this :withdraw (amount);

52

}

int
urrentAmount () {

this :amount(return);

}

}

The de
laring pa
kage is given in a spe
ial statement, whi
h is optional. The keywords for

net separate the
lass name and the net name.

The body of a
lass des
ription
onsists of a sequen
e of method des
riptions and
onstru
-

tor ins
riptions. In our example we do not have
onstru
tors, su
h that a default
onstru
tor

will be automati
ally inserted. The body of ea
h method
onsists of a sequen
e of
hannel

invo
ations and variable de
larations, separated by semi
olons.

As in referen
e nets, variables need not be de
lared. If variables are de
lared, they must be

de
lared before they are used. In our example there are no variables ex
ept for the input pa-

rameters and the spe
ial variable return, whi
h is used in the last method
urrentAmount().

This variable is automati
ally de
lared in ea
h method that has a non-void return type. A

non-void method returns the value of return at the end of its body.

The stub des
ription
an now be
ompiled with the
ommand

ompilestub samples/
all /A

ount.stub

from the Unix
ommand prompt, assuming that the stub des
ription is
ontained in the

�le samples/
all/A

ount.stub. A similar s
ript is also provided under Windows, but for

other operating systems we do not
urrently supply a
onvenient shell s
ript, but you
an

a
hieve the same e�e
t by running

java -
p plugins/mis
-2.6_1.4.jar de.renew.
all. StubCompiler samples /\

all /A

ount .stub

or similar
ommands. Now the
ommand (the
lasspath has to be entered on one line!)

java
 -
lasspath loader.jar:libs /log4j/log4j-1.2.12.jar: plugins/\
util-2.6_1.5.jar: plugins/mis
-2.6_1.4.jar:plugins/formalism-2.6_1.6.jar:\
plugins /simulator-2.6_1.7.jar samples /
all /A

ount .java

ompiles the Java sour
e resulting in the �le A

ount.
lass.

Be
ause this
ommand is rather long, we provide the s
ript j
ompile for Unix and Win-

dows whi
h in
ludes an appropriate
lasspath to
ompile Renew-related
lasses. Just type

the following
ommand to a
hieve the same result:

j
ompile samples/
all /A

ount .java

We will now use this
lass inside a referen
e net, but it
ould be used in Java
ode just as

well. The only limitation is that the net assigned to this
lass has to be loaded in Renew.

At the moment, Renew does not provide an automati
 net loading me
hanism that would

orrespond to
lass loading in Java. In Fig. 3.19 you
an see the net
ustomer that des
ribes

a
ustomer a

essing a bank a

ount. A new a

ount is
reated, money is deposited, and the

ustomer
he
ks the
urrent savings.

If you load the two nets from the dire
tory samples/
all and start the simulation of net

ustomer, you will see that the �rings of the transitions are no longer sequential. E.g., we

have in the simulation log �le:

...

(3) -------- Syn
hronously --------

(3) Removing [℄ in
ustomer [0℄.
reated

(3) Testing a

ount [2℄ in
ustomer [0℄. a

ount

(3) Firing
ustomer [0℄. deposit

53

Figure 3.19: The net
ustomer

(4) -------- Syn
hronously --------

(4) Removing int (0) in a

ount [2℄. money

(4) Firing a

ount [2℄. deposit

(4) Putting int (500) into a

ount [2℄. money

(3) Untesting a

ount [2℄ in
ustomer [0℄. a

ount

(3) Putting [℄ into
ustomer [0℄. deposited

...

The transition deposit of
ustomer �res at step (3), but at �rst it
an only remove its

input token and test the a

ount referen
e. The output token is not put into the pla
e

deposited before the a
tion ins
ription is
ompleted. This requires the invo
ation of the

method a

.deposit(500). Be
ause this method must perform a syn
hronization, it
annot

omplete immediately. First, the method requests a syn
hronization with transition deposit

of net a

ount in step (4). After that step, the method returns, the a
tion is
ompleted and

a token appears in pla
e deposited.

Note how the individual steps are mixed with ea
h other. Here we have true
on
urren
y

in the simulation, be
ause the method is invoked in the ba
kground in a separate thread

and operates independently of further �rings. In fa
t, a
tions that in
lude a method
all are

always exe
uted in the ba
kground. But often the sear
h for a new binding takes so mu
h

time that the ba
kground thread �nishes long before the next binding is found.

But here we have a method that requires a syn
hronous
ommuni
ation before it
om-

pletes. Su
h methods rely on the simulator thread to �nd a mat
hing
hannel and they

require more than one step in any
ase.

The stub
ompiler re
ognizes the de
laration
lass Name for netinstan
e (without a

spe
i�
 net name) as an alternative to the de
laration given above. Su
h a stub
lass owns

a one-argument
onstru
tor that expe
ts an existing net instan
e to be wrapped by the stub

obje
t. The stub obje
t
an be passed around like any plain Java obje
t. It forwards its

method
alls to syn
hronous
hannels of the wrapped net instan
e as explained above.

It should be noted, however, that there are two obje
ts with individual identities involved

(the stub and the net instan
e). In
ontrast, the for net netname de
laration
reates one

single obje
t only whi
h is both the stub and the net instan
e.

3.9.2 Event Listeners

Nets that implement methods might be useful for designing a graphi
al user interfa
e where

the window system sends events that must be pro
essed by a listener. E.g., a button triggers

a java.awt.event.A
tionEvent that is handled by a java.awt.event.A
tionListener.

publi
 interfa
e A
tionListener

implements java .util. EventListener

{

void a
tionPerformed (java .awt.event. A
tionEvent);

54

}

Of
ourse, a net
ould implement the A
tionListener interfa
e, but there is a
at
h. The

all to an event listener blo
ks the entire Java windowing thread, su
h that no events
an be

pro
essed before the listener
ompletes the method
all. Be
ause further user intera
tions

might be needed to trigger the next simulation step, we might run into a deadlo
k.

To solve this problem, we may denote that a method should return before its syn
hronous

hannels are invoked. The
hannel
alls are then pro
essed in the ba
kground where they

do not blo
k other tasks. Of
ourse this is only possible for void methods, be
ause other

methods must �rst
ompute their return value. We will indi
ate su
h methods with the

keywords break void, suggesting that another thread of
ontrol breaks o� the main thread.

As an example we will
reate nets that display a window with three buttons that grow,

shrink, and
lose it. (A similar exer
ise is given in [18℄.) The interfa
e A
tionListener is

implemented by:

pa
kage samples.
all ;

lass SizeChanger for net size
hanger

implements java .awt.event.A
tionListener

{

SizeChanger (java .awt.Frame frame)

{

this :setFrame (frame);

}

break void a
tionPerformed (java .awt.event.A
tionEvent event)

{

this :putEvent (event);

}

}

The
onstru
tor takes one argument, namely the frame whose size should be
hanged. The

single method is designated break void, so that it
an return before any syn
hronizations are

performed. This stub is
ontained in the �le SizeChanger.stub that resides in samples/
all

along with the nets from Figs. 3.20 and 3.21.

The net buttonmaker is used to
onstru
t the frame with its buttons and the SizeChanger

obje
t. Later on, ea
h mouse
li
k on one of the three buttons results in an event that is

propagated to the size
hanger net. Every event is equipped with a
ommand string that

determines the a
tion to be taken. It is always a good idea to be able to
lose a window,

be
ause otherwise an undue amount of un
loseable windows might a

umulate on the desktop.

3.9.3 Automati
 Generation

A single syn
hronization per method is only appropriate for the most trivial methods, namely

those methods that
an be
ompleted atomi
ally. Most methods will require at least two

syn
hronizations, one to pass the arguments of the
all and one to
olle
t the results. A very

simple s
heme would require the following two
hannel invo
ations.

this :method(arg0 ,arg1 ,arg2)

this :result(return)

When two or more
on
urrent method
alls are allowed, this s
heme breaks up. It be
omes

impossible to mat
h the two syn
hronizations and a
aller might re
eive a result that was

requested by someone else.

Therefore we
onsider a more elaborate s
heme where ea
h method
all is identi�ed by

some method instan
e value.

this :method(instan
e ,arg0 ,arg1 ,arg2)

this :result(instan
e ,return)

55

Figure 3.20: The net buttonmaker

Figure 3.21: The net size
hanger

56

The �rst
hannel provides the arguments to the net and re
eives a method instan
e value

ba
k. We do not spe
ify how this value is
omposed, but it must identify the original
all

uniquely.

In the
ase of a void method it would not be sensible to
ompute a return value, hen
e we

ould leave out the return parameter from the se
ond
hannel invo
ation. It still makes sense

to have the se
ond invo
ation, though, be
ause we usually want to wait for the
ompletion

of the method.

this :method(instan
e ,arg0 ,arg1 ,arg2)

this :result(instan
e)

There is one problem with that solution, namely that methods should be able to throw

ex
eptions. Be
ause ex
eptions in Petri nets are not very well understood, we did not imple-

ment an ex
eption me
hanism right now. It might be added in several ways, none of whi
h

looks entirely satisfying.

A regular stru
ture of the syn
hronization requests suggests that we
ould generate the

stub des
ription �les automati
ally. This is indeed possible using the Unix shell s
ript

makestub that
reates a stub automati
ally. The s
ript needs the name of the
lass to

be generated, the name of the net that is asso
iated to the
lass, and a list of interfa
es that

the
lass should implement.

For makestub the methods that are to be implemented are given only via the list of

interfa
es. This might seem as a limitation, but quite often appropriate interfa
es will be

present and in other
ases they
an be de�ned easily. And even in ordinary Java it is often

helpful to de
lare all publi
 methods in interfa
es.

Assume that Santa's quality assuran
e department determines that the
urrent version of

Santa's bag violates the design rule that bags should implement the java.util.Enumeration

interfa
e. Now a simple
ommand

makestub samples.
all .EnumBag enumbag java .util .Enumeration

reates the �le samples/
all/EnumBag.stub. On some non-Unix ma
hine you might have

to use the
ommand

java -
p plugins/mis
-2.6_1.4.jar: plugins/simulator-2.6_1.7.jar: plugins/\
util-2.6_1.5.jar:. de.renew.
all .StubGenerator samples .
all .EnumBag\
enumbag java .util . Enumeration

whi
h has the same e�e
t, but is a little longer.

Now the stub �le
an be
ompiled as des
ribed in Se
tion 3.9.1, i.e., by
alling

ompilestub samples/
all /EnumBag.stub

j
ompile samples/
all /EnumBag .java

or equivalent
ommands.

Fig. 3.22 shows the net asso
iated to the new stub. After nextElement is invoked, a new

obje
t is
reated that serves as an identi�er for this
all. It is also
he
ked that there are still

items in the bag before pro
eeding. An item is taken out of the bag and passed ba
k. The

result transition
an be shared for both methods, be
ause it simply takes the results from a

pla
e and forwards them through the uplink.

Note that the bags are now �lled by the manufa
turer instead of Santa due to a request

of his worker's union. Hen
e Santa's pro
edure has to
hange, too. In Fig. 3.23 you
an see

Santa distributing the Christmas presents.

Again, all presents are dropped into the boots over time, but now Santa knows when his

bag be
omes empty, so that he
an �y ba
k and feed his reindeer.

There are a
tually a few other ways to implement method
alls on the level of nets. E.g.,

one might
reate a new net instan
e for ea
h method
all and pass the arguments of the
all

to it. This way the net instan
e itself
ould be used to identify the
all and the transitions

57

Figure 3.22: The net enumbag

Figure 3.23: The net enumsanta

58

that handle the
all
ould be moved to another net, thereby leading to a mu
h
leaner design.

The method net instan
e
ould either deposit its result in the
ommon result pool as shown in

the previous example, or the result transition
ould take the result dire
tly from the method

net instan
e by yet another syn
hronous
hannel.

3.10 Additional Ar
 Types

Besides those ar
s that are
ommonly found in Petri net simulators, Renew implements a

ouple of additional ar
 types that are somewhat rarer, but still quite useful. This is done to

a
hieve the maximum usability for di�erent users by providing adequate modeling tools.

It is sometimes argued that these ar
 types violate the spirit of true Petri nets. In some

sense, they do. Test ar
s, too,
arry the stigma of bad
on
urren
y semanti
s. But let's not

ban these extensions so rapidly. They have their uses and they
an simplify
ertain models

onsiderably.

If you are unsure about their theoreti
al foundations, do not use them. No
ompromises

where made in the simulation engine to allow their implementation, so that robustness of

Renew is not a�e
ted.

3.10.1 Flexible Ar
s

Flexible input ar
s and �exible output ar
s were introdu
ed by Reisig in [15℄. They allow

multiple tokens to be moved by a single ar
. Moreover, the token values and even the number

of tokens may vary with the binding of the transition's variables.

In Renew, these ar
s are indi
ated by atta
hing two arrowheads instead of one to the end

of the ar
. In the original arti
le, no su
h distin
tion was made, but instead the �exible ar
s

were indi
ated by the type of the ar
 ins
ription, whi
h is not feasible in the
ase of referen
e

nets. Besides, �exible ar
s do not o

ur that often and they do deserve some spe
ial attention

and highlighting.

The ins
riptions of �exible ar
s must be of an array type. All elements of the array that is

al
ulated from the ar
 ins
ription are su

essively removed from the input pla
e or put into

the output pla
e, depending on the dire
tion of the ar
. If one Java value o

urs multiple

time in the array, an equivalent number of
orresponding tokens will be removed. The order

of the values in the array does not matter.

Arrays are preferred over ve
tors or other
ontainer obje
ts, be
ause they allow the use of

primitive values, whereas ve
tors
an only
arry referen
es to obje
ts. This
an
ause some

in
onvenien
es to the developer, be
ause o

asionally an array is more di�
ult to generate.

In those
ases where it is not feasible to use arrays, Renew support the use of expressions

of the types de.renew.unify.List (see se
tion 3.5 for details) and java.util.Colle
tion.

For output ar
s, it is allowed to use java.util.Enumeration and java.util.Iterator

obje
ts beside those types listed above. But due to the missing type safety, arbitrary values

an be
ontained in these
ontainer obje
ts. Hen
e, output pla
es for �exible ar
s using the

ontainer obje
ts must be untyped.

It should be noted that �exible ar
s do not help the simulator to �nd information about

possible bindings. In some other tools, all possible
ombinations of tokens are tried for

of �exible input ar
s, possibly binding variables ins
ribed to the ar
. This was seriously

onsidered, but the performan
e
ost turned out to be prohibitive. At the same time, the

need for su
h an algorithm was not obvious.

The net from Fig. 3.24, whi
h
an be found in the dire
tory samples/ar
s, illustrates the

use of �exible ar
s. On the left hand side you
an see a
lassi
al way to remove �ve tokens

from a pla
e by looping with an expli
it
ounter. One after another the tokens are
olle
ted

and assigned to an array, whi
h results in a rather
lumsy net stru
ture. Now we
an see the

two kinds of �exible ar
s in a
tion on the right hand side. One transition puts �ve tokens

59

"net"
x

"arc" "transition"

"inscription"

"place"

[new String[5],4]

[a,i][a,i-1]

[a,-1]

[]
aa

a

a a

guard i>=0;

action a[i]=x;

Figure 3.24: The net flexible

onto a pla
e and another transition removes all �ve tokens atomi
ally. The simpli�
ation of

the net diagram is quite obvious.

Currently, �exible reserve ar
s are not supported. They will be added as soon as somebody

points out a useful appli
ation for them. Flexible test ar
s
an be added, too, but even their

graphi
al representation is not obvious right now. In general, we reserve the right to make

some modi�
ation to the handling of �exible ar
s, if some other synta
ti
 or semanti
 variant

proves superior.

The
urrent implementation of �exible ar
s shows in
onsistent behavior when the

ar
 expression does not evaluate to an array or
olle
tion obje
t as explained above.

In su
h
ases, �exible output ar
s fall ba
k to shove the unmodi�ed token into

the output pla
e, while �exible input ar
s do not a
tivate the transition. This is

obviously not a symmetri
 behavior.

In the book [16℄ Reisig applies �exible ar
s to model distributed algorithms. He uses

algebrai
 Petri nets, whi
h are in general not a

essible for Renew. However, in the given

ontext only very spe
i�
 algebras are used, namely those that represent
ommuni
ation

topologies in a distributed system.

Therefore it is possible to implement an interfa
e Topology that
aptures the signature

of the most
ommon algebrai
 operations and spe
ialized
lasses that implement some useful

topologies, like RingTopology, StarTopology or LineTopology. If further topologies are

needed, new
lasses
an easily be added, say for hyper
ubes or meshes.

[x,z]

[x,y]

[]

t.pairs(t.nodes())

t

guard z>y

t

guard z<=y

t.prod(t.neighbors(x),y)

[x,y]

[x,y]

new UnionTopology(

 x=new StarTopology(8),

 new InverseTopology(x))

[x,y]

pending

import samples.reisig.*;

[x,z]

[x,z]

Figure 3.25: The net ele
tion

60

:show(3,n)

on

"?"

:show(4,n)

on

"?"

:show(6,n)

on

"?"

:show(7,n)

on

"?"

:show(5,n)

on

"?"

:show(8,n)

on

"?"

:show(1,n)

on

"?"

:show(2,n)

on

"?"

:show(0,n)

on

"?"

0

1

2

3

4

5

6

8

[x,z]

[x,z]

[x,y]

[]

t.pairs(t.nodes())

t

t.prod(t.neighbors(x),y)

[x,y]

[x,y]

new UnionTopology(

 x=new StarTopology(8),

 new InverseTopology(x))

[x,y]

pending

import samples.reisig.*;

this:show(x,y)

guard z<=y

guard z>y

7

[x,z]

t

Figure 3.26: The net visualele
tion

The net from Fig. 3.25 shows a simple algorithm that determines a global leader within a

network of pro
essors that
an only
ommuni
ate lo
ally. The green net elements
onstitute

the
ore algorithm as presented in [16℄. Additional yellow net elements
are for the initializa-

tion pro
ess. You
an see the
olors when you load the net from its dire
tory samples/reisig.

In your nets, too, the use of
olor might improve the nets' presentation.

In this example, a star topology is used. By default, a star topology is dire
ted, but in

this
ase we add the inverse to the original topology, so that a symmetri
 topology arises.

Flexible ar
s are used to send messages to all neighboring ar
s whenever a possible new leader

has to be announ
ed.

Fig. 3.26 shows the same net, but augmented by a visualization
omponent. For every

node of the
ommuni
ation network there is a pla
e that is marked with the node of best

urrently known priority. Transitions with syn
hronous
hannels, whi
h are lo
ated in the

lower part of the drawing, are used to sort the information into the various pla
es. Virtual

pla
e
opies, depi
ted by doubly lined
ir
les on the right hand side, are arranged a

ording

to the used topology, so that the topology be
omes immediately obvious. Of
ourse, it is now

harder to try di�erent topologies, but this kind of visualization is quite e�e
tive in
lassroom

demonstrations.

3.10.2 Clear Ar
s

Clear ar
s are used to remove all tokens from a pla
e. They are typi
ally applied to reset

the state of the net to a well-de�ned marking. [12℄ gives some thoughts on
lear ar
s and on

many other ar
 types.

In order to use this ar
 type, you need to sele
t the extended sequential mode as des
ribed

61

in Subse
tion 2.6.4.

A
lear ar
 is indi
ated by a double arrow tip atta
hed to the transition's end of the ar
,

where the arrow tip is hollow, i.e., �lled with the ba
kground
olor. It need not be ins
ribed.

If it is ins
ribed, it must be ins
ribed with a single variable that is either untyped or that has

an array type. In the latter
ase, all the tokens in the pla
e are put into an array and the

variable is bound to the array.

Note that the binding o

urs only during the �ring, i.e., as though the variable was

assigned in an a
tion statement. Hen
e you
annot use the variable of a
lear ar
 for other

input ar
 ins
riptions or for guards. However, you
an use the variable for output ar
s. This

is very useful in
onjun
tion with a �exible output ar
, when you want to move all tokens

from one pla
e to another.

The net from Fig. 3.27 shows the basi
 algorithm of a juggler who wants to earn a few
oins

in a
rowded mall. He waits for spe
tators to
ome along and does a few tri
ks now and then.

This makes all spe
tators who were previously waiting happy and everybody
ontributes a

�ver. Try to load the net from the dire
tory samples/ar
s and play around with it.

In the net implementation, note that the variable x is bound to an array that holds all

tokens of the pla
e waiting during the �ring of the transition. We use the array to move

all the tokens to another pla
e. The array
an also be used in ordinary Java
omputations,

if desired. But be
ause the set of tokens is determined only during the transitions �ring, a

variable atta
hed to a
lear
an only be used in an a
tion ins
ription, but not in guards, in

other transition ins
riptions, or in ar
 ins
riptions.

A
lear ar
 takes e�e
t after all other input ar
s have been evaluated. This means that

you
an remove some tokens from a pla
e using ordinary ar
s and then remove the remaining

tokens with a
lear ar
. In the given net, you may use this feature by adding an ordinary

ar
 from the pla
e waiting to the transition perform. This way, the juggler only starts his

business when there is at least one spe
tator.

0

newmoney money

arrive waiting
x x

happy

money

action newmoney=

 money+5*x.length

perform

Figure 3.27: The net juggler

3.10.3 Inhibitor Ar
s

Inhibitor ar
s make sure that a token of a
ertain kind is not in a pla
e. They are used to

represent boolean
onditions with simple bla
k tokens when it is required to
he
k for the

inverse
ondition, too. They are also used to delay
ertain a
tions until a system is idle and

to wait until the end of a loop.

In order to use this ar
 type, you need to sele
t the extended sequential mode as des
ribed

in Subse
tion 2.6.4.

Some varieties of inhibitor ar
s were suggested in the literature, see [6℄ and [12℄ for a

re
ent approa
h and [4℄ for a
onsideration of
on
urren
y issues. The papers also give

further referen
es. The formalism presented here is less general than that presented in [6℄,

but on the other hand we do not require that the pla
e asso
iated to the inhibitor ar
 is

bounded by a
apa
ity.

An inhibitor ar
 is represented by a
onne
tion with a �lled
ir
le on ea
h end in Renew.

Some other formalisms highlight only one of the line's ends, but we prefer the symmetri

62

appearan
e be
ause it emphasizes that no
hanges to the
urrent marking are performed by

inhibitor ar
s.

An inhibitor ar
 may be ins
ribed just like an ordinary input ar
. An inhibitor ar
,

however, does not
ontribute any information about possible bindings to the simulator, i.e.,

all variables used in the ins
ription must be determined by other ins
riptions.

It is not possible to inhibit whole groups of token values, e.g., to make sure that no tuples

whose �rst
omponent is a given value are
ontained in a pla
e. But this
an usually be

simulated by providing a se
ond pla
e that stores only the �rst
omponents of the tokens and

that is updated
onsistently with the original pla
e.

"rnw"
"sha"

"ps"

"java"

type type

type type

known unknown

Figure 3.28: The net filetypes

In Fig. 3.28 a typi
al use of inhibitor ar
s is shown. In the pla
e at the top, a �letype is

given and the system has to de
ide whether this is a known �le type. All known �le types

are supposed to be registered in the pla
e at the lower
enter. Now the left-hand transition

sele
ts the known �le types, whereas the right-hand transition
an only �re if the �letype is

not
ontained in the
enter pla
e. Using ordinary Petri nets it is rather di�
ult to express

su
h a
onstraint.

Note, however, that inhibitor ar
s la
k a robust
on
urren
y semanti
s, so that they have

to be used with the extended sequential mode as des
ribed in Subse
tion 2.6.4.

3.11 Timed Nets

While pure Petri nets
apture the
ausality and
on�i
t situations of a system ni
ely, there are

reasons to add a notion of time to the formalism in order to model additional dependen
ies.

This is espe
ially true in the
ase of simulations of physi
al systems.

To enable timed simulations, two options need to be
on�gured. The usual Java
om-

piler
omplains about time ins
riptions, you have to
hoose the Timed Java Compiler in the

Formalismsmenu (see se
tion 4.3.6) or with the setFormalism
ommand (see se
tion 2.7.4).

Timed nets
an only be simulated in the sequential simulation mode as des
ribed in subse
-

tion 2.6.4. For your
onvenien
e, the sequential simulation mode is enabled automati
ally

when you
hoose the Timed Java Compiler in the editor.

In timed mode, a time stamp is atta
hed to ea
h token. It denotes the time when the

token be
omes available. Delays may be used with ar
s in order to
ontrol the time stamps

of token and the �ring times of transitions.

A delay is added to an ar
 by adding to the ar
 ins
ription the symbol � and an expression

that evaluates to the number of time units. E.g., x+1�t indi
ates that the token value x+1

has to be moved after t time units. Input ar
s
an require that a token remains available for

a given time before enabling the transition. For input ar
s, the delay must not be
reated

by a random number generator or depend on the result of an a
tion ins
ription. However,

an input ar
 delay may depend on token values and indeed on the value of the delayed input

token itself, whi
h means that [x,t℄�t would be a legal, although somewhat pe
uliar ar

ins
ription.

63

Output ar
s
an spe
ify that a token is only available after some time. The output ar

delay may be
al
ulated in an a
tion and it may be a random number. The output ar

delay
annot in�uen
e the enabling of a transition, but only the timestamps of the generated

tokens. Reserve ar
s
an spe
ify an output ar
 delay. The input ar
 delay is always zero, the

token is
onsumed at the
urrent time.

Test ar
s
annot spe
ify a time. They
an only a

ess
urrently available tokens. They

put the token ba
k with the original time stamp. Clear ar
s
annot spe
ify a time. They

remove all tokens, regardless of the time stamp. Inhibitor ar
s
annot spe
ify a time. They

blo
k on all tokens, regardless of the time stamp. Flexible ar
s
an remove only
urrently

available tokens.

[x,true]

x

x

x

xx@1

x

waiting for

customs

x

ship

counter

[x,false]

x

x x@5

[]@5

next

ship

[x,Math.random()<0.2]

no unloading

required

unloading required

[]@1

[]

check

[];[]

x

x

x

delivered goodsload ship

x+1@Dist.

 negexp(2)

1

check
waiting

truck departsfinish unloading

[];[];[]

goods on truck

ship arrived

import de.renew.util.Dist;

x

start

unloading
x@Dist.

 negexp(6)

checked chief officerofficers
craneunloading

x@3 x@1

empty ship

Figure 3.29: The net port

In Fig. 3.29 you
an see an example model of a sea port where ships arrive and are

unloaded. The loading of the ships is not displayed. At the upper left hand
orner, you

an see that new ships are
reated, ea
h ship being numbered a

ordingly. Probabilisti
ally

it is determined whether the ship needs unloading. If yes, the ship is unloaded and the

ustoms de
larations are
he
ked
on
urrently. The ship is unloaded by one of three
ranes,

where the unloading takes six hours on average with a negative-exponential distribution. Two

ustoms o�
ers handle de
larations in three hours, but they need another two hours for �ling

afterward. If a de
laration is not handled for at least �ve hours, the
hief
ustoms o�
er

helps pro
essing the forms. He does not look very
arefully and needs only one hour in total.

With the good and the signed
ustoms forms, a tru
k may leave the port. After another hour

of
leaning up, the ship may be reloaded.

Note how we use a reserve ar
 to model a resour
e that is unavailable during some time.

An input ar
 delay was used to prioritize the ordinary
ustoms o�
ers over the
hief o�
er

and to for
e the
hief o�
er into a
tion at the right time.

You might want to try to add di�erent unloading times to the three
ranes. Try to model

the loading of the ship. Consider partial unloading of ships. Try to
onvert the net to an

obje
t-oriented design, where the port, the
ranes, the ships, and the o�
ers are all individual

nets that
ommuni
ate via syn
hronous
hannels.

3.12 Pitfalls

A few
ommon and espe
ially dangerous pitfalls will be dis
ussed in this se
tion.

64

3.12.1 Reserve Ar
s and Test Ar
s

Reserve ar
s and test ar
s look alike, be
ause they do not
hange the marking of the asso
iated

pla
e. This
an lead to subtle modeling errors.

["Smith","Smith"]

[author,editor]

this:getAddress(author,

 authorAddr)

this:getAddress(editor,

 editorAddr)

authotAddr

editorAddr

:getAddress(name,addr)

["Smith","42 Petri Avenue"]

["Jones","117 Java Park"]

["Miller","10 Renew Street"]

[name,addr]

Figure 3.30: The net reserve

The net from Fig. 3.30, whi
h is �led in the dire
tory samples/pitfalls, shows a small

ex
erpt of a work�ow when a printing error is found in an arti
le in a book. The desired e�e
t

is to lookup the address of both author and editor, so that they
an be sent a noti�
ation. The

modeler wanted less net elements, therefore both lookups were done by a single transition.

However, the database a

ess is done with a reserve ar
, so that this pro
edure fails when

author and editor
oin
ide. In this
ase, it would have been better to use a test ar
, be
ause

there is no need to reserve the information in the database. This error, whi
h is not the

only one in the net, is espe
ially di�
ult to dete
t be
ause it is hidden behind a syn
hronous

hannel invo
ation.

Use test ar
s to a

ess information, use reserve ar
s to a

ess physi
al items or logi
al

resour
es.

3.12.2 Unbound Variables

The main task of the simulation engine is to �nd bindings of the variables under whi
h a

transition be
omes a
tivated. However, the simulation engine never tries to bind variables

blindly to all possible values, e.g., trying -2147483647, then -2147483646, then -2147483645,

until a binding of an integer variable is found. Instead, variables that o

ur as ins
riptions

to input ar
s are bound to the values that o

ur as tokens in the
orresponding pla
es.

This leads to an important design rule: Always make sure that the bindings for all variables

an be determined by binding input ar
 variables to tokens. Remember that the simulator

does not evaluate expressions ba
kward. Remember that �exible ar
s do not
ontribute to

variable bindings.

If the simulation engine does not manage to bind a variable in this way, it simply gives up

and de
lares the transition disabled. In some other Petri net formalisms, unbound variables

are used as a sort of random generator. While this may be a good idea sometimes, it is not

di�
ult to simulate this behavior by a dire
t
all to a random number generator.

Closely related are spelling mistakes for variable names. In the untyped formalism every

identi�er is a legal variable name, therefore many spelling mistakes
annot be dete
ted. Often

this leads to unbound variables and
ompletely disabled transitions, although all tokens seem

to be in pla
e. In fa
t, Fig. 3.30
ontains su
h an error, be
ause in one pla
e authorAddr is

misspelled as authotAddr.

3.12.3 Side E�e
ts

It has already been noted that side e�e
ts must only o

ur in a
tion ins
riptions. However,

there is another tri
ky point: The enabledness of a transition must not depend on a mutable

65

property of a Java obje
t.

buffer=

 new StringBuffer()
buffer

buffer.append("!")

guard buffer.length()>10
buffer[]

buffer

buffer

Figure 3.31: The net buffer

In Fig. 3.31 we have a net whose modeler is guilty on both a

ounts. It was intended

to have a string that grows and grows and that some other transition should �re as soon as

the length of the string ex
eeds 10. But if you run the net, you will �nd out that the upper

right transition never �res. Or at least it is very improbable that it �res. This is be
ause it

is
he
ked for enabledness early on, while the string length is still 1 or 2. Afterward it is not

re
he
ked, be
ause its input pla
e did not
hange its marking.

It is also possible that the length of the string in
reases by 2 during some
y
les. How

an that be? The
all to append is not
ontained in an a
tion, so that
ould be evaluated

on
e during the sear
h for a binding and on
e during the a
tual �ring. Note that this is a

relatively harmless s
enario.

3.12.4 Boolean Conditions

The standard way of ensuring the equality of two expressions is the transition ins
ription

expr1=expr2. But note that the ins
ription expr1!=expr2 does not lead to inequality. It is

merely a boolean expression that is evaluated and whose result is dis
arded. If you want to

spe
ify inequality, you have to use a guard like guard expr1!=expr2.

3.12.5 Custom Classes

It is often sensible to en
apsulate
omplex operations in helper
lasses that are asso
iated

with a net. In this way, it is possible to keep the nets free of unneeded detail. Of
ourse, the

helper
lasses need some
hanges o

asionally and have to be re
ompiled.

If the helper
lass was already used in the simulator at the time of re
ompilation, e.g. in a

previous simulation run, then the Java virtual ma
hine will not load it again. Instead it will

ontinue to use the old version of the
lass. To reload new
lasses, you either have to
lose

and restart Renew entirely or use the
lass reinit mode as des
ribed in subse
tion 2.6.5.

3.12.6 Net Stubs

A net stub (see 3.9) is
reated with the name of its asso
iated net. At runtime the net stub

tries to �nd a net with this name, but it will only su

eed if the net is already
ompiled or

if the net is a

essible through the net loader (see se
tion 2.6.6). If not, the
onstru
tor will

throw an unquali�ed RuntimeEx
eption.

When using a stub de
lared with for net netname , it is important that the stub obje
t is

reated instead of the net instan
e itself. This means that the net should not be instantiated

by the usual :new ins
ription. The
onstru
tor of the stub
lass must be used be
ause

su
h a stub is not able to wrap an existing net instan
e. The alternative de
laration for

netinstan
e allows wrapping of net instan
es, but
reates a se
ond obje
t.

Calls to stub methods or the stub
onstru
tor should be en
apsulated in a
tion in-

s
riptions be
ause these methods
annot terminate until the simulation step needed for the

involved
hannel syn
hronization is
ompleted. The simulator may hang if stub methods are

66

exe
uted outside of a
tions. (This note applies espe
ially to those
ases where a net
alls a

Java method whi
h in turn
alls a net stub.)

3.12.7 Exe
ution of syn
hronized Java Code

This
omes
lose to the exe
ution of methods with side e�e
ts. The side e�e
t of a syn
hro-

nized method or
ode blo
k is that it delays the exe
ution of other threads. This
an lead

to a deadlo
k when the thread of the simulation engine has to wait in a monitor for another

thread whi
h
annot �nish without the simulation thread (if you are asking how to produ
e

su
h a
onstellation: Call a net stub from syn
hronized
ode, for example).

There are two ways how to avoid the problem:

• Do not use syn
hronized Java
ode. Every time you would need syn
hronization,

model it expli
itly with nets. This way you are able to see the problem, if one o

urs.

• When
alling a syn
hronized method, make the
alling ins
ription an a
tion ins
rip-

tion. So the simulation engine is out of danger of waiting in a Java monitor during

the sear
h for bindings. If you are using the default
on
urrent simulator, it stays

alive and is able to
ontinue its work. It still
an happen that the exe
ution of the

a
tion ins
ription hangs, but then the responsible transition is highlighted and
an be

identi�ed.

3.12.8 Case of Class and Variable Names in Untyped Nets

The ins
ription language of Java referen
e nets is
ase sensitive. However, if you
reate

untyped nets (without any variable de
laration in the de
laration node), there might be an

ex
eption � depending on the operating system you are using.

In untyped nets, Renew has to guess whether a parti
ular identi�er denotes a
lass or

a variable. It does so by
he
king for
lasses with a mat
hing name in the
on�gured
lass

loader, whi
h in turn looks up all �le lo
ations in the
lass path. On operating systems with

a
ase-insensitive �le system (e.g. Windows), the
lass loader might �nd a
lass that mat
hes

the queried name ex
ept for the
ase. Renew then reports a
lass with a linkage problem

referring to a NoClassDefFoundError (or similar).

The problem o

urs espe
ially when you use
lass and variable names that di�er only in

ase. Although this is a

eptable in nets with expli
it variable de
larations, you should avoid

this te
hnique in untyped nets.

67

Chapter 4

Using Renew

Renew o�ers a graphi
al, user-friendly interfa
e for drawing referen
e nets and auxiliary

graphi
al elements. The net editor
ontained within Renew is based upon a Java library

alled JHotDraw [8℄. The basi
 drawing
apabilities are mainly taken over from JHotDraw,

while the multi-windowing GUI, the net editor �gures and tools, and the image �gure tool

have been implemented by the Renew team. Still, this manual
overs a
omplete des
ription

of all drawing and editing
apabilities Renew o�ers.

4.1 Basi
 Con
epts

When working with Renew, you edit so-
alled drawings. A drawing
onsists of many drawing

elements,
alled �gures. Ea
h drawing is displayed in a separate drawing window. Sin
e

you are expe
ted to work on many di�erent drawings and thus have many di�erent windows

open at the same time, it would
onsume lots of valuable desktop spa
e to repeat a menu

bar and tool buttons in every window. To avoid this, all
ommands have been grouped into

one
entral window, the Renew window, whi
h
ontains a menubar, a toolbar and a status

line (see �gure 4.1). This might seen a bit unfamiliar for Ma
 users, but is related with the

platform independen
e of Java.

The short
ut Ctrl+M a
tivates the
entral Renew window and brings it on top of all other

windows. This key is useful if you are working with many large drawing windows, these

buried the
entral window and you need a

ess to the menu bar or tools.

Figure 4.1: The Renew Window

There is always one a
tive drawing window. Sele
ting a pull-down menu invokes a
om-

mand whi
h a�e
ts the a
tive window, its drawing, or a sele
tion of �gures of that drawing,

unless it has a global e�e
t only. Examples of menu
ommands are saving or loading a do
u-

ment or
hanging attributes of �gures. The menu
ommands are explained in Se
tion 4.3. On

the other hand, the toolbar is used for sele
ting a
urrent tool. With a tool you
an
reate or

edit
ertain kinds of �gures in a drawing. All tools available in the toolbar are dis
ussed in

Se
tion 4.2. Sin
e ea
h tool (but the sele
tion tool) is related to a
ertain type of �gures, the

68

orresponding �gure type is also explained in that se
tion. To manipulate �gures, handles

are used. Handles are small squares or
ir
les that appear at spe
ial points of a �gure when

the �gure is sele
ted. Dragging and (double-)
li
king handles has varying e�e
ts, depending

on the kind of �gure and handle. Handles are also explained in the
orresponding �gure's

se
tion.

Renew

2.6

We now provide a zooming feature, whi
h
an be triggered using keyboard short
uts

(Ctrl and +/- to zoom in/out) or by using the mousewheel while pressing Ctrl

(Ctrl+Mousewheel up to zoom in and Ctrl+Mouswheel down to zoom out). The

zoom fa
tor
an be resetted with Ctrl+0.

To �nd out how to install Renew, refer to Se
tion 2.4. You should then be able to start

Renew from the
ommand line, just typing renew (or loadrenew), or using a program i
on

you
reated, depending on your operation system.

You
an also provide some drawings' �le names as
ommand line parameters. After typing

renew, just provide the (path and) name of one or more �les, in
luding the extension .rnw,

e.g.

renew MyNet.rnw some /where/OtherNet .rnw

On start-up, Renew tries to load drawings from all spe
i�ed �les. On Unix systems, you
an

even use

renew some /where/*.rnw

to load all drawings in a dire
tory.

If you have a program i
on that is asso
iated
orre
tly, your OS usually also supports

double-
li
king some .rnw �le or using drag & drop.

In the rare
ase that Renew terminates abnormally, it should leave an autosave �le for

ea
h modi�ed net drawing. Autosave �les are typi
ally updates every two minutes. You
an

dete
t an autosave �le by its �le extension .aut. Whenever possible, the �lename is derived

from the main drawing's �le name by removing the old name extension .rnw and adding

.aut. If su
h a �le exists already, a random �le name of the form rnw99999.aut with an

arbitrary number is
hosen. In order to re
over an autosave �le, simply rename it, so that it

re
eives the .rnw extension.

Renew also leaves .bak �les that
onstitute the last version of the �le that Renew loaded.

Unlike autosave �les, these �les are overwritten during subsequent runs of Renew.

4.2 Tools

In the toolbar, several tool buttons are displayed, whi
h
an be sele
ted by
li
king on them.

The tool buttons are grouped in two or more toolbars (depending on the mode of Renew).

When resizing the Renew window, toolbars are wrapped a

ording to the size of the window.

The standard toolbars are the drawing toolbar and the Petri net toolbar. More toolbars
an

show up based on the
hosen formalism.

Ea
h single toolbar
an be put into its own window by
li
king at the spot on the left

of the toolbar. Figure 4.2 shows the Petri net toolbar in a separate window. If a toolbar

window is
losed, the toolbar is returned to the Renew window.

Figure 4.2: The Petri Net Toolbar in its own Window

69

At any point in time, exa
tly one tool of all toolbars is sele
ted, whi
h appears pushed

down. By default, a spe
ial tool, the sele
tion tool, is sele
ted, whenever the work with the

urrent tool is �nished.

If you double-
li
k a tool button, the tool will remain a
tive until you expli
itly sele
t

another tool or right-
li
k on an empty spot in the drawing. This repla
es the menu Toggle

Sti
ky Tools from the Edit menu. In general, double-
li
king tools is most useful during

the initial
reation of nets (but there are also other, probably more elegant ways) and the

normal sele
tion is more apt to later modi�
ation stages. But of
ourse, whi
h way to use

tools also depends on your personal preferen
es.

In the status line in the Renew window, a short des
ription of the tool is displayed if you

move the mouse pointer over a tool button. All other tools but the sele
tion tool are used

to
reate a
ertain type of �gures. Some of the tools
an also be used to manipulate already

existing �gures of the
orresponding type.

4.2.1 The Sele
tion Tool

The sele
tion tool is the most basi
 tool and is not related to any spe
ial �gure type. Instead,

any �gure or group of �gures
an be sele
ted and moved using this tool. If not otherwise

noted, when talking about pressing a mouse button, the primary mouse button is meant.

If the sele
tion tool is the
urrent tool, the following user intera
tions are possible:

Sele
t By
li
king on a �gure, it be
omes sele
ted. A sele
ted �gure
an be re
ognized by

its visible handles. Depending on the type of �gure, di�erent handles appear, but in all

ases, some handles will appear. There are even non-fun
tional handles, whi
h are just

there to show that a �gure is sele
ted and do not have any additional (manipulation)

fun
tionality. If another �gure is sele
ted, the
urrent �gure be
omes desele
ted. To

lear the
urrent sele
tion,
li
k inside the drawing, but not on any �gure.

Add to Sele
tion If the shift key is pressed while
li
king on a �gure, the �gure is added

to or removed from the
urrent sele
tion, depending on its sele
tion status. This way,

a group of obje
ts
an be sele
ted, whi
h is
onvenient or even required for some
om-

mands.

Area Sele
tion If the mouse button is pressed inside a drawing, but not inside any �gure,

the area sele
tion mode is a
tivated after a short delay. The starting point marks one

orner of a �rubber band� re
tangle. While the mouse button is held down, the other

orner of that re
tangle
an be dragged by moving the mouse. When the button is re-

leased, all �gures that are
ompletely inside the re
tangle area are sele
ted. Combining

this with the �Add to Sele
tion� fun
tion is possible.

Inspe
tion. Some �gures have an additional inspe
t fun
tion that is invoked by double-

li
king them, whi
h displays some additional information of the �gure without modi-

fying it. E.g., all
onne
ted text �gures (see Se
tion 4.2.2: The Conne
ted Text Tool)

sele
t their parent during inspe
tion.

Dire
t Modi�
ation Some �gures have an additional dire
t manipulation fun
tion that is

invoked by
li
king on them with the right mouse button. E.g., all text �gures swit
h

into edit mode.

Dragging If the mouse button is pressed inside a �gure and held down, the drag mode is

a
tivated. All �gures that are
urrently sele
ted are moved until the mouse button is

released. An advan
ed feature of dragging is that it is possible to
hange a �gure's

parent. For more information on this fun
tion, see Se
tion 4.2.2: The Conne
ted Text

Tool.

70

type of �gure double
li
k right
li
k

re
tangle, ellipse, . . . sele
t
hildren sele
t/drag

text sele
t text edit

onne
ted text sele
t parent text edit

transition sele
t
hildren atta
h ins
ription :s()

pla
e sele
t
hildren atta
h ins
ription [℄

virtual pla
e sele
t asso
iated pla
e atta
h ins
ription [℄

ar
 sele
t
hildren atta
h/edit ins
ription

de
laration sele
t text edit

ins
ription, name, label sele
t parent text edit

transition instan
e open binding window �re arbitrary binding

pla
e instan
e sele
t marking open
urrent marking window

ardinality marking sele
t pla
e instan
e show token marking

token marking sele
t pla
e instan
e show
ardinality marking

Table 4.1: Summary of sele
tion tool operations

Stepwise Movement You
an use the
ursor movement keys on the keyboard to move

sele
ted �gures upward, downward, leftward or rightward in steps of one pixel. If no

�gure is sele
ted, the
ursor keys s
roll the viewable area of the drawing in its window.

By holding the shift key during
ursor movement, sele
ted �gures are moved in steps

of 10 pixels.

Manipulating Depending on the kind of sele
ted �gure, handles are displayed at spe
ial

points within the �gure. Using these handles, a �gure
an be manipulated. The di�erent

types of handles are dis
ussed in Se
tion 4.2.2 in the subse
tion of the
orresponding

�gure's tool.

Open Target Lo
ation If the
ontrol key is pressed while
li
king on a �gure, the tar-

get lo
ation of the �gure (if set) is opened (see the subse
tion of the target tool in

Se
tion 4.2.2 for details).

To move a single �gure, it is
ru
ial not to hit a �gure's handle, otherwise the handle's

fun
tion is invoked instead of moving the �gure(s). When more than one �gure is sele
ted,

the handles of all sele
ted �gures are shown but have no e�e
t. To a
tually use the handles,

you have to sele
t exa
tly one �gure. The easiest way to do so is to
li
k on an empty spot

in the drawing and then sele
t the �gure you want to manipulate.

If you move outside a drawing window while operating with the mouse (i.e. while the

mouse button is held down), the viewable area of the drawing is s
rolled until the drawing

bounds are rea
hed. If you are dragging a �gure or handle downward or rightward beyond the

urrent drawing bounds, the bounds are pushed forward until you either release the button

or move the mouse ba
k into the window.

In Table 4.1 we summarize the a
tions of the inspe
tion and dire
t manipulation fun
tions

for all �gures. The a
tions asso
iated to the di�erent �gures are explained in more detail in

the se
tion that do
uments the
orresponding tool. Some of the entries in the table refer to

the simulation mode, whi
h will be explained in more detail in Se
tion 4.3.6.

4.2.2 Drawing Tools

Renew provides several drawing tools whi
h
reate and manipulate drawing �gures. These

drawing �gures do not have any semanti
 meaning to the net simulator, but may be used

for do
umentation or illustration purposes. You may la
k some fun
tions that you are used

to from your favorite drawing tool (like adjusting line width and su
h), but remember that

Renew is a Petri net tool, not a drawing tool in the �rst pla
e.

71

The Re
tangle Tool

The re
tangle tool is used for
reating new re
tangle �gures. Press the mouse button at the

point where the �rst
orner is supposed to be and drag the mouse to spe
ify the opposite

orner while holding down the mouse button. While dragging, you
an already see the

re
tangle's dimension and lo
ation whi
h is
on�rmed as soon as you release the mouse

button.

After a new �gure has been
reated, the new �gure is not automati
ally sele
ted. To

do so, just
li
k on the �gure with the sele
tion tool (see Se
tion 4.2.1). Now, the �gure's

handles appear. In the
ase of a re
tangle or ellipse �gure, these are sizing handles whi
h

are displayed as small white boxes at the
orners of the �gure. These handles let you
hange

the dimension (and lo
ation) of a �gure after you
reated it. Depending on the position

of the handle, only
ertain
hanges are allowed. For example, the �east� sizing handle only

allows to
hange the width of a �gure, while maintaining the lo
ation of the left side, and

the �south-west� sizing handle only lets you relo
ate the lower left
orner of a �gure, while

maintaining the lo
ation of the upper and right side. The �south-east� handle restri
ts itself

to sizes of equal height and width (squares) as long as the
ontrol key is pressed. With the

shift key pressed, the �south-east� handle restri
ts itself to
onstrain the proportions. The

ontrol key
an also be used as a modi�er while you are working with the re
tangle
reation

tool (and many other �gure
reation tools).

All newly
reated �gures have a bla
k outline and aquamarine as the �ll
olor (if there is

any). To
hange these attributes, use the Attributes menu (see Se
tion 4.3.4).

To
reate �gures with the same attributes as an existing �gure, use
opy & paste

(see Se
tion 4.3.2).

The Round Re
tangle Tool

The round re
tangle tool works the same way as the re
tangle tool (see above), only that

the
reated �gure is a box with rounded
orners. A round re
tangle �gure has the same

handles as a re
tangle �gure plus an additional single round yellow handle to
hange the size

of the
urvature. Drag this handle and
hange your round re
tangle to anything between a

re
tangle and an ellipse.

The Ellipse Tool

The ellipse tool works the same way as the re
tangle tool (see above), only that ellipses are

reated within the given re
tangle area. An ellipse �gure has the same handles as a re
tangle

�gure.

The Pie Tool

The pie tool works the same way as the re
tangle tool (see above), only that segments of

ellipses are
reated within the given re
tangle area. A pie �gure has the same handles as

a re
tangle �gure, with two additional �angle� handles that are small yellow
ir
les. The

�angle� handles
ontrol start and end of the ar
 segment that frames the pie. By pressing the

ontrol key while dragging these handles around, their movement
an be restri
ted to steps

of 15 degrees. If a pie's �ll
olor is set to �none�, it displays as an open ar
 segment instead

of a
losed pie.

The Diamond Tool

The diamond tool works the same way as the re
tangle tool (see above), only that diamonds

are
reated within the given re
tangle area. A diamond �gure has the same handles as a

re
tangle �gure.

72

The Triangle Tool

The triangle tool works the same way as the re
tangle tool (see above), only that triangles are

reated within the given re
tangle area. A triangle �gure has the same handles as a re
tangle

�gure, with an additional �turn� handle that is a small yellow
ir
le. This handle lets you

hoose the dire
tion the triangle points to, whi
h is restri
ted to one of the
enters of the

four sides or one of the four
orners.

The Line Tool

The line tool produ
es simple lines that are not
onne
ted (see also the next se
tion: The

Conne
tion Tool). Creating a line is similar to
reating a re
tangle: Press the primary mouse

button where the starting point is supposed to be and drag the mouse to spe
ify the end

point while holding down the mouse button.

The line �gure has two sizing handles (small white boxes) in order to let you
hange

the starting and end point afterward. It also has an intermediate point as des
ribed in

Se
tion 4.2.2: The Conne
tion Tool.

A line �gure has no �ll
olor, but it respe
ts the pen
olor (see Se
tion 4.3.4).

The Conne
tion Tool

This tool lets you
reate
onne
tions (ar
s) between other �gures. A
onne
tion is like a line,

ex
ept that it
onne
ts two existing �gures and is automati
ally adapted every time one of

the
onne
ted �gures
hanges.

Consequently, the lo
ation of pressing down the mouse button does not spe
ify a starting

point, but a starting �gure. Again, the mouse button has to be held down while dragging the

end point of the
onne
tion. If an appropriate �gure is found under the mouse button, the

end point �snaps� into this �gure's
enter. This �gure is
on�rmed as the end point �gure as

soon as you release the mouse button. The
onne
ting line always is �
ut o�� at the outline

of the start and end �gure, so that it just tou
hes their borders.

A
onne
tion
an be re-
onne
ted using its green square
onne
tion handles. Just drag

one of these handles to the new start or end �gure. If you release the mouse button while

the
onne
tion is not �snapped� into a new �gure, the
onne
tion will jump ba
k into its old

position.

An advan
ed feature is to produ
e intermediate points (or �pin-points�) in a
onne
tion.

When sele
ted,
onne
tion �gures show additional insert point handles to
reate new inter-

mediate points in the middle of ea
h line segment. These are depi
ted as small
ir
les with

a
ross (plus-sign) inside. When you
li
k on an insert point handle, a new lo
ation handle

(see below) is
reated within the given line segment and
an immediately be moved. By

holding Ctrl while pressing, holding and dragging an intermediate point you
an orient the

two emerging line segments in a right angle.

A di�erent method to
reate and delete intermediate points is to use the
onne
tion tool.

A
tivate the tool and
li
k on a point on the
onne
ting line. Now, a new lo
ation handle

(white square) is
reated, whi
h you
an see the next time you sele
t the
onne
tion �gure.

This handle
an be dragged to an arbitrary position.

When you hold down the
ontrol key while moving a lo
ation handle, the intermediate

point jumps to the
losest position so that the adja
ent line segments form a right angle.

You
an also keep the mouse button pressed down right after
li
king on an intermediate

point and drag the new handle immediately (without a
tually having seen the handle itself).

If you want to get rid of a pin-point, simply sele
t the
onne
tion and double-
li
k the

asso
iated handle. Another (more
ompli
ated) way to remove intermediate points is to

sele
t the
onne
tion tool and
li
k on the intermediate point with the left mouse button.

If you move two �gures, a straight
onne
tion is automati
ally moved with them.

But if the
onne
tion has intermediate points, these stay at their old lo
ation. So-

73

lution: Just sele
t the
onne
tion itself additionally, and everything will move to-

gether.

The Elbow Conne
tion Tool

The elbow
onne
tion tool establishes a
onne
tion between two �gures just like the
on-

ne
tion tool. The di�eren
e is that an elbow
onne
tion does not draw a dire
t line from

one �gure to the other, but uses straight (horizontal or verti
al) lines only. When you sele
t

an elbow
onne
tion, you see up to three yellow handles whi
h adjust the position of the

horizontal and verti
al lines.

Changes to these handles are not stored. Also, if the
onne
ted �gures are
lose

together, the de
ision whether to go horizontal or verti
al �rst is quite poor. Sin
e

no elbow
onne
tions are needed to
onstru
t referen
e nets, we do not really
are

about these bugs.

The S
ribble Tool

The s
ribble tool lets you s
ribble in a drawing with your mouse, just like the famous Java

applet. More pre
isely, a s
ribble �gure tra
es the mouse movement while the button is held

down and thus de�nes several points, whi
h are
onne
ted by lines. You
an also de�ne

single points by single mouse
li
ks. The
reation mode is ended by double-
li
king at the

last point or right-
li
king in the drawing window. The
lou about the s
ribble �gure: After

it has been
reated, every single point
an still be
hanged by dragging the
orresponding

white, square handle. To drag the whole �gure, start dragging on a line segment rather than

inside a handle, or desele
t the �gure �rst and then start dragging anywhere on a line of the

�gure.

The Polygon Tool

A polygon is
reated analogous to a s
ribble �gure (see above). While you
reate the polygon,

you
an already see that the area surrounded by the lines is �lled with the �ll
olor. In
ontrast

to the s
ribble �gure, the surrounding line is
losed automati
ally. By interse
ting the lines,

you
an
reate un-�lled areas. Like in the s
ribble �gure, there are white, square handles to

drag every single point of the polygon �gure. A point that is dragged to somewhere on the

dire
t line between its an
estor and prede
essor point is removed from the polygon. Also,

there is a round, yellow handle that
an be used to turn and to s
ale the entire polygon �gure

by dragging the handle, whi
h looks really ni
e (thanks to Doug Lea).

The round, yellow handle is restri
ted to pure rotation as long as the shift key is pressed

and to pure s
aling as long as the
ontrol key is pressed. The behavior of white, square point

handles
an be modi�ed with the
ontrol key similar that of lo
ation handles of
onne
tions

(see above).

It
an be
on�gured how the polygon smoothness lines by removing intermediate points.

The property
h.ifa.draw.polygon.smoothing
an be set to the following values (
hanges

take e�e
t the next time a polygon is manipulated):

alignment This is the default behavior. Points are removed if they are lo
ated on a straight

line between their adja
ent points.

distan
es Points are removed only if they are too
lose to ea
h other (less than 5 pixels

distan
e horizontally and verti
ally).

o� No smoothing at all (no points are removed).

74

The Image Tool

The image tool o�ers you the possibility to in
lude bitmap graphi
s into your drawings.

When a
tivating this tool, a �le dialog box opens that lets you
hoose a bitmap graphi
 �le

from your �le system. gif �les should work on all platforms, but other formats like jpg, too.

Java (and thus Renew) even supports transparent GIF images.

Be aware that the En
apsulated PostS
ript output does not support transparent

GIF images, but some of the other export formats (e.g. PDF and SVG) do.

After you
on�rmed the �le sele
tion, the dialog disappears and leaves you with two

options: Either you just
li
k somewhere in your drawing, or you drag open an area, just like

when
reating a re
tangle. If you just
li
k, the image is inserted using its original dimensions

(in pixels), otherwise it is s
aled to the re
tangle area spe
i�ed by your drag operation.

An image �gure has the same handles as a re
tangle �gure.

Sin
e Renew 2.5 you
an use drag and drop to add images. Just drag the image into the

drawing editor.

The Text Tool

The text tool is used to arrange text with your graphi
al elements. The �rst mouse
li
k after

a
tivating the tool sele
ts the upper left
orner of the text area and invokes a text editor.

Now you
an type in any text, in
luding numbers, symbols, and so on. You
an even use

the
ursor keys, delete any
hara
ters, sele
t some part of the text with the mouse and so

on, like in any other Java edit �eld. Note that you
an even type in several lines, as usual by

pressing the return or the enter key. This is why pressing return or enter does not end the

edit mode.

After you
li
k somewhere outside of the text editing box, the text is entered and all of

the text is displayed. If the editing box is empty at that moment (the entered text
omprises

white spa
es and line breaks only), the text �gure is automati
ally removed from the drawing.

The white box handles are just to show that a text �gure is sele
ted. The dimension of

a text �gure
an not be
hanged, as it only depends on its text
ontents and font sele
tion.

The only handle to modify a text �gure is a small yellow round font sizing handle. It

an be dragged to alter the font size, whi
h
an also be done using a menu
ommand (see

Se
tion 4.3.4).

If you want to
hange the text
ontents of an existing text �gure, just make sure the text

tool is a
tivated and
li
k on the text �gure. The text editor des
ribed above will appear.

Again,
on�rm your
hanges by
li
king somewhere outside the editing area.

A fast way to enter text edit mode for any text �gure (in
luding
onne
ted text,

ins
ription, name, and de
laration �gures) is to right-
li
k on these �gures. The

orresponding tool is a
tivated and the �gure is put into text edit mode immediately.

The Conne
ted Text Tool

Conne
ted text works exa
tly like normal text, ex
ept that it is
onne
ted to some other

�gure, whi
h is
alled its parent.

To
reate a
onne
ted text �gure, sele
t the
onne
ted text tool and
li
k on the �gure

that is to be
ome the parent of the new
onne
ted text �gure. If you sele
t a �gure that

annot take a
onne
ted text �gure or if you sele
t no �gure at all, your sele
tion is ignored.

If the �gure was su

essfully
hosen,
ontinue with editing text like with a normal text �gure

(see above).

Now, every time you move the parent �gure, the
onne
ted text �gure will move with it.

Only when you drag the
onne
ted text �gure itself, the o�set to its parent is
hanged.

To verify whi
h �gure is the parent of some
onne
ted text �gure, double-
li
k on the

onne
ted text �gure, and the parent (if there is any) is sele
ted.

75

A spe
ial feature of
onne
ted text is dragging a single
onne
ted text �gure, or any

spe
ial sub
lass like ins
riptions (see Se
tion 4.2.3: The Ins
ription Tool), to a new parent.

Whenever the �landing point� of a
onne
ted text drag operation is another potential parent,

it is sele
ted immediately to indi
ate that instead of
hanging the o�set to the old parent,

the targeted �gure will be
ome the new parent of the
onne
ted text �gure as soon as you

release the mouse button. If you drag the
onne
ted text �gure to a lo
ation outside this

new parent again, its old parent (if there is any) is sele
ted in the same manner, to indi
ate

if you let go the mouse button now, the parent will stay the same.

Note that the o�set the
onne
ted text �gure had to its old parent is re-established for its

new parent, so it might jump to another position after re
onne
tion. This is quite
onvenient

if you moved an ins
ription to a preferred o�set to its parent (e.g. to the right-hand side of

a transition), and want to keep this o�set even after
onne
ting it to a new �gure.

The Target Tool

The target tool
an be used to add hyperlinks (target lo
ations) to �gures. These target

lo
ations
an point to other Renew drawings, �les in the �le system or to a lo
ations written

as URI (e.g. a website). The target tool works like the
onne
ted text tool with the di�eren
e

that the target lo
ation is only visible when edited. The target lo
ation is stored as attribute

of the �gure (targetLo
ation). The target lo
ations
an be opened by using the sele
tion

tool and
li
king on the �gure while pressing the
ontrol key (see Se
tion 4.2.1).

4.2.3 Net Drawing Tools

Now it is really getting interesting: This group of tools allows you to draw Petri nets that

have a semanti
 meaning to the simulation engine. Renew di�erentiates between a simple

re
tangle and a transition, although they may look the same. When you use the net drawing

tools, some synta
ti

onstraints are
he
ked immediately (see Se
tion 4.6).

Sin
e all net element �gures (transitions, pla
es, and ar
s) may have ins
riptions,

Renew supports automati
 ins
ription generation. Cli
k on a net element �gure

with the right mouse button, and a new ins
ription �gure is
reated with a default

ins
ription depending on the type of net element. This is espe
ially
onvenient for

ar
 ins
riptions, sin
e these usually
onsist of a single variable. Of
ourse, in most

ases, you have to
hange the ins
ription afterward, but you do not need to use the

ins
ription tool. Instead, you right-
li
k on the net element and then right-
li
k on

the newly
reated ins
ription.

The Transition Tool

This tool fun
tions almost exa
tly like the re
tangle tool. The di�eren
es are:

• Only transition �gures have a semanti
 meaning to the simulator. A re
tangle �gure

is ignored by the net exe
ution engine.

• To
reate a transition with a default size, after sele
ting the transition tool, just
li
k

instead of drag. The position of the
li
k spe
i�es the
enter of the newly
reated

transition.

• A transition �gure o�ers an additional handle. The ar
 handle, a small blue
ir
le in

the middle of the �gure,
an be used to
reate new output ar
s (see Se
tion 4.2.3: The

Ar
 Tool).

The new handle has a spe
ial behavior when you stop dragging on �gure that is not ap-

propriate as a target for the ar
. A normal
onne
tion is deleted when there is no appropriate

end �gure. However, for an ar
 it is quite
lear what kind of �gure is supposed to be there:

a pla
e �gure. And this is what happens: Automati
ally, a pla
e �gure is
reated with its

76

enter set to the lo
ation where you released the mouse pointer, and the newly
reated ar

onne
ts the transition and the new pla
e.

This feature o�ers you a very fast way to
reate referen
e nets. Just start with a

transition and use its blue ar
 handle to
reate a new ar
 and the next pla
e. Sin
e

this works for pla
es (see below), too, you
an
ontinue to
reate the next ar
 and

transition using the ar
 handle of the newly
reated pla
e. If you want to reuse an

existing pla
e or transition, just drag the ar
 to that �gure as usual. Thus, you
an

reate arbitrarily
omplex nets without sele
ting any other tool! If you
ombine this

with the automati
 ins
ription generation and editing (see above), even
olored nets

will only take se
onds to
reate.

The Pla
e Tool

The pla
e tool works analogously to the transition tool, only that the ar
 handle (the small

blue
ir
le)
reates input ar
s (see previous se
tion). If the new ar
 is not released on top of

an existing transition, a new transition is
reated and used as the target of the ar
.

The Virtual Pla
e Tool

The virtual pla
e tool is used to
reate virtual
opies of a pla
e. It improves the readability

and graphi
al appearan
e of nets in whi
h
ertain pla
es are used by many transitions. Other

Petri net tools sometimes
all su
h a virtual
opy of a pla
e a fusion pla
e. If the
ontents of

a pla
e is needed for many transitions, the readability of the net de
reases be
ause of many

rossing ar
s. With a virtual pla
e
opy, you
an draw the same pla
e many times, thus

avoiding su
h
rossing ar
s and ar
s over long distan
es.

You
reate a virtual
opy of a pla
e by a
tivating the virtual pla
e tool, then
li
king on

the pla
e you want to
opy (this
an also be a virtual pla
e!) and keeping the mouse button

down while dragging the virtual pla
e �gure to its destination lo
ation. The virtual pla
e

an be distinguished from a normal pla
e by the double border line (see the graphi
s inside

the tool button). To �nd out whi
h pla
e a virtual pla
e belongs to, just double-
li
k the

virtual pla
e. To make this relation visible in printed versions of your nets, you should
opy

the name of the pla
e to the virtual pla
e. Unfortunately, the tool does not take
are of the

names of virtual pla
es automati
ally. Another solution supported by the tool is to give ea
h

group of a pla
e and all its virtual
opies a di�erent �ll or pen
olor. All pla
es belonging

together will
hange their
olors if you
hange the
olor for one pla
e.

During simulation, every virtual
opy of a pla
e
ontains exa
tly the same token multiset

as its original pla
e. Still, it is possible to determine the marking appearan
e separately for

ea
h virtual pla
e (and the pla
e itself) (see Se
tion 4.3.6).

A ni
e way to take advantage of this feature is to
reate virtual
opies of pla
es

with an important and extensive marking and move these to an area outside the

net. This has a similar e�e
t as the
urrent marking window, but you do not get

your s
reen
luttered with so many windows.

The Ar
 Tools

The ar
 tool works quite the same as the
onne
tion tool (see des
ription in Se
tion 4.2.2).

The di�eren
es are, like above, that an ar
 has a semanti
 meaning to the simulator. A

restri
tion
oming from the Petri net stru
ture is that an ar
 always has to
onne
t one

transition and one pla
e, not two �gures of the same kind or any other �gures. The ar
 will

not snap in on the wrong �gures and disappear if you release the mouse button over a wrong

�gure. This behavior is di�erent from when you
reate ar
s using the ar

onne
tion handle

in pla
es or transitions (see Se
tion 4.2.3: The Transition Tool).

There are four ar
 tools for those di�erent ar
 types that are generally available:

77

Ar
 Tool � This tool is used for
reating input and output ar
s, whi
h only have one

arrow tip at their ending. If the start �gure of the
onne
tion is a pla
e (and thus, the

end �gure has to be a transition), this one-way-ar
 is an input ar
. If the start �gure

is a transition, we have an output ar
.

Test Ar
 Tool � Here, test ar
s without any arrow tips are
reated. A test ar
 has no

dire
tion, as no tokens are a
tually moved when the transition �res (see Se
tion 3.12.1).

This means it does not matter whether you start a test ar
 at the pla
e or at the

transition.

Reserve Ar
 Tool � With this tool, reserve ar
s with arrow tips at both sides are
re-

ated. Again, the dire
tion does not matter. For the semanti
s of reserve ar
s, see

Se
tion 3.12.1.

Flexible Ar
 Tool � An ar
 with two arrow tips on one side is
reated. These �exible

ar
s transport a variable number of tokens. For the semanti
s of �exible ar
s, see

Se
tion 3.10.1.

There are two additional ar
 tools that are only displayed on request, as des
ribed in

Subse
tion 4.3.6.

Clear Ar
 Tool � This tool is used for
reating
lear ar
s, whi
h remove all tokens from a

pla
e. You have to sele
t the pla
e as the start �gure and the transition as the end �gure

during the
reation of a
lear ar
. For the semanti
s of
lear ar
s, see Se
tion 3.10.2.

Inhibitor Ar
 Tool � This tool is used for
reating inhibitor ar
s, whi
h stop the atta
hed

transition from �ring as long as
ertain tokens are
ontained in a pla
e. This ar
 features

ir
les at both of it end points. Again, the dire
tion does not matter. For the semanti
s

of inhibitor ar
s, see Se
tion 3.10.3.

Using the Attributes menu, it is possible to
hange the dire
tion of an ar
 after its

reation. Simply sele
t the desired value for the attribute Arrow. However, you
annot

urrently
hange ordinary ar
s to �exible ar
s, or vi
e versa. Neither
an you a

ess inhibitor

or
lear ar
s this way.

Let us repeat from Se
tion 4.2.2 that you
an
reate intermediate points by sele
ting an

ar
 tool before
li
king on an already existing �gure. You
an then drag the intermediate

point to its destination. To get rid of intermediate point, right-
li
k the asso
iated handles.

The Ins
ription Tool

Ins
riptions are an important ingredient for most high-level Petri net formalisms. An ins
rip-

tion is a pie
e of text that is
onne
ted to a net element (pla
e, transition, or ar
). Refer to

Se
tion 3 to �nd out what kind of ins
riptions are valid in our formalism. You
an ins
ribe

types and initial markings to pla
es. You
an provide ins
riptions for ar
s, in order to deter-

mine the type of tokens moved. Transitions may
arry guards, a
tions, uplinks, downlinks,

and expressions. Multiple transition ins
riptions may be given in a single �gure, but they

have to be separated by semi
olons.

When editing ins
ription �gures, you have to know that in prin
iple they behave like

onne
ted text �gures. This means that all fun
tions for
onne
ted text �gures also work

for ins
ription �gures (see Se
tion 4.2.2: The Conne
ted Text Tool). For example, to
he
k

that an ins
ription �gure is in fa
t
onne
ted to the net element you want it to be
onne
ted

to, double-
li
k on the ins
ription �gure. Then, the
orresponding net element should be

sele
ted. Also, you
an drag an ins
ription to another net element.

Again, in
ontrast to text �gures, ins
ription �gures have a semanti
 meaning to the

simulator. By default, ins
riptions are set in plain style, while labels (text without semanti

meaning) are itali
. The syntax of an ins
ription is
he
ked dire
tly after you stop editing it

(see Se
tion 4.6). Refer to Chapter 3 for a des
ription of the syntax of Renew net ins
riptions.

78

The Name Tool

The name tool also
onne
ts text to net elements, in this
ase to pla
es and transitions only.

By default, a name is set in bold style. The idea of a name for a pla
e or transition is to

enhan
e readability of the net as well as simulation runs. When a transition �res, its name is

printed in the simulation tra
e exa
tly like you spe
i�ed it in the name �gure. Pla
e names

are used in the simulation tra
e whenever tokens are removed from or put into a pla
e. Also,

a pla
e's name is used in the window title of
urrent marking windows and a transition's

name is used in the new transition binding window (see Se
tion 4.3.6).

Ea
h pla
e and transition should have at most one name �gure
onne
ted and ea
h name

should be unique within one net (but the editor does not
he
k either of these
onditions).

Pla
es and transitions without
onne
ted name �gures are given a default name like P1, P2,

. . . and T1, T2, . . .

The De
laration Tool

A de
laration �gure is only needed if you de
ide to use types (see Se
tion 3.4.2). Ea
h drawing

should have at most one de
laration �gure. The �gure is used like a text �gure, only that the

text it
ontains has a semanti
 meaning to the simulator. The text of the de
laration �gure

is used for import statements as well as variable de
larations (see Se
tion 3.4.2).

As in the
ase of ins
riptions (see above), the
ontent of a de
laration �gure is syntax-

he
ked as soon as you stop editing. For an explanation of syntax errors that may o

ur,

refer to Se
tion 4.6.

The Comment Tool

The
omment tool
onne
ts
omment texts to net elements. Comment texts have a blue text

olor as default and no semanti
 meaning for the simulator.

4.3 Menu
ommands

This se
tion
ontains a referen
e to Renew's menus and the fun
tions invoked by them.

4.3.1 File

As usual, the �le menu
ontains every fun
tion that is needed to load, save and export

drawings. In the following se
tion, all menu items of the �le menu are explained.

New Net Drawing (*.rnw)

This menu invokes a fun
tion that
reates a new drawing and opens it in a drawing window

in a default window size. The new drawing is named �untitled� and is added to the list of

drawings in memory (see Se
tion 4.3.7).

The keyboard short
ut for this fun
tion is Ctrl+N.

New Drawing. . .

Renew supports di�erent kinds of drawings (dependent on the installed plug-ins), this menu

entry opens a dialog where the type of drawing
an be
hosen. Sele
t the appropriate drawing

type in the dialog and press the New button.

79

Open Navigator

This
ommand opens the Renew �le navigator in a new window. The navigator displays fold-

ers and their Renew-related
ontent in a dire
tory tree. The navigator is shown in Figure 4.3.

The keyboard short
ut for this fun
tion is Ctrl+Shift+N.

Figure 4.3: The Renew Navigator

Usage of the Navigator At the top of the navi-

gator window is an i
on bar with eight buttons and

an additional �lter bar with an input �eld and three

additional �lter buttons. We des
ribe these buttons

and their fun
tion �left to right�.

The Home button displays the home dire
tory

whi
h defaults to the pre
on�gured �les (see next

paragraph) or, if there are none, to the
urrent dire
-

tory. The NetPath button displays all folders whi
h

are in
luded in the netpath of Renew. This is usu-

ally empty but
an be set when starting Renew or in

the menu Simulation→Con�gure Simulation→Net

Path. The Add Folder button opens a �le
hoose di-

alog and adds the
hosen dire
tory or �le to the tree.

Files anf folders
an also be added to the Navigator

using drag and drop. The Expand button expands the

omplete folder stru
ture. The Collapse button
ol-

lapses all nodes of the tree. The Refresh button
he
ks for new and deleted �les and updates

the display in the tree area. The Remove button removes a single node from the tree, while

the Remove all button removes the whole tree.

The input �eld
an be used to �lter the Navigator's
ontent. The �rst button next to the

input �eld
lears the input �eld and the last two buttons provide prede�ned �lters for .rnw

and .java �les.

The Navigator is persistent and extensible. We optionally provide some
onvenient ex-

tensions, su
h as the integration of the drawing's di� feature (ImageNetDi�), whi
h
an be

triggered dire
tly from the Navigator GUI. The persisted state of the Navigator is saved in

the �le navigator.xml in the .renew subdire
tory of your home dire
tory.

Con�guring the Navigator The navigator has two properties that
an be
on�gured in

the usual
on�guration �les: de.renew.navigator.workspa
e and de.renew.navigator.

filesAtStartup. The �rst property de�nes the base dire
tory for the navigator plugin. It

needs to be an absolute path like /path/to/renew2.6/ or
:/path/to/Renew2.6/. The

se
ond property is a semi
olon

1

separated list of paths relative to the base dire
tory. All

folders and �les de�ned in this list will be added to the tree area on startup.

Example: MyNets;Core/samples;../../../home/renewuser/exampleNets

Open URL. . .

Renew
an load drawings from a remote lo
ation spe
i�ed by a URL. This
ommand opens

a dialog where you
an type the URL and press OK. Note that Renew is not able to save

drawings to URLs, it still requires a lo
al �le name.

Open Drawing. . .

This fun
tion displays a �le sele
tor dialog that lets you sele
t a drawing that was saved

previously. The �le sele
tor dialog looks a little bit di�erent depending on the platform, but

1

A semi
olon has to be used even on Unix-based systems, where paths are usually separated with the
olon

(:).

80

always allows you to browse the �le system and sele
t an existing �le. By pressing the OK

button, the sele
tion is
on�rmed and Renew tries to load this �le as a drawing. If that does

not su

eed, an error message is displayed in the appli
ation log and in the status line of

the Renew window. Otherwise, the drawing is added to the list of drawings in memory (see

Se
tion 4.3.7) and opened in a new drawing window. The keyboard short
ut for this fun
tion

is Ctrl+O.

The open dialog a

epts the sele
tion of multiple �les. This will result in multiple drawing

windows to be opened in the editor simultaneously.

Dependent on the set of installed plug-ins (and on your window manager), one of several

available drawing �le types
an be
hosen from a drop down box in the dialog. This will

restri
t the display of �les in the dialog. You may override the �le type �lter by spe
ifying a

wild
ard pattern like *.* as �le name and pressing Enter.

Alternatively to using the Open Drawing
ommand in the menu, you
an use drag and

drop to open drawings. Just drag the �les into the Renew menu and tools window.

Insert Drawing. . .

This fun
tion opens a previously saved drawing to be inserted into the
urrently fo
used

drawing editor (Opening works like in Open Drawing...). All �gures whi
h are sele
ted

before insertion are desele
ted. In return all the inserted �gures are sele
ted now whi
h

makes it easy to move them around without jamming the other �gures.

Save Drawing

This fun
tion saves the a
tive drawing (see Se
tion 4.1) to a �le using a textual format. The

drawing is saved to the last �le name used, whi
h is the �le it was loaded from or the �le it

was last saved to. If the drawing has not been saved before, this fun
tion behaves like Save

Drawing As... (see below).

If there is an old version of the �le, it is overwritten. Depending on your operating system,

overwriting a �le might need
on�rmation by the user (you).

The keyboard short
ut for this fun
tion is Ctrl+S.

Save Drawing As. . .

This fun
tions is used to determine a (new) �le name for a drawing and save it in textual

format (see above).

Like in Open Drawing..., a �le sele
tor dialog is displayed to let you determine the (new)

�le name and lo
ation. After
on�rming with the OK button, the spe
i�ed �le name is used

to store the drawing now and during future invo
ations of Save Drawing. The name of the

drawing is set to the �le name without path and �le extension. If you
an
el or do not sele
t

an appropriate �le name, the drawing will neither be saved nor renamed.

Dependent on the set of installed plug-ins (and on your window manager), one of several

available drawing �le types
an be
hosen from a drop down box in the dialog. The e�e
ts

are similar to the e�e
ts in the Open Drawing dialog explained above. However, the list of

available �le types is restri
ted by the type of the drawing you are going to save.

The keyboard short
ut for this fun
tion is Ctrl+Shift+S.

Save All Drawings

This fun
tion saves all drawings that are
urrently in memory (see Se
tion 4.3.7). Before

this
an be done, all untitled drawings have to be given a (�le) name, whi
h is done as in

Save Drawing As... (see above). If you
an
el any of the save dialogues, no drawing will

be saved. If all drawings are given a proper (�le) name, they are all saved. You should invoke

this fun
tion before you exit Renew (see below).

81

Close Drawing

Closes the a
tive drawing window and removes the
orresponding drawing from the list of

drawings in memory (see Se
tion 4.3.7).

Before doing so, Renew
he
ks if the drawing
ould have been
hanged (this
he
k is a

little bit pessimisti
) and if so, asks you whether to save the drawing. You have the options

to answer Save now, Close, or Can
el. Save now tries to save the drawing. Drawings whi
h

already have a name are saved with that name. If the drawing is untitled, the normal save

dialog appears (see above). Here, you still have the option to
an
el, whi
h also
an
els the

losing of the drawing. If you sele
t Close, the drawing is
losed and all
hanges sin
e the

last save are lost (or the whole drawing, if it was still untitled). Last but not least, you have

the option to Can
el
losing the drawing.

The keyboard short
ut for this fun
tion is Ctrl+W.

Close All Drawing

Closes all opened drawing windows and removes the
orresponding drawings from the list of

drawings in memory. If you
an
el any of the save dialogues, the pro
ess is
an
eled and no

further drawing windows are
losed.

The keyboard short
ut for this fun
tion is Ctrl+Shift+W.

Re
ently saved

The Re
ently saved menu allows you to load re
ently saved �les.

Export

The items in the export submenu allow you to save the a
tive drawing in several formats

for use with other appli
ations. The Export menu has three submenus. Export
urrent

drawing
omprises export �lters for the a
tive drawing only. All these �lters are available

through the �rst menu entry Export
urrent drawing (any type), too, where you
an

hoose the desired export format via a drop-down box in the �le dialog.

Export all drawings (single file ea
h) provides the same set of �lters, but there

they are applied to all drawings automati
ally. This results in one exported �le per drawing,

these �les are stored in the same lo
ation and with the same name as the respe
tive drawing

�les, but with a di�erent extension.

Export all drawings (merged file)
omprises export �lters that are able to merge all

drawings into one �le. Sin
e this feature must be supported by the format of the exported

�le, the set of export �lters in this submenu is restri
ted.

The export formats in
luded in the basi
 Renew distribution are listed as follows:

PDF This fun
tion produ
es a PDF do
ument that
ontains the
urrent drawing. A �le

with the default extension of .pdf is generated.

The �Renew FreeHEP Export� plugin provides the de.renew.io.export.pageSize and

de.renew.io.export.pageOrientation
on�guration properties, whi
h in�uen
e the page

layout of generated PDF �les. Possible values for page size are: A3, A4, A5, A6, International,

Letter, Legal, Exe
utive, Ledger and BoundingBox. Possible values for orientation are: portrait

and lands
ape.

The properties default to BoundingBox for page size and portrait for orientation. However,

orientation does not apply, if page size is set to BoundingBox.

The keyboard short
ut for this fun
tion is Ctrl+Shift+P.

82

EPS If you want to in
lude net drawings into written material, you
an use an En
apsulated

Posts
ript (EPS) �le. The EPS �le
an be used to insert graphi
s into other do
uments, e.g.

in LaTeX, LibreO�
e, Mi
rosoft O�
e, and others. EPS �les are not of a �xed page size.

Instead, their bounding box mat
hes exa
tly the dimensions of the drawing.

The keyboard short
ut for this fun
tion is Ctrl+E.

The EPS and PDF export feature relies on the Ve
torGraphi
s pa
kage of the FreeHEP

proje
t (see https://java.freehep.org). The �Renew FreeHEP Export� plugin provides a

property for the
on�guration of the font handling (de.renew.io.export.epsFontHandling).

It
an be set to Embed, Shapes or None. The Shapes option is the default as it produ
es the

most similar output with respe
t to s
reen display. However, the generated �les
an be
ome

rather large. The None option
omes
lose to the old Renew export behavior without any

font information in
luded. The Embed option should be the best (theoreti
ally), but it often

produ
es unreadable results.

The ba
kground of drawings exported to eps
an also be set to transparent by setting

the property de.renew.io.export.eps-transparen
y to true. In
luded images with trans-

paren
y (alpha) always get a white ba
kground. If you want to in
lude transparent images,

we re
ommend to use the PDF export.

PNG This fun
tion produ
es a PNG image that
ontains the
urrent drawing. A �le with

the default extension of .png is generated. This export format di�ers from the previously

mentioned formats sin
e it is pixel-oriented instead of ve
tor-based. The generated image

has a �xed resolution that
annot be s
aled without loss of information. The ba
kground of

exported PNG images is transparent. The PNG export is based on the FreeHEP library.

The keyboard short
ut for this fun
tion is Ctrl+9.

XML There are several export formats that use XML. We provide experimental PNML

support sin
e Renew 2.0. PNML stands for Petri net Markup language and has been presented

at the ICATPN'2003 in [2℄. With Renew 2.2, the SVG format has been added. With Renew

2.4, the support for the experimental XRN format provided in previous releases has been

dis
ontinued.

PNML-P/T-Net This format saves the drawing as a P/T-net,
ompatible with the

PNML standard type de�nition in version 2009 from http://www.pnml.org. Note that all

drawing elements whi
h are not needed to des
ribe the P/T-net are omitted.

PNML-P/T-Net with Renew-spe
i�
 ins
riptions This format saves the drawing

as PNML-P/T-Net but stores the Renew-spe
i�
 ins
riptions using the toolspe
i�
 extension

of PNML.

PNML-RefNet This format saves the drawing as a Renew referen
e net. Graphi
al

�gures without semanti
 meaning (e.g. those �gures produ
ed by the drawing tool bar) are

omitted. The underlying PNML type de�nition is experimental, it may be subje
t to
hanges

without noti
e.

Please note that the PNML standard allows multiple nets to be
ontained within one �le.

SVG This format exports the
omplete graphi
al information of a drawing into an SVG

image �le whi
h
an be displayed by many modern web browsers. Petri net semanti
s are

not retained. The SVG export is based on the FreeHEP library.

Wo�an Wo�an (see [7℄) is a Work�ow Analysis tool that
he
ks if a Petri net
onforms to

some restri
tions that make sense for Work�ows. As Wo�an only handles single, non-
olored

Petri nets without syn
hronizations, only the stru
ture of the a
tive window's net is exported.

83

https://java.freehep.org
http://www.pnml.org

Still, if you have the Wo�an tool, it makes sense to
he
k Renew work�ow models for severe

modeling errors in their stru
ture.

For the time being, the initial pla
e of the work�ow net must
arry the name pinit.

Otherwise, a pla
e with this name (but without any
onne
ted ar
s) will be generated in the

exported net.

Shadow Net System A shadow net system
an
omprise one or more nets whi
h
an be

used by the non-graphi
al simulator (see se
tion 4.5), the net loader or other tools. Only the

semanti
 information is
ontained in the shadows, but not the visual appearan
e.

The
urrent formalism (see se
tion 4.3.6) and the
on�guration of simulation tra
es for

individual net elements (see se
tion 4.3.5) will be stored within the shadow net system.

As merged �le A shadow net system that
ontains all nets needed for a simulation

an be generated by the N to 1 entry in the Export all drawings (merged file) menu.

Before exporting a
olle
tion of nets to the shadow simulator, it is re
ommended to do a

syntax
he
k on the net. Although any syntax errors in the nets will be dete
ted before the

start of a non-graphi
al simulation, �xing these errors requires the editor.

The
urrent formalism (see se
tion 4.3.6) and the
on�guration of simulation tra
es for

individual net elements (see se
tion 4.3.5) will be stored within the shadow net system.

As single �le ea
h These �les are well suited for the net loading me
hanism des
ribed

in subse
tion 2.6.6.

The
ommand does not require any additional intera
tion, all �le names are derived from

the
orresponding drawing �les. If a drawing has not been assigned a �le name, it is skipped

during the export.

Import

The items in the import menu allow you to load drawings from di�erent �le formats.

import (any type) The �rst entry of the Menu
ombines all import �lters into one dialog

where you
an
hoose the desired format from a drop-down box. For window managers where

this drop-down box is not available, the separate menu entries are still available.

XML Analogous to the export features des
ribed in subse
tion 4.3.1, Renew provides the

PNML format as import �lters.

PNML Tries to import a �le in PNML format. The �lter automati
ally guesses the net

type used in the PNML �le. It tries to extra
t as mu
h graphi
al and semanti
 information

as possible from the �le.

Shadow Net System Lets you import a previously exported (or automati
ally generated)

shadow net system (see above).

Sin
e a shadow net system does not
ontain any graphi
al information, the pla
es, tran-

sitions, ar
s, and ins
riptions are lo
ated in a rather unreadable manner. Thus, this fun
tion

only makes sense for shadow net systems automati
ally generated by other tools. After im-

porting, it is of
ourse also possible to edit all nodes and ins
riptions in a normal fashion. An

automati
 graph layout fun
tion that
an ease the task of making an imported net readable

is des
ribed in Subse
tion 4.3.3.

84

Print. . .

The print menu invokes a platform dependent print dialog and lets you make hard
opies of

the a
tive drawing. Using the Java standard print system, though, the quality of the printer

output is usually very poor. In that
ase, we en
ourage to use the EPS or PDF export instead

and print with an external tool.

The keyboard short
ut for this fun
tion is Ctrl+P.

Exit

Tells Renew to terminate. All drawings are
losed as if you
losed them manually, whi
h

means that now Renew asks you about saving
hanged drawings (see Subse
tion 4.3.1).

Due to the introdu
tion of the plug-in system, other plug-ins might still be a
tive when the

editor is
losed. With respe
t to the simulator plug-in, the editor asks you for
on�rmation

to terminate a running simulation (if there is any). If you
hoose No, then the non-graphi
al

simulation of Renew will
ontinue.

To enfor
e that the whole plug-in system is shut down when you
lose the editor, you
an

on�gure the property de.renew.gui.shutdownOnClose (see Subse
tion 2.7.3 for details).

4.3.2 Edit

The Edit menu
ontains fun
tions to insert, remove and group �gures and to
hange a �gure's

Z-order. Details
an be found in the following se
tions.

Undo, Redo

Up to ten modi�
ations to ea
h drawing
an be undone step by step. The e�e
t of an undo

an be undone by the redo
ommand. The keyboard short
ut for undo is Ctrl+Z and for

redo it is Ctrl+Y.

Cut, Copy, Paste

This fun
tion group o�ers the typi
al
lipboard intera
tions. Cut and Copy relate to the

urrent sele
tion in the a
tive drawing window (see Se
tion 4.1). Thus, these fun
tions are

only available if there is a
urrent sele
tion.

Cut puts all sele
ted �gures into the
lipboard and removes them from the drawing. The

keyboard short
ut for Cut is Ctrl+X.

Copy puts all sele
ted �gures into the
lipboard, but they also remain in the drawing.

The keyboard short
ut for Copy is Ctrl+C.

Paste inserts the
urrent
lipboard
ontents into the a
tive drawing. The upper left

orner of the obje
t or group of obje
ts is pla
ed at the
oordinates of the last mouse
li
k.

The keyboard short
ut for Paste is Ctrl+V.

Note that due to restri
tions of Java, Renew's
lipboard does not intera
t with your

operating system's
lipboard.

The
urrent sele
tion is automati
ally extended to in
lude all referen
ed �gures before

opying to the
lipboard. If for example you sele
t an ar
 ins
ription and invoke
opy and

then paste, the ar
, the start �gure, and the end �gure of the ar
 will also be
opied. This is

sometimes not what you intended to do, but you
an easily move the
opied ar
 ins
ription

to the original ar
 (see Se
tion 4.2.2) and remove the other dupli
ated �gures. Of
ourse,
ut

only removes the �gures whi
h were originally sele
ted.

The better alternative to
opy ins
riptions is to mark and
opy the text of the

ins
ription when you are in text edit mode (Ctrl+C, unfortunately, this does not

work on all Unix platforms). Then,
reate a new ins
ription by right-
li
king the

net element. Edit the new ins
ription by right-
li
king it and paste the
opied text

by pressing Ctrl+V.

85

Dupli
ate

Dupli
ate works like Copy followed by Paste (see previous Se
tion), where the paste
oordi-

nates are not depending on the last mouse
li
k, but are just a small o�set to the right and

down from the position of the original sele
tion.

The keyboard short
ut for Dupli
ate is Ctrl+D.

Delete

Removes the sele
ted �gures from the a
tive drawing. Note that if a �gure is removed, all its

onne
ted text �gures and
onne
tion �gures are also deleted.

The keyboard short
ut for Delete is the ba
kspa
e and/or the delete key (depending on

the platform).

Sear
h, Sear
h & Repla
e

Sear
h looks for a mat
h or substring-mat
h of an user given sear
h string in all text�elds

of all loaded nets. Sear
h is
ase sensitive. After an o

urren
e of the sear
h string is found

the next
an be found by pressing the sear
h button again. Changes on the sear
h string

start a new sear
h. The keyboard short
ut for this fun
tion is Ctrl+F.

Sear
h & Repla
e gives the opportunity to repla
e any found sear
h string with a

repla
e string. Ea
h repla
ement is prompted and has to be
on�rmed by the user. Changes

on the repla
e string start a new sear
h. The keyboard short
ut for this fun
tion is Ctrl+G.

The sear
h window allows you to sele
t, whether the sear
h should be
ase sensitive and

whether the sear
h shall in
lude all drawings or only the a
tive one.

Group, Ungroup

You
an
reate a group of all
urrently sele
ted �gures in the a
tive drawing. A group is

a
tually a new �gure, whi
h
onsists of all the sele
ted �gures. You
an even group a single

�gure, whi
h does not really make sense unless you want to prevent resizing of this �gure.

From now on, the �gures inside the group
an only be moved, deleted, et
. together, until

you �ungroup� the group of �gures again. To release a group, one or more groups have to be

sele
ted. Then, sele
t the Ungroup menu, and all group parti
ipants are single �gures again

(whi
h are all sele
ted).

Sele
t All

Commands that allow sele
tion or desele
tion of large sets of nodes allow the user to sele
t

groups of logi
ally related net elements together. For sele
ting lo
ally related net elements

or individual net elements see Subse
tion 4.2.1.

Using the sele
t all
ommand, all �gures of a drawing are sele
ted. This is useful when

you want to move all the net elements to a di�erent pla
e. This
ommand works even for

�gures that are lo
ated o�-s
reen. The keyboard short
ut for this fun
tion is Ctrl+A.

Invert Sele
tion

Inverts the sele
tion of the drawing: All sele
ted net elements will be removed from the

sele
tion, whereas all the other net elements will be sele
ted.

Sele
t

This menu hierar
hy is used to sele
t all nodes of a
ertain type. E.g., it o�ers the possibility

to sele
t all transitions, or all ar
s, or all ins
riptions that are atta
hed to pla
es.

This
ommand
omes in handy when you want to set attributes like
olor or font size for

all �gures of a
ertain type.

86

Add To Sele
tion

This
ommand is similar to the sele
t
ommand, but it does not
lear the sele
tion before it

sele
ts the net elements, thereby a
hieving a union of the sele
tion sets.

This
ommand is espe
ially useful when you want to sele
t a
ombination of net elements

that is naturally
overed by the sele
tion
ommand itself. E.g., you
an sele
t all transitions

and then add all ins
riptions of transitions to the sele
tion.

Remove From Sele
tion

This
ommand is the opposite of the add-to-sele
tion
ommand. It removes
ertain �gures

from the sele
tion, but leaves the sele
tion state of the remaining �gures un
hanged.

This
ommand
an be used to sele
t all �gures, but not the transitions or not the ar
s.

Restri
t Sele
tion

Sometimes you want to sele
t a
ertain type of net elements inside a
ertain area. In this
ase,

the restri
t
ommand allows you to sele
t the entire area as des
ribed in Subse
tion 4.2.1,

but to restri
t the sele
tion to a
ertain type of �gures afterward.

The remove-from-sele
tion
ommand
an be used instead of this
ommand, if you want

to spe
ify the �gures to drop from the sele
tion instead of the �gures to keep in the sele
tion.

4.3.3 Layout

The Layout menu allows to snap �gures to a grid, to align a �gure's position a

ording to

other �gures, to
hange the Z-order of �gures and to layout graphs automati
ally.

Toggle Snap to Grid

Sele
ting this menu toggles the Snap to Grid mode of Renew. This grid is not absolute

referring to the page, but means that when the grid is a
tive, �gures
an only be pla
ed to

grid positions and moved by
ertain o�sets. Be
ause the editor
onsiders o�sets while moving

(not absolute
oordinates), �gures should be aligned �rst (see below) and then moved in grid

mode.

The grid density now
ustomizable. Set the option
h.ifa.draw.grid.size to the desired

value in your preferen
es. Default is 5 pixel. This preferen
e is dynami
, i.e.
an be set at

runtime. E�e
ts take pla
e during next exe
ution of
ommand. The grid
an also be set

as the default behavior for drawing views. Set the
h.ifa.draw.grid.default property to

true (default false).

Align

The
ommands in this menu align the sele
ted �gures. The �gure sele
ted �rst is the referen
e

�gure whi
h determines the
oordinates for all others.

Lefts, Centers, Rights. These
ommands align the �gure's x-
oordinates, i.e. they move

them horizontally. Lefts sets the left-hand side of all sele
ted �gures to the x-
oordinate of

the left side of the �gure that was sele
ted �rst, Rights does the same for the right-hand

side. Centers takes into a

ount the width of ea
h �gure and pla
es all �gures so that their

x-
enter is below the referen
e �gure's x-
enter.

The keyboard short
ut for aligning middles is Ctrl+\ (the ba
kslash
hara
ter).

The short
ut works only on an English keyboard layout, where the keys for the

short
ut
an be typed dire
tly, i.e. without additional modi�ers like Shift.

87

Tops, Middles, Bottoms. These
ommands work exa
tly like the
ommands in the pre-

vious paragraph, ex
ept that the y-
oordinate is
hanged. Thus, �gures are moved verti
ally

in order to be aligned with their tops, middles, or bottoms.

The keyboard short
ut for aligning middles is Ctrl+Shift+- (the minus sign).

Spread

The items of this menu spread the sele
ted �gures equidistantly. The two outermost �gures

that are sele
ted stay at their previous lo
ation while all other sele
ted �gures are reposi-

tioned. The order of the �gures (left-to-right, top-to-bottom or diagonal) remains un
hanged.

To use the spread
ommands, you must have sele
ted at least three �gures.

Lefts, Centers, Rights, Distan
es. Here we spread the �gures by modifying their x-

oordinates. The y-
oordinate remains un
hanged. Lefts arranges the �gures in a way

that the x-
oordinates of their left borders are distributed equally. Rights does the same

with respe
t to the �gure's right borders, Centers with respe
t to ea
h �gure's
enter point.

Distan
es arranges the �gures in a way that the spa
e in between of ea
h pair of neighboring

�gures will have the same width. The di�eren
es between the four
ommands will only be

visible when �gures of di�erent sizes are sele
ted.

Tops, Middles, Bottoms, Distan
es. These fun
tions work exa
tly like the fun
tions

in the previous paragraph, ex
ept that the y-
oordinate is
hanged. Thus, the �gures are

moved verti
ally to equal the distan
es of their tops, middles, bottoms or borders.

Diagonal. This
ommand spreads the �gures in both dire
tions, horizontally and verti
ally.

All �gures are treated with respe
t to their
enter point. First of all, a virtual line is drawn

from the outermost �gure (in relation to the
enter of the bounding box of all sele
ted �gures)

to the �gure most apart from the outermost one. Afterward, all other �gures are moved onto

that line with equal distan
es between their
enter points. The order of the �gures on the

line is determined by the order of the orthogonal proje
tions of their original lo
ation onto

the virtual line.

Send to Ba
k, Bring to Front

The �gures in a drawing have a so-
alled Z-order that determines the sequen
e in whi
h the

�gures are drawn. If a �gure is drawn early, other �gures may
over it partially or totally.

To
hange the Z-order of �gures, the fun
tions Send to Ba
k and Bring to Front are

available. Send to Ba
k puts the sele
ted �gure(s) at the beginning of the �gure list and

Bring to Front puts it/them at the end, with the result explained above.

Sometimes,
ertain �gures
an not be rea
hed to sele
t and modify them. Using

these fun
tions it is possible to temporarily move the
overing �gure to the ba
k,

sele
t the desired �gures, and move the �gure to the front again. Another option in

ases like this one is to use Area Sele
tion (see Se
tion 4.2.1).

Figure size

These two
ommands set the size of �gures. The fun
tion
opy within sele
tion sets the

size of all sele
ted �gures to the size of the �gure that was sele
ted �rst. The
ommand reset

to default resets the sele
ted �gure's sizes to their �gure type spe
i�
 default. As there

are defaults spe
i�ed only for net element �gures, the
ommand will not have any e�e
t on

ordinary drawing �gures.

88

Automati
 Net Layout. . .

Espe
ially for automati
ally generated nets, it is ni
e to have an automati
 layout of the net

graph, so that one gets at least a rough overview of the stru
ture of the net.

Renew

2.6

The automati
 layout now provides a new option Random, whi
h uses a simulated

annealing algorithm to automati
ally
ontrol the parameters of the automati
 lay-

out. The algorithm produ
es quite ni
e results.

This menu entry opens a window to
ontrol the automati
 net layout. The algorithm
an

be stopeed and started with the respe
tive buttons. While this mode is a
tive, the nodes of

the net are moved a

ording to
ertain rules that are to some extend inspired by physi
al

for
es a
ting on a mesh of springs.

• Ar
s have a
ertain optimal length that is dependent on the size of the adja
ent nodes.

They will a
t as springs.

• Ar
s feel a torque whenever they are not horizontally or verti
ally oriented. The torque

works toward these optimal positions.

• Nodes feel a repulsive for
e from ea
h other until a
ertain distan
e is rea
hed where

this for
e disappears entirely.

• Nodes feel fri
tion, i.e., the motion that was
aused by the for
es mentioned before

ontinually slows down unless the for
e is still applied and
ompensates the fri
tion.

• Nodes that would move out of the upper or left border are pushed ba
k into the

viewable area of the drawing.

These rules will not produ
e the ni
est net graph in many
ases, but they
an ease the early

stages of the layout
onsiderably. They might also be used to maintain a layout during early

prototyping phases when the stru
ture of a net
hanges
onstantly.

In order to improve the layout of the graph, a spe
ial window pops up that allows you

to
ontrol some parameters or the physi
al model using sliders. The �rst slider
ontrols the

length of the springs. Some diagrams tend to
lump together too mu
h, whi
h might
an be

a reason to raise this value. On the other hand, the spring might be too rigid, not allowing

some springs to stret
h to their optimal length. In that
ase, you
an
ontrol the rigidity of

the spring with the se
ond slider.

The repelling for
e a
ts only up to a
ertain distan
e. By default, the for
e is quite far

rea
hing and establishes a ni
e global spreading. But you may want to redu
e this for
e's

maximum distan
e in order ex
lude only overlapping nodes. In that
ase, it may also be good

idea to in
rease the repulsion strength.

The torque strength
ontrols whether the ar
s are supposed to be very stri
tly horizontal

or verti
al. Initially, this for
e might a
tually inhibit the progress toward to optimal layout,

but in the end it helps to get a ni
e net. Try to vary this slider's position during the layout

for optimal results.

Lastly, the fri
tion slider may be lowered, so that the motion is faster overall. Use this

slider with
are, be
ause the layout algorithm may be
ome unstable for very low fri
tion

values and
onvergen
e to an equilibrium might a
tually slow down due to os
illations. The

optimal value depends heavily on the topology of the net. If you feel that you
annot set

some for
e's strength high enough,
onsider lowering the other for
es, and also lowering the

fri
tion a little.

Even while the graph is
hanged automati
ally, you
an still grab a node with

the sele
tion tool and move it to a desired position. Of
ourse, it might fall ba
k

into the old position due to the a
ting for
es, but your a
tion might establish a

topologi
ally di�erent situation where the for
es a
t toward a di�erent equilibrium.

This is espe
ially useful when you have sele
ted high torque and rigid springs, but

low or no repulsion.

89

After you are satis�ed with the graph, swit
h o� the layout mode. If you add or remove

nodes or ar
s during the layout pro
edure, you have to restart the net layout algorithm,

before these
hanges a�e
t the layout algorithm. Note that the start of a layout pro
edure

always a�e
ts the
urrent drawing, not the drawing that was previously used for layout.

Lo
ation

Using this menu you
an de
lare the
urrently sele
ted �gures as either �xed or dynami
.

Dynami
 nodes parti
ipate in the automati
 layout as usual, whi
h is the default. On the

other hand, �xed nodes still exert for
es upon other nodes, but they are rigidly glued to their

position and move only if the user moves them.

By �xing the lo
ation of some nodes, you
an sele
t a preferred dire
tion or spe
ify the

basi
 shape of the net while leaving the details to the layout algorithm.

4.3.4 Attributes

This menu helps you to
hange a �gure's attributes after its
reation. If several �gures are

sele
ted, the attribute is
hanged for all �gures that support that attribute. If you try to

hange an attribute that some sele
ted �gures do not support (e.g. font size for re
tangles),

nothing is
hanged for that �gures, but the
hange is still applied to the other �gures.

Fill Color

The �ll
olor attribute determines the
olor of the inner area of a �gure. All �gures but the

line-based �gures like
onne
tion, ar
, et
. o�er this attribute. The values for this attribute

ould be any RGB-
olor, but the user interfa
e only o�ers 14 prede�ned
olors from whi
h

you
an
hoose. The default �ll
olor is Aquamarine ex
ept for text �gures, where it is None.

When you
hoose other... at the end of the list of
olors, you get a full-featured
olor

hooser dialog that provides multiple ways to de�ne any
olor. There are four buttons at the

bottom of the dialog:

Apply applies the
urrently
hosen
olor to sele
ted �gures.

Update
hooses the
olor of a sele
ted �gure and makes it the
urrent
olor in the dialog.

OK
loses the dialog and applies the
urrently
hosen
olor to sele
ted �gures.

Can
el
loses the dialog.

The dialog
an be used to
opy
olor attributes between �gures by a sequen
e of

Update and Apply a
tions. Similar dialogues are provided for other attributes like

pen
olor, text
olor, font and font size.

Opaqueness

The opaqueness attribute determines the transparen
y of the inner area of a �gure, of the pen

olor or of the font. Ea
h attribute Fill Color, Pen Color and Font has its own opaqueness

menu that is lo
ated right below ea
h menu entry. The visibility of ea
h item
an be set in

values ranging from 0% (invisible) to 100% (opaque).

The transparen
y attribute is ignored in EPS export. However, transparen
ies are

printed
orre
tly using the Print dialog and in the PDF, SVG and PNG export

formats.

90

Pen Color

The pen
olor attribute is used for all lines that are drawn. All �gures but the image �gure

support this attribute. Note that the pen
olor does not
hange a text �gure's text
olor

(see below), but the
olor of a re
tangle frame that is drawn around the text. Again,
hoose

the desired
olor from the given list. The default pen
olor is bla
k, ex
ept for text �gures,

where it is None (i.e. transparent). The other... entry at the end of the list of
olors opens

a full-featured
olor
hooser dialog as des
ribed under Fill
olor.

Visibility

The visibility attribute
an be used for all types of �gures. A �gure marked as invisible

is still part of the drawing, but it will not be displayed. As it is not visible, it
annot be

sele
ted by the mouse any more, but the sele
t
ommands from the menus Edit or Net will

still in
lude the �gure when appropriate. This feature is useful espe
ially in
ombination with

the Asso
iate highlight
ommand from the net menu. The invisible �gure will appear in

the instan
e drawing while it is highlighted.

Arrow

This attribute is only valid for the
onne
tion and the ar
 �gure and o�ers four possibilities

of arrow tip appearan
e: None, at Start, at End, or at Both ends of the line. If the �gure

is an ar
, its semanti
s are
hanged a

ordingly.

Arrow shape

This attribute is valid only for lines or
onne
tion �gures. The style of arrow tips
an be

hanged to one of four shapes, whi
h are usually used to mark di�erent semanti
s of ar
s in

Renew. But as it is
urrently not possible to
hange the ar
 semanti
s in a

ordan
e to the

arrow tip shape, this attribute will not have any e�e
t on ar
 �gures.

Line Style

Every line possesses a line style, whi
h
an be
hosen out of the options normal, dotted,

dashed, medium dashed, long dashed or dash-dotted. Lines are typi
ally
reated as solid,

normal lines.

It is also possible to de�ne your own line style: After
hoosing the option other..., you

an enter any
ustom line style in a non-modal dialog. The dialog has four buttons Apply,

Update, OK and Can
el that work similar as in the Fill
olor dialog (see above).

A
ustom line style
onsists of a spa
e-separated sequen
e of numbers. The �rst number

of the sequen
e determines the length (in pixels) of the �rst dash. The se
ond number is

interpreted as the length of the gap after the �rst dash. The third number determines the

se
ond dash's length, then the next gap's length follows and so on.

The sequen
e must
onsist of an even number of numbers. There is only one ex
eption:

A single number
an be used for a simple dashed line where dashes and gaps are of the same

length. The normal solid line style
an be set by applying an empty sequen
e.

Some examples from our prede�ned line styles:

dashed �10�

medium dashed �15 10�

dash-dotted �7 3 1 3�

Line styles
an not only be applied to lines,
onne
tions and s
ribble �gures, but also to

re
tangles, ellipses, polygons, transitions, pla
es and other
losed shapes.

91

Line Shape

With this attribute a straight line
an be
hanged to a B-Spline and vi
e versa. Every

linetype
an be
hanged to a B-spline. But these lines retain their other like handles and

behavior. If this
onversion is applied, there are more attributes o�ered to in�uen
e the

bspline algorithm:

standard This works as a reset to standard settings with a degree of 2 and a segment size

of 15.

Segments This is used to
hange the number of segments to smooth the edges.

Degree The lower the number, the
loser the line sti
ks to the handles. 2
reates maximally

urved line. The degree depends on the number of handles and is only e�e
tive if the

hoi
e is not larger than the number of handles plus one.

Round
orners

This attribute in�uen
es the behavior of round re
tangles when they are s
aled. When set

to fixed radius, the size of the
urvature will remain un
hanged regardless of the s
aling

of the �gure. Nevertheless, an expli
it modi�
ation of the radius is still possible by using the

spe
ial yellow handle. This is the default, whi
h was ex
lusively used in previous releases of

Renew.

The setting s
ale with size will adapt the
urvature size when the re
tangle is s
aled,

so that the proportion of the re
tangle used for the
urvature remains the same.

Font

Only appli
able to text-based �gures, this attribute sets the font for the
omplete text of

this text �gure. Not all fonts are available on all platforms. It is not possible to use several

fonts inside one text �gure (but still, this is a graph editor, not a word pro
essor or DTP

appli
ation). The other... entry at the end of the list of
olors opens a font sele
tion

dialog that works like the
olor dialog des
ribed under Fill
olor. The font sele
tion dialog

in
ludes other font attributes like the size or itali
 and bold style options.

Caution: If you use non-standard fonts, the text will show up di�erently on systems where

the fonts are not installed.

Font Size

Only for text-based �gures, sele
t one of the prede�ned font sizes given in point with this

menu. The other... entry at the end of the list opens a dialog where you
an enter any

number as size. The dialog has four buttons Apply, Update, OK and Can
el that work similar

as in the Fill
olor dialog (see above).

Font Style

Available font styles (again, only for text-based �gures) are Itali
 and Bold. If you sele
t a

style, it is toggled in the sele
ted text �gure(s), i.e. added or removed. Thus, you
an even

ombine itali
 and bold style. To reset the text style to normal, sele
t Plain.

Text alignment

The dire
tion of text justi�
ation
an be
on�gured by this attribute. This will a�e
t the

alignment of lines in text �gures with multiple lines as well as the dire
tion of growth or

shrinking when a text
hanges its width due to a
hange in its text length. By default,

ins
riptions and other
onne
ted text is
entered at the parent �gure while other text �gures

are left-aligned.

92

Text Color

The text
olor attribute is only appli
able to text-based �gures and sets the
olor of the text

(si
!). This is independent of the pen and �ll
olor. The default text
olor is (of
ourse)

bla
k. The other... entry at the end of the list of
olors opens a full-featured
olor
hooser

dialog as des
ribed under Fill
olor.

Text Type

This attribute is quite ni
e to debug your referen
e nets qui
kly. The text type determines if

and what semanti
 meaning a text �gure has for the simulator.

If a text �gure is a Label, it has no semanti
 meaning at all. If it is a Ins
ription, it is

used for the simulation (see Se
tion 4.2.3: The Ins
ription Tool). A Name text type does not

hange the simulation, but makes the log more readable (see Se
tion 4.2.3: The Name Tool).

It is quite
onvenient to �swit
h o��
ertain ins
riptions by
onverting them to labels

if you suspe
t them
ausing some problems. This way, you
an easily re-a
tivate

them by
onverting them ba
k to ins
riptions.

You might also want to have
ertain ins
riptions appear as transition names during the

simulation. You
an a
hieve this by dupli
ating the ins
ription �gure, dragging the dupli
ate

to the transition (see Se
tion 4.2.2: The Conne
ted Text Tool) and
hanging the dupli
ate's

text type to Name.

4.3.5 Net

This menu o�ers
ommands that are useful for nets only. You
an semanti
ally modify �gures

in a drawing,
he
k the a
tive drawing for problems, or
on�gure the graphi
al simulation

feedba
k for net elements.

Split transition/pla
e

This
ommand provides a simple way to re�ne net elements by splitting a single transition

or pla
e into two.

If a transition is split the old transition is
onne
ted to a newly
reated pla
e. This pla
e,

in turn, is
onne
ted to a newly
reated transition. The inbound ar
s of the old transition

remain un
hanged, the outbound ar
s are re
onne
ted to the new transition. Reserve ar
s

are split into an inbound and an outbound ar
, whi
h are handled respe
tively.

If a pla
e is split it will be extended by a new transition and a new pla
e. The
onne
ted

ar
s are treated in the same manner as des
ribed above (outbound ar
s are re
onne
ted to

the new pla
e).

Coarsen subnet

This
ommand
oarsens pla
e-bounded or transition-bounded subnets. It is only available if

a pla
e-bounded or transition-bounded subset of �gures is sele
ted within the drawing.

On exe
ution, if the sele
ted subset is pla
e-bounded, all pla
es are merged into one and

all transitions are removed. The ins
riptions of the removed pla
es are atta
hed to the single

remaining pla
e. All ar
s entering or leaving the sele
ted subnet are re
onne
ted to this pla
e,

too.

If the sele
ted subset is transition-bounded, transitions are merged and pla
es are removed,

respe
tively.

93

Tra
e

This menu and the next two are realized as �gure attributes that
an be applied to ea
h

single net element. However, they must be set before the simulation is started to take e�e
t.

They also
annot be applied to �gures in net instan
e drawings.

Sometimes, the simulation log be
omes very
omplex and full. To redu
e the amount of

information that is logged, the tra
e �ag of net elements
an be swit
hed o�.

• If a transition's tra
e �ag is swit
hed o�, the �rings of this transition are not reported

in the log window.

• A pla
e's tra
e �ag determines whether the insertion of the initial marking into the

pla
e should be logged.

• If an ar
's tra
e �ag is swit
hed o�, the messages informing about tokens �owing

through this ar
 are omitted.

With the integration of the Log4j framework (see Se
tion 2.6.9), the need for the tra
e

attribute has been redu
ed. The
on�guration of Log4j is mu
h more �exible, it allows for

multiple log event targets with individual �lter
riteria while the tra
e �ag globally
ontrols

the generation of log events for a net element. A valid reason to still use the tra
e attribute

may be the simulation speed when you want to dis
ard the tra
e anyway, but Log4j is

rather e�
ient in su
h a situation, too. Please note that Renew provides a graphi
al Log4j

on�guration dialog for simulation tra
es (see Subse
tion 4.3.6).

Marking

This menu
ontrols the default as well as the
urrent
hoi
e how the
ontents of ea
h pla
e

is to be displayed during simulation.

There are four ways to display the marking of a pla
e during simulation: Either the

marked pla
es are simply highlighted in a di�erent
olor (highlight only), or the number

of tokens is shown (Cardinality), or the verbose multiset of tokens (Tokens) is shown, or

ea
h token and its attributes is shown in detail (expanded Tokens). This is also the default

mode for
urrent marking windows. However, these modes
an be swit
hed at drawing time

and at simulation time using the Marking menu.

The expanded token mode relies on the undo
umented feature stru
ture (fs) formalism to

display obje
t attributes. Sin
e the fs formalism is not any longer distributed with the base

renew distribution, this mode is not available unless you install the FS plug-in.

In Expanded Tokens mode, token obje
ts are shown in a UML-like (Uni�ed Modeling

Language) notation. An obje
t is noted by a box
ontaining two so-
alled
ompartments.

import java.awt.*;

menus=

items=
label=label=

label=

"Save..."

:MenuItem

"Load..."

:MenuItem

"File"

:Menu

:MenuBar

Figure 4.4: An Example of Browsing Token Obje
ts in Expanded Tokens Mode

The �rst
ompartment spe
i�es a temporary name of the obje
t (Renew just gives numbers

to obje
ts), followed by a
olon (:), followed by this obje
t's
lass name. A

ording to UML,

the whole string is underlined to indi
ate that this is an instan
e, not the
lass. The se
ond

ompartment is only shown if you
li
k the shutter handle, a small yellow re
tangle with a

94

ross (plus sign) inside. Otherwise, the available information is indi
ated by three dots (...)

after the
lass name.

The se
ond
ompartment
ontains a list of all attributes of the token obje
t and their

values, whi
h are basi
 types or again obje
ts. Multi-valued attributes (e.g. array values

or Enumerations) are shown as lists in sharp bra
kets (this part is not quite UML). After

opening the attributes
ompartment, the handle
hanges to a horizontal line (minus sign)

and lets you
lose the
ompartment again if you wish to do so. This way, you
an browse

the obje
t graph starting at the token obje
t. If the value of an attribute happens to be

an obje
t that already appeared in the open part of the obje
t graph, only the temporary

name (number) of that obje
t is display as the attribute's value. To help you �nd the original

obje
t, you
an
li
k on this obje
t number, and all appearan
es of this obje
t are highlighted

by a red frame. To get rid of the highlighting, just
li
k on any of the numbers again.

Figure 4.4 shows an example of a java.awt.MenuBar obje
t that is being browser as an

Expanded Token. In the example, the menu bar
ontains one menu File with two menu item

of whi
h the �rst one is Load.... The parent of the �rst menu item is again the menu, as

you
an see by the highlighting. The se
ond menu item is
losed.

Renew tries to �nd attributes of the token obje
t by using Java's re�e
tion me
hanism

on �elds and get-methods. Any method without parameters and with a return type whi
h is

not void is regarded a get-method. In some
ases, su
h methods return volatile (
hanging)

results, but are only queried on
e when the token �gure is expanded. This means you should

not expe
t to see
hanges of a token obje
t while browsing it!

Renew stores for ea
h pla
e the preferred display mode
hosen by the Marking menu.

This means that every new simulation starts with the display mode
hosen for ea
h pla
e,

and the display mode is also saved to disk. The menu
an also be used to
hange the display

mode during run-time. To do this, either the token �gure or the pla
e instan
e has to be

sele
ted.

Breakpoints

Using this attribute, you
an request breakpoints for
ertain pla
es and transitions. These

breakpoints will be established immediately after the start of the simulation and have exa
tly

the same e�e
t as a global breakpoint that is set during the simulation. In the net drawing,

transitions and pla
es with a set breakpoint attribute are marked by a small red
ir
le in

their upper right
orner. However, the tag is not shown in instan
e drawings.

Attributed breakpoints, like breakpoints set during the simulation, will show up in the

breakpoint menu while the simulation is running. Please see subse
tion 4.3.6 for a detailed

des
ription of the possible breakpoints. Note that you
an set at most one breakpoint for

ea
h net element using this menu
ommand.

Attributed breakpoints are established only when the net drawing is loaded in the editor

at the moment where the
ompiled net is passed to the simulation engine. For the initial

drawings (that were used to start the simulation) this is usually the
ase. But if nets are

loaded later by the net loader from .sns �les (see Subse
tion 2.6.6), no breakpoints are set.

This behavior is due to the fa
t that the responsibility for the
reation of breakpoints

lies in the graphi
al user interfa
e and not in the simulation engine. Sin
e the breakpoint

attribute is dropped when exporting shadow net systems (see Subse
tion 4.3.1), the simulator

is not able to establish these breakpoints.

Set Sele
tion as I
on

This feature allows you to assign i
ons to your nets. These i
ons will be displayed during

simulation, whenever a pla
e marking is displayed in token mode (see subse
tion 4.3.5) and

referen
es an instan
e of a net with an i
on.

Sele
t exa
tly one �gure, whi
h
an be of any type, then sele
t the menu Set Sele
tion

as I
on. If more than one �gure was sele
ted, nothing happens, but in the
ase of a single

95

�gure, it is assigned as the net's i
on. When the �gure is removed, the net does not have

a spe
ial i
on, so that referen
es to this net are again displayed as text. When the �gure is

or in
ludes a text �gure, the string $ID,
ontained anywhere within the text, has a spe
ial

meaning: During simulation, $ID will be repla
ed by the index number of the referen
ed net

instan
e.

You
an use net i
ons as in the following example whi
h
an be found in the samples

folder i
on. Remember the Santa Claus example from Se
tion 3.7? Imagine you want to

visualize the bag and its
ontents as i
ons. Figs 4.5 and 4.6 show modi�ed versions of the

nets from the Santa Claus example.

b

b:take(thing)

thing

boots

bag

[]

wakeup

b:deposit(m2)

b: new iconbag

m1: new muffin

b:deposit(m3)

b

b:deposit(m1)

m2: new muffin

m3: new muffin

:take(thing):deposit(thing)

thing thing

BAG $ID

Figure 4.5: The net i
onsanta

Figure 4.6: The net i
onbag

Add an i
on to the bag net by drawing an ellipse,
oloring it gray, and drawing a polygon

whi
h looks like the
losure of the bag. Add a text with the string BAG $ID to the drawing.

Group together all new �gures (Edit | Group). This is ne
essary, sin
e the i
on of a net has

to be a single �gure. Now you
an sele
t the group and then the menu Set Sele
tion as

I
on. Note that when you have to Ungroup the i
on (e.g. to move one of the in
luded �gures

individually), this
orresponds to removing the group �gure. So, after re-grouping the i
on,

you have to invoke the menu again, or the group �gure will not be set as the net's i
on.

The next step to make an i
onized version of the Santa Claus example is to
reate a new

net, add an image �gure with your favorite sweet (in my
ase, this is a mu�n) and a text

�gure saying $ID. Then again group together the image and the text, sele
t this new group,

and sele
t the menu Set Sele
tion as I
on. Save this net as muffin.

Now, you
an sele
t the net i
onsanta and start a new simulation. After performing two

steps, the running nets may look like those in Figure 4.7. Note that the referen
e to the net

bag is now display as the bag i
on with $ID repla
ed by the net instan
e index 1. Without

the i
on, the token would have been des
ribed as bag[1℄. Also note that the mu�ns all have

di�erent index numbers, so that you
an see to whi
h net they refer.

The ba
kground of expanded tokens in instan
e/simulation drawings is not trans-

parent by default to improve readability. It
an be
hanged to be transparent by

setting the property de.renew.gui.noTokenBa
kground.

Asso
iate Highlight

It is not only possible to sele
t the kind of feedba
k given for the marking of a pla
e (see

Subse
tion 4.4.1), but also to spe
ify arbitrary graphi
al elements to be highlighted whenever

a pla
e is marked or a transition is �ring. Ea
h net element
an have at most one highlight

�gure, but this �gure
an be any Renew drawing �gure like any re
tangle, line, text, et
.,

even a group �gure.

96

Figure 4.7: The Santa Claus Example with I
ons During Simulation.

You
an for example draw a StateChart with Renew's drawing fa
ilities,
onstru
t a net

whi
h simulates the StateChart's behavior, and asso
iate �gures su
h that during simulation,

the StateChart is highlighted a

ordingly.

The �rst fun
tion one needs for dealing with su
h highlights is to asso
iate a highlight to a

net element su
h as a pla
e or a transition. When the menu Asso
iate Highlight is invoked,

exa
tly two �gures have to be sele
ted, of whi
h one has to be a pla
e or a transition.

2

The

status line tells you if asso
iating the highlight to the net element was su

essful, otherwise

displays an error message.

Now, during simulation, the asso
iated �gure will be highlighted exa
tly when the net

element is highlighted. If the asso
iated �gure is invisible, it will be made visible whenever

it is highlighted. If the �gure is already visible, its
olor will
hange as a result of the

highlighting.

Sele
t Highlight(s)

To �nd the asso
iated highlight �gure (see above) to a net element, sele
t the net element and

then this menu. If the net element does not have any highlight �gure, a
orresponding message

appears in the status line. You
an also sele
t multiple net elements, and all asso
iated

highlight �gures of any one net element of the group will be sele
ted.

Unasso
iate Highlight

Sometimes you also want to get rid of a highlight-asso
iation (see above). Then, sele
t one

single net element (pla
e or transition) with an asso
iated highlight �gure and then invoke

this menu. When you asso
iate a net element to a highlight �gure, any old asso
iation is

automati
ally
an
eled.

Syntax Che
k

This menu entry
he
ks the net for syntax errors without starting a simulation run. Of
ourse,

most syntax errors are immediately reported after the editing of an ins
ription, but not all

errors are found this way. E.g., multiple uplink ins
riptions
annot be dete
ted immediately.

You
an also invoke a syntax
he
k when you have
orre
ted one error, in order to make sure

that no other error remains. It is always a good idea to keep the nets synta
ti
ally
orre
t

at all times.

2

It is even possible to asso
iate another net element as a highlight, but this is not re
ommended, as it
an

lead to
onfusion.

97

Layout Che
k

This menu entry
he
ks in all loaded drawings whether text�elds overlap by more than 50%.

Overlap indi
ates problems in the
lear representation. Also, the situation is dete
ted that a

se
ond ins
ription is a

identally assigned to an ar
 and is hidden be
ause of the overlap.

4.3.6 Simulation

This menu
ontrols the exe
ution or simulation of the net system you
reated (or loaded).

Before a simulation
an be started, all ne
essary nets must be loaded into memory (see

subse
tion 4.3.7). The drawing window
ontaining the net that is to be instantiated initially

has to be a
tivated.

Refer to Se
tion 4.4, if you want to learn how to monitor and in�uen
e a simulation run

that you have started using this menu.

Run Simulation

This fun
tion starts or
ontinues a simulation run that
ontinues automati
ally until you

stop the simulation. If you want to enfor
e starting a new simulation run, use Terminate

Simulation (see below) �rst. For most net models, it is almost impossible to follow what's

going on in this simulation mode. Its main appli
ation is to exe
ute a net system of whi
h

you know that it works.

Some syntax
he
king is done even while you edit the net (see Se
tion 4.2.3: The Ins
rip-

tion Tool), but when you try to run a simulation of your referen
e nets, the referen
e net

ompiler is invoked and may report further errors (see Se
tion 4.6). You have to
orre
t all

ompiler errors before you
an start a simulation run.

The keyboard short
ut for this fun
tion is Ctrl+R.

Simulation Step

This menu performs the next simulation step in the a
tive simulation run or starts a new

simulation run if there is no a
tive simulation.

If a simulation is already running in
ontinuous mode, one more step is exe
uted and then

the simulation is paused to be
ontinued in single-step mode. Thus, it is possible to swit
h

between
ontinuous and single-step simulation modes.

The keyboard short
ut for this fun
tion is Ctrl+I.

Simulation Net Step

This menu entry performs a series of simulation steps in the a
tive simulation run or starts a

new simulation run if there is no a
tive simulation. The simulation is paused when an event

in the net instan
e in the
urrent instan
e window o

urs.

The keyboard short
ut for this fun
tion is Ctrl+Shift+I.

Halt Simulation

This menu halts the
urrent simulation run, whi
h has been started with Run Simulation, or

terminates the sear
h for a possible binding in single step mode. No further simulation steps

are made, but you are free to resume the simulation with Run Simulation or Simulation

Step.

There are situations where a net invokes a Java method that does not terminate.

In these
ases Renew
annot su

eed in halting the simulation.

The keyboard short
ut for this fun
tion is Ctrl+H.

On Ma
OS systems, Cmd+H is bound system-wide to hide the appli
ation window. There-

fore, the short
ut key has been
hanged to Shift+Cmd+H.

98

Terminate Simulation

This menu entry stops the
urrent simulation run (if there is any). For
ertain reasons, the

simulator
an not know if the simulated net is dead (it
ould always be re-a
tivated from

outside, see Se
tion 3.9), so a simulation only ends when you invoke this
ommand. When

you issue another simulation
ommand after this
ommand, a new simulation is automati
ally

started.

All simulation related windows (net instan
es,
urrent markings, now also possible transi-

tion bindings) are now automati
ally
losed when simulation is terminated, sin
e they
annot

be used after simulation anyway.

The keyboard short
ut for this fun
tion is Ctrl+T.

Con�gure Simulation. . .

This dialog allows to
hange some simulation related
on�guration options. These options
an

also be
ontrolled from the
ommand line or the
on�guration �le .renew.properties (see

se
tion 2.6.1). All options presented in this dialog are evaluated ea
h time a new simulation

is started. However, the settings in this dialog are not stored permanently.

The dialog
omprises several tabs, ea
h tab groups some
on�guration options. The

buttons at the bottom of the dialog a�e
t all tabs.

Apply passes the
urrent settings to the plug-in system, so that the simulator plug-in
an

interpret them at the next simulation startup.

Update refreshes the dialog to display the
urrent settings known to the plug-in system.

Unless you modify some properties
on
urrently, you
an think of this button as a

�revert� button, that restores the most re
ently applied
on�guration.

Update from simulation refreshes the dialog to display the
on�guration of the running

simulation, if there is any. These settings may di�er from the
urrent simulator plug-in

on�guration, so you might want to press Apply or OK afterward to bring the plug-in

on�guration ba
k in syn
 with the settings of the running simulation.

OK applies the
urrent
on�guration (like Apply would do) and
loses the dialog.

Close
loses the dialog and dis
ards any setting
hanges (unless they have been applied

before).

The tabs provide the following options:

Engine The two options Sequential mode and Multipli
ity
on�gure the
on
urren
y

of the simulation engine. The sequential mode is of interest when you work with a timed

formalism (see se
tion 3.11) or spe
ial ar
 types (see se
tion 4.3.6). Multiple simulators may

enhan
e the performan
e on multipro
essor systems. A sequential mode with multipli
ity

greater than one is not sequential be
ause it uses multiple
on
urrent sequential simulators.

The settings are equivalent to the de.renew.simulatorMode property mentioned in se
-

tions 2.6.3 and 2.6.4. Just think of the Sequential Mode
he
k box as the sign of the

simulatorMode value (if you enter a minus sign in the Multipli
ity �eld, it is ignored).

The Class reinit mode setting equivalents the de.renew.
lassReinit property ex-

plained in se
tion 2.6.5. It allows you to reload
ustom
lasses during development.

The Simulation priority sets the priority of ea
h thread the simulation spawns. Higher

values allow for faster simulations but might result in redu
ed GUI responsiveness. The

default value of 5 is
onsidered a good tradeo� between speed and gui response time.

99

Remote A

ess The options provided by this tab �nd their equivalents in the remote

properties whi
h are explained in se
tion 2.6.8. When you
he
k Enable remote a

ess,

the simulation will be published over Java RMI to allow remote inspe
tion and simulation

ontrol (this feature needs a running RMI registry to work). To distinguish multiple sim-

ulations on the same registry, you
an assign a Publi
 name to the simulation. Plug-In

developers might be interested in the possibility to repla
e the remote Server
lass by a

ustom implementation. A
ustom RMI So
ket fa
tory
an only be supplied at startup,

therefore this property
annot be
hanged here.

To observe the simulation from a remote editor, use the the Remote server
ommand

explained in se
tion 4.3.6.

Net path This tab allows the manipulation of the de.renew.netPath property used by

the net loader (see se
tion 2.6.6). On the left, you have a list of path entries, one dire
tory

per line. The net loader sear
hes the dire
tories in order from top to bottom. In the list, you

an sele
t one or more entries to manipulate. On the right, there are �ve buttons, most of

whi
h a�e
t the sele
ted set of entries.

Add... opens a dialog where you
an enter a new path entry. The dire
tory should be entered

in os-spe
i�
 syntax.

If you want to spe
ify a dire
tory relative to the
lasspath,
he
k the appropriate box

and make sure that the path does not start with a slash, ba
kslash, drive letter or what

else de
lares a path absolute at your operating system.

Edit... opens a dialog similar to the Add... dialog for ea
h sele
ted path entry.

Move up moves all sele
ted entries one line above the �rst sele
ted entry (or to the top of

the list, if the topmost entry was in
luded in the sele
tion).

Move down moves all sele
ted entries one line below the last sele
ted entry (or to the end of

the list, if the bottom-most entry was in
luded in the sele
tion).

Delete removes all sele
ted entries from the list.

Logging This tab
on�gures the simulation log tra
es (see Menu entry �Show simulation

tra
e. . . � below). In
ontrast to other tabs,
hanges to the settings on this tab take e�e
t

immediately.

It is possible to
reate additional loggers that fo
us on net-, transition- or pla
e-spe
i�

parts of the simulation tra
e. A
li
k with the right mouse button on the top-level entry

of the logger tree opens a
ontext menu where additional loggers
an be added. The logger

name serves as �lter
riterion.

Ea
h logger
an be
on�gured to send its data to one or more appenders. Depending

on the kind of appender, the �ltered simulation tra
e
an go to the
onsole, a �le or a tra
e

window (GuiAppender). Ea
h appender
an be
on�gured with various options. For example

the bu�er size (the number of viewable simulation steps) of the GuiAppender
an be adjusted

to your needs.

The text�eld Layout is used to
ustomize logger output using log4j PatternLayout.

Remote server. . .

Using this menu entry, you
an list all net instan
es of a Renew simulation server. To be

able to do this, a simulator must be running with remote a

ess enabled as des
ribed in

se
tion 2.6.8.

The dialog
omprises two parts: The upper buttons swit
h between remote simulations,

the lower part shows a list of net instan
es. Initially, the list shows net instan
es of the lo
al

simulation (if there is a running simulation).

100

The Conne
t... button displays another dialog whi
h allows you to
onne
t to a remote

simulation server. You must spe
ify the host on whi
h the Server is running. The server

Name
an be left at the default value unless you spe
i�ed the de.renew.remote.publi
Name

property on the server side.

If the
onne
tion has been established, the drop-down box at the top of the Remote Renew

servers dialog in
ludes the remote simulation and the list of net instan
es is updated. You

an swit
h between servers by sele
ting them in the drop-down box. The
onne
tion stays

alive until you press the Dis
onne
t button, or either Renew appli
ation (lo
al or remote)

terminates.

In the net instan
e list, you
an sele
t a net instan
e and open it by double-
li
k or by

pressing the Open button. The title of the net instan
e window shows that it is the instan
e of

another server. You
an use nearly all the intera
tion features of lo
al net instan
e drawings.

All your modi�
ations are exe
uted on the server. Like lo
al simulation windows, events from

the remote simulation ensure that the drawings will be up-to-date at every time.

The editor is not able to display two net instan
es with the same name and id. It will

bring the existing net instan
e window to front when you sele
t a net instan
e with

the same name and id from a di�erent simulation. To see the other net instan
e,

lose the existing net instan
e window.

Breakpoints

You
an set breakpoints to stop the simulation at a prede�ned point of time, whi
h is espe-

ially helpful for debugging purposes, where the simulation might have to run for extended

periods of time, before an interesting situation arises.

The breakpoint menu
onsists of two se
tions. The �rst allows you to set and
lear

breakpoints and the se
ond allows you to view all breakpoints
urrently set in the simulation.

A breakpoint will stop the sear
h for enabled bindings when running a simulations. How-

ever, the exe
ution of those transitions that are already �ring
ontinues. This is espe
ially

important if a breakpoint is atta
hed to a transition: The transition might still run to
om-

pletion while the breakpoint is reported.

That means that you will often want to atta
h a breakpoint to an input pla
e of a

transition, if you want to inspe
t the state of the net before a
ertain transition �res. You

annot
urrently dete
t a
hange of enabledness dire
tly.

Set Breakpoint at Sele
tion. Before setting a breakpoint you must sele
t a pla
e or

transition or a group thereof within a net instan
e window. You
an set a breakpoint either

lo
ally or globally. A lo
al breakpoint will a�e
t exa
tly the
hosen net instan
e and will

not
ause a simulation stop if other net instan
es
hange. A global breakpoint automati
ally

applies to all net instan
es, even those that will be
reated after the breakpoint is established.

There are a number of di�erent breakpoint types:

• Default. This is a
onvenien
e type that is equivalent to a breakpoint on start of �ring

for transitions and on
hange of marking for pla
es. You
an use it if you want to set

a breakpoint to a pla
e and a transition simultaneously.

• Firing starts. This breakpoint is triggered whenever the transition starts �ring. The

breakpoint happens just after all input tokens have been removed from their pla
es

and the transition is about to exe
ute its a
tions.

• Firing
ompletes. Unlike the previous item, the breakpoint o

urs at the end of a

transition's �ring. This is espe
ially useful in the
ase of net stubs, where you want

to inspe
t the result of a stub
all.

• Marking
hanges. Any
hange of the state of a pla
e is dete
ted here, even if the

hange is simply due to a test ar
.

101

• Marking
hanges, ignoring test ar
s. Here it is required that tokens are a
tually moved

and not merely tested.

• +1 token. Only a token deposit triggers this breakpoint.

• −1 token. A token removal must o

ur before this breakpoint is a
tivated.

• Test status
hanges. Normal ar
s do not trigger this breakpoint, but test ar
s do.

Multiple breakpoint types may be set for a single net element using this menu.

Clear Breakpoint at Sele
tion. A breakpoint is not automati
ally
leared after it was

invoked. Instead, you must
lear breakpoints expli
itly. Having sele
ted the net element that

ontains a breakpoint, you
an either
lear all lo
al breakpoints or all global breakpoints.

Clear All Breakpoints in Current Simulation. This
ommand will get rid of all break-

points that were ever set. This is useful if you have rea
hed a
ertain desired situation and

want to
ontinue the simulation normally. Alternatively, you might want to
lear all break-

points that were
on�gured using the attribute menu, if you require a
ompletely automati

run on
e in a while, but not want to loose the information about the standard breakpoints.

Breakpoint List. The se
ond part of the menu allows you to view all breakpoints, lo
ate

the asso
iated net elements, and possibly reset individual breakpoints.

Save simulation state. . .

This menu entry saves the
urrent simulation state to a �le, so it
an be restored later

on by the menu
ommand Load simulation state. The saved state also in
ludes all net

instan
es
urrently opened in drawings and all
ompiled nets. The default extension for

Renew simulator state �les is .rst.

Points to be aware of:

• Saved simulation states will most likely not be
ompatible between di�erent versions

of Renew.

• All
ustom
lasses used in the
urrent marking of the net must implement the interfa
e

java.io.Serializable in a sensible way to obtain a
omplete state �le.

There are also some minor side e�e
ts:

• This
ommand halts the simulator, be
ause there must not o

ur any
hanges to the

urrent simulation state while it is saved to obtain a
onsistent state �le. You
an

ontinue the simulation afterward.

• The binding sele
tion window will be
losed, if it is open.

Load simulation state. . .

This menu entry loads a simulation state from a �le saved by the menu
ommand Save

simulation state before. You will then be able to
ontinue the simulation as usual from

the point at whi
h the simulation state was saved.

If all drawings used in the state are loaded, you
an use all simulation
ontrol fa
ilities

as usual. However, it is not ne
essary to have all used drawings open. If some drawing is

missing, the only drawba
k is that its net instan
es will not be displayed in instan
e drawings.

As a
onsequen
e, you will not be able to use the extended
ontrol features des
ribed in

Se
tion 4.4 for these nets, but the menu
ommands Simulation step and Run simulation

will still work and tra
e events will still be logged. This holds even if no drawing used by the

saved simulation state is loaded at all.

The mapping from a
ompiled net
ontained in the saved state to an open net drawing is

done by the net's name. This mapping o

urs every time when you try to open an instan
e

drawing for any instan
e of the net. If you added to or removed from the net drawing any

102

transitions or pla
es sin
e the simulation state was saved, some messages informing you about

the problem and its
onsequen
es are printed to the appli
ation log. An instan
e drawing

will still be opened, but it will not ne
essarily display the same stru
ture that the
ompiled

net uses.

Further points to be aware of:

• If you load a simulation state, any running simulation will be terminated and all

related windows are
losed.

• If the
lass reinit mode is sele
ted (see Subse
tion 2.6.5),
ustom
lasses will be reloaded

while restoring the simulation state.

• All
ustom
lasses used in the saved simulation state must be available when restoring

the state.

Show simulation tra
e. . .

This menu
ommand opens a window that shows the tra
e of the
urrent simulation. In

previous Renew releases, the tra
e has always been printed to the
onsole, now you
an

losely inspe
t the tra
e inside the editor. The short
ut for this
ommand is Ctrl+L

By default, the drop-down list on top of the window provides one simulation tra
e that

overs the last 20 simulation steps. You
an
on�gure additional tra
es of di�erent length that

fo
us on spe
i�
 net instan
es, pla
es or transitions using the Logging tab of the Configure

simulation dialog (see above).

A double left mouse button
li
k on a simulation tra
e entry opens a window that displays

the whole message, using multiple lines if appropriate. A right mouse button
li
k opens a

ontext menu that allows you to display the net template or instan
e that was involved in

the simulation step. It is also possible to sele
t the individual pla
e or transition in the net

template or instan
e.

The mouse a
tions to inspe
t a tra
e entry are not available before you have sele
ted

any line of the simulation step it belongs to.

Formalisms

This submenu
on�gures the
urrent formalism used during
ompilation and simulation.

Please note that a running simulation will always stay with the formalism it has been started

with. To apply the
hosen formalism to the simulation, you have to terminate it and start a

new one.

The entries of this menu depend on the set of plug-ins
urrently installed. The basi

renew distribution in
ludes four formalisms, represented by their
ompilers:

P/T Net Compiler
ompiles the net as a simple pla
e-transition net. It a

epts integer

numbers as initial markings and ar
 weights. Capa
ities are not supported.

Java Net Compiler en
apsulates the referen
e net formalism with Java ins
riptions as de-

s
ribed in
hapter 3. However, this
ompiler does not a

ept time annotations.

Timed Java Compiler represents the same formalism as the Java Net Compiler, but

with additional time annotations as explained in se
tion 3.11. Nets
ompiled by this

ompiler must be exe
uted in a sequential simulation.

Bool Net Compiler
ompiles nets a

ording to the formalism presented in [13℄. A bool net

is a restri
ted
olored net with exa
tly one
olor bool := {0, 1} (
an also be represented

as {false, true}). It a

epts one of the propositional logi
 operators and, or and xor

as transition guard ins
riptions.

103

Show sequential-only ar
s

This option is available only when the Java Net Compiler is
hosen as
urrent formalism.

Sele
ting this option adds another toolbar to the editor. This toolbar
omprises two additional

ar
 types (see se
tion 4.2.3) whi
h are allowed in sequential simulations only. Please note

that this option is automati
ally enabled (although the menu entry is not visible) when you

hoose the Timed Java Compiler as formalism.

For your
onvenien
e, the sequential simulation mode (see se
tions 4.3.6 and 2.6.4) is

a
tivated ea
h time you
he
k the box or
hoose the Timed Java Compiler. However, the

engine is not swit
hed ba
k to
on
urrent mode when you un
he
k the box or
hange to

another formalism.

4.3.7 Windows

This menu
ontains a list of all drawings loaded into memory. The drawings are
lassi�ed

into Nets, Net instan
es and Token Bags and appear in alphabeti
ally sorted submenus.

A drawing
an be loaded supplying its �le name to Renew as a
ommand line argument,

invoking the Open Drawing... menu, or
reated through the New Drawing menu. A newly

reated drawing
an be named and any drawing
an be renamed by saving it using the Save

Drawing as... menu.

By sele
ting a drawing in the Windows menu, its window is raised and be
omes the a
tive

drawing window. In the menu, the name of the a
tive drawing appears
he
ked.

Non-modal tool and attribute dialogues are in
luded in the windows menu in their own

ategories. These windows are raised when the
orresponding menu entry is sele
ted, but

there is no e�e
t with respe
t to the list of a
tive drawings.

4.3.8 Additional Top-Level Menus

The menu manager allows for the registration of a menu item by the plugins under any

top-level menu. Additionally, plugins may use a new top-level name. Typi
al
andidates are

Plugins, Tools and Appli
ation

The optional plugin GuiPrompt o�ers its
ommand under the Plugins menu. The Net-

Components plugin and the optional plugins

3

Diagram, NetDi� and Lola reside under the

Tools menu. Sin
e version 2.3 it is also possible to determine the position of the menu item

within the menu. The Navigator plugin extends the File menu.

4.4 Net Simulations

During simulation, there may be textual and graphi
al feedba
k. The Log4j framework

re
eives simulation events and
an log them alternatively to the
onsole, a �le, the tra
e

window, et
. In Subse
tion 4.3.6, the graphi
al
on�guration dialog for Log4j is explained.

In a tra
e of log events, you
an see exa
tly whi
h transitions �red and whi
h tokens were

onsumed and produ
ed. Alternatively, you
an view the state of the various net instan
es

graphi
ally and you
an in�uen
e the simulation run. The following se
tions des
ribe the

means to monitor and
ontrol the simulation.

4.4.1 Net Instan
e Windows

The graphi
al feed-ba
k
onsists of spe
ial windows, whi
h
ontain instan
es of your referen
e

nets. When a simulation run is started, the �rst instan
e of the main referen
e net that is

generated is displayed in su
h a net instan
e window. As in the simulation log, the name

of a net instan
e (and thus of its window) is
omposed of the net's name together with a

3

All mentioned optional plugins are not part of the release of Renew. They are provided separately.

104

numbering in square bra
kets, e.g. myNet[1℄. Net instan
e windows
an also be re
ognized

by their spe
ial ba
kground
olor (something bluish/purple), so they
annot be
onfused with

the windows where the nets are edited. In a net instan
e window, you
annot edit the net,

you
annot even sele
t net elements. The net is in a �ba
kground layer�, and only simulation

relevant obje
ts are sele
table, like
urrent markings of pla
es and transition instan
es. Pla
es

in net instan
e windows are annotated with the number of tokens they
ontain (if any). If

you double-
li
k on a marking the
ontaining pla
e will be sele
ted. If you right-
li
k on

su
h a marking, the marking will swit
h between the number of tokens and the tokens in

a string representation. If you right-
li
k on the
ontaining pla
e, another window appears,

ontaining detailed information about the tokens.

You
an display the
ontents of the
urrent marking dire
tly inside the net instan
e

window. This is extremely useful when a pla
e
ontains only few tokens (or even only one).

This also helps to
ontrol the number of windows, whi
h
ould be
ome very large using

Renew. To swit
h between the simple (
ardinality of the multiset) and the token display of a

pla
e marking, just right-
li
k it. The expanded display behaves exa
tly like the
ontents of

a
urrent marking window, whi
h is des
ribed in the following se
tion. Tokens in markings

are always displayed with a white, opaque ba
kground. This in
reases the readability of

markings.

4.4.2 Current Marking Windows

A
urrent marking window shows the name of the
orresponding pla
e (net instan
e name

dot pla
e name, e.g. myNet[1℄.myPla
e) in its window title bar. If the token list does not �t

into the
urrent marking window, the s
roll bars
an be used. For ea
h di�erent token value

in the multiset, a
urrent marking window shows the multipli
ity (if di�erent from one) and

the value itself. The Expanded Tokens mode des
ribed in Subse
tion 4.3.5 is now the default

mode for
urrent marking windows (if the FS plug-in is installed).

There is a spe
ial fun
tion to gain a

ess to other net instan
es. If a token's value is or

ontains a net instan
e, a blue frame appears around the name of the net instan
e. If you

li
k inside that frame, a new net instan
e window for that net instan
e is opened or the

orresponding net instan
e window is a
tivated, if it already existed. This also works for

net referen
es
ontained within a tuple, or even within a nested tuple. Using the Expanded

Tokens mode, this also works for net referen
es
ontained within a list or inside any other

Java obje
t

You
an open a net instan
e window, double
li
k all pla
es you want to �wat
h� and

lose the net instan
e window again. This helps to fo
us on the state information

you really want to see.

4.4.3 Simulation Control

In a
on
urrent system, many transitions
an be a
tivated at on
e. Normally, the simulation

engine de
ides whi
h of these transitions a
tually �res when the next simulation step is

exe
uted. For debugging and testing, it
an be very
onvenient for you to take
are of this

de
ision. Of
ourse, this only makes sense when the simulation is performed step by step (see

below).

Intera
tive simulation is possible. You
an for
e a spe
i�
 enabled transition to �re in

two ways:

• Right-
li
k the transition. Here, the simulation engine still de
ides nondeterministi-

ally about the variable bindings.

• Double-
li
k the transition. Then, the so-
alled binding sele
tion window is shown and

swit
hed to the transition you double-
li
ked. The title of the window says �transition-

name's possible bindings�, where transition-name is the full name (name of the net

instan
e-dot-transition-name) of the transition.

105

In the top part of the window a single binding is des
ribed. Ea
h transition instan
e

that parti
ipates in this binding is shown on a single line, listing those variables that

are already bound. See Se
tion 3.7 for an explanation why multiple transition instan
es

might parti
ipate in a single �ring. At the bottom of the window there is a list of all

possible bindings, where ea
h binding is displayed in a single row.

When you press the Fire button, the binding of the entry whi
h is
urrently sele
ted

will be used in the �ring. This window should be automati
ally updated whenever

the net's marking
hanges. Use the Update button, if the automati
 update fails, and

make sure to report this as a bug. Close hides the transition binding window.

If the
li
ked transition is not a
tivated, the status line of the Renew window tells you so and

nothing else is going to happen.

There are situations where a transition
annot be �red manually, although it is a
tivated.

This is the
ase for all transitions with an uplink. Sin
e a transition with an uplink is waiting

for a syn
hronization request from any other transition with the
orresponding downlink,

Renew
annot �nd su
h �ba
kward� a
tivations. You have to �re the transition with the

downlink instead.

You should experiment with the simulation mode using some of the sample net systems

�rst. Then, try to get your own referen
e nets to run and enjoy the simulation!

4.5 Simulation Server

Renew supports
lient/server simulations via RMI. You
an set up a simulation as a Java VM

of its own. You are then able to
onne
t both lo
ally and remotely, as long as the
onne
tion

between the
omputers allows RMI
alls (e.g. no �rewall blo
ks them).

As a
onsequen
e of the de
omposition of Renew into several plug-ins, any simulation

an be published over RMI. You just need to set the appropriate properties as explained in

se
tion 2.6.8 or use the Configure Simulation dialog (see se
tion 4.3.6). Therefore, this

se
tion does not fo
us on the
on�guration of a remote simulation, it just des
ribes how to

set up a simulation without using the editor's graphi
al user interfa
e.

To do this, you have to export all required nets as a shadow net system �rst (see 4.3.1

for details). Whenever you make
hanges to any net of this net system, you have to generate

the shadow net system again and start a new server with it.

Now you are ready to start the server itself, by issuing the following
ommand to the

Renew plug-in system:

startsimulation <net system > <primary net > [-i℄

The parameters to this
ommand have the following meaning:

net system: The .sns �le, as generated in the step above.

primary net: The name of the net, of whi
h a net instan
e shall be opened when the sim-

ulation starts. Using the regular GUI, this equals the sele
ting of a net before starting

the simulation.

-i: If you set this optional �ag, then the simulation is initialized only, that is, the primary

net instan
e is opened, but the simulation is not started automati
ally.

As mentioned in se
tion 2.7, the
ommand
an be passed to the plug-in system by several

means. For example, to start a remotely a

essible simulation with net systemnet out of

the net system allnets.sns dire
t from the java
ommand line, you will have to issue the

following
ommand (in Unix syntax, the \ indi
ates that the printed lines should be entered

as one line):

java -Dde.renew.remote.enable=true -jar renew2.6/loader.jar \
startsimulation allnets .sns systemnet

106

If you need a spe
ial simulation mode or any other Renew property to be
on�gured, you

an add multiple -D options or use one of the other
on�guration methods mentioned in

se
tion 2.6.1.

A simulation started by the startsimulation
ommand di�ers slightly from a simulation

started by the editor: The net loader does not look for .rnw �les, it loads nets from .sns

�les only.

If you want to experiment with properties and
ommands, or if you need to pause and

run the simulation intera
tively, you should install the Console plug-in (see se
tion 2.7.5).

When a simulation is running, several
ommands
an be entered at the prompt to
ontrol

the simulation. These
ommands provide the same fun
tionality as the menu entries listed in

se
tion 4.3.6. In fa
t, if you use the Console plug-in in
ombination with the graphi
al editor,

both
ommand sets (menu and
onsole)
ontrol the same simulation. The
onsole
ommands

are:

simulation run: Resumes a stopped simulation. If the -i option was appended to the

startsimulation
ommand, this
ommand starts the simulation.

simulation step: Exe
utes another simulation step. If the -i option was appended to the

startsimulation
ommand, this
ommand exe
utes the �rst simulation step.

simulation stop: Halts the simulation, but does not abandon it, despite of the term
om-

mand. The run
ommand
ontinues it. This is equivalent to the menu entry Halt

simulation.

simulation term: Ends and abandons the
urrent simulation. This may result in termina-

tion of the plug-in system (see se
tion 2.7.3).

simulation help: Shows a short help for all available simulation
ommands.

4.6 Error Handling

Renew helps you to maintain a synta
ti
ally
orre
t model by making an immediate syntax

he
k whenever an ins
ription has been
hanged. Additionally, a syntax
he
k is done before

the �rst simulation step of a model. The simulation will not start if there is any error in any

net.

If an error is dete
ted, an error window is opened, whi
h displays the error message.

At the bottom of the window is a button labeled sele
t. Pressing this button sele
ts the

o�ending net element or net elements and raises the
orresponding drawing. If the error

originates from a text �gure, that �gure is edited with the
orresponding text edit tool. The

ursor is automati
ally positioned
lose to the point where Renew dete
ted the error. For

more information on editing see Se
tion 4.2.2: The Text Tool.

Renew displays exa
tly one error at a time. If a se
ond error is found, the old error

message will be dis
arded and the new error message will be displayed in the error window.

Some errors are not reported at the pla
e where they originate. E.g., if you are using a

de
laration �gure, an unde�ned variable is dete
ted where it is used, but the missing de�nition

has to be added to de
laration node. Similar e�e
ts might happen due to missing import

statements. This is unavoidable, be
ause Renew
annot tell an unde
lared variable from a

misspelled variable.

For some errors Renew provides a Qui
k Fix feature, whi
h is des
ribed in the following

se
tion. Other errors and possible solutions are des
ribed in the subsequent se
tions.

4.6.1 Qui
k Fix

The Qui
k Fix feature improves the reporting of syntax errors by providing suitable proposals

for remedies and their automati
 realization.

107

For errors of type No su
h
onstru
tor/�eld/method, proposals for
orre
t
onstru
tors,

�elds or methods are provided by the syntax
he
k. If a
onstru
tor with the wrong number

or types of arguments is entered, a list of existing
onstru
tor signatures is provided. If a

non-existing �eld name for a
lass or an obje
t is entered, a list of all known �eld names is

provided. If a non-existing method is entered, a list of known method signatures where the

method name is pre�xed by the erroneous method name is provided. If the method name

_() is entered, a list of all known methods is provided. For errors of type No su
h variable,

type proposals are provided.

By double-
li
king on one of the proposals or sele
ting and pressing the apply button,

you
an apply the proposed �x for the reported error. The Qui
k Fix
hanges the erroneous

method/�eld name or
onstru
tor into the sele
ted one or de
lares the variable in the de
lara-

tion note. It
an also automati
ally add import statements for unambiguous types (requires

full quali�ed
lass names).

4.6.2 Parser Error Messages

If the expression parser dete
ts a syntax error, it will report something like:

En
ountered "do" at line 1,
olumn 3.

Was expe
ting one of:

"new" ...

<IDENTIFIER > ...

This gives at least a hint where the syntax error originated and whi
h
ontext the parser

expe
ted. In our
ase the ins
ription a:do() was reported, be
ause do is a keyword that

must not be used as a
hannel name.

4.6.3 Early Error Messages

These errors are determined during the immediate syntax
he
k following ea
h text edit.

Bad method
all or no su
h method

Typi
ally you entered two pairs of parentheses instead of one. Possibly a
lass name was

mistaken for a method
all. Maybe a name was misspelled?

Boolean expression expe
ted

An expression following the keyword guard must be boolean. Maybe you wrote guard x=y,

but meant guard x==y?

Cannot
ast . . .

An expli
it
ast was requested, but this
ast is forbidden by the Java typing rules. Renew

determined at
ompile time that this
ast
an never su

eed.

Cannot
onvert . . .

The Java type system does not support a
onversion that would be ne
essary at this point

of the statement.

Cannot make stati

all to instan
e method

An instan
e method
annot be a

essed stati
ally via the
lass name. A
on
rete referen
e

must be provided. Maybe the wrong method was
alled?

108

Enumerable type expe
ted

The operator requested at the point of the error
an a
t only on enumerable types, but not

on �oating point numbers.

Expression of net instan
e type expe
ted

For a downlink expression, the expression before the
olon must denote a net instan
e. E.g.

it is an error, if in x:
h() the variable x is of type String. Maybe you have to use a
ast?

Expression of type void not allowed here

An expression of void type was en
ountered in the middle of an expression where its result

is supposed to be pro
essed further, e.g. by an operator or as an argument to a method
all.

Maybe you
alled the wrong method?

Integral type expe
ted

The operator requested at the point of the error
an a
t only on integral types, but not on

�oating point numbers or booleans.

Invalid left hand side of assignment

In an a
tion ins
ription, only variables, �elds, and array elements
an o

ur on the left hand

side of an equation. Maybe this expression should not be an a
tion?

Multiple
onstru
tors mat
h

A
onstru
tor
all was spe
i�ed, but from the types of the arguments it is not
lear whi
h

onstru
tor is supposed to be
alled. There are overloaded
onstru
tors, but none of them

seems to be better suited than the others. Maybe you should use
asts to indi
ate the intended

onstru
tor?

Multiple methods mat
h

A method
all was spe
i�ed, but from the types of the arguments it is not
lear whi
h method

is supposed to be
alled. There are overloaded methods, but none of them seems to be better

suited than the others. Maybe you should use
asts to indi
ate the intended method?

No su
h
lass

The
ompiler
ould not �nd a
lass that mat
hes a given
lass name, but it is quite sure that

a
lass name has to o

ur here. Maybe you misspelled the
lass name? Maybe you forgot an

import statement in the de
laration node?

No su
h
lass or variable

The meaning of a name
ould not be determined at all. Maybe the name was misspelled?

Maybe a de
laration or an import statement is missing?

No su
h
onstru
tor

A mat
hing
onstru
tor
ould not be found. Maybe the parameters are in the wrong order?

Maybe the number of parameters is not
orre
t? Maybe the requested
onstru
tor is not

publi
?

109

No su
h �eld

A mat
hing �eld
ould not be found. Maybe the name was misspelled? Maybe the requested

�eld is not publi
?

No su
h method

A mat
hing method
ould not be found. Maybe the name was misspelled? Maybe the

parameters are in the wrong order? Maybe the number of parameters is not
orre
t? Maybe

the requested method is not publi
?

No su
h variable

A name that supposedly denotes a variable
ould not be found in the de
larations. Maybe

the name was misspelled? Maybe a de
laration is missing?

Not an array

Only expressions of an array type
an be post�xed with an indexing argument in square

bra
kets.

Numeri
 type expe
ted

A boolean expression was used in a
ontext where only numeri
 expressions are allowed,

possibly after a unary numeri
 operator.

Operator types do not mat
h

No appropriate version of the operator
ould be found that mat
hes both the left and the

right hand expression type, although both expression would be valid individually.

Primitive type expe
ted

Most operators
an a
t only on values of primitive type, but the
ompiler dete
ted an obje
t

type.

Type mismat
h in assignment

An equality spe
i�
ation
ould not be implemented, be
ause the types of both sides are

in
ompatible. One type must be subtype of the other type or the types must be identi
al.

Variable must be assignable from de.renew.net.NetInstan
e

The variable to whi
h a new net is assigned must be of type NetInstan
e, i.e. of exa
tly

that type, of type java.lang.Obje
t, or untyped. E.g. it is an error, if in x:new net the

variable x is of type java.lang.String. Maybe you have to use an intermediate variable of

the proper type and perform a
ast later?

Variable name expe
ted

The identi�er to whi
h a new net is assigned must denote a variable. E.g. it is an error, if in

x:new net the identi�er x is a
lass name.

110

Cannot
lear untyped pla
e using typed variable

A
lear ar
 is ins
ribed with a variable that is typed. The ar
 is supposed to
lear an untyped

pla
e. Be
ause it
annot be safely assumed that all tokens in the pla
e will have the
orre
t

type, it might not be possible to
lear the pla
e entirely. Consider de
laring the variable that

is ins
ribed to the ar
.

Cannot losslessly
onvert . . .

A typed pla
e must hold only values of the given type. Hen
e the type of an output ar

expression must be a subtype of the
orresponding pla
e type. The type of an input ar

expression is allowed to be a subtype or a supertype, but it is not allowed that the type is

ompletely unrelated.

Maybe you were
onfused by the slight variations of the typing rules
ompared to Java?

Have a look at Subse
tion 3.4.2.

Cannot use void expressions as ar
 ins
riptions

Void expressions do not
ompute a value. If you use su
h an expression, typi
ally a method

all, as an ar
 ins
ription, the simulator
annot determine whi
h kind of token to move.

Class . . . imported twi
e

In a de
laration node there were two import statements that made the same unquali�ed name

well-known, e.g., import java.lang.Double and also import some.where.else.Double.

Remove one import statement and use the fully quali�ed
lass name for that
lass.

Dete
ted two nets with the same name

The simulator must resolve textual referen
es to nets by net names, hen
e it is not allowed

for two nets to
arry the same name. Maybe you have opened the same net twi
e? Maybe

you have
reated new nets, whi
h have the name untitled by default, and you have not

saved the nets yet?

Flexible ar
s must be ins
ribed

A �exible ar
 is not equipped with an ins
ription. Flexible ar
s are supposed to move a

variable amount of tokens to or from a pla
e, but this ar
 does not depend on any variables

and la
ks the required variability. Maybe you did not yet spe
ify an ins
ription? Maybe the

ins
ription is atta
hed to the wrong net element? Maybe you want to use an ordinary ar

instead?

For non-array ins
riptions the pla
e must be untyped

An ins
ription of a �exible ar
 is given as a list or a ve
tor or an enumeration, but the output

pla
e is typed. The resulting restri
tion on the element types
ould not be veri�ed. Maybe

it is possible to use an array ins
ription? Maybe the pla
e should not be typed?

In
orre
t type for �exible ar
 ins
ription

An ins
ription of a �exible ar
 is expe
ted to evaluate to an array or a list or a ve
tor. It

is only allowed to use enumerations on output ar
s, be
ause the elements might have to be

a

essed multiple times in the
ase of input ar
s. Use an ins
riptions that is
orre
tly typed.

Maybe the
ompiler determined the type java.lang.Obje
t, but it is known that only arrays

will result from the expression. In that
ase, use an expli
it
ast to indi
ate this fa
t.

111

Null not allowed for �exible ar
s.

An ins
ription of a �exible ar
 is expe
ted to evaluate to and array or a list. The
ompiler

was able to determine that the given expression will always evaluate to null. Maybe the

ins
ription is atta
hed to the wrong net element? Maybe the ar
 was not intended to be a

�exible ar
?

Only one de
laration node is allowed

You have two or more de
laration nodes in your net drawing. In general, the simulator

annot determine in whi
h order multiple de
laration nodes should be pro
essed, hen
e this

is not allowed. Maybe a de
laration node was dupli
ated unintentionally? Maybe you want

to merge the nodes into one node?

Output ar
 expression for typed pla
e must be typed

A typed pla
e must only hold values of the given type. An untyped output ar
 is not

guaranteed to deliver an appropriate value, so this might lead to potential problems. Maybe

you want to type your variables? Maybe you want to remove the typing of the pla
e?

Pla
e is typed more than on
e

At most one type name
an be ins
ribed to a pla
e. Multiple types are not allowed, even if

they are identi
al. Maybe a type was dupli
ated unintentionally?

Time annotations are not allowed

The
ompiler dete
ted an annotation of the form ...�..., but the
urrent
ompiler
annot

handle su
h ins
riptions, whi
h require a spe
ial net formalism. You should swit
h to the

Timed Java Compiler (see Subse
tion 4.3.6).

Transition has more than one uplink

At most one uplink
an be ins
ribed to a transition. Maybe an uplink was dupli
ated unin-

tentionally? Maybe one uplink has to be a downlink?

Unknown net

In a
reation expression an unknown net name o

urred. Maybe the name is misspelled?

Maybe you have not opened the net in question?

Variable . . . de
lared twi
e

In a de
laration node there were two de
larations of the same variable. Remove one variable

de
laration.

Variable . . . is named identi
ally to an imported
lass

In a de
laration node there was a variable de
laration and an import statement that refer-

en
ed the same symbol, e.g., import some.where.Name and String Name. This error is rare,

be
ause by
onvention
lass names should start with an upper
ase letter and variable names

should start with a lower
ase letter. You should probably rename the variable.

112

Variable of array type expe
ted

If a
lear ar
 is ins
ribed with a typed variable, that variable should have an array type, so

that the set of all tokens
an be bound to the variable in the form of an array. You should

he
k whether the
orre
t variable is used and whether the variable is
orre
tly typed.

4.6.4 Late Error Messages

Here we dis
uss the error message that is not reported during the immediate
he
k, but only

during the
omplete
he
k before the simulation.

Unsupported ar
 type

An ar
 of the net was of an illegal type, i.e., the
urrent net formalism does not support it.

This
an only happen when you exe
ute a net with a net formalism that is in
ompatible with

the net formalism that was used to draw the net. Maybe you should restart Renew with

another net formalism?

113

Bibliography

[1℄ Apa
he Logging Servi
es. Log4j, 2012.

WWW page at https://logging.apa
he.org/log4j/1.2/.

[2℄ Jonathan Billington, Sören Christensen, Kees van Hee, Ekkart Kindler, Olaf Kummer,

Laure Petru

i, Reinier Post, Christian Stehno, and Mi
hael Weber. The petri net

markup language: Con
epts, te
hnology, and tools. In W. van der Aalst and E. Best,

editors, Appli
ations and Theory of Petri Nets 2003: Pro
eedings of 24th International

Conferen
e, Eindhoven, The Netherlands, volume 2679 of Le
ture Notes in Computer

S
ien
e, pages 483�505. Springer-Verlag, 2003.

[3℄ Lawren
e Caba
. Net
omponents: Con
epts, tool, praxis. In Daniel Moldt, editor,

Petri Nets and Software Engineering, International Workshop, PNSE'09. Pro
eedings,

Te
hni
al Reports Université Paris 13, pages 17�33, 99, avenue Jean-Baptiste Clément,

93 430 Villetaneuse, June 2009. Université Paris 13.

[4℄ Giovanni Chiola, Susanna Donatelli, and Guiliana Fran
es
hinis. Priorities, inhibitor

ar
s, and
on
urren
y in nets. In Appli
ation and Theory of Petri Nets 1991, Pro
eedings

12th International Conferen
e, Gjern, Denmark, pages 182�205. 1991.

[5℄ Søren Christensen and Niels Damgaard Hansen. Coloured petri nets extended with

hannels for syn
hronous
ommuni
ation. Te
hni
al Report DAIMI PB�390, Aarhus

University, 1992.

[6℄ Søren Christensen and Niels Damgaard Hansen. Coloured petri nets extended with pla
e

apa
ities, test ar
s and inhibitor ar
s. In M. Ajmone Marsan, editor, Appli
ation and

Theory of Petri Nets 1993, Pro
eedings 14th International Conferen
e, Chi
ago, Illinois,

USA, volume 691 of Le
ture Notes in Computer S
ien
e, pages 186�205. Springer-Verlag,

1993.

Available at http://www.daimi.au.dk/ soren
hr/publ.html.

[7℄ Eindhoven University of Te
hnology. Wo�an � The Work�ow Analyser, 1998.

WWW page at http://www.win.tue.nl/woflan/.

[8℄ Eri
h Gamma. JHotDraw, 1998.

Available at http://members.pingnet.
h/gamma/JHD-5.1.zip.

[9℄ Olaf Kummer. Simulating syn
hronous
hannels and net instan
es. In J. Desel, P. Kem-

per, E. Kindler, and A. Oberweis, editors, 5. Workshop Algorithmen und Werkzeuge

für Petrinetze, pages 73�78. Fors
hungsberi
ht 694, Universität Dortmund, Fa
hberei
h

Informatik, O
tober 1998.

[10℄ Olaf Kummer. Tight integration of Java and Petri nets. In J. Desel and A. Ober-

weis, editors, 6. Workshop Algorithmen und Werkzeuge für Petrinetze, pages 30�35.

J.W. Goethe-Universität, Institut für Wirts
haftinformatik, Frankfurt am Main, Fa
h-

berei
h Informatik, O
tober 1999.

114

https://logging.apache.org/log4j/1.2/
http://www.win.tue.nl/woflan/
http://members.pingnet.ch/gamma/JHD-5.1.zip

[11℄ Olaf Kummer. Referenznetze. Logos-Verlag, Berlin, 2002.

[12℄ Charles A. Lakos and Søren Christensen. A general systemati
 approa
h to ar
 extensions

for
oloured petri nets. In R. Valette, editor, Appli
ation and Theory of Petri Nets 1994,

Pro
eedings 15th International Conferen
e, Zaragoza, Spain, volume 815 of Le
ture Notes

in Computer S
ien
e, pages 338�357. Springer-Verlag, 1994.

Available at http://www.daimi.au.dk/ soren
hr/publ.html.

[13℄ Peter Langner, Christoph S
hneider, and Joa
himWehler. Petri net based
erti�
ation of

event-driven pro
ess
hains. In J. Desel and M. Silva, editors, Appli
ation and Theory of

Petri Nets 1998: Pro
eedings of 19th International Conferen
e, Lisbon, Portugal, volume

1420 of Le
ture Notes in Computer S
ien
e, pages 286�305. Springer-Verlag, 1998.

[14℄ Carl Adam Petri. Introdu
tion to general net theory. In Brauer, W., editor, Net Theory

and Appli
ations, Pro
. of the Advan
ed Course on General Net Theory of Pro
esses and

Systems, Hamburg, 1979, volume 84 of Le
ture Notes in Computer S
ien
e, pages 1�19.

Springer-Verlag, 1980.

[15℄ Wolfgang Reisig. Petri nets and algebrai
 spe
i�
ations. Theoreti
al Computer S
ien
e,

80(1�2):1�34, 1991.

[16℄ Wolfgang Reisig. Elements of Distributed Algorithms: Modelling and Analysis with Petri

Nets. Springer-Verlag, 1998.

[17℄ Rüdiger Valk. Petri nets as token obje
ts: An introdu
tion to elementary obje
t nets.

In Jörg Desel and Manuel Silva, editors, Appli
ation and Theory of Petri Nets, volume

1420 of Le
ture Notes in Computer S
ien
e, pages 1�25. Springer-Verlag, 1998.

[18℄ Peter van der Linden. Just Java. The Sunsoft Press Java Series. Prenti
e Hall, 1996.

115

Appendix A

Conta
ting the Team

To get in
onta
t with us, you
an send an email to

support�renew.de

regarding any aspe
t of the Renew tool, espe
ially update noti�
ation requests, bug reports,

feature requests, and sour
e
ode submissions. Our postal address is

Arbeitsberei
h ART

� Renew �

Fa
hberei
h Informatik, Universität Hamburg

Vogt-Kölln-Straÿe 30

D-22527 Hamburg

Germany

in
ase you do not have a

ess to email. The latest news about Renew are available from the

URL

http://www.renew.de/

and in the same pla
e improved versions and bug �xes appear �rst.

116

Appendix B

File Types

Renew
reates, uses and
onsists of many di�erent kinds of �les that are distinguished by

their �le extension. We will des
ribe the most important �le types here.

A �le named
ontains

*.aut an autosaved net drawing (may be renamed to *.rnw)

*.bak a ba
kup net drawing (may be renamed to *.rnw)

*.bat a Windows bat
h �le

*.bib a BibT

E

X bibliography

*.
lass a
ompiled Java
lass

*.draw a drawing (mime-type: appli
ation/x-renew-drawing)

*.dtd an XML DTD

*.dvi a devi
e independent output �le of T

E

X

*.eps En
apsulated PostS
ript graphi
s

*.gif a bitmap in GIF format

*.jar a JAR
ompressed ar
hive

*.java Java sour
e
ode

*.jj a JavaCC grammar

*.pdf a PDF do
ument

*.pnml one or more nets in PNML format

*.rnw a net drawing (mime-type: appli
ation/x-renew-net)

*.rst a saved simulation state (mime-type: appli
ation/x-renew-state)

*.sns a serialized shadow net system (mime-type: appli
ation/x-renew-sns)

*.stub a net stub des
ription

*.sty a T

E

X style de�nition

*.tex a T

E

X sour
e �le

*.zip a ZIP
ompressed ar
hive

117

Appendix C

Keyboard Short
uts

Short
uts listed here with the Ctrlmodi�er key should be used on
omputers running Ma
OS

with the Cmd modi�er key instead .

List by Category

(a) Apple Spe
i�
, (b) build-in, (
)
ustomizable, (r) reserved, (s) swit
hing (simula-

tion/editing), (p) provided by (optional) plugin

Modi�er Key Fun
tion % Plugin

File

Ctrl N New RNW b

Ctrl-Shift N Open Navigator p Navigator

Ctrl O Open Drawing b

Ctrl S Save Drawing b

Ctrl-Shift S Save Drawing As... b

Ctrl W Close Window b

Ctrl-Shift W Close All Windows b

Ctrl E EPS Export p Export

Ctrl-Shift P PDF Export p Export

Ctrl 9 PNG Export p Export

Cmd Q Quit Program ra

Edit

Ctrl Z Undo b

Ctrl Y Redo b

Ctrl X Cut b

Ctrl C Copy b

Ctrl V Paste b

Ctrl D Dupli
ate b

Ctrl F Sear
h b

Ctrl G Sear
h & Repla
e b

Ctrl A Sele
t All b

Ctrl 1 group Net Component p Net Components

Ctrl 3 ungroup Net Component p Net Components

Ctrl Enter Finish Editing b

Ctrl B Send to Ba
k b

Ctrl-Shift B Bring to Front b

Ctrl \ Align Center

Ctrl-Shift - Align Middles

Ctrl = Spread Centers

118

Ctrl ; Spread Middles

Ctrl / Spread Diagonal b

119

Net

Ctrl-Option B Set Breakpoint bs

Ctrl-Option C Clear Breakpoint bs

Ctrl-Option S Syntax Che
k b

Ctrl-Option L Layout Che
k b

Simulation

Ctrl R Run Simulation b

Ctrl I Simulation Step b

Ctrl-Shift I Simulation Net Step b

Ctrl H Halt Simulation b

Cmd-Shift H Halt Simulation ba

Ctrl T Terminate Simulation b

Ctrl L Show Simulation Tra
e p Logging

Ctrl-Option B Set Breakpoint bs

Ctrl-Option C Clear Breakpoint bs

Window

Ctrl M Bring Menu to Front b

Without Menu Entry

Ctrl + Zoom in b

Ctrl - Zoom out b

Ctrl 0 Reset Zoom Fa
tor b

Alphabeti
al List

(a) Apple Spe
i�
, (b) build-in, (
)
ustomizable, (r) reserved, (s) swit
hing (simula-

tion/editing), (p) provided by (optional) plugin

Modi�er Key Fun
tion % Plugin

Ctrl + Zoom in b

Ctrl - Zoom out b

Ctrl-Shift - Align Middles

Ctrl / Spread Diagonal b

Ctrl 0 Reset Zoom Fa
tor b

Ctrl 1 group Net Component p Net Components

Ctrl 3 ungroup Net Component p Net Components

Ctrl 9 PNG Export p Export

Ctrl ; Spread Middles

Ctrl = Spread Centers

Ctrl A Sele
t All b

Ctrl B Send to Ba
k b

Ctrl-Shift B Bring to Front b

Ctrl-Option B Set Breakpoint bs

Ctrl-Option B Set Breakpoint bs

Ctrl-Option C Clear Breakpoint bs

Ctrl-Option C Clear Breakpoint bs

Ctrl C Copy b

Ctrl D Dupli
ate b

Ctrl E EPS Export p Export

Ctrl F Sear
h b

Ctrl G Sear
h & Repla
e b

Ctrl H Halt Simulation b

120

Cmd-Shift H Halt Simulation ba

Ctrl I Simulation Step b

Ctrl-Shift I Simulation Net Step b

Ctrl L Show Simulation Tra
e p Logging

Ctrl-Option L Layout Che
k b

Ctrl M Bring Menu to Front b

Ctrl N New RNW b

Ctrl-Shift N Open Navigator p Navigator

Ctrl O Open Drawing b

Ctrl-Shift P PDF Export p Export

Cmd Q Quit Program ra

Ctrl R Run Simulation b

Ctrl S Save Drawing b

Ctrl-Shift S Save Drawing As... b

Ctrl-Option S Syntax Che
k b

Ctrl T Terminate Simulation b

Ctrl V Paste b

Ctrl W Close Window b

Ctrl-Shift W Close All Windows b

Ctrl X Cut b

Ctrl Y Redo b

Ctrl Z Undo b

Ctrl \ Align Center

Ctrl Enter Finish Editing b

Toggle Key Mappings for Main Drawing Tools

By setting the property de.renew.keymap.use-mapping=true keystrokes
an be used to se-

le
t drawing tools (tool buttons). This me
hanism
an easily be
ustomized by setting op-

tions in the form of de.renew.keymap.XY where XY is the name of the tool; for example

de.renew.keymap.Transition_Tool=t. Set these options in your
on�guration �les in or-

der to be a
tivated during GUI initialization. Use the Shift modi�er key to sele
t a tool

permanently. The following keys
onstitute a preset sele
tion for the main Renew drawing

tools:

. Sele
tion Tool

t Transition Tool

p Pla
e Tool

v Virtual Pla
e Tool

a Ar
 Tool

x Test Ar
 Tool

r Reserve Ar
 Tool

f Flexible Ar
 Tool

i Ins
ription Tool

n Name Tool

d De
laration Tool

121

Appendix D

Li
ense

`We' refers to the
opyright holders. `You' refers to the li
ensee. `Renew' refers to the
omplete

set of sour
es, exe
utables, and sample nets that make up the Referen
e Net Workshop.

Renew is available free of
harge, but not without restri
tions. The majority of Renew

is published under the GNU Lesser General Publi
 Li
ense (for details see Se
tion �Original

Parts� below). However, Renew builds up on other people's work that has been li
ensed

under other terms.

The li
ense se
tion got a bit long. We apologize, but we
annot hope to do better, be
ause

we in
luded many external parts with many di�erent li
enses.

D.1 Contributed Parts

Renew uses several parts that were previously developed by other people and have been made

publi
ly available.

D.1.1 The
olle
tions Pa
kage

The
olle
tions pa
kage is used as our set/queue/list implementation. The relevant li
ense

information states:

Originally written by Doug Lea and released into the publi
 domain.

You
an use it as you want. Please note that Doug Lea now suggests to use the
ontainer

libraries that
ome with Java 1.2 instead of his own libraries. We are
urrently working on the

migration, so far all plug-ins ex
ept the FS plug-in have been adopted to the Java
ontainer

lasses.

D.1.2 The JHotDraw Pa
kage

The JHotDraw graphi
al editor written by Eri
h Gamma is
opyrighted. The relevant li
ense

information states:

JHotDraw is
opyright 1996, 1997 by IFA Informatik and Eri
h Gamma.

It is hereby granted that this software
an be used,
opied, modi�ed, and dis-

tributed without fee provided that this
opyright noti
e appears in all
opies.

D.1.3 Code Generated from JavaCC

Some of the
ode of Renew was generated by the parser generator JavaCC. The relevant

li
ense information states:

122

3. DEVELOPED PRODUCTS

You may use the Software to generate software program(s) ("Developed Pro-

grams"). Sun
laims no rights in or to the Developed Programs.

4. YOUR INDEMNIFICATION OF SAMPLE GRAMMARS

DERIVATIVES AND DEVELOPED PRODUCTS

You agree to indemnify, hold harmless, and defend Sun from and against any

laims or suits, in
luding attorneys' fees, whi
h arise or result from any use or

distribution of Sample Grammar Derivatives and/or Developed Programs.

Hen
e we would like to expli
itly point out that Sun is not responsible for any problems

that might result from the use of the output of JavaCC.

D.1.4 Bill's Java Grammar

A Java grammar billsJava1.0.2.jj was distributed together with JavaCC 0.7 as a sample

grammar. Bill M
Keeman (m
keeman�mathworks.
om)
ontributed this grammar to JavaCC.

The relevant li
ense information from Sun states:

2. SAMPLE GRAMMARS

You may modify the sample grammars in
luded in the Software to develop deriva-

tives thereof ("Sample Grammar Derivatives"), and subli
ense the Sample Gram-

mar Derivatives dire
tly or indire
tly to your
ustomers.

4. YOUR INDEMNIFICATION OF SAMPLE GRAMMARS

DERIVATIVES AND DEVELOPED PRODUCTS

You agree to indemnify, hold harmless, and defend Sun from and against any

laims or suits, in
luding attorneys' fees, whi
h arise or result from any use or

distribution of Sample Grammar Derivatives and/or Developed Programs.

The original parts of billsJava1.0.2.jj whi
h are now
ontained in a modi�ed form in

the �les JavaNetParser.jj, FSNetParser.jj, FSParser.jj, and StubParser.jj are Copy-

right (C) 1996, 1997 Sun Mi
rosystems In
. A subli
ense for these grammars is hereby

granted. If you have any further questions, please
onsult the �le COPYRIGHT as distributed

with JavaCC.

D.1.5 Graph Layout Algorithm

The graph layout algorithm used in the
lass de.renew.gui.GraphLayout was originally

provided by Sun as part of the Java Development Kit. The relevant li
ense information from

Sun states:

Sun grants you ("Li
ensee") a non-ex
lusive, royalty free, li
ense to use, modify

and redistribute this software in sour
e and binary
ode form, provided that i) this

opyright noti
e and li
ense appear on all
opies of the software; and ii) Li
ensee

does not utilize the software in a manner whi
h is disparaging to Sun.

. . .

This software is not designed or intended for use in on-line
ontrol of air
raft, air

tra�
, air
raft navigation or air
raft
ommuni
ations; or in the design,
onstru
-

tion, operation or maintenan
e of any nu
lear fa
ility. Li
ensee represents and

warrants that it will not use or redistribute the Software for su
h purposes.

We would like to expli
itly point out that Sun is not responsible for any problems that

might result from the use of the graph layout algorithm. See the sour
e �les for Sun's original

dis
laimer.

123

D.1.6 The Log4j Pa
kage

Renew
omes with an unmodi�ed, binary distribution of the Log4j pa
kage from the Apa
he

Logging Servi
es proje
t. The pa
kage is li
ensed under the Apa
he Li
ense, Version 2.0. The

full li
ense is in
luded in the distribution, a
opy of the Li
ense may also be obtained from

http://www.apa
he.org/li
enses/LICENSE-2.0. The relevant li
ense information states:

2. Grant of Copyright Li
ense. Subje
t to the terms and
onditions of this

Li
ense, ea
h Contributor hereby grants to You a perpetual, worldwide,

non-ex
lusive, no-
harge, royalty-free, irrevo
able
opyright li
ense to re-

produ
e, prepare Derivative Works of, publi
ly display, publi
ly perform,

subli
ense, and distribute the Work and su
h Derivative Works in Sour
e

or Obje
t form.

3. Grant of Patent Li
ense. Subje
t to the terms and
onditions of this

Li
ense, ea
h Contributor hereby grants to You a perpetual, worldwide,

non-ex
lusive, no-
harge, royalty-free, irrevo
able (ex
ept as stated in this

se
tion) patent li
ense to make, have made, use, o�er to sell, sell, import,

and otherwise transfer the Work, where su
h li
ense applies only to those

patent
laims li
ensable by su
h Contributor that are ne
essarily infringed

by their Contribution(s) alone or by
ombination of their Contribution(s)

with the Work to whi
h su
h Contribution(s) was submitted. If You insti-

tute patent litigation against any entity (in
luding a
ross-
laim or
ounter-

laim in a lawsuit) alleging that the Work or a Contribution in
orporated

within the Work
onstitutes dire
t or
ontributory patent infringement,

then any patent li
enses granted to You under this Li
ense for that Work

shall terminate as of the date su
h litigation is �led.

4. Redistribution. You may reprodu
e and distribute
opies of the Work or

Derivative Works thereof in any medium, with or without modi�
ations,

and in Sour
e or Obje
t form, provided that You meet the following
on-

ditions:

(a) You must give any other re
ipients of the Work or Derivative Works

a
opy of this Li
ense; and

. . .

You may add Your own
opyright statement to Your modi�
ations and

may provide additional or di�erent li
ense terms and
onditions for use,

reprodu
tion, or distribution of Your modi�
ations, or for any su
h Deriva-

tive Works as a whole, provided Your use, reprodu
tion, and distribution

of the Work otherwise
omplies with the
onditions stated in this Li
ense.

. . .

7. Dis
laimer of Warranty. Unless required by appli
able law or agreed to

in writing, Li
ensor provides the Work (and ea
h Contributor provides

its Contributions) on an "AS IS" BASIS, WITHOUT WARRANTIES

OR CONDITIONS OF ANY KIND, either express or implied, in
lud-

ing, without limitation, any warranties or
onditions of TITLE, NON-

INFRINGEMENT, MERCHANTABILITY, or FITNESS FOR A PAR-

TICULAR PURPOSE. You are solely responsible for determining the ap-

propriateness of using or redistributing the Work and assume any risks

asso
iated with Your exer
ise of permissions under this Li
ense.

8. Limitation of Liability. In no event and under no legal theory, whether

in tort (in
luding negligen
e),
ontra
t, or otherwise, unless required by

appli
able law (su
h as deliberate and grossly negligent a
ts) or agreed to

in writing, shall any Contributor be liable to You for damages, in
luding

124

http://www.apache.org/licenses/LICENSE-2.0

any dire
t, indire
t, spe
ial, in
idental, or
onsequential damages of any

hara
ter arising as a result of this Li
ense or out of the use or inability to

use the Work (in
luding but not limited to damages for loss of goodwill,

work stoppage,
omputer failure or malfun
tion, or any and all other
om-

mer
ial damages or losses), even if su
h Contributor has been advised of

the possibility of su
h damages.

D.1.7 The FreeHEP Ve
torGraphi
s pa
kage

Renew
omes with a slightly modi�ed version of Java libraries provided by the the FreeHEP

proje
t to support several export formats like EPS, PDF, SVG or PNG. The FreeHEP libraries

are provided under the same li
ense as Renew itself (the GNU Lesser General Publi
 Li
ense,

for a link see below) whi
h allows the in
lusion of a binary distribution within other proje
ts.

The modi�ed sour
es are available at https://github.
om/renew-tgi/.

D.1.8 JLine2

Renew
omes with an unmodi�ed, binary distribution and some slightly modi�ed
lasses of

the JLine2 pa
kage, whi
h provides the basis for the Console plug-in. JLine2 is distributed

under the BSD Li
ense, meaning that you are
ompletely free to redistribute, modify, or sell

it with almost no restri
tions. The full li
ense is in
luded in the distribution, a
opy of the

Li
ense may also be obtained from https://opensour
e.org/li
enses/bsd-li
ense.php.

The original JLine2 pa
kage
an be obtained from https://github.
om/jline/jline2/,

the modi�ed
lasses are part of the sour
e distribution of Renew.

D.1.9 Commons CLI

Commons CLI is a library that supports parsing
ommand line
ommands in Java and is

distributed under the Apa
he Li
ense, Version 2.0 as of 2004. It is used by Renew to provide

a uniform
ommand line interfa
e. The Commons CLI library is available at the Apa
he

proje
t website http://
ommons.apa
he.org/
li.

D.1.10 Other Libraries

Other libraries might provide their own li
enses.

D.2 Original Parts

This
opyright se
tion deals with those part of Renew that are not based on other works, i.e.

the example nets and the pa
kages fs and de.renew without the JavaCC grammars.

D.2.1 Example Nets

The example nets are in the publi
 domain. You may modify them as you like. You may use

them as the basis for your own nets without restri
tions.

D.2.2 Java Sour
e Code and Exe
utables

Sour
es and exe
utables are
opyright 1998�2022 by Olaf Kummer, Frank Wienberg, Mi
hael

Duvigenau, Lawren
e Caba
, Mi
hael Haustermann, David Mosteller and others. You
an

distribute these �les under the GNU Lesser General Publi
 Li
ense.

You should have re
eived a
opy of the GNU Lesser General Publi
 Li
ense along with

this program in the �le do
/COPYING; if not, write to the Free Software Foundation, In
., 59

Temple Pla
e, Suite 330, Boston, MA 02111-1307 USA.

125

https://opensource.org/licenses/bsd-license.php
https://github.com/jline/jline2/
http://commons.apache.org/cli

D.3 Created Parts

You are permitted to use works that you
reate with Renew (i.e., Java stubs, net drawings,

EPS/PDF output, simulation states, and other exported data) without restri
tions.

D.4 Dis
laimer

We distribute Renew in the hope that it will be useful, but without any warranty ; without

even the implied warranty of mer
hantability or �tness for a parti
ular purpose.

We are not liable for any dire
t, indire
t, in
idental or
onsequential damage in
luding,

but not limited to, loss of data, loss of pro�ts, or system failure, whi
h arises out of use or

inability to use Renew or works
reated with Renew. This
lause does not apply to gross

negligen
e or premeditation.

Some parts of Renew may use patented te
hniques that may not be freely usable in some

ountries. In that
ase, it is the responsibility of the user of Renew to obtain a li
ense on the

aforementioned te
hniques before using Renew.

Some parts of Renew may in
lude additional dis
laimers in their li
ense terms. In su
h

ases, both dis
laimers hold simultaneously. If one
lause of any dis
laimer is found invalid

under appli
able law, this does not a�e
t the validity of the remaining
lauses or of other

dis
laimers.

The appli
able
ourt is Hamburg, Germany.

D.5 Open Sour
e

This li
ense is intended to be Open Sour
e
ompliant.

If you �nd any
lause within this li
ense that is in
ompatible with the guidelines set forth

in the Open Sour
e de�nition (see http://www.opensour
e.org/osd.html), please
onta
t

the authors.

126

	Introduction
	Should I Use Renew?
	How to Read This Manual
	Acknowledgements

	Installation
	Prerequisites
	Possible Collisions
	Upgrade Notes
	General
	Upgrade from Renew 1.5 or earlier
	Upgrade from Renew 1.6 or earlier
	Upgrade from Renew 2.0/2.0.1 or earlier
	Upgrade from Renew 2.1/2.1.1 or earlier
	Upgrade from Renew 2.2 or earlier
	Upgrade from Renew 2.3 or earlier
	Upgrade from Renew 2.4.3 or earlier
	Upgrade from Renew 2.5 or earlier
	Upgrade from Renew 2.5.1 or earlier

	Installing Renew
	Base Installation
	Source Installation

	Platform-specific Hints
	MacOS
	Unix
	Windows

	Special Configuration Options
	Ways of configuring Renew
	Drawing Load Server
	Multiprocessor Mode
	Sequential Mode
	Class Loading (and Reloading)
	Net Loading
	Database Backing
	Remote Simulation Access
	Logging

	Plug-ins
	Install Plug-ins
	Exclude Plug-ins Temporarily
	System Termination
	Commands
	Console
	Net Components

	Troubleshooting
	History
	Changes in Version 1.1
	Changes in Version 1.2
	Changes in Version 1.3
	Changes in Version 1.4
	Changes in Version 1.5
	Changes in Version 1.5.1
	Changes in Version 1.5.2
	Changes in Version 1.6
	Changes in Version 2.0
	Changes in Version 2.0.1
	Changes in Version 2.1
	Changes in Version 2.1.1
	Changes in Version 2.2
	Changes in Version 2.3
	Changes in Version 2.4
	Changes in Version 2.4.1
	Changes in Version 2.4.2
	Changes in Version 2.4.3
	Changes in Version 2.5
	Changes in Version 2.5.1
	Changes in Version 2.6

	Reference Nets
	Net Elements
	I do not Want to Learn Java
	A Thimble of Java
	The Inscription Language
	Expressions and Variables
	Types
	The Equality Operator
	Method Invocations

	Tuples, Lists, and Unification
	Net Instances and Net References
	Synchronous Channels
	Manual Transitions
	Calling Nets from Java
	Net Methods
	Event Listeners
	Automatic Generation

	Additional Arc Types
	Flexible Arcs
	Clear Arcs
	Inhibitor Arcs

	Timed Nets
	Pitfalls
	Reserve Arcs and Test Arcs
	Unbound Variables
	Side Effects
	Boolean Conditions
	Custom Classes
	Net Stubs
	Execution of synchronized Java Code
	Case of Class and Variable Names in Untyped Nets

	Using Renew
	Basic Concepts
	Tools
	The Selection Tool
	Drawing Tools
	Net Drawing Tools

	Menu commands
	File
	Edit
	Layout
	Attributes
	Net
	Simulation
	Windows
	Additional Top-Level Menus

	Net Simulations
	Net Instance Windows
	Current Marking Windows
	Simulation Control

	Simulation Server
	Error Handling
	Quick Fix
	Parser Error Messages
	Early Error Messages
	Late Error Messages

	Contacting the Team
	File Types
	Keyboard Shortcuts
	License
	Contributed Parts
	The collections Package
	The JHotDraw Package
	Code Generated from JavaCC
	Bill's Java Grammar
	Graph Layout Algorithm
	The Log4j Package
	The FreeHEP VectorGraphics package
	JLine2
	Commons CLI
	Other Libraries

	Original Parts
	Example Nets
	Java Source Code and Executables

	Created Parts
	Disclaimer
	Open Source

