
Renew – Architecture Guide

Olaf Kummer

Frank Wienberg

Michael Duvigneau

University of Hamburg

Department for Informatics

Theoretical Foundations Group

Distributed Systems Group

Release 2.0.1

October 8, 2004

This manual is c©2004 by Olaf Kummer, Frank Wienberg, Michael Duvigneau.

Arbeitsbereich TGI
— Renew —

Fachbereich Informatik
Universität Hamburg
Vogt-Kölln-Straße 30
D-22527 Hamburg
Germany

Apple is a registered trademark of Apple Computer, Inc.
Alphaworks is a registered trademark of IBM Corporation.
IBM is a registered trademark of IBM Corporation.
Java is a registered trademark of Sun Microsystems, Inc.
JavaCC is a trademark of Sun Microsystems, Inc.
LATEX is a trademark of Addison-Wesley Publishing Company.
Macintosh is a registered trademark of Apple Computer, Inc.
Microsoft Word is a registered trademark of Microsoft Corporation.
MySQL is a trademark of MySQL AB.
Oracle is a registered trademark of Oracle Corporation.
OS/2 Warp is a registered trademark of IBM Corporation.
PostScript is a registered trademark of Adobe Systems Inc.
Solaris is a registered trademark of Sun Microsystems, Inc.
StarOffice is a trademark of Star Divison, GmbH.
StuffIt is a trademark of Aladdin Systems, Inc.
Sun is a registered trademark of Sun Microsystems, Inc.
TEX is a trademark of the American Mathematical Society.
UML is a trademark of the Object Management Group.
Unicode is a registered trademark of Unicode, Inc.
UNIX is a registered trademark of AT&T.
Windows is a registered trademark of Microsoft Corporation.
X Windows System is a trademark of X Consortium, Inc.

The trademarks may be claimed in one or more countries.
Other trademarks are trademarks of their respective owners.
The use of such trademarks does not indicate that they can be freely used.

Please refer to the license section of the Renew user guide for more information about copyright and liability issues.

This document was prepared using the LATEX typesetting system.
This document is contained in the files doc/architecture.dvi, doc/architecture.ps, and doc/architecture.pdf as distributed together with
Renew 2.0.1.

We are sorry, but we were not able to update the architecture guide to the changes
that came with Renew 2.0. This guide still presents the architecture of release
1.6. However, the basic ideas and algorithms of the application are still the same,
although some Java package names and interfaces have changed.

3

Contents

1 Introduction 8

1.1 Customizing Renew . 8
1.2 Before you Start . 9
1.3 Overview . 9
1.4 Acknowledgements . 9

2 Package Overview 11

2.1 Hierarchy CH.ifa.draw . 11
2.2 Hierarchy de.renew . 11

2.2.1 Simulation Engine . 13
2.2.2 Net Formalisms . 15
2.2.3 Graphical User Interface . 15

2.3 Package de.uni_hamburg.fs . 15

3 Algorithms and Data Structures 16

3.1 Anatomy of the Simulation Engine . 16
3.2 Unification . 18

3.2.1 Motivation . 18
3.2.2 Unknowns . 18
3.2.3 Backtracking . 18
3.2.4 Unifiability and Java Equality . 19
3.2.5 Occurrence check . 20
3.2.6 Calculations . 20
3.2.7 Tuple Index . 22

3.3 Semantic Level . 22
3.3.1 Net Structure . 22
3.3.2 Transition Inscriptions . 23
3.3.3 Expressions . 24
3.3.4 Some Expressions . 26
3.3.5 Some Functions . 27

3.4 Dynamic Level . 28
3.5 Event Handling . 30
3.6 Activated Transition Instances . 31

3.6.1 The Search Queue . 31
3.6.2 Triggers . 32

3.7 Search Algorithm . 33
3.8 Application to Petri Nets . 35
3.9 Finders . 38
3.10 Enacting a Binding . 38
3.11 The Shadow Layer . 41

3.11.1 Shadow Nets . 41
3.11.2 Net formalisms . 44

4

3.12 Simulation . 44

4 How to Extend Renew 48

4.1 Adding a New Arc Type . 48
4.2 Adding New Transition Inscriptions . 48
4.3 Adding a New Inscription Language . 49
4.4 Adding Graphical Figures and Tools . 50
4.5 Adding Simulation Statistics . 50
4.6 Adding Import and Export Filters . 50

5 Java Bugs 51

5.1 Graphics object loses draw commands . 51
5.2 Packing a frame is not portable . 51
5.3 Window titles are not shown correctly . 51
5.4 Memory leak through event objects . 51
5.5 Memory leak through windows . 51
5.6 Windows move on the screen . 51
5.7 Bad fonts and symbols . 52

A Glossary 54

5

List of Figures

2.1 Overview of all Renew packages . 12

3.1 Overview of the simulation core packages . 17
3.2 Unifiable objects . 19
3.3 A tuple index . 21
3.4 Static net data . 23
3.5 Expressions . 24
3.6 Functions . 27
3.7 Simulation state . 28
3.8 Place event handling . 29
3.9 Transition event handling . 30
3.10 The search queue . 31
3.11 Triggers and triggerables . 32
3.12 The searcher/binder/finder data structure . 35
3.13 A search process . 36
3.14 The Finder classes . 38
3.15 The class Binding . 39
3.16 The Executable classes . 40
3.17 The life cycle of an early executable object 42
3.18 The shadow arc types . 42
3.19 The shadow classes . 43
3.20 The standard shadow compiler . 44
3.21 The simulator implementations . 45
3.22 The concurrent simulation algorithm as a Petri net 47

4.1 Handling of textual inscriptions . 49

6

List of Tables

3.1 Inscription classes and associated occurrence classes 37
3.2 Occurrence classes and associated executable classes 41
3.3 The simulator status codes . 45

7

Chapter 1

Introduction

The intention of this document is to give the interested user of Renew some rudimentary
insight into the general structure and some individual components of Renew. This document
does not aim to be a programming guide, but it tries to help you in finding a point where to
start.

Note that, in general, you do not need to read this document. You can work with Renew
perfectly without knowing its internals. Whenever you have a problem that does not seem
to be solvable with the current version of Renew, think once more. If you still consider
an extension of Renew essential, you should start with this manual before digging into the
source.

To gain something from reading this manual you need considerable Java experience, the
Renew source package, and willingness to read the source. Although large parts of the source
are not yet documented, you might be able to infer most of the functionality from the names
given to classes and methods, especially after checking this manual.

1.1 Customizing Renew

Because Renew is available with source, it is tempting to create a customized version of it.
This is indeed possible and this manual will help you with the task, but there are a few
drawbacks:

• Currently Renew is only partially commented. Especially, the comments are not yet in
JavaDoc format.

• You diverge from the main development line. The internal structure of Renew might
change significantly in future versions. If you send your additions/improvements to us,
we will try to include them in the main release.

• This internal programming guide still need considerable work to cover all aspects of
Renew.

However, there might be reasons to modify Renew due to your particular applications.
If you implement a new net formalism, we suggest that you start a new Java package for

it, e.g. de.renew.evenbetter. You might want to place the package in your own package
hierarchy.

Not all customization can be done by simply adding more classes. Sometimes you might
require some changes to the standard classes. It is a good idea to check such issues with
the Renew team, because sometimes we might know best where to place this hook or that
abstraction.

Although we do not require this as part of our license, we will be very happy if you send
us any modified source code.

8

1.2 Before you Start

Before you start reading this manual, you should run JavaDoc to create the online documen-
tation from the source files. This will help you in getting a feel of the system and in following
this manual more easily. Many classes in the de.renew hierarchy do not contain JavaDoc
comments, but you will still find it valuable to browse through the classes easily.

Since Renew uses the Java library, you should have learned everything there is to learn
about the packages java.lang and java.util. You will not be able to proceed without that
knowledge.

Since Renew uses Doug Lea’s collection classes [4], you should familiarize yourself with
this class library before looking at the simulation engine. The original distribution has some
API documentation included.

Since Renew uses the Reflection API to execute Java inscriptions, you should familiarize
yourself with the package java.lang.reflect before looking at the simulation engine. See
the original documentation from Sun for details.

Since Renew uses the Java AWT for its windowing code, you should consult at least a
tutorial about the package java.awt.

Since Renew uses the JHotDraw graph editing framework [1] for painting its nets, you
should inform yourself about this package before investigating the GUI code. The classes in
the CH.ifa.draw hierarchy contain nice JavaDoc comments and are a good place to start.

If you want to customize the inscription grammar, you should download JavaCC, the Java
Compiler Compiler, from http://www.experimentalstuff.com/Technologies/JavaCC/which
is free, but requires a registration. We consider doing a complete rewrite of the grammar files
in order to free them of the license restrictions that currently exist. In that course of work,
it might be sensible to move from JavaCC (a great program) to ANTLR (a great program
that is also free and available with source).

Class diagrams in this document are given in UML style notation. You are encouraged
to learn about this notation from one of the many books or directly at [5]. In all diagrams
we aim at providing the best overview and structural knowledge. To this end, the diagrams
do not always include information about all attributes, but rather those attributes that are
useful for understanding that part of the architecture that is currently discussed.

Sometimes we use attributes where one might rather expect an association or vice versa,
but this is always done in order to simplify the diagram and to convey the intended meaning
of a construction. For similar reasons, private attributes that are publicly accessible via getter
and setter methods are sometimes shown as public attributes.

1.3 Overview

We will now explain the basic structure of this document. In Chapter 2 we give an overview
of the packages that structure the Renew application.

1.4 Acknowledgements

We would like to thank Prof. Dr. Rüdiger Valk and Dr. Daniel Moldt from the University of
Hamburg for interesting discussions, help, and encouraging comments.

We would like to thank Berndt Farwer for the preparation of the Macintosh version. Some
nice extensions of Renew were suggested or programmed by Michael Köhler and Heiko Rölke.

We are indepted to the authors of various freeware libraries, namely Erich Gamma, Doug
Lea, David Megginson, Bill McKeeman and Sriram Sankar.

Dr. Maryam Purvis, Dr. Da Deng, and Selena Lemalu from the Department of Informa-
tion Science (http://divcom.otago.ac.nz/infosci/), University of Otago, Dunedin, New
Zealand, kindly aided us in the translation of parts of the documentation and are involved
in an interesting application project.

9

Valuable contributions and suggestions were made by students at the University of Ham-
burg, most notably Lars Braubach, Lawrence Cabac, Timo Carl, Friedrich Delgado Friedrichs,
Matthias Ernst, Olaf Großler, Julia Hagemeister, Sven Heitsch, Thomas Jacob, Andreas Kan-
zlers, Lutz Kirsten, Michael Köhler, Annette Laue, Matthias Liedtke, Marcel Martens, Klaus
Mitreiter, Jens Norgall, Martin Pfeiffer, Alexander Pokahr, Heiko Rölke, Marc Schönberg,
Jörn Schumacher, Volker Tell, and Eberhard Wolff.

We would like to thank the numerous users of Renew who provided hints and constructive
criticism. They helped greatly in improving the quality of the code and the documentation.
In particular, we would like to name Alun Champion and Zacharias Tsiatsoulis.

10

Chapter 2

Package Overview

This chapter introduces the main packages and their use. In Fig. 2.1 you can see the de-
pendencies among the various packages. Here, as always in the packages diagrams in this
manual, dependencies that can be inferred via a sequence of other dependencies are usually
not displayed, even if a direct dependency exists, too.

2.1 Hierarchy CH.ifa.draw

Although the class hierarchy presented here still reflects the general structure of the origi-
nal JHotDraw [1], it has been heavily modified. Especially, a parent/child mechanism was
added to associate figures with each other. Moreover, a single graphical editor may now be
responsible for multiple drawing windows.

CH.ifa.draw.framework This package contains the main abstractions of JHotDraw in the
form of interfaces and some auxiliary classes.

CH.ifa.draw.standard This package contains some basic implementations of the abstrac-
tions found in CH.ifa.draw.framework. Typically, these implementations require some
additional code to be fully functional, but they ensure that tedious bookkeeping tasks
are taken care of and that some convenience methods are available.

CH.ifa.draw.figures This package contains classes for figures of various shapes, but also
the tools and handles required to create and modify these figures.

CH.ifa.draw.contrib This package contains code for a number of figures that were not
originally part of JHotDraw.

CH.ifa.draw.util This package contains miscellaneous classes. Most of these are concerned
with building the GUI of JHotDraw and doing I/O. The class Storable is especially
notable, because it supports the external storage format for saving drawings.

CH.ifa.draw.application This package contains a complete graphical editor as a stand-
alone application. The main class is DrawApplication.

In many classes of this hierarchy, events are used for propagating state changes. Make
sure to understand, at least vaguely, the event mechanism and all of the interfaces in the
package CH.ifa.draw.framework before digging deeper into the sources.

2.2 Hierarchy de.renew

This hierarchy constitutes the Petri-net-specific part of Renew. Two subhierarchies can be
found here: de.renew.formalismand de.renew.gui, which are responsible for implementing

11

shadow

formalism.java

guiformalism.fs

gui.fs

application

simulator

function

expression

call

event database

standard

framework

figures

util

unify

util

remote

contrib

application

gui.xml

de.uni_hamburg.fs

de.renew CH.ifa.draw

Figure 2.1: Overview of all Renew packages

12

specific net formalisms and for implementing a GUI, respectively. But first we discuss the
other packages in this hierarchy, which constitute the core simulation engine.

2.2.1 Simulation Engine

These packages are concerned with the non-graphical representation and execution of high-
level Petri nets.

de.renew.application This package contains applications that allow the non-graphical
stand-alone simulation of Petri nets. At the moment, ShadowSimulator, which bases
the simulation on a serialized shadow net system, is the only class here. Other appli-
cations might follow.

de.renew.call This package supports nets that implement Java methods. This is done by
automatically generating subclasses of de.renew.simulator.NetInstance, so-called
Net Stubs, that convert method calls to synchronous channel invocations. These invo-
cations are subsequently stored in the usual search queue and executed by the simulator
as soon as possible. The Renew User Guide contains a description of how to utilize Net
Stubs.

de.renew.event This package contains the event mechanism that is used to couple the
simulator and the GUI. It provides interfaces for event listeners and producers and an
abstract convenience implementation for listeners.

de.renew.function This package contains a variety of function objects. An implementation
of the Function interface must provide a single method that converts its argument into
a result. There are predefined function objects to perform all of the transformations of
objects that can be specified in a Java expression. This package is not yet concerned
with variables or assignment, but only with operations on runtime objects and values.

de.renew.shadow The shadow layer separates the GUI from the execution layer. Shadow
nets represent the net drawings, but they abstract from all information that does not
influence the simulation, like position, size, or color of the net elements.

This package is based on a create/discard API: You can create net elements, but few
changes can be applied to these elements without discarding and recreating them. In
fact, even discarding shadow nets is discouraged. Instead, an application should create
a new shadow net each time this is required.

The implementations of ShadowCompiler are responsible for creating nets at the se-
mantic layer using the shadow net.

de.renew.remote This package allows to access the state of a running simulation remotely
via RMI calls. In some sense, it will be the counterpart of the shadow package. While
the de.renew.shadow package allows it to convert net drawings to nets, this package
will facilitate the display of net instances in net instance drawings.

Renew

1.6
This package is now fully functional. The gui packages do no longer access
simulator classes directly to display a running simulation. Instead, all state
information is obtained through remote accessor objects.

de.renew.unify This package encapsulates a unification algorithm. Unification is done in-
place using modifiable objects. The unification algorithm supports a backtracking mech-
anism using the class StateRecorder. Ordinary Java objects are unifiable if and only if
they are equal according to Object.equals(...). Variables can send notifications after
they become fully bound, so that functions can be evaluated as soon as their arguments
are fully known. An occurrence check is performed. The special class Calculator of

13

unifiable objects is unifiable only with itself, but is incorporated into the occurrence
check. These objects are used to represent calculations that can be based on some
objects and might lead to an arbitrary result.

de.renew.util A package of miscellaneous classes that are used somewhere else, but were
considered too useful across applications.

de.renew.expression This package combines the functionality of the de.renew.function

package and the de.renew.unify package and implements full Java expressions. It adds
those expressions that cannot be interpreted by a mere function evaluation. Especially,
this package handles the introduction of local variables. To do this, every expression is
evaluated in the context of a variable mapper, which maps variable names to variables of
the unification mechanism. Other additions of this package are type checks, constants,
and bidirectional expressions.

de.renew.engine.common This packages defines some reusable occurrences and executables.
These objects are not sufficient for defining a formalism, but they constitute essential
elements for most formalisms.

de.renew.engine.searcher This package contains the basic algorithms that are used during
the search for an activated binding. Classes and interfaces remain very abstract here:
We talk about things that may be searched and things that may be executed, but do
not give any concrete examples.

de.renew.engine.searchqueue This package defines the SearchQueue, which is responsible
for keeping track of possibly enabled Searchables so that they can later on be searched
for activated binding. The search queue is also keeping track of the current simulation
time, so that it may order the searchables according to the earliest possible time when
a search may possibly succeed.

de.renew.engine.simulator A simulator makes sure to retrieve searchables from the search
queue and to search them for activated binding. the binding are then executed with a
policy suitable for the simulator, be it concurrently or sequentially.

de.renew.net This package defines the basic building block for defining nets and net in-
stances: places and transitions. It does not yet deal with arcs and transition instances.

de.renew.net.arc Here we define various arc types for use with nets.

de.renew.net.event Events and event listeners are used when dynamic chnges of a net’s
state and of actions in the net must be tracked by other code.

de.renew.net.inscription Transition inscriptions augment a transition’s behaviour. The
inscriptions defined in this package are by no way exhaustive, but represent the most
commonly used inscriptions.

de.renew.database This package interacts with the simulator core and makes sure that
all changes in all nets can be recorded in a database. The access to the database is
transactional, i.e., the database driver is notified about all tokens that are moved by
a single transition in a single method call and is supposed to record these changes
permanently and atomically.

de.renew.watch This package allows to keep track of all possible valuations of a synchronous
channel of a net instance. Afterwards, one valuation may be chosen to request an
explicit firing of a transition. This has been applied to design a workflow engine, but
other uses are imaginable, as it allow an external entity to watch and control the flow
of the simulation.

14

2.2.2 Net Formalisms

de.renew.formalism.java This package provides a compiler for the Renew default net for-
malism that inputs shadow nets and outputs nets at the semantic layer. Most other net
formalism are based on this package. Typically, only the parser needs to be exchanged
for a different one in order to accommodate for a different syntax.

de.renew.formalism.stub A variant of the Java net formalism that experiments with some
improved type rules, which are essential when generating net stubs. Usage of this net
formalism is discouraged.

de.renew.formalism.bool A special net formalism that implement Boolean Petri nets.
These nets are especially useful to experiment with workflows that are derived from
event-driven process chains.

de.renew.formalism.fs This formalism was a first prototype to include Feature Structures
(see below) into Renew. It is now only used as a basis for the following formalism and
for debugging.

de.renew.formalism.fsnet This formalism supports Feature Structures as a means to de-
scribe object constraints. It includes a type modelling tool to easily specify used defined
types. Also, all available Java classes can be used as types. Tokens are Feature Struc-
tures which can be combined using unification and can be tested for subsumption.

2.2.3 Graphical User Interface

de.renew.gui This contains the GUI for drawing, editing, and simulating Petri nets with
Renew. Specialized figures aid in the presentation of the net and new tools modify
these figures. The application class CPNApplication is responsible for setup and coor-
dination.

de.renew.gui.xml This package contains an experimental XML storage format for nets.
The XML import function uses the visitor pattern and requires a SAX-compatible
XML parser.

de.renew.gui.maria This package features a special mode for drawing nets of the Petri net
analyzer Maria. No simulation support is available, but it is possible to design a net
graphically and export it to simulation in Maria.

de.renew.gui.fs This package provides the GUI elements needed in the FSNet formalism
(see above). These are type modelling figures and Feature Structures. The Feature
Structure figure is also used to render Java objects as expanded Tokens.

2.3 Package de.uni_hamburg.fs

This package is an implementation of a typed Feature Structure formalism and has been devel-
oped for Renew’s FSMode. A Feature Structure is a graph with typed nodes and labelled arcs.
The arc labels can be seen as features or attributes of the nodes. A Feature Structure points
to a root node of such a graph. The type system allows subtypes (is-a-relations) and incom-
patible types (is-not-a-relations). Types can be tested for equality and subsumption. Among
the functions available for Feature Structures is subsumption and unification, which is in fact
graph unification. The packages de.renew.formalism.fs, de.renew.formalism.fsnet, and
de.renew.gui.fs depend on this package.

15

Chapter 3

Algorithms and Data Structures

In this chapter we will give an introduction to the most important algorithms of the simula-
tion engine. Fig. 3.1 summarizes those packages mentioned in Fig. 2.1 that are highlighted
subsequently.

3.1 Anatomy of the Simulation Engine

The implementation of a Petri net simulator can be separated into various aspects, which
can be regarded independently from each other to some extent:

• A unification algorithm. A large part of the complexity of a Petri net simulator can
been alleviated through the consistent use of a unification algorithm. Because there are
special requirements, a dedicated algorithm has to be written.

• The data structures for the representation of the net structure and the net state. This
is a particularly meaningful point, because each simplification, in addition, each special
treatment on this level immediately impedes the other parts of the algorithm. Since
we do not want to produce a code individually for a net, the data structure must be
particularly flexibly adaptable, in order to be able to represent all [sorts of] possible
Petri nets. Since net instances should be able to be simulated, also the description of a
current marking is more complex than for ordinary Petri nets.

• The selection of a transition for check on activation. If a transition was not detected
as activated, it should only be checked again, if a realistic chance exists that it could
be activated.

• The search for enabled bindings of an individual transition. This is the central part of
the algorithm, which should be able to find bindings as many as possible [and] as fast
as possible. This algorithm can become very complex in concept, in particular if there
are many optimization considerations, but it should however be simple, as there it has
a special influence on the robustness of the whole system.

• The firing of a transition. Basically the execution of a transition is comparatively a
simple process, as soon as an enabled binding is found. If we allow however the parallel
execution of several transitions, conflicts develop with the access to common data here.
Here the powerful synchronisation methods of Petri nets must be illustrated on concepts
of a programming language.

In the following sections we will examine each item individually.

16

shadow

formalism.java

simulator

function

expression

event database

util

unify

remote

de.renew

Figure 3.1: Overview of the simulation core packages

17

3.2 Unification

First of all we describe the data structures and algorithms of the unification algorithm. All
classes used for this algorithm can be found in the package de.renew.unify.

3.2.1 Motivation

For improved usability, the inscription language of a Petri net formalism should support some
sort of tuples to facilitate the easy retrieval of matching values. Tuples are already a classic
area in which unification algorithms have been applied, and the unification of tokens at places
with arc inscriptions requires at least a matching algorithm. There are, however, aspects of
the simulation algorithm for which a unification algorithm is useful in different ways.

Petri net formalisms often require the consideration of many different transition inscrip-
tions when firing a transition. Mostly, these inscriptions are given without a particular order,
so their effect should not depend on the order of their evaluation. This coincides with the
characteristic of unification algorithms, i.e., the sequence of unification is irrelevant.

For synchronous channels, no direction of the information flow is prescribed. during
the search for enabled bindings, the values and variables on both sides must be unified, as
a simple assignment is generally not possible. First of all, a parameter of a synchronous
channel itself could be again a tuple expression, if we want to keep the orthogonality of the
language definitions. Further, a synchronous channel might have to be handled even before
the last variable of the initiating side is bound. This is especially important when the channel
transfers values in both directions.

The question is, whether more unifiable objects, besides tuples, should be examined. Lists
were identified as a reasonable extension of a net formalism. Although lists can be represented
as nested tuples, for the sake of better usability this way of implementation should not be
externally visible. However, we cannot modify the representation of tuples, as nested tuples
do not always represent a list. Hence a special category of lists was created which allows a
more suitable representation and prohibits the visibility of their internal structure as well.
In the following, we won’t deal with this class often since nothing changes in the actual
unification algorithm and all interesting effects can already be observed with tuples.

3.2.2 Unknowns

Each variable has a value. This can be a normal Java object or a unifiable object. When a
new variable is generated, its value is unknown at first, because the variable is completely
unbound. In order to be able to indicate a value nonetheless, special objects have been
introduced by the class Unknown.

These objects become important during unification. After two unassigned variables x and
y have been unified, their value is still unknown. The unification, however, is visible in that
both variables would return the same unknown as their value.

We note that, after the unification of x and y, it is not specified which of the two unknowns
will form the later value of x and y. In fact, this is irrelevant for further unifications. Outside
the unification algorithm, the class Unknown need not be known anyway, because variables
should be queried for their valuation only after they have become completely bound, i.e.,
when no unknown is part of their value, not even nested within a tuple.

3.2.3 Backtracking

For the implementation of a unification algorithm one can choose one of two ways. Either
unification creates a new binding list that assigns the appropriate values to the variables,
whereby the original bindings list is preserved; or, alternatively, the old binding information
is overwritten and thus no longer available.

18

Variable

«interface»
Referable

+ addBacklink(Reference, StateRecorder)
+ occursCheck(Unknown, UpdatableSet)

Calculator

- type: Class {frozen}
List Aggregate Tuple

*

*

«interface»
Referer

+ possiblyCompleted(UpdatableSet, StateRecorder)

BacklinkSet

addBacklink(Reference,StateRecorder)
updateBacklinked(Referable, Object, ...)

Reference

+ occursCheck(Unknown, UpdatableSet)
update(Referable,Object, ...)

Unknown

Figure 3.2: Unifiable objects

Here, the second way, which modifies the existing objects, has been chosen, so that un-
necessary copying can be avoided.

In a Petri net simulator, however, it is necessary to be able to reset to the old state as
required, for example when a proposed binding of an arc variable to a token value did not
lead to an activated transition and alternative bindings should be tried out.

Therefore all modifications that the unification algorithm executes are noted in a central
object, which belongs to the StateRecorder class. For all modifying accesses to unifiable
objects a recorder must then be specified. If the special value null is used, then the cor-
responding operation cannot be undone. Otherwise, all attributes of the object that are
supposed to be modified are stored in the recorder. It is important to make no modification
at all before recording it first.

In order to keep the recording of the modifications as flexible as possible, the state
recorder does not prescribe a format for the information that must be recorded. Instead,
an object of the type StateRestorer is transmitted. This object possesses only one method
restore() and stores all necessary information. For each type of modification a subclass of
StateRestorer is created.

Several reset points can be specified for a recorder, so that a partial resetting is possible.
Modifications are always undone in the reverse order in which they were made.

It will be shown that almost the entire state of the Petri net simulator is stored in unifiable
objects, and that almost the entire backtracking can be performed by this algorithm. If
information is not connected to unifiable objects, special subclasses of StateRestorer can
handle these cases, too.

3.2.4 Unifiability and Java Equality

The unifiability of Java objects was implemented on the basis of the method equals(Object).
Thus we follow the decision of the programmers of container classes, where this way is also
always chosen to access the contents of a container. It is a procedure already embodied in
the language definition, which can be adapted sufficiently flexibly to individual needs.

The substantial problems develop from the fact that the Java definition of equality allows
equals(Object) to vary over time. In most cases the Java API follows the rule that only for
unchangeable objects equality may be coarser than identity, but there are exceptions as for
instance java.awt.Point or the container classes from Java 1.2.

19

This is to be borne, if Java’s equality concept is normally used. It becomes a serious
problem for unification, however, because a check for equality may occur in many unexpected
places.

Now the question arises, how unifiable objects themselves deal with testing on equality.
Tuples are very easy to handle, because for them the equality is defined by the equality of all
components.

For unknowns, however, a certain problem results, because they can still take any value
by unification, so that the outcome of a comparison with other objects is not at all defined.

Therefore a comparison attempt on unknowns throws an exception, which interrupts the
normal program flow and is normally announced as error. Indeed a comparison should not
occur, because unknown should be used only under the control of the Petri net simulator.
To other program sections the simulator should only pass completely bound tuples, so that
unknown should not be accessible from normal Java code.

Since backtracking operations can again introduce unknown components into already fully
unified tuples, it would be possible that an appropriate method stores reference to a complete
tuple and later, after the backtracking, accesses the tuple again and retrieves an unknown.
Since those methods that are not invoked from within actions should not have any side effects,
this effect will only occur in actions. In that case all, however, all tuples will first be copied,
so that they are not subject to backtracking any more.

A hash code must be assigned to each Java Object. For tuples this is calculated using a
simple polynomial derived from the hash codes of the tuple components. For unknowns the
query of the hash code throws an exception, because an unknown should not be stored in a
hashed data structure.

3.2.5 Occurrence check

If a tuple could contain itself directly or indirectly, then one could describe certain infinite
data structures quite easily. But such things are not easy to handle in the mathematical
theory and cause problems during the implementation, too.

With unification further problems occur. In particular, attention would have to be paid to
avoid endless loops. Also unification is founded on the basis of term unification of predicate
logic, where infinite terms are not allowed.

Thus there is the task is to ensure cycle-freeness during the unification: the so called
occurrence check, which checks for the occurrence of a tuple within in another tuple. The
occurrence check is sometimes not implemented in the area of logical programming, and one
leaves the behaviour in the case of recursive tuple unspecified, because a check in that context
would be very expensive. In Petri net simulators the principal complexity is due to other
algorithms, so that an occurrence check does not slow down the simulator considerably.

3.2.6 Calculations

In the formalism of the reference nets it is possible to carry out certain calculations only
during the execution of a transition, which is noted with the keyword action. The results of
the calculations are not known to the unification algorithm, yet the algorithm should as far
possibly be able to deal with these calculations.

Especially, late calculations should be effectively executable during the transition’s firing.
This leads to certain requirements:

• Cyclic dependencies shall be detected. This applies also to complex multi-level de-
pendencies. For example, the call action x=[1,a.method(x)] should fail before the
firing of the transition, because here x depends on itself indirectly through a method
invocation and a tuple.

• As far as possible, the result type of a later calculation should be represented by unifi-
cation algorithm, so that no preventable type errors may occur.

20

c2:ComponentBranch

all={[1,2],[1,3]}

c3:ComponentBranch

all={[[4,5],6,7]}

a:ArityBranch

1 -> {1}
[1,2] -> {[1,2]}
[1,3] -> {[1,3]}
[[4,5],6,7] -> {[[4,5],6,7]}

c2a1:ArityBranch

2 -> {[1,2]}
3 -> {[1,3]}

c2a0:ArityBranch

1 -> {[1,2],[1,3]}

c3a0c2a0:ArityBranch

4 ->{[[4,5],6,7]}

c3a0c2a1:ArityBranch

5 ->{[[4,5],6,7]}

c3a0:ArityBranch

[4,5] ->{[[4,5],6,7]}
c3a1:ArityBranch

6 ->{[[4,5],6,7]}

c3a2:ArityBranch

7 ->{[[4,5],6,7]}
indexes[1]

indexes[0]indexes[1]indexes[0]

branches[2]
branches[3]

branches[2]

indexes[1]indexes[0]

indexes[2]

responsible for
pattern [[*,*],_,_]

responsible for
pattern [[*,_],_,_]

responsible for
pattern [*,*,*]

t:TupleIndex

tree

c3a0c2:ComponentBranch

all={[[4,5],6,7]}

Figure 3.3: A tuple index

A calculation is represented by special unifiable objects of the type Calculator. A cal-
culator is unifiable only with unknowns and with itself, but not with tuples, values or other
calculators. In particular, equality reduces to identity for calculations.

Calculator objects reference exactly another object, which can serve as an argument for a
calculation. If more arguments are required, this can be implemented by a calculator object
that references a tuple object.

Occasionally a variable value must be of a certain type, in order to be a valid allocation
for the variable. this is ensured by the class TypeConstrainer. Such an object monitors an
arbitrary value. As soon as the value is no more an unknown, the type of the new value is
checked. This might be possible before the value is completely bound. For example, a tuple
may be type checked before all its components are bound.

In order to be able to provide type checking for late calculation, all calculator objects
carry the predicted type of their result. If a TypeConstrainer detects as a calculation object
as value, the predicted type is used instead of the type Calculator.

In Fig. 3.2 we summarize the main classes involved in the representation of unifiable data
structures. You can see how every implementation of Referer is assisted by an instance of
Reference. Similarly, every Referable is augmented by a BacklinkSet. A backlink set
collects information about all those references that reference its owner. A reference makes
sure to insert itself into the backlink set of its referenced object.

Using a CalculationChecker object a program can require that certain variables must
be bound or that they must be complete. A value is complete if it contains no unknowns,
even nested within a multitude of unifiable objects. A complete value is bound if it contains

21

no calculators.

3.2.7 Tuple Index

The tuple index is a specialized data structure that allows to select among a set of tuples
some candidates that might fit a given pattern. The given pattern is itself a possibly nested
tuple, which might be incomplete, i.e., it might contain unknown in some substructures.

The tuple index provides an upper bound for the set of matching values based on exactly
one component of the tuple or one component of a subcomponent of the tuple. The tuple
index will try all complete subcomponents of the tuple during lookup and select the best
estimate among these. It will not, however, consider more then one components. E.g., with
the set [0,0,0], [0,1,0], [0,1,1],and [1,0,0] of values and the pattern [0,0,_], the only
matching pattern is [0,0,0], but the optimal guess based on the second component contains
[0,0,0] and [1,0,0].

3.3 Semantic Level

Now we investigate the data structures of the semantic level where textual annotations have
already been resolved, but no instances have yet been built.

3.3.1 Net Structure

Whenever possible, we prefer a component-oriented architecture in the following sense: The
functionality of an object results substantially from aggregated sub-objects and attribute val-
ues, where the allocation of the sub-objects and the values occurs at run-time, but it remains
constant for the life span of the aggregate. The opposite of this would be an architecture, in
which the functionality of a class is adapted by the creation of sub classes. This would not be
so flexible, because it would make independent variations of different aspects more difficult,
as Java does not allow multiple inheritance.

Since no code is generated for a net, all semantic information about a net has to be
represented in a data structure. The application domain naturally suggests the classes Place,
Transition, and Net. A net must know about all its net elements, so that places and
transitions can be taken into account during the generation of a net instance.

Places possess an initial marking. This is represented by an arbitrary number of objects
of the type TokenSource. Each of these objects produces a token for the place during
initialization. In the simplest case, a token source could simply return a constant during a
call to the method createToken() as done by the class ConstantTokenSource. Alternatively,
it might be required to evaluate an expression, as in the class ExpressionTokenSource.

Now arcs and transition inscriptions must be represented. We observe that these two
groups of objects are quite similar, because they influence the enabledness and the effect
of a transition. Therefore, we want to abstract from the graphical difference of arcs and
inscriptions at this point, so that both can be treated as special transition inscriptions. The
class TransitionInscription is the common superclass of all transition inscriptions. A
transition can aggregate as many objects of this class as necessary.

Thus a certain asymmetry in the handling of places and transitions develops, since arcs
are mainly associated with transitions. This view is to be found however not so rare at all.
Even with S/T nets arcs are occasionally represented by pre-and post- region functions for
transitions. Further there are the transitions, which must consider at one time all their arcs,
while this is not the case with places, so that due asymmetry already exists in the formalism.

In Fig. 3.4 you can see a class diagram for the semantic layer of the net representation.
Most of the transition inscriptions are listed, where three of them require special handling:
UplinkInscription, CreationInscription and Arc. In the implementation, the class Arc
is divided into a number of specialized classes that takes care of the different arc types.

22

ArcArc

ActionInscription

GuardInscription DownlinkInscription

Net

Place

*

transitions

place

places

ConstantTokenSource

ExpressionTokenSource

*

*
inscriptions

Transition

«interface»
TransitionInscription

+makeOccurrences(...): Enumeration

uplink

0..1

net

«interface»
TokenSource

+ createToken(...): Object

*

CreationInscription

EnumeratorInscription

UplinkInscriptionArc

ExpressionInscription

Figure 3.4: Static net data

3.3.2 Transition Inscriptions

In the following, we give an overview of all transition inscriptions that were shown in Fig. 3.4
All transition inscriptions implement the interface TransitionInscription.

Uplinks An UplinkInscription determines on which channel incoming synchronisation
requests must appear. Since this information is referred to frequently, each transition
stores a reference to its unique uplink explicitly, if such a reference exists. Each uplink
has a name and an expression, which is evaluated during a synchronisation in order to
determine the channel data.

Downlinks Additionally to the attributes of an uplink, a DownlinkInscription possesses
another expression, which is evaluated to the object that has to provide the uplink for
the synchronisation.

Net creation CreationInscription-objects reference the net that is supposed to be in-
stantiated It would also be possible to store only the name of the net, but that would
introduce the possibility to interchange the implementation of a net dynamically, which
might be dangerous.

Expressions An ExpressionInscription object encapsulates an expression, which should
be evaluated during the search for an enabled binding. The result of the evaluation is
discarded.

Guards GuardInscription objects behave like expressions, but they force the evaluation
result to be true.

Actions ActionInscription objects behave like expressions, but they are evaluated only
while the transition fires.

Arcs All arc types reference a place and an arc expression, and pay attention to whether
the movement of tokens is to be logged. Additionally, the class Arc can distinguish
different types of arcs, so that we do not need to implement different classes for input,
output, test, and reserve arcs. On top of that, the class ClearArc manages a type for
the array that is created during the processing of the arc. The class FlexibleArc adds
knowledge about two conversion functions, with which the values supplied at the arc
are converted into concrete tokens.

23

ListExpression

InvertibleExpression

2

GuardExpression

EqualsExpression

2

TupleExpression

CallExpression

«interface»
NoArgFunction

+ function(): Object

*

«interface»
Function

+ function(Object): Object

VariableExpression

LocalVariable

+ name: String
+ isVisible: boolean

NoArgExpression

ConstantExpression

- constant: Object

AggregateExpression

«interface»
Expression

+ isInvertible(): boolean
+ startEvaluation(...): Object
+ registerCalculation(...): Object
+ getType(): Class

Figure 3.5: Expressions

A couple of times we mentioned expressions in this section. Expressions allow to param-
eterize inscriptions.

3.3.3 Expressions

Expressions can occur in two contexts:

• in action inscriptions, where no evaluation is to take place immediately, but a registra-
tion of the pending calculation is required, and

• in other transition inscriptions like guards, where the result is required as soon as
possible.

Even in the first case the expression has to be evaluated during the firing of the tran-
sition in exactly the same manner as it would be necessary for the second case. Hence we
suggest to treat both types of evaluation in a single class. With the use an expression in a
general transition inscription a part of that functionality lies idle, but a consistent handling
is guaranteed in both cases.

For the internal representation of expressions the interface Expression is defined. To-
gether with some implementations this class belongs to the package de.renew.expression.
The most important methods are the registration of an evaluation during an action and the
actual evaluation.

Both of the two methods registerCalculation and startEvaluation need three argu-
ments:

• a VariableMapper-object, which maps the name of a variable onto the associated vari-
able of the unification algorithm,

• a StateRecorder object, which can undo all modifications executed during the evalu-
ation of this expression,

24

• a CalculationChecker object, with which late calculations and requirements for the
early availability of a result can be announced.

The different implementations do not always use all arguments for their evaluation. For
example the evaluation of a variable or a constant does not need a StateRecorder, because
only read accesses occur on unifiable objects.

On the other hand the VariableMapper-object is necessary only for the evaluation of a
variable. Its responsibility is to return for a given LocalVariable object a variable of the
unification algorithm. It has to ensure that the mapping from LocalVariable objects to
variable is consistent for different branches of an expression.

An expression can be used with different VariableMapper-objects each time it is evalu-
ated. The algorithm ensures that no variable is reused from earlier evaluations.

However, most expressions are associated to subexpressions that must be evaluated first,
before they themselves can be evaluated. Such expressions aggregate other expressions and
pass on their arguments to the sub-expression with the call of the evaluation methods.

Each evaluated expression returns the result object immediately, even if it is a unifiable
object that is not yet fully evaluated. An evaluation might even return an Unknown-object
to signal a totally unbound variable. Therefore all assembled expressions must expect that
their arguments, which were returned by the subexpressions, are not yet ready and that
the computation of the expression must be deferred. Therefore the concrete calculation is
encapsulated in an object of the type Notifiable, which is registered with the unification
algorithm. As soon as all arguments are fully bound, the object is notified and can evaluate
the expression an unify the result with its result variable. If all subexpressions result in
definite values, the notification is send immediately.

Caution is necessary if more than one sub-expression is analysed. The return value of the
first sub-expression could be an Unknown. This Unknown could be unified with a value during
the evaluation of the second expression. Although this is a quite unusual case, which arises
almost only with artifacts like [x,x=1], it has to be considered.

We store therefore first the Unknown in a variable, because variables automatically take
care of unknown values that acquire a value through unification. A normal Java reference
could not achieve this. This is the price which we must pay for the usage of the unification
algorithm.

Since both Java references and primitive objects can result from the evaluation, a suitable
result type has to be chosen. The decision was to encapsulate primitive Java values in
objects of the class Value. The solution used in the Java reflection API (java.lang.reflect
package) to convert primitive types into their object counterparts without wrapping does not
preserve the distinction between the different types. Although one of the advantages of
primitive types, namely their run time efficiency, is no more given, this approach enables
the type-correct handling of primitive values. Since Value is a reference type, Object can
generally serve as return type for expressions.

Apart from the calculation methods two query methods are to be implemented. An
Expression-object can specify a result type, in order to permit a type check. It is guaranteed
that every result of a successful expression evaluation belongs to this result type.

After the evaluation of an expression the result may be undetermined, because the eval-
uation is deferred at least partly due to unbound variables. The method isInvertible()

indicates whether variables occurring in the expression can be bound by unifying the incom-
plete result with a fixed value. This applies in particular when the expression only consists
of one variable at all, but also in the case of tuples that are built from subexpressions.

This concept of invertibility is naturally related to the mathematical invertibility, but here
it refers to the concrete operational feasibility. Additionally, we will not inversely calculate
some expressions, if thereby the clarity of the formalism would suffer.

This query on invertibility is used by input arcsin particular, since the possible result
values in form of the tokens in the place are already certain in this case. Here it is sensible

25

to try all possible values one after the other, but only if this could lead to variable bindings
based on the structure of the expression at the input arc.

3.3.4 Some Expressions

Not all expressions are to be discussed in detail, since they are to a large extent straightfor-
wardly coded, but some classes are exceptional.

An EqualsExpression possesses two sub-expressions, which are to be unified during the
actual calculation. It would be possible to unify them already during the registration of a
subsequent calculation, like in action x=y. The only question is whether this would be the
intended semantics. Because in action-inscriptions we would like to achieve a value transfer
that is close to the evaluation rule of Java, we prescribe a value transfer from the right to
the left. This is achieved by unifying the left side with a calculation object that references
the result of the right side’s registration, where the latter result is possibly unknown during
registration.

TupleExpression-objects aggregate a sequence of expression-objects, and can generate
and return tuples. In a very similar way, lists are generated by ListExpression-objects, so
that a common super class, AggregateExpression can be found.

As indicated, VariableExpression-objects draw their results from the VariableMapper-
object released during the evaluation. Noteworthy is it here, that variables produce the only
communication possibility between different inscriptions.

Method invocations are administered by CallExpression-objects. Method invocations
often have many different arguments and are sometimes static and sometimes dynamic. It
would thus appeal to have a flexible approach that delays an evaluation until a multitude of
expressions has been completely evaluated.

The situation becomes simpler, if CallExpression-objects aggregate only a single ob-
ject of type TupleExpression, which summarizes all arguments into one, so that only one
argument, which arises out of one subexpression, must be processed by the CallExpression-
objects.

During the evaluation this sub-expression is evaluated and the result is stored in a variable.
Likewise for the result of the CallExpression-object a variable is produced, which contains
an Unknown initially.

If by means of registerCalculation() only the registering of a late calculation is re-
quired on the basis of an action inscription, a Calculator-object of the unification algorithm
is generated.

On the other hand, the method startEvaluation() forces the calculation of the function
as soon as its argument tuple becomes known. To this end, an observer object is registered
at the argument variable. The observer object will be notified as soon as the result of the
sub-expressions is completely determined. It calculates the function and unifies it with the
result variable.

If the result variable is already bound at the point of time when the function is evaluated, it
will be checked by the unification algorithm, whether the newly calculated result corresponds
with this value.

In order to abstract from different ways of calling a method or a constructor, the core
functionality is shifted into objects of the type Function. During its evaluation a function
receives exactly one object and returns one object. The CallExpression-object can be
limited to the supporting activities: the construction of the argument and the registration
for notification.

The contents of the result variable are finally returned to the higher expression and can
be further used there, no matter whether the function could be evaluated already or not.

One version of the CallExpression is the NoArgExpression. This needs no argument val-
ues and aggregates no sub-expressions either. This is typically used to read a static attribute
of a class. Such an expression aggregates no ordinary function, but a NoArgFunction-object.

26

ConstantFunction
«uses» «uses»

ArrayFunction

FieldFunction

ConstructorFunction

CastFunction

InstanceofFunction

FieldWriteFunction

MethodFunction

BasicFunction

StaticFieldFunction
Executor

+ VOIDRETURN: Object {frozen}

+ getTypes(Object[]): Class[]
+ findBestConstructor(Class, Class[], boolean): Constructor
+ findBestMethod(Class, String, Class[], boolean): Method
+ executeConstructor(Constructor, Object[]): Object
+ executeConstructor(Class, Object[]): Object
+ executeMethod(Method, Object, Object[]): Object
+ executeMethod(Class, Object, String, Object[]): Object

...

«interface»
Function

+ function(Object): Object

«interface»
NoArgFunction

+ function(): Object

CallExpression

NoArgExpression

Figure 3.6: Functions

Casts are implemented invertible, as far as it is possible. To achieve this, the class
InvertibleExpression can calculate at the same time two functions during the evaluation.
The first function is handled as by a CallExpression-object. The second function will be
calculated, as soon as a notification queues up, that the result of the expression is known and
the result is unified with the argument value.

3.3.5 Some Functions

The presented Function-concept can even be expanded onto other calculations. Here we
want to list some possible functions.

Dynamic method invocations. These require a pair of an object and an argument tuple.

Static method invocations and constructor calls. Here only the argument tuple is im-
portant.

Reading and writing of attributes. During the writing it is to be noted that a side effect
evolves, so that these operations are only meaningful in action-inscriptions.

Calculation of operators. Also primitive operators such as addition or multiplication can
be regarded as special functions. Here finally there are (only) many function objects,
which were implemented as singletons.

Casts. Some of the previous operations could fail, if an exception is thrown by the calcu-
lation, this is however particularly obvious with casts. Functions can release therefore
the exception Impossible. Usually this brings the caller to the stage, in which the last
operation, which has bound a variable, is recognized as illegal and a backtracking sets
in.

27

testIndex

TokenBag

TestTokenBag

netInstance

TransitionInstance

+ proposeSearch()
+ listensToChannel(String): boolean
+ bindChannel(Variable, Searcher)
+ startSearch(Searcher)

netInstance

place
net

transition
Transition

Net

net

Place
net

lock

freeTokens

testedTokens

Lock

+ lock()
+ unlock()

PlaceInstance

+ lockOrder: long

freeIndex

TupleIndex

+ insert(Object)
+ remove(Object)
+ getAllElements(): CollectionEnumeration
+ getPossibleMatches(Object): CollectionEnumeration

«interface»
NetInstance

getInstance(Place): PlaceInstance
getInstance(Transition): TransitionInstance
getNet(): Net

Figure 3.7: Simulation state

Other functions are conceivable and easy to set up. The advantage of this approach over
the programming of a subclass of Expression is that for functions no knowledge about the
unification algorithm or the simulation algorithm is necessary.

The Reflection API of Java is used for the execution of many functions. Hereby the
method signatures of each desired class are inspected and method invocations are issued. In
order to find an appropriate method for given parameter types, all methods must be checked
whether their signature matches the argument types and the most specific method must be
found from the appropriate methods. This happens at run-time in the untyped formalism or
at compilations time for the typed formalism.

As mentioned earlier, primitive values are always encapsulated in Value-objects, both on
the level of expressions and on the level of functions. This is to be taken into account during
the implementation of the functions.

3.4 Dynamic Level

Apart from the static aspects of a net, the dynamic state of net instances must also be stored,
so that all required information is available during the search for an enabled binding. Normal
Petri nets only need the current marking, which could always be stored together with the
static information about the places.

As for reference nets however, several net instances are to be built from each net, so that
the markings of the different net instances must be managed separately from each other. For
this an interface NetInstance with a standard implementation NetInstanceImpl is created,
in order to handle the state of a net. In addition, a NetInstance object denotes the identity
of a net instance. The net is associated to the net instance during the entire life-time of the
net instance. It contains a unique ID for the net, so as to generate readable trace outputs.

It is one responsibility of a NetInstance object to enable places to produce place instances
by means of the method getInstance(Place). Each place instance contains a multi-set of
free tokens and a multi-set of tested tokens, which are tested by means of a test arc. Since

28

PlaceEvent

+ getPlaceInstance(): PlaceInstance

Place

+ addPlaceEventListener(PlaceEventListener)
+ removePlaceEventListener(PlaceEventListener)

PlaceInstance

+ addPlaceEventListener(PlaceEventListener)
+ removePlaceEventListener(PlaceEventListener)

«interface»
PlaceEventProducer

addPlaceEventListener(PlaceEventListener)
removePlaceEventListener(PlaceEventListener)

place

placeInstance

«interface»
PlaceEventListener

markingChanged(PlaceEvent)
tokenAdded(TokenEvent)
tokenRemoved(TokenEvent)
tokenTested(TokenEvent)
tokenUntested(TokenEvent)

*

*

PlaceEventAdapter

+ markingChanged(PlaceEvent)
+ tokenAdded(TokenEvent)
+ tokenRemoved(TokenEvent)
+ tokenTested(TokenEvent)
+ tokenUntested(TokenEvent)

TokenEvent

token: Object

+ Object getToken()

listeners

listeners

Figure 3.8: Place event handling

the firing duration of transitions is not limited, we cannot expect that tested tokens become
free again quickly. Rather they must be handled explicitly in the search algorithm for test
arcs.

For each place instance there are two tuple indices: one for the free tokens and another
for the testable tokens. To this end, all tokens that either lie free in the place or are already
tested are regarded as testable. Both indices are implemented by the class TupleIndex.

The reason to indicate not only the tested tokens, is that then for test arcs both indices
would have to be queried and the results would have to be combined. Instead we rather
invest into the modification of two indices during the movement of free tokens. The place
instance is responsible for the correct update of the indices during each modification of the
marking.

Each place instance contains a lock mechanism, which protects it against parallel accesses.
Before each access that concerns a variable attribute of the place the caller must make a call
on lock(). It is necessary that the caller controls the lock, because it happens that multiple
tokens must be moved, which is best achieved by locking first and then doing a sequence of
updates.

It is also possible that two threads operate jointly, but not concurrently on a place instance.
This might happen if remote methods are invoked during an operation. Because both threads
need access to the place and only one can acquire the lock, it must be allowed that a thread
accesses the place instance without having gained the lock. That means the access methods
must not lock themselves.

29

*

TransitionEvent

+ getTransitionInstance(): TransitionInstance

TransitionInstance

+ addTransitionEventListener(TransitionEventListener)
+ removeTransitionEventListener(TransitionEventListener)

Transition

+ addTransitionEventListener(TransitionEventListener)
+ removeTransitionEventListener(TransitionEventListener)

«interface»
TransitionEventProducer

addTransitionEventListener(TransitionEventListener)
removeTransitionEventListener(TransitionEventListener)

TokenEvent

mapper: VariableMapper

+ VariableMapper getVariableMapper()

transition

transitionInstance

«interface»
TransitionEventListener

firingStarted(FiringEvent)
firingComplete(FiringEvent)

TransitionEventAdapter

+ firingStarted(FiringEvent)
+ firingComplete(FiringEvent)

listeners

*

listeners

Figure 3.9: Transition event handling

3.5 Event Handling

The event mechanism allows event listeners to monitor the current state of a place or tran-
sition. Whenever a token is moved into a place or out of a place instance or becomes tested
or untested, the place instance sends events to all those listeners that were previously added
to it.

Similarly a transition instance sends events at the start and at the end of every firing.
Currently transition instances do not send event when their enabledness changes, because
the computational cost associated to this operation would be prohibitive.

Not only place instances and transition instances, but also the places and transitions
themselves accept listeners. These listeners are notified about all events within all instances
associated to this net element.

Unless a listener is deregistered from an event producer, it will receive all future events.
No listeners are automatically removed.

Events are delivered synchronously, i.e. the simulation blocks while an event is processed
by the listener. That means that listeners should typically terminate quickly. During the
notification, the place instance is locked by the notifying thread.

It is safe to query the current marking of the place instance that produced the current
event, but it is not allowed to modify its marking. While querying, it is not required to relock
the place instance.

Producers are the interfaces of classes that keep track of listeners. Listeners receive
events. Events carry attributes that specify the precise kind of action that triggered the
event. Adapters are standard implementations of listeners. Listeners receive events. See

30

«singleton»
SearchQueue

+ setQueueFactory(SearchQueueFactory)
+ reset(double)
+ getTime(): double
+ advanceTime()
+ isCurrentlyEmpty(): boolean
+ isTotallyEmpty(): boolean
+ includeNow(Searchable)
+ include(Searchable, double)
+ extract(): Searchable

«interface»
TimeListener

timeAdvanced()

*

«interface»
Searchable

startSearch(Searcher)

«interface»
SearchQueueFactory

makeQueue(double): SearchQueueData

timeListeners

listeners

factory

«interface»
SearchQueueData

getTime(): double
include(Searchable)
exclude(Searchable)
extract(): Searchable
elements(): java.util.Enumeration
size(): int
init()

«interface»
SearchQueueListener

searchQueueNonempty()

DeterministicSearchQueue

RandomSearchQueue

Figure 3.10: The search queue

Figs. 3.8 and 3.9 for detailed class diagrams.

3.6 Activated Transition Instances

Before computing the enabled bindings of a transition instance, the simulator need to deter-
mine which transition to search.

3.6.1 The Search Queue

It is often the case in an object-oriented Petri net that the enabled transition instances are
located in a small sub-range of the net for longer time, whereas in other net parts no transition
instances are activated. In such a case it would not be efficient to check all transition instances
for enabledness every time. Rather those transitions are to be checked, whose enabledness
status might have changed.

To this end we keep all potentially activated transition instances in a central data struc-
ture. This data structure is implemented by the class SearchQueue. In a search queue, you
can not only include transitions, but all kinds of objects that might have to be searched for
activated bindings, indicated as implementations of the interface Searchable.

The search queue also keeps track of the time during the simulation of timed Petri nets.
To this end, it records for each searchable object the earliest time when it should be searched.
Whenever there are no more searchables that should be searched right now, the search queue

31

triggerable

*

TriggerCollection

+ include(TriggerableCollection)
+ exclude(TriggerableCollection)
+ clear()

*

triggers
PlaceInstance

triggerables

TriggerableCollection

+ include(Triggerable)
+ exclude(Triggerable)
+ proposeSearch()

«interface»
Triggerable

triggers(): TriggerCollection
proposeSearch()

TransitionInstance

triggerables

triggers

*

Figure 3.11: Triggers and triggerables

advances the time, notifies optional listeners and returns a searchable object for the next
relevant point of time.

For each different time stamp, the search queue creates an object of type SearchQueueData
which group the associated searchables. Different implementations of SearchQueueData can
use different queueing strategies. The SearchQueueFactory is responsible for creating new
instances of SearchQueueData-objects.

The simulator extracts possibly activated transition instances from the search queue and
checks for enabledness. If the transition instance is not activated, the transition instance is
discarded and another transition instance is selected. If it is enabled, it is reinserted into
the search queue for a check on additional concurrent firings. If the simulator determines
that the transition will be enabled at some future point of time, but not right now, it will be
inserted with an appropriate time stamp.

The search queue may also notify listeners whenever new searchables arrive in the queue.
For an overview of the search queue architecture, see Fig. 3.10.

3.6.2 Triggers

We observe that a transition can be recognized as deactivated without looking at all input
places. For example input places could be empty or contain only such tokens that violate a
guard. If the marking of a place that does not influence the enabledness changes, this event
should no cause an insertion of the transition instance into the search queue, because the
transition instance must still be disabled.

Only those places, whose tokens received attention during the check on activation at all,
should provoke the new check. In order to realize this optimization, it is necessary that each
place manages a set of the transitions, which have queried the place during their check on
activation and which therefore must be notified after a modification.

The event mechanism discussed here is called the trigger mechanism. A place instance is a
Trigger that might cause a transition instance to be rechecked. Hence a transition instance
implements the interface Triggerable. Fig. 3.11 provides a class diagram for the trigger
mechanism. The class TriggerCollection is a utility class that simplifies the administration
of triggers.

As soon as a notification is sent to all triggerables, the set of triggers can be deleted. All
relevant transition instances have been inserted into the search queue and do not need another
notification. Only while the transitions are again checked, they must log on themselves again
for notification at the place instance. They will do this only if the place is relevant for the
activatability of the transition instance.

Additionally, every transition keeps track of all its triggers. Having been triggered, it

32

can explicitly deregister itself from all triggers, even those that did not cause the check
for enabledness. As a modification was already detected, notifications by the other place
instances are useless. Only during the new check for activation, the places whose current
tokens are relevant should again be registered.

This way, the relevant place instances on which a transition instance depend may change
over time. This is also helpful for good memory management, because links between triggers
and triggerable might stop the garbage collector from claiming all unused memory otherwise.

We summarize the process:

• Before relying on a marking for the analysis of a transition enabledness, the transition
is registered with the place’s triggerable collection as a triggerable.

• In any case, a triggerable is registered at a triggerable collection, never vice versa.

• After a change is done to a place, the place’s triggerable collection is used to inform all
transitions of their possible enabledness.

• Each transition removes itself from all its triggers. Afterwards it inserts itself into the
search queue.

In this process, the following lock order is respected to avoid deadlocks:

• First, lock triggerable collections via synchronisation.

• Second, lock trigger collections via synchronisation.

3.7 Search Algorithm

Here we describe the algorithm that determines enabled bindings for a transition. The basic
algorithm is quite general and constitutes essentially an adaptable backtracking tree search.

During the tree search the decisions to be made at a certain point of time arise mainly
out of input arcs that may be bound to different tokens. But there are other decision such
as the choice of an appropriate transition that satisfies a given uplink.

Each of these decisions will typically lead to a variable binding, so that backtracking
is necessary for examining the other possibilities. If many decisions are to be met, not all
the possible combinations should be exhaustively searched, but rather the search should be
aborted as early as possible.

All sorts of decisions are encapsulated in the interface Binder. An instance of the class
Searcher coordinates the search process and selects the binder that makes the next decision.
The searcher also references all information necessary for the search procedure. After all
binders have had their chance to bind variables, the searcher determines whether the current
set of variable bindings leads to an activated transition and transfers control to an instance of
Finder, which may use the current bindings in the desired way. The main step before invoking
the finder is to ask the CalculationChecker about possible conflicts with regard to the action
inscriptions and the complete binding of all variables involved in early computations.

The search process is initiated by an object of type Searchable. Such objects own a
method that can register some binders at the searcher and transfer control to the searcher.

After the Searcher is assigned to start a search procedure, it asks all binders for a estimate
on the relative cost of trying all bindings in order to determine the binder that should start
the search process. This cost is referred to as the binding badness. The searcher always
selects the binder with the minimal cost.

A special value for the binding badness is reserved, in order to represent infinite costs.
A binder should indicate infinite costs, if at this time no new binding information can be
acquired from the binder. Otherwise it is a good clue, to indicate the number of necessary
branches in the search tree as binding costs. Thus those binders are preferred by the searcher,

33

which keep the width of the search tree small. Since this does not ensure the optimal search
tree in all cases, a binder can also use any other heuristics.

The selection of the optimal binder is highly dynamic. The order of binders may not
only be different for different searches of one transition instance. It may in fact different
for different branches of the search tree. In order to exploit the performance advantages
associated with this optimization, it is recommended that the computation of the binding
badness itself should be relatively fast.

Typically binders with the binding costs 0 are those binders, which can prove that the
current branch of the search tree does not contain enabled bindings. It is clear that such
binders should be called with priority, so as to cut off the search tree as early as possible.
Similarly, binding costs of 1 pertain to a binding, which must be executed in each case, since
there are no alternatives. Such binders are likewise preferred, because their handling must be
done in any case and can perhaps help to better estimate the costs of the remaining binders.

After the searcher determined a binder in such a way, it removes the binder from its list of
unprocessed binders and transfers the control to the binder. Now the binder tries all possible
bindings that may lead to a solution one variant after the other. In each case the resulting
binding information

Each time, when the binder selected a possibility, the search method of the searcher is
called again. The searcher can then determine and call one of the remaining binders. Thus
binders and searcher alternate, until a solution is found, or until a binder ascertains that
no decision can lead to success on its part. In such a case the binder terminates its search
method and returns with an appropriate message to the calling searcher. This will go back
to the last binder, which examines a further binding possibility.

A binder may not only contribute information to the search, but it may register further
binders at the searcher for future consideration. Thus a decision could be made, but at the
price of a new pending decision. These additional binders can make an initially simple search
process complicated. But it also helps to keep a search process simple as long as no absolute
necessity exists for a certain decision.

If a binder returns, because it did not succeed in finding an appropriate solution to the
search problem, backtracking must occur. Modifications that were applied to variables of
the unification algorithm can be easily cancelled, since the unification algorithm already in-
troduced a backtracking mechanism, as described earlier. The StateRecorder-object, which
is necessary for each modifying operation, is centrally administered by the searcher, since
exactly one such object per search procedure is necessary.

Another modification during the traversal of the search tree concerns the registered binders
themselves. Here the searcher makes sure that a binder is removed from the list of the possible
binders before control is passed to it. After the search procedure it is automatically registered
again. If a binder would like to register other new binders, then also the deregistration has
to be administered by the binder.

Binders can rely on the following assumptions:

• Each binder is processed at some time, unless it reports an infinite binding badness.

• A binder is not called as long as it announces an infinite binding badness.

On the other hand the following duties fall upon binders:

• The sequence, in which two binders with finite binding costs are processed, may only
affect the order, but not on the set of found solutions.

• By the actions of binders only restrictions, but not extensions of the remaining solution
space, can take place.

• The binding costs, which a binder reports, may only decrease with the operations of
other binders, but never increase.

34

Searcher

+ isCompleted(): boolean
+ insertTriggerable(TriggerableCollection)
- selectBestBinder(): Binder
+ search()
+ addBinder(Binder)
+ removeBinder(Binder)
searchOnce(Finder,Searchable, Triggerable)

«interface»
Triggerable

triggers(): TriggerCollection
proposeSearch()

«interface»
Searchable

startSearch(Searcher)

«interface»
Finder

found(Searcher)
isCompleted(): boolean

binders

«interface»
Binder

bindingBadness(Searcher): int
bind(Searcher)

CalculationChecker

+ reset()
+ addEarlyVariable(Variable, StateRecorder)
+ addCalculated(Class, Object, Object, StateRecorder)
+ addLateVariable(Variable, StateRecorder)
+ isConsistent(): boolean

calcChecker

*

StateRecorder

+ record(StateRestorer)
+ checkpoint(): int
+ restore(int)
+ restore()

finder

recorder

primaryTriggerable

Figure 3.12: The searcher/binder/finder data structure

• Before a Binder accesses the status of a changeable object, in particular a place instance,
it registers the currently searched transition instance as triggerable of the changeable
object.

• A modification of a changeable object may lead to missing or redundant solutions, but
not to other failures.

We assume in the following that binders communicate over the variables of the unifi-
cation algorithm. Thus no central object is necessary, which must administer the binding
information already collected. This enables us to combine binders flexibly.

Since variables are changed only by unification, they are only more strictly bound during
the search process, so that the set of the allowed bindings decreases monotonously, as required
by the specification of binders. Because the sequence of unification operations does not
influence the outcome, it will also be simpler to achieve the arbitrary exchangeability of
operations of binders.

The searcher accepts a solution, if all binders are processed. The searcher will then
transfer the finder for evaluation, which can use the solution as desired. Finally the finder
informs the searcher, whether further solutions are to be found. For this a query method
isCompleted() is provided, which states, whether the search procedure is to be terminated.

In Fig. 3.13 we depict a typical search procedure as a collaboration diagram.

3.8 Application to Petri Nets

The search algorithm that was described up to now could be flexibly amended for many
different application areas, since there is nothing intrinsically net-related about it. We will
discuss the specialization to Petri nets now.

35

b1:Binder

s0:Searcher

b2:Binder

b3:Binder

2:bindingBadness()

1:bindingBadness()

b3 finds two
possible bindings

b1:Binder b2:Binder

s0:Searcher

4.1:search()

Objects displayed
multiple times for clarity

3:bindingBadness()
4:bind(s0)

b1:Binder b2:Binder

s0:Searcher

4.2:search()

b2 finds no
possible binding

b1 finds one
possible binding

b2:Binder

b2 finds two
possible bindings

s0:Searcher

s0:Searcher

f4:Finder

s0:Searcher

f4:Finder

f4 rejects
first binding,
but accepts
second binding

4.1.1:bindingBadness() 4.1.2:bindingBadness()
4.1.3:bind(s0)

4.2.1:bindingBadness()
4.2.3:bind(s0)

4.2.2:bindingBadness()

4.2.3.1:search()

4.2.3.1.2:bind(s0)
4.2.3.1.1:bindingBadness()

4.2.3.1.2.1:search()

4.2.3.1.2.1.1:found(s0)

4.2.3.1.2.2.1:found(s0)

4.2.3.1.2.2:search()

Figure 3.13: A search process

36

For normal Petri nets a firing mode must only consider the bindings of all variables. We
want to manage nets with synchronous channels, too, so that several transitions can be taken
part in a firing. In particular, only during the search procedure, when variables are gradually
bound, it becomes clear, which transitions need to be synchronised. This cannot be assumed
beforehand.

Therefore it is necessary that the searcher keeps track of the involved transition instances
during the search procedure. Alongside with the involved transition instances a record of
variable bindings has to be administered, hence it seems natural to aggregate pairs of one
transition instance and the record of variables in a class. This combination is called transition
occurrence and managed by the class TransitionOccurrence.

An interface Occurrence abstracts from the concrete characteristics of a transition oc-
currence and can be used to integrate occurrences of active objects of other formalisms.

Whenever a transitions instance is to be checked for enabledness and whenever it is
selected as target of a synchronisation, a transitions occurrence is produced by it, and this
occurrence enters into a set of occurrences with the searcher.

At the same time inscription occurrences, objects implementing InscriptionOccurrence,
of all transition inscriptions of the transition in question, are produced. With inscription
occurrences the concept that the semantics of transitions results from aggregated inscriptions,
is repeated on the dynamic level.

Each inscription occurrence administers necessary information of this inscription during
the search procedure, for example the allocation of used variables. Alone the transition
occurrence knows all used variables. The inscription occurrences are responsible for the
production of binders if they are required by the inscription.

A transition instance creates an occurrence of itself while startSearch(Searcher) is
called. It registers itself at a Searcher and automatically asks the occurrence for the binders
produced by the inscription occurrences.

The search algorithm administers no inscription occurrences. It will only note the occur-
rences, which again encapsulate the inscription occurrences. This has the advantage, that
formalisms for which the active elements are not composed by individual inscriptions can be
also treated by this simulation algorithm. In addition, this secures a maximum independence
from the individual occurrences.

inscription occurrence binder(s)
ActionInscription ActionOccurrence N/A
Arc ArcOccurrence InputArcBinder

TestArcBinder

InhibitorArcBinder

ArcAssignBinder

ClearArc ClearArcOccurrence N/A
ConditionalInscription ConditionalOccurrence ConditionalOccurrence

CreationInscription CreationOccurrence N/A
DownlinkInscription DownlinkOccurrence ChannelBinder

EnumeratorInscription EnumeratorOccurrence EnumeratorBinder

FlexibleArc FlexibleArcOccurrence FlexibleArcBinder

Table 3.1: Inscription classes and associated occurrence classes

In Table 3.1 we summarize the different inscription occurrences and the executables that
they can create. The ArcOccurrence class is special in the sense that it creates different
binders depending on its attributes. It may also create more than one binder. If the arc can
contribute to the binding information, it will create an ArcAssignBinder, which is responsible
for trying all tokens in order to produce a variable assignment. In any case, it creates a binder
that checks for the availability of the token that is computed by the arc’s expression.

37

binding

«interface»
Finder

found(Searcher)
isCompleted(): boolean

EnablednessFinder

+ isEnabled(): boolean

AbortFinder

abortSearch()

Binding

+ getDescription(): String
+ execute(Tracer, boolean): boolean

ExecuteFinder

+ execute(Tracer, boolean): boolean

CollectingFinder

+ bindings(): CollectionEnumeration

*
bindings

Figure 3.14: The Finder classes

3.9 Finders

The concept of a finder was already introduced earlier, but we will now investigate the imple-
mented subclasses which link the search process to the execution algorithm. The following
subclasses are implemented:

AbortFinder This finder aggregates another finder and is responsible for terminating the
current search, if so requested.

EnablednessFinder This finder terminates the search as soon as the first enabled binding
was found, because it is only supposed to determine whether a transition is enabled.

ExecuteFinder This finder must initiate the execution of some binding of the transition.
For this task, too it is enough to search till the first binding. The finder must, however,
make additional records on the found binding.

CollectingFinder This finder looks up all possible bindings of a transition and always
requires a full search. It is useful if we want to display all enabled bindings of a
transition or if we want to select a binding from the set of all bindings in a fair way.
The collecting finder can naturally be combined with the abort finder, in order to
achieve an abort of the search early. Of course this means that the originally desired
information will not be available.

The use of an ExecuteFinder in the current form cannot guarantee that all bindings of
a transition are found with the same probability. Although different tokens are checked in
random order, the order of handling of the input arc binders may influence the probability
of certain bindings.

Nevertheless all bindings remain firable, so that each possible action in a simulation is
possibly observable. Whether a preference in realistic nets occurs or is significant, would have
to be determined. We can take care of fairness for all firing modes within a transition using
a CollectingFinder.

3.10 Enacting a Binding

After the search for an enabled binding has been successfully completed, a Binding object
is created and handed to the finder, as already indicated in Fig. 3.14. The binding object
knows about all transition occurrences that are involved in the firing.

38

lateExecutables

earlyExecutables «interface»
Executable

phase(): int
execute(Tracer)

*

«interface»
Occurrence

mappers

*

Binding

+ getDescription(): String
+ execute(Tracer, boolean): boolean

VariableMapper

occurrences

Figure 3.15: The class Binding

For each occurrence, the state of the variable mapper immediately after the successful
search is preserved in a copy of that variable mapper. All unifiable objects in the mapper
are copied, too, in order to protect them from backtracking. These mappers are used to
determine the string representation of the binding, if the binding is to be presented to the
user.

Separate from that, the binding keeps two sets of executable objects. These objects are
generated by the inscription occurrences that were described in Section 3.8. The executable
objects come in two flavors: early and late executables.

The interface EarlyExecutable is intended for those effects of a transition that may turn
out to be impossible if the current marking changes currently to the search process. Such
executables are required to be reversible, i.e., they must support a rollback operation.

The other interface is LateExecutable, which may contain irreversible effects. However,
a late executable may not report an error in any case, it must always complete.

In Table 3.2 you can see a summary of all occurrences and the executables that they cre-
ate. Most executables depend on the binding of certain variables. If the exact valuation of the
variable may not be determined during the creation of the executable, the executable refer-
ences a variable of the unification algorithm, as witnessed by the class OutputArcExecutable.
All variables are copied before recording them in the executable object, because backtracking
must be eliminated. The same copier is used for all executables, so that executables that
bind variable, e.g. the ActionExecutable, may pass their results to other executables. The
common copier is not reused for the storage of the variable mappers in the binding, because
we do not want the string representation of a binding to change.

Fig. 3.16 gives a class diagram of all subclasses of Executable and the main related
classes.

An UntestArcExecutable, which removes the test status from a token, references that
executable that originally tested the token. This ensure that the token can be put back using
the correct time stamp, if a timed simulation is intended.

Before the executability of early executables is checked, all early executables are locked.
The executables may request a certain lock order to avoid deadlocks. Afterwards, the check
for executability can be performed without disturbances.

Note that the EarlyConfirmer does not actually have to lock anything, because it only
prints trace messages and it does so only if all other executables succeeded. It cannot even
fail, but nevertheless, this executable is considered early, because it must be executed before
the first trace messages about removed tokens are printed.

The FiringStartExecutable and FiringCompleteExecutable are not created by in-
scription occurrences, but by the firing transition instance itself. They ensure that an

39

TestArcExecutable

token: Object
trace: boolean
releaseImmediately: boolean

tester

OutputArcExecutable

tokenVar: Variable
timeVar: Variable
trace: boolean

FiringStartExecutable

FiringCompleteExecutable

lock

netInstance

netInstance

«interface»
Executable

phase(): int
execute(Tracer)

«interface»
EarlyExecutable

lockPriority(): long
lock()
verify()
rollback()
unlock()

placeInstance

placeInstance

LateConfirmer

EarlyConfirmer

«interface»
LateExecutable

isLong(): boolean
event

placeInstance

FiringEvent

InputArcExecutable

token: Object
delay: double
trace: boolean
releaseImmediately: boolean
removeTime: double

ClearArcExecutable

variable: Variable
removedTokens: Vector
removedTimeStamps: Vector

placeInstance

PlaceInstance

+ lockOrder: long

ClearArc

trace: boolean
elementType: Class

arc

Lock

+ lock()
+ unlock()

UntestArcExecutable

«interface»
NetInstance

earlyConfirmation(Tracer)
lateConfirmation(Tracer)

ActionExecutable

mapper: VariableMapper

actionInscription

ActionInscription

event

Figure 3.16: The Executable classes

40

occurrence case executable
ActionOccurrence ActionExecutable

ArcOccurrence in InputArcExecutable

out OutputArcExecutable

in/out InputArcExecutable

OutputArcExecutable

fast in/out InputArcExecutable

test TestArcExecutable

UntestArcExecutable

fast test TestArcExecutable

inhibitor InhibitorExecutable

ClearArcOccurrence ClearArcExecutable

ConditionalOccurrence N/A
CreationOccurrence EarlyConfirmer

LateConfirmer

DownlinkOccurrence N/A
EnumeratorOccurrence N/A
FlexibleArcOccurrence in FlexibleInArcExecutable

out FlexibleOutArcExecutable

fast in/out FlexibleInArcExecutable

Table 3.2: Occurrence classes and associated executable classes

event is sent to listeners of the transition regarding the start and end of the firing. The
FiringStartExecutable may be made an early executable, ultimately.

Note that the classes FlexibleInArcExecutable and FlexibleOutArcExecutable are
not represented in the class diagram. They are not essentially different from the other arc
classes.

Fig. 3.17 summarizes the life cycle of an early executable object. Note that, if the
verify() method fails, it is not required to rollback any actions by the executable that
failed, but that it is still required to unlock the executable just as all the other executables.
All executables whose verification already succeeded must be rolled back, if the binding turns
out to be not executable.

3.11 The Shadow Layer

In order to separate the simulation engine from the graphical user interface, we added an
intermediate data structure that is called a shadow net system. A shadow net system abstracts
from those information of a net drawing that is irrelevant for the simulation engine. It also
allows a uniform interface for the automatic generation of nets that are not supposed to be
graphically displayed.

3.11.1 Shadow Nets

In Fig. 3.19 you can see the classes that are used to represent a Petri net on the shadow
level. No graphical information like size, position, or color is found here, but only topo-
logical information, i.e., information about the relationship of transitions, places, arcs, and
inscriptions.

A shadow net system consists of an arbitrary number of shadow nets. It also keeps track
of a shadow compiler that determines the net formalism used for this shadow net system. At
the moment, it is not possible to use different compilers for different nets.

41

[]

lock

executable

rollback

execute

idle

unlock

locked verify

guard
impossible

done

guard
executable

unlocked

verify

unlock

Figure 3.17: The life cycle of an early executable object

test

doubleHollow

doubleOrdinary

inhibitor

both

ordinary

Figure 3.18: The shadow arc types

A shadow net aggregates a number of shadow net elements, where places and transitions
are the most important. Shadow places and shadow transitions are jointly referred to as
shadow nodes. Shadow nodes have got a name. All shadow nodes are also inscribable, i.e.,
they may be annotated by other shadow net elements. Typically, they are annotated by
ShadowInscription objects.

Inscriptions are not structured further. They are uninterpreted character strings. A
shadow inscription may come in two flavors: normal and special. Almost all textual anno-
tations should be normal inscriptions. Special inscriptions may be used, however, if there
are different annotation types that cannot be distinguished syntactically. E.g., some net
formalisms might use natural numbers for capacities and initial markings alike, so that one
inscription type would have to be declared special.

A shadow declaration node is an inscription to the entire net. It is typically used to
declare local variables, but this may vary. Typically, there should be at most one declaration
node per net.

Shadow arcs are other shadow net elements. They connect places and transitions. They
may be directed from places to transitions or vice versa. They have got a certain arc type:
test, ordinary, both, inhibitor, doubleOrdinary, doubleHollow.

Every arc type may be assigned a different semantical meaning. Although the names given
to the arc types are partially semantic in meaning (e.g. inhibitor), they may be interpreted
in any way by the net formalism that is realized by the ShadowCompiler of the shadow net
system.

Arcs like several other shadow objects possess a trace flag that indicates whether a trace
message should be printed if this object influences a simulation run. If it is inappropriate to
print a trace message, this flag may be ignored.

42

ShadowNetSystem

+ compile(): ShadowLookup
+ elements(): CollectionEnumeration

nets

*

netSystem

ShadowDeclarationNode

+ inscr: String

inscribable

ShadowTransition

«interface»
ShadowCompiler

compiler

ShadowNet

+ context: Object
+ name: String

+ elements(): CollectionEnumeration
+ discard()

ShadowPlace

ShadowNetElement

+ context: Object
+ ID: int

+ getNet(): ShadowNet
+ discard()

ShadowInscribable

+ elements(): CollectionEnumeration

ShadowInscription

+ inscr: String
+ trace: boolean
+ special: boolean

+ discard()

*

elements

net

elements *

ShadowArc

+ shadowArcType: int
+ placeToTransition: boolean
+ trace: boolean

ShadowNode

+ name: String
+ trace: boolean

transition

place

Figure 3.19: The shadow classes

43

«create»

«interface»
ShadowCompiler

compile(ShadowNetSystem): ShadowLookup
getLintNames(): String[]
lint(int, ShadowNetSystem, ShadowNet, ShadowNet)
checkDeclarationNode(String, boolean): String
checkArcInscription(String, boolean, ShadowNet): String
checkTransitionInscription(String, boolean, ShadowNet): String
checkPlaceInscription(String, boolean, ShadowNet): String

JavaNetCompiler

- allowDangerousArcs: boolean
- allowTimeInscriptions: boolean
- wantEarlyTokens: boolean

makeParser(java.lang.String): InscriptionParser

«interface»
InscriptionParser

setDeclarationNode(ParsedDeclarationNode)
setLookup(ShadowLookup)
DeclarationNode(): ParsedDeclarationNode
PlaceInscription(): CollectionEnumeration
ArcInscription(): CollectionEnumeration
TransitionInscription(boolean): CollectionEnumeration
VariableInscription(): TypedExpression
tryParseChannelInscription(): ChannelInscription

JavaNetParser

Figure 3.20: The standard shadow compiler

3.11.2 Net formalisms

A ShadowNetCompiler defines a Petri net formalism. It is responsible for converting a shadow
net system into a collection of nets as defined by the simulation algorithm.

In doing this, it needs to create nets, places, and transitions of the semantical level. This
mapping need not be one to one, but that can be considered the typical case. The IDs of
the shadow net elements can be reused of the IDs of the Place and Transition elements, so
that one can visualize the state of a simulation at the graphical layer.

In doing the transition, it will also be required to parse the textual annotations and to
decorate the places and transitions accordingly.

The standard implementation of the shadow compiler is the JavaNetCompileras indicated
in Fig. 3.20. It delegates most of the parsing work to an instance of JavaNetParser, which
implements the interface InscriptionParser. For own net formalisms it is suggested to start
with JavaNetCompiler and subclass it, essentially only overriding the method that creates
the parser, because most of the handling of the places and transitions will stay the same for
all net formalisms.

Note that the parser is written with JavaCC [3] and that this parser generator does not
support inheritance. That means that you might end up copying large parts of your grammar
from existing grammars. You might also choose a syntactic niche and modify the standard
parser, but make sure that it behaves exactly as before when used with the JavaNetCompiler.
This might, however, hinder the inclusion of your extension into the main development line.

3.12 Simulation

Ultimately, we come to the class that puts together the simulation algorithms that we de-
scribed so far. It is the Simulator, which is responsible for starting and stopping a simulation
run. While running, it has to acquire potentially activated transitions from the SearchQueue,
search for an activate binding using a Searcher and fire the Binding, if one is found. The
main problem that arises at this level is to control the concurrent access to the search queue
and to the simulator while starting and stopping.

Fig. 3.21 gives the basic interface of a simulator class and lists the three currently available
implementations. Every simulator provides methods to set the desired simulation mode, i.e.,

44

«interface»
Simulator

+ statusStopped: int {frozen}
+ statusStepComplete: int {frozen}
+ statusLastComplete: int {frozen}
+ statusCurrentlyDisabled: int {frozen}
+ statusDisabled: int {frozen}

isActive(): boolean
startRun()
stopRun()
terminateRun()
step(): int
refresh()

SequentialSimulator

ParallelSimulator

simulators

1..*

ConcurrentSimulator

Figure 3.21: The simulator implementations

stopped, single step, or running continuously. A refresh request instructs the simulator to
search again for possible binding, even if a prior search failed. This might be required if the
user requested a change of the net state during the search process.

After the firing of a step has been requested, the simulator must report in a status code
whether a step was actually or not. It must also indicate, whether additional steps might be
possible.

status code
Was a
transition fired?

Was a
transition
activated?

Might there be
activated
transitions in
the future?

statusStepComplete yes yes yes
statusLastComplete yes yes no
statusCurrentlyDisabled no no yes
statusDisabled no no no
statusStopped no unknown yes

Table 3.3: The simulator status codes

The ParallelSimulator aggregates a number of other simulators that can then search in
parallel without knowing of each other. It coordinates the search effort and makes sure that
all simulators contribute to a continuous simulation, but only one simulator is requested to
perform a single step operation.

Another version is the SequentialSimulator, which fires one transition occurrence at
a time. This is required for some of the more exotic net formalisms, that are not easily
equipped with a partial order semantics. Although this is the simplest implementation of a
real simulator, it is already non-trivial.

Synchronisation on the simulator object ensure mutual exclusion of the requests to change
the current simulation mode. That means that the only concurrency control has to happen
between one thread that performs a continuous simulation and the thread that wants to

45

change to simulation mode.
The simulation thread is referenced by the field runThread. Whenever a new run request

is issued, a new thread is created. This allows the threads to be garbage collected upon
completion. Reusing one thread would permanently allocate this thread, unless done carefully.

The sequential simulator makes sure to compute another possible binding immediately
after it executed another binding. This ensures that the simulator can return a specific status
code whenever there are no more activated transitions.

The more elaborated simulator class is named ConcurrentSimulator. Here the transi-
tions may be executed concurrently to other transitions and concurrent to a single search
process. In fact, the simulator tries to execute transitions as sequentially as possible. If
an inscription of a transition could possibly require the firing of other transitions in order
to be completed, the simulator will detach the remaining execution of a binding from the
search thread. Transitions that do not involve longish actions, however, will be executed
synchronously.

Because bindings are sometimes executed concurrently, there might always be firing bind-
ings that can still deposit tokens in certain place instances. Hence it is infeasible to determine
that there will be no more activated transitions. Therefore the sequential simulator returns
less specific status codes, always indicating that there might be further activated transitions.

Fig. 3.22 shows the basic structure of the concurrent simulator. The thread that controls
the simulator, typically the GUI, invokes the transitions at the right. They set the desired
mode of operation: termination (-1), stopped (0), single step (1), or continuous run (2).
The desired mode in turn influences the simulation thread. Unless a continuous run was
requested, the controlling thread will wait until the simulation thread reached an idle state
where no more firings are tried.

It is not shown in the Petri net, how the status code is passed between the simulator thread
an the controlling thread. This is done using the field stepStatusCode in the implementation.

The termination of the search process is shown only schematically. The extended time
span that a search requires is indicated by a looping transition that searches and an ultimate
transition that finds a binding or determines a dead transition. In the real implementation,
the termination request is passed to an instance of AbortFinder, which stops the search
process if one is running.

The SearchQueue has been reduced to the single place possibly activated in the
net. A notification algorithm implemented in the methods searchQueueNonempty() and
registerAtSearchQueue() is required for a Java implementation. One inhibitor arc is used
in the net in order to check whether the search queue is empty. The use of an inhibitor arc
already indicates that concurrency must be controlled very carefully here.

In order to prevent deadlocks, the simulator obeys the following locking sequence: syn-
chronize on the simulator object, then synchronize on the search queue, then synchronize on
a dedicated object threadLock.

46

[binding,transition]

[binding,transition]

possibly
activated

old

binding

binding

[null,transition]

guard old>=0

action
 binding.execute()

:startRun()
this:setMode(old,2)

[] mutex

-1

:terminateRun()

guard
 binding!=null

:stopRun() :stoppedRun()
this:isIdle()

this:isIdle()

[]

0

:stepped()

transition

transition

transition

transition

action binding=
 transition.find()

simulation
thread

gui
thread

mode

mode

:isIdle()
this:getMode(mode)

guard mode<=0;

guard mode>0

:setMode(old,mode)
:getMode(mode)

1 0

this:setMode(old,-1)
this:getMode(mode)

transition

transition

idle

mode

this:getMode(-1)

:terminatedRun()
this:isIdle()

action
 transition.search()

:setMode(-1,mode)

this:setMode(
 mode,

 (mode/2)*2)

this:setMode(
 old,0)

this:setMode(
 old,1)

:step()

Figure 3.22: The concurrent simulation algorithm as a Petri net

47

Chapter 4

How to Extend Renew

This chapter provides some hints that you might find useful when extending Renew. Some
obvious extensions that might have to be introduced are sketched.

4.1 Adding a New Arc Type

Renew provides many arc types already, but there are other possible arc types. If you want to
add an arc type, have a look at the DoubleArcConnection class. This is a special variant of
the ArcConnection class. It gives a good impression how a new connector shape is created.

You will have to extend the shadow API at least by adding a new arc type constant in
ShadowArc. Your new figure class must correctly create shadow arcs with the new type.

You must now create a new Renew mode that can interpret your net formalism. Look
at SequentialJavaMode to see how to add new tools in the createAdditionalTools(...)

method. Modify the method getCompiler() to create a new shadow compiler object for
your net formalism.

In the simplest case, this might be subclass of JavaNetCompiler that simply overrides the
method getArcFactory(ShadowArc) by a method that returns an instance of a new subclass
of ArcFactory.

An arc factory is given an already compiled place and a transition of the static net layer.
It is also provided with the type of the place, a flag that indicates whether trace messages
should be generated for this arc, and a TimedExpression. If a time annotation in the
form expr@time is present, the timed expression will report isTimed() as true. The timed
expression can report the expression itself and the time annotation separately, if present.

On the static net layer, arcs are considered special transition inscriptions. The arc factory
has to generate one or more inscriptions and add them to the transition that was passed to
the factory. You might want to modify the class Arc or to create another implementation of
TransitionInscription.

See the following section on details, how to create transition inscriptions. In that course of
events, you might have to extend the functionality of the TokenReserver class and possibly
that of the PlaceInstance class.

4.2 Adding New Transition Inscriptions

Unlike arcs, which were discussed in the previous section, textual annotations do not require
special figures, so that you can start immediately by creating a new mode and a new com-
piler class. The compiler, if derived from the JavaNetCompiler, can override the method
makeInscriptions(...), which takes a single textual inscription and parses it into a col-
lection of semantic inscriptions. Often, this is not even required. Instead, the compiler can

48

«create»

«access»

«create»

«create»

«create»

«interface»
Binder

«interface»
Executable

«interface»
TransitionInscription

makeOccurrences(...): CollectionEnumeration

«interface»
ShadowCompiler

«interface»
InscriptionOccurrence

makeBinders(...): CollectionEnumeration
makeExecutables(...): collections.CollectionEnumeration

CPNTextFigure

MyShadowCompiler

MyTransitionInscription

MyInscriptionOccurrence

MyBinder

MyExecutable

ShadowInscriptionShadowNetElement

«interface»
ShadowHolder

buildShadow(ShadowNet): ShadowNetElement

«create»

Figure 4.1: Handling of textual inscriptions

simply provide a specialized parser implementation via the method makeParser(String).
This parser can then implement the method TransitionInscription(...) accordingly.

The method should return a collection of objects implementing TransitionInscription.
In some cases, a new inscription is merely a shorthand and can be composed of existing
transition inscriptions, but sometimes a specialized implementation has to be generated.

That implementation must be able to build object of the type TransitionOccurrence at
the beginning of the search for a binding. An occurrence may create binder objects, which
can guide the search process by providing binding information. A transition occurrence must
also be able to create Executable objects, if the search for a binding succeeds.

Input arcs and any transition inscription whose actions can be easily undone will typically
require an EarlyExecutable, whereas output arcs and inscriptions with irreversible effects
will typically require a LateExecutable.

Fig. 4.1 summarizes the flow of information through the various classes involved in the
translation and execution of a textual transition inscription. Essentially, you see a chain of
factories that starts from the graphical figures and ends at the executable objects that are
created after the search for a binding succeeded.

4.3 Adding a New Inscription Language

By default, Renew uses an inscription language that is very similar to Java. If it is desired to
use an entirely different inscription language, a new parser must be written, but the existing
arc types and inscriptions types might be sufficient.

49

You will need a new implementation of RenewMode, which you can probably derive from
JavaMode. That implementation can supply a ShadowCompiler of its own, possibly a subclass
of JavaNetCompiler. The compiler is responsible for converting shadow net into semantical
nets.

If you choose to work from JavaNetCompiler, you must override makeParser(String)

and write a parser that can handle your net formalism.
Since the parser need to create transition inscriptions that will typically use Expression

object, if the net formalism handles colored nets, you need to create expressions or at least
implementations of Function that supply all operations needed for your net formalism. The
parser can then build expressions using the supplied function objects and the CallExpression
class.

When your net formalism requires unifiable objects or objects that support pattern match-
ing, which are not directly supported by the classes in de.renew.unify, you need to create
additional implementations of Unifiable. Look at Tuple for the prototypical unifiable ob-
ject. You might want to extend the class TupleIndex to handle also your additional unifiable
objects, so that a fast access to matching tokens in a place becomes possible.

4.4 Adding Graphical Figures and Tools

Section 4.1 already contained information about modifications to the existing graphical fig-
ures. If you need to add entirely different figures, e.g. for illustration purposes, you should
start from AttributeFigure as provided by JHotDraw and add own drawing routines.

You might want to create a specialized creation tool for your figures, which should be
derived from AbstractTool or CreationTool.

Your figure should provide handles to allow direct manipulations.

4.5 Adding Simulation Statistics

The event mechanism of Renew as implemented in the package de.renew.event is quite
suitable to gather statistics about a simulation run. It is possible to use a specialized shadow
compiler that compiles a shadow net system by delegating to a different compiler, but sets
up event handlers for simulation statistics afterwards, when the net is fully compiled.

It is also possible to integrate such support directly in the Place and Transition classes,
but that might be more difficult, although more flexible.

4.6 Adding Import and Export Filters

When importing or exporting Petri net formats, you may either program a standalone con-
verter that would typically exploit the XML file format of Renew, or you can integrate the
converted in Renew, which is preferred.

Graphical imports and exports will typically use the JHotDraw framework to create or
analyse a drawing.

Exports to a non-graphical format can also access the drawings, but they can also convert
the nets into the shadow format, which is somewhat simpler to use, and build the export at
that level.

Imports from a non-graphical format may either create figures directly or create a shadow
net system first and use a ShadowNetSystemRendererafterwards to create the actual drawing.
In both cases, it should be considered to use the automated net layout to make the nets more
readable.

If a certain layout can be inferred from the logical structure of the imported net, then
the import method should exploit that information to create figures with the appropriate
position directly.

50

Chapter 5

Java Bugs

In this chapter we will describe a few Java bugs that we found especially grieving during our
development work. Any hints to alleviate these problems are greatly welcome.

5.1 Graphics object loses draw commands

Under Sun/Solaris we observed the following effect with all JDKs: When many hundreds
of objects are currently selected, the handles are not correctly drawn on the screen. This
is caused by the Graphics object that Java passes to the update(...) method of the
StandardDrawingView. It looks as though not all handles of the selected objects are present.
We have not found any workaround for this problem.

5.2 Packing a frame is not portable

Invoking Frame.pack() leads to unpredictable results under some window managers and
JDK implementations. Sometimes the windows are reduced to zero width and height.

5.3 Window titles are not shown correctly

Under some window managers and JDK implementations the window titles of frames are not
correctly displayed.

This bug was recognized, but closed without fix by Sun.

5.4 Memory leak through event objects

In some cases, event objects are retained by the AWT event queue even after their processing.
This lead to a memory leak.

5.5 Memory leak through windows

In some cases, a closed window is retained by the AWT event queue even after it disposal.
This lead to a memory leak.

5.6 Windows move on the screen

Under some window managers and JDK implementations windows move around the screen
unpredictably during certain operations.

51

5.7 Bad fonts and symbols

Using the Sun JDK, the method Graphics.drawBytes(...) does not select the correct font
unless Graphics.drawString(...) is called before. Graphics.drawString(...) does not
correctly support all font encodings, however.

52

Bibliography

[1] Erich Gamma. JHotDraw, 1998.

Available at http://members.pingnet.ch/gamma/JHD-5.1.zip.

[2] Erich Gamma, Richard Helm, Ralph Johnson, and John Vlissides. Design Patterns.
Addison Wesley, Reading, MA, 1995.

[3] JavaCC - The Java Parser Generator, 2000.

WWW page at http://www.metamata.com/javacc/.

[4] Doug Lea. Overview of the collections Package, Version 0.96b. State University of
New York at Oswego, 1998.

WWW page at http://gee.cs.oswego.edu/dl/classes/collections/.

[5] Rational. Unified Modeling Language Resource Center, 2000.

WWW page at http://www.rational.com/uml/.

53

Appendix A

Glossary

A number of terms are used in this manual to describe the architecture of Renew and its
functionality.

Action Inscription An → inscription of a → transition that may invoke a complex opera-
tion during the → firing of a transition.

Activated Synonymous with → enabled.

Attribute Any of a number of modifiers for figures in the graphics editor. Most attributes
influence the graphical appearance of → figures, but some attributes apply only to the
behaviour of a → net during a → simulation.

Arc An arrow between a → place and a → transition that indicates the movement of a
→ token while the → transition →fires. In so far as the arc can be interpreted as an
effect of the → transition, arcs are quite more similar to inscriptions.

Binder An object that can contribute knowledge about possible bindings of variables during
a search. Typically, a binder checks multiple possibilities.

Binding A binding characterizes a mode of operation for a → transition. Bindings are
typically characterized by associating values to variables. If → synchronous channels
are present, a binding is also characterized by the invoked → transition occurrences.

Bound An object of the → unification algorithm that is complete and does not contain any
→ calculator objects.

Calculator An object of the → unification algorithm that represents a possible future com-
putation. This is used to represent → action inscriptions during the search for an
→ activated binding.

Child A → figure that must be associated to a → parent figure. Changes to a child do not
necessarily affect the → parent.

Compiler A compiler converts a → net drawing into a → net. Note that a compiler does
not, in this context, need to create machine code or virtual machine code, but that an
intermediate representation is sufficient.

Confirmation After the creation of a → net instance, the → net instance is not yet fully
available. Especially, the transitions are not yet entered into the → search queue. Only
the confirmation of a → net instance ensures the full operability.

Drawing A collection of →figures which are stored and edited jointly.

54

Drawing Context A drawing context can influence the way in which a → drawing is dis-
played on the screen. Thus it is possible to display the same drawing in many contexts
at the same time.

Editor An editor is a program that allows the creation and modification of → drawings. An
editor provides → tools and menu commands and provides → views on the drawings.

Enabled A → transition instance is called enabled if it can behave in a way that is allowed
by the →net formalism. Among the many possible behaviours of a → transition, the
enabled behaviours characterized by the means of an enable binding. A single enabled
→ transition may allow multiple enabling → bindings. Only → spontaneous transitions
are said to be enabled.

Event Typically a change of the state of an object that must be propagated to all → listeners.
Also those special objects that are used as arguments during a notification method call.

Event Listener An object that wants to be informed about certain → events. The listener
will typically register itself at the → event producer.

Event Producer An object that can send an → event to a → listener.

Executable An object that encapsulates one effect of a firing transition, e.g., moving a
token or executing some code.

Expression A formula that can compute values using the assignment of variables. An
expression can also have side effects.

Factory An object that is responsible for the creation of other objects. See the factory
pattern in [2].

Figure A graphical object within a → drawing that is characterized by its shape and → attri-
butes. A figure may possess an → ID.

Fire An → enabled → transition instance is said to fire if the behaviour designated by a
→binding is enacted. The firing typically results in the movement of → tokens and
sometimes in other changes.

Guard A → transition → inscription that computes a boolean condition that may inhibit
the transition’s → firing.

Handle A tiny icon that is associated to a →figure. Handles are only displayed if the current
→ selection is non-empty. Clicking and possibly dragging a handle modifies the figure
in a way that depends on the type of handle.

ID An ID, i.e. an identifier, is a value that is associated to an object during its life time.
IDs should be unique within a certain domain, but not necessarily globally unique. In
fact, if one object is created from a source object, that object may inherit the source’s
ID. IDs of → figures are natural numbers. Other objects may have more complex IDs.

Inscription A textual annotation of a → net or a net element.

Instance Each semantics object, e.g. a net or a place, may be instantiated in the same
manner that classes are instantiated giving objects. Instances of semantic objects are
mutable. Their identity may or may not be externally visible.

Listener See → event listener.

Lock A lock ensures reentrant mutual exclusion. Reentrant means that one Java thread may
access the critical section during recursion.

55

Marking A marking of a place instance or a net instance associates a single place or all
places of a net with a →multiset of → tokens.

Mode A mode controls the operation of Renew. It specifies the → net formalism used. It
may also provide additional → tools and menu entries for editing a → net.

Multiset Unlike a set, a multiset may contain a single element more than once. A multiset
is typically represented by an assignment of the number of occurrences to each element.

Net A template for the creation of → net instances. A net conforms to the semantics of a
→net formalism. It is immutable and does not have a state. A net is typically derived
from a → net drawing, but it is possible to generate nets non-graphically.

Net Drawing A → drawing that represent a → net. The associated → net may depend on
the →mode.

Net Formalism A net formalism describes the constructs allowed within a → net and their
semantics. A net formalism is realized by a → compiler and supported by a →mode in
Renew.

Net Instance A net instance consists of a → net together with a marking and an identity.
There may be many instances of a single → net. Depending on the → net formalism,
there may be additional → net elements besides → places, → transitions, and → arcs.

Net Stub A special → stub that converts Java method calls to itself to synchronous channel
invocations of a → net instance.

Occurrence An → instance that is about to become active. An instance may become active
multiple times during one step of the simulator, hence more than one occurrence of an
→ instance may be contained in a →binding.

Occurrence Check A part of the unification algorithm that makes sure that no object is
part of itself. This has no relation whatsoever with the term occurrence at the level of
nets.

Place A place provides the ability to associate state information with a net. When a dis-
tinction is not necessary, → place instances are referred to as places.

Place Instance An instance of a → place in a →net instance. At each point of time there
is a →marking associated to a place instance.

Parent A figure that may contain → child figures. Moving or discarding a parent moves or
discards all → children in the same way.

Search Queue The search queue keeps track of all possibly enabled → transition instances.

Searcher An object that controls the search for an activated → binding of a → transition.

Selection In an → editor there may be a set of selected → figures. Typically, these figures
were previously accessed by a → tool. Menu commands typically operate on the selected
→figures. For a selected → figure, its →handles are displayed.

Shadow The shadow layer separates the GUI from the execution layer. Shadow nets repre-
sent the net drawings, but they abstract from all information that does not influence
the simulation, like position, size, or color of the net elements.

Simulation The act of putting the intended behaviour of a system of → nets into practice.
This is synonymous with execution, which would be the common idiom outside the
Petri net world.

56

Simulator A simulator is responsible for controlling a → simulation. Technically, the simula-
tor uses a → searcher to search for activated → bindings and executes them afterwards.

Spontaneous A transition is said to be spontaneous, if it does not contain an → uplink.

Synchronous Channel A synchronous channel connects two two active entities and forces
them to operate jointly, e.g. two transitions would have to → fire at the same time.
Synchronous channels come in two flavors: → uplinks and → downlinks.

Strategy An object that is responsible for the execution of some algorithm. Typically, a
strategy is immutable. See the strategy pattern in [2].

Stub An object that forwards all incoming calls in a appropriate way to another object.

Token An elementary object that is associated to a → place or → place instance by a
→marking.

Tool An editing procedure for → drawings that typically requires multiple interactions on
the side of the user. The currently active tool determines the reaction of the → editor
to clicks within a → drawing.

Transaction A transaction groups a number of actions into an atomic block. A → binding
should execute its effects in a transaction.

Transition A transition provides the ability to associate possible behaviour with a → net.
When a distinction is not necessary, → transition instances are referred to as transitions.

Transition Instance An instance of a → transition in a →net instance. Transition in-
stances may be → enabled by a → binding.

Transition Occurrence One activation of a → transition instance. A single → transition
instance may give rise to multiple concurrent transitions occurrences in the same or in
different → bindings.

Tuple A tuple is a → unifiable object the aggregates a number of other objects.

Unifiable Object An object that is handled by the unification algorithm. All unifiable
objects are subject to the → occurrence check.

Unknown A tuple is a → unifiable object about which absolutely nothing is known except
for its identity. Further unifications may make an unknown complete or even bound.

Uplink An uplink constitutes one end of a synchronous channel. A → transition instance
with an uplink cannot → fire on its own, but must wait until the uplink is invoked by
a different transition.

Uplink Provider An object that owns one or more → uplinks that can be accessed via a
→ synchronous channel.

View A view displays a → drawing or a part thereof. One → drawing may possibly be shown
in multiple views, perhaps using different → drawing contexts.

57

