Probabilistic Approximations of Bio-Pathways Dynamics

P.S. Thiagarajan

School of Computing, National University of Singapore

Joint Work with: Liu Bing, David Hsu

Granularities

Several levels of complexity in biological systems

- Our research focuses on the:
 - Intra- Cellular level
 - Bio-pathways

.

A Common Modeling Approach

- Bio-pathway: A network of bio-chemical reactions
- A system (network) of ODEs
 - One for each molecular species
 - Mass action, Michelis-Menten, Hill, etc.
- Study the ODE system to understand the dynamics of the bio-chemical network

10

Our work: The main features

- ODE systems to describe the dynamics of the bio-chemical networks
- Decompose → Compute → Compose (ISMB'06, WABI'07)
- Probabilistic models and methods to:
 - update models (RECOMB'10)
 - □ *approximate the ODE dynamics*(CMSB'09, TCS'11).

An Example

$$S + E \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} ES \xrightarrow{k_2} E + P$$

$$\frac{d[S]}{dt} = -k_1[S][E] + k_{-1}[ES]$$

$$\frac{d[ES]}{dt} = k_1[S][E] - (k_{-1} + k_2)[ES]$$

$$\frac{d[E]}{dt} = -k_1[S][E] + (k_{-1} + k_2[ES])$$

$$\frac{d[P]}{dt} = k_2[ES]$$

Many Hurdles

- Many rate constants not known
 - must be estimated
 - noisy data; limited precision; population-based
- High dimensional system
 - closed-form solutions are impossible
 - Must resort to numerical simulations
 - A set (Interval of values) of initial states must be dealt with;
 - a large number of numerical simulations needed for answering each question

The "Opinion Poll" Idea

- Discretize the time and value domains.
- Assume a (uniform) distribution of initial states
- Generate a "sufficiently" large number of "typical" trajectories by
 - sampling the initial state and numerical simulations.
- Synthesize form this collection of trajectories a dynamic Bayesian network.
 - \square ODEs \rightarrow DBN

The "opinion poll" Idea

- Pay the one-time cost of constructing the Bayesian network.
- Amortize this cost by performing multiple analysis tasks using the Bayesian network representation.
 - Using inferencing algorithms for DBNs.

The Technique

$$\frac{dx}{dt} = 3t^2 + 4$$

• We want to study x(t) the "solution" to the above equation. $[x(t) = t^3 + 4t + x(0)]$

м

The Technique

 Observe the system only at discrete time points; in fact, only at finitely many time points

M

The Technique

Observe only with bounded precision

.

The Technique

A trajectory now is sequence of discrete values

Main Idea

- With a prior distribution of the initial states
- Many sequences of discrete values!

1

- In fact, a Markov chain.
- Pr((D, 2) → (E, 3)) is the "fraction" of the trajectories residing in D at t = 2 that land in E at t = 3.

10

- The value space of the variables is assumed to be a compact subset C of \mathbb{R}^n
- In Z' = F(Z), F is assumed to be differentiable everywhere in C.
 - □ Mass-law, Michaelis-Menton,...
- Then the solution (flow) Φ_t : $C \to C$ (for each t) exists, is unique, is a bijection, is continuous and hence *measurable.*

(s, i) – States;
(s, i)
$$\rightarrow$$
 (s', i+1) -- Transitions

Sample, say, 1000 times the initial states.

Through numerical simulation, generate 1000 trajectories.

Pr(s, i) is the fraction of the 1000 trajectories that are in the discrete state s at t_i.

 $Pr((s, i) \rightarrow (s' i+1))$ is the fraction of the trajectories that are in s at t_i which land in s' at t_{i+1} .

м

- But the *Markov chain* will be huge.
 - \Box O(T . kⁿ)
 - 50 variables (n), each with two (k) intervals, T time points
 - \Box T × 2⁵⁰ states!

M

- Exploit the network structure (additional independence assumptions) to construct a dynamic Bayesian network instead.
 - Sampling + numerical + simulations + counting
- The DBN is a factored form of a Markov chain.

$$S + E \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} ES \xrightarrow{k_2} E + P$$

$$\frac{d[S]}{dt} = -k_1[S][E] + k_{-1}[ES]$$

$$\frac{d[ES]}{dt} = k_1[S][E] - (k_{-1} + k_2)[ES]$$

$$\frac{d[E]}{dt} = -k_1[S][E] + (k_{-1} + k_2[ES])$$

$$\frac{d[P]}{dt} = k_2[ES]$$

$$P(S^1=0 | S^0=0, E^0=0, ES^0=0)=0.2$$

 $P(S^1=0 | S^0=1, E^0=0, ES^0=0)=0.4$
.....

The Technique

$$S + E \underset{k_{-1}}{\overset{k_1}{\rightleftharpoons}} ES \xrightarrow{k_2} E + P$$

Fill up the entries in the CPTs by sampling, simulations and counting as before.

 $O(T.n.k^d)$

$$P(S^1=0 | S^0=0, E^0=0, ES^0=0)=0.2$$

 $P(S^1=0 | S^0=1, E^0=0, ES^0=0)=0.4$
.....

.

Method

- Model analysis -> Bayesian inference
- Approximate inference algorithm (Factored Frontier algorithm) (Murphy &Weiss)
- O(T . n . k^d)

$$Pr(x^{i+1}) = \sum_{x^i,y^i} Pr(x^{i+1}|x^i,y^i) Pr(x^i) Pr(y^i)$$

Two Synthetic Models

- PC12 cells
- The EGF-NGF signaling pathway
- Distinct signals dictate different cellular outcomes by activating the same signaling cascade

Kholodenko 2007

EGF-NGF Pathway

- ODE model (*Brown et al. 2004*)
 - □ 32 species
 - 48 parameters
 - Features:
 - Good size
 - Feedback loops
- DBN construction
 - Settings
 - 5 intervals
 - 1 min time-step, 100 minutes
 - 3 x 10⁶ samples
 - Runtime
 - 4 hours on a cluster of 10 PCs

Global Sensitivity Analysis

Running time

□ ODE based: 22 hours

□ DBN based: 34 minutes

Segmentation Clock Network

- A nice example of biological rhythms
- Governs the periodic formation process of somites during embryogenesis
- The underlying signaling network couples three oscillating pathways consisting of the FGF, Wnt and Notch signaling pathways

Results

LM: Levenberg–Marquardt

GA: Genetic Algorithm

SRES: Evolutionary Strategy

PSO: Particle Swarm Optimization

BDM: our method

- Global sensitivity analysis
 - □ ODE based: 81 hours
 - □ DBN based: 3 hours

Complement System

Complement system is a critical part of the immune system

Ricklin et al. 2007

Complement System

- Adequate complement activation is necessary
- Excessive complement activation is harmful
- Dysregulation of the balance between activation and inhibition can lead to many diseases

Motivation

- Quantitatively understand the regulatory mechanisms of complement system
 - How is the complement activity enhanced under inflammation condition?
 - □ How is the excessive response of the complement avoided?
- The model:
 - Classical pathway + the lectin pathway
 - enhancement
 - Inhibitory mechanisms
 - C4BP

Complement System

- ODE Model
 - □ 42 Species
 - □ 45 Reactions
 - Mass law
 - Michaelis-Menten kinetics
 - □ 92 Parameters (71 unknown!)
- DBN Construction
 - Settings
 - 6 intervals
 - 100s time-step, 12600s
 - 1.2 x 10⁶ samples
 - Runtime
 - 12 hours on a cluster of 20 PC

Parameter estimation

- Training data
 - □ 4 proteins, 7 time points, 4 conditions

Model Calibration

Model validation

 Validated the model using previous published data (Zhang et al 2009)

Enhancement mechanism

 The antimicrobial response is sensitive to the pH and calcium level

Model prediction: The regulatory effect of C4BP

- C4BP maintains classical complement activation but delays the maximal response time.
- But attenuates the lectin pathway activation.

M

The regulatory mechanism of C4BP

 The major inhibitory role of C4BP is to facilitate the decay of C3 convertase

Results

- Both predictions concerning C4BP were experimentally verified.
- "A Computational and Experimental Study of the Regulatory Mechanisms of the Complement System"
 - □ Bing Liu, Jing Zhang, Pei Yi Tan, David Hsu, Anna M. Blom, Benjamin Leong, Sunil Sethi, Bow Ho, Jeak Ling Ding, P.S. Thiagarajan

PLoS Computational Biology Vol. 7, Issue.1 (2011)

M

Conclusion

- The DBN approximation technique is useful and realistic.
- (Approximate) probabilistic verification methods
- Implementation on a GPU platform.
- Error analysis.
- A general abstraction scheme?
 - □ When is it effective?

Current Collaborators

Ding Jeak Ling

Complement pathway

DNA damage pathways modelling

DNA damage pathway

Shazib Pervaiz

Apoptosis-Autophage- pathway

Our group:

S. Akshay

Liu Bing

Abhinav Dubey

Blaise Genest

Benjamin Gyori

David Hsu

Suchee Palaniappan

P.S. Thiagarajan

Wang Junjie

Gireedhar Venkatachalam