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Von LTL zu NBA Der Beweis

Die Idee

Wie war noch gleich der Plan?!

Sei M ein LTS und φ eine LTL Formel.

Zu ¬φ (der Negation der Spezifikation!) konstruieren wir
einen (Büchi-)Automaten A¬φ.

A¬φ akzeptiert genau die Wörter w mit w |= ¬φ.

Bilde den “Produktautomaten” M ∩ A¬φ.

Prüfe, ob die akzeptierte Sprache von M ∩ A¬φ leer ist.
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Von LTL zu NBA Der Beweis

Das Vorgehen (Wiederholung)

1 Büchi-Automaten (und drumherum) (erledigt)

2 Eine alternative (aber äquivalente) Semantik für LTL

3 Damit dann die Konstruktion für A¬φ
4 Den “Produktautomaten” (erledigt, aber ...)

5 Den Leerheitstest (erledigt)
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Von LTL zu NBA Der Beweis

LTL - alternative Definition

Sei P = {p1, p2, . . .} eine Menge von atomaren Formeln. Sei

φ ::= p | ¬φ | (φ ∨ φ) | Xφ | φUφ

und als Abkürzungen:

φRψ := ¬(¬φU¬ψ)

Fφ := >Uφ

Gφ := ¬F¬φ

Dabei wird φRψ erfüllt, wenn entweder ψ immer gilt oder ψ bis zu
einem Moment gilt, in dem sowohl φ als auch ψ gelten.
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Von LTL zu NBA Der Beweis

LTL - alternativ

Definition (LTL - alternativ)

Sei w = a0a1 . . . ∈ (2P)ω. Die Semantik ist induktiv für alle i ∈ N
definiert durch:

w , i |= p gdw. p ∈ ai
w , i |= ¬φ gdw. w , i 6|= φ
w , i |= φ1 ∨ φ2 gdw. w , i |= φ1 oder w , i |= φ2
w , i |= Xφ gdw. w , i + 1 |= φ
w , i |= φ1Uφ2 gdw. ein k ≥ i existiert mit w , k |= φ2 und

für alle j mit i ≤ j < k gilt w , j |= φ1

Ein Wort entspricht dabei den Labels jener Zustand, die bei einem
Lauf durch ein LTS besucht werden.
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Von LTL zu NBA Der Beweis

LTL - alternativ

Definition

Sei Σ = (2P), v ∈ Σω und φ eine LTL-Formel. Es ist v |= φ, falls
v , 0 |= φ und L(φ) = {u | u |= φ}. Zwei Formeln φ und ψ sind
äquivalent, φ ≡ ψ, falls L(φ) = L(ψ) gilt.

Ist z.B. P = {C ,D}, dann ist Σ = {∅, {C}, {D}, {C ,D}}. Will
man nun an ein bestimmtes a ∈ Σ herankommen, so kann man
charakteristische Formeln χa verwenden:

χa := (
∧
p∈a

p) ∧ (
∧
p 6∈a
¬p)

Will man z.B. eine Formel für die Sprache, die nur aus dem Wort
({C}{D})ω besteht, so geht dies mit:

χC ∧ G ((χC ⇒ XχD) ∧ (χD ⇒ XχC ))
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Von LTL zu NBA Der Beweis

Normalform

Definition (Positive Normalform)

Eine LTL-Formel ist in positiver Normalform, wenn sie nur aus
Literalen p,¬p (für ein p ∈ P) und den Operatoren ∨,∧,X ,U und
R aufgebaut ist.

Satz

Zu jeder LTL-Formel φ gibt es eine äquivalente LTL-Formel φ′ in
positiver Normalform. Ferner ist |φ′| ≤ 2 · |φ|.

Beweis.

Zum Beweis betrachtet man jeden Operator in negierter und
nicht-negierter Form und zeigt, dass man ihn wie angegeben
ausdrücken kann. Z.B. ist
Gp ≡ ¬F¬p ≡ ¬(>U¬p) ≡ ¬(¬⊥U¬p) ≡ ⊥Rp und
¬(pRq) ≡ ¬¬(¬pU¬q) ≡ (¬pU¬q).
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Von LTL zu NBA Der Beweis

Abwicklung von U und R

Satz

Es gilt pUq ≡ q ∨ (p ∧ X (pUq)).

Beweis.

Sei w , i |= pUq. Dann gibt es ein k ≥ i mit w , k |= q und w , j |= p
für alle j mit i ≤ j < k . Zwei Fälle:

1 k = i . Dann gilt w , i |= q.

2 k > i . Dann ist w , i |= p und w , i + 1 |= pUq (Warum?) und
daher w , i |= X (pUq).

Damit gilt w , i |= q ∨ (p ∧ X (pUq)).
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Von LTL zu NBA Der Beweis

Abwicklung von U und R

Die Rückrichtung zeigt man analog. Ebenso wie die Abwicklung
von R:

Satz

Es gilt pRq ≡ q ∧ (p ∨ X (pRq)).

Beweis.

Zur Übung...
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Von LTL zu NBA Der Beweis

Von LTL zum NBA - Die Idee

Wir konstruieren nun einen NBA, der genau die Menge aller
Modelle für eine LTL Formel φ erkennt.

Die Idee ist als Zustände Hintikka-Mengen zu benutzen. Diese
enthalten gerade die (Unter-)Formeln, die an einer
bestimmten Stelle im Modell gelten müssen.

Diese werden in jedem Schritt nichtdeterministisch geraten.

Durch die Konsistenz der Hintikka-Mengen wird
ausgeschlossen, dass etwas geraten wird, was bereits der
Aussagenlogik widerspricht.

U und R Formeln werden entsprechend ihrer Abwicklung
behandelt.

Dass U nicht unendlich lange abgewickelt wird, wird durch die
Akzeptanzbedingung sichergestellt.

Der X Operator wird durch die Übergänge behandelt.
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Von LTL zu NBA Der Beweis

Von LTL zum NBA - Vorarbeiten

Definition (Fischer-Ladner-Abschluss)

Sei φ eine LTL-Formel in positiver Normalform. Der
Fischer-Ladner-Abschluss von φ ist die kleinste Menge FL(φ), die φ
enthält und für die folgendes gilt:

1 p ∨ q ∈ FL(φ)⇒ {p, q} ⊆ FL(φ)

2 p ∧ q ∈ FL(φ)⇒ {p, q} ⊆ FL(φ)

3 Xp ∈ FL(φ)⇒ p ∈ FL(φ)

4 pUq ∈ FL(φ)⇒ {p, q, q∨(p∧X (pUq)), p∧X (pUq),X (pUq)}
5 pRq ∈ FL(φ)⇒ {p, q, q∧ (p∨X (pRq)), p∨X (pRq),X (pRq)}
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Von LTL zu NBA Der Beweis

Von LTL zum NBA - Vorarbeiten

Definition (Hintikka-Mengen)

Sei φ eine LTL-Formel in positiver Normalform. Eine
Hintikka-Menge für φ ist eine Menge M ⊆ FL(φ) mit

1 p ∨ q ∈ M ⇒ p ∈ M oder q ∈ M

2 p ∧ q ∈ M ⇒ p ∈ M und q ∈ M

3 pUq ∈ M ⇒ q ∈ M oder (p ∈ M und X (pUq) ∈ M)

4 pRq ∈ M ⇒ q ∈ M und (p ∈ M oder X (pRq) ∈ M)
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Von LTL zu NBA Der Beweis

Von LTL zum NBA - Vorarbeiten

Definition (Hintikka-Mengen (Teil 2))

Eine Hintikka-Menge M heißt konsistent, falls es kein p ∈ P
mit {p,¬p} ⊆ M gibt.

Mit H(φ) wird die Menge aller konsistenten Hintikka-Mengen
bezeichnet.

Mit P+(M) wird die Menge aller atomaren Formeln
bezeichnet, die als positives Literal in M auftreten (oder kurz:
alle positiven Literale in M), also P+(M) = M ∩ P.

Mit P−(M) wird die Menge aller atomaren Formeln
bezeichnet, die als negatives Literal in M auftreten, also
P−(M) = {p ∈ P | ¬p ∈ M}.
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Von LTL zu NBA Der Beweis

Von LTL zum NBA - Der Satz

Satz

Zu jeder LTL-Formel θ in positiver Normalform kann ein NBA Aθ
konstruiert werden mit L(Aθ) = L(θ). Ferner ist |Aθ| ≤ 24|θ|.

Korollar

Zu jeder LTL-Formel θ kann ein NBA Aθ konstruiert werden mit
L(Aθ) = L(θ). Ferner ist |Aθ| ≤ 2O(|θ|).

Nebenbemerkung

Im Satz oben steht im Exponenten 4|θ|. Im Buch ist dort der Faktor
2. Ich meine, 2 kann man widerlegen, mit 4 klappt es und ich glaube
man kann sogar 2, 5 · |θ| − 1, 5 zeigen (aber nicht weniger). Nach-
folgend ist das nicht ganz so wichtig. Es genügt sich die Grenze aus
dem Korrollar zu merken, also |Aθ| ≤ 2O(|θ|).
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Von LTL zu NBA Der Beweis

Von LTL zum NBA - Die Konstruktion

Seien p1Uq1, p2Uq2, . . . , pkUqk alle in FL(θ) vorkommenden
U-Formeln. Wir definieren

A := (H(θ),Σ, δ,Zstart ,Z
1
end , . . . ,Z

k
end)

wobei:

Zstart := {M | θ ∈ M}
Z i
end := {M | piUqi ∈ M ⇒ qi ∈ M}

Ferner ist
δ(M, a) := {M ′ | ∀Xq ∈ M : q ∈ M ′}

im Fall P+(M) ⊆ a und P−(M) ∩ a = ∅ und sonst

δ(M, a) := ∅.
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Von LTL zu NBA Der Beweis

Von LTL zum NBA - Die Konstruktion

Hinweise

1 Das Alphabet ist Σ = 2P , wobei P die Menge der atomaren
Formeln ist.

2 Im Spezialfall, dass in θ gar keine U-Formeln auftreten, gibt es
nur eine Endzustandsmenge

Zend := H(θ)

(alle Zustände sind also Endzustände).

3 Ist δ(M, a) := ∅, so bedeutet dies, dass der Zustand M keine
a-Kante hat (es bedeutet nicht, dass der Zustand ∅ der
Nachfolgezustand ist).
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Von LTL zu NBA Der Beweis

Von LTL zum NBA - Korrektheit

Satz

Zu jeder LTL-Formel θ in positiver Normalform kann ein NBA Aθ
konstruiert werden mit L(Aθ) = L(θ). Ferner ist |Aθ| ≤ 24·|θ|.

Beweis.

Zu zeigen ist L(Aθ) ⊆ L(θ), L(Aθ) ⊇ L(θ) und die Schranke.

Für die Schranke kann man mittels Induktion

|FL(θ)| ≤ 4|θ|

zeigen (wobei wir für |θ| die Atome und Junktoren zählen und
beachten, dass z.B. |FL(φUψ)| = |FL(φ)|+ |FL(ψ)|+ 4 gilt).
Damit gilt dann |H(θ)| ≤ 24|θ| (maximale Anzahl der Teilmengen
von FL(θ)).

Seien nachfolgend φ1Uψ1, . . . , φkUψk alle U-Formeln in FL(θ).
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Von LTL zum NBA - Korrektheit

Satz
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Von LTL zu NBA Der Beweis

Beweis.

Sei w ∈ L(θ) (wir wollen w ∈ L(Aθ) zeigen). Sei

Mi := {ψ ∈ FL(θ) | w , i |= ψ} für jedes i ∈ N

Wir bemerken:
1 Mi ∈ H(θ) (die Menge der Formeln muss eine Hintikka-Menge

bilden)

Die Sequenz der Mi ist eine Folge von Zuständen in Aθ

2 θ ∈ M0 (wegen w ∈ L(θ))

Sequenz beginnt in einem Startzustand

3 Ist Xψ ∈ Mi , dann gilt ψ ∈ Mi+1

4 Ist der i-te Buchstabe von w ein a, so ist Mi ∩ P = a

Sequenz ist eine korrekte, unendliche(!) Rechnung

5 Ist φjUψj ∈ Mi , dann gibt es ein i ′ ≥ i mit ψj ∈ Mi ′

Rechnung ist akzeptierend (gibt es keine U-Formeln genügt
bereits obiges)
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Von LTL zu NBA Der Beweis

Beweis.

Sei nun w ∈ L(Aθ) (w ∈ L(θ) ist zu zeigen). Es gibt einen
akzeptierenden Lauf M0,M1, . . . von Aθ auf w = w0w1 . . .. Wir
zeigen

Wenn ψ ∈ Mi , dann w , i |= ψ

für alle i ∈ N und alle ψ ∈ FL(φ) mittels Induktion über den
Formelaufbau.

Induktionsanfang: Ist ψ = p ∈ P, dann ist p ∈ Mi und der
Übergang in Aθ von Mi nach Mi+1 geht nur, wenn p ∈ wi ist und
damit gilt w , i |= p. Analog zeigt man für ψ = ¬p, dass p 6∈ wi

sein muss und damit w , i |= ¬p.
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Von LTL zu NBA Der Beweis

Wenn ψ ∈ Mi , dann w , i |= ψ

Beweis.

Induktionsschritt. Für ψ = φ1 ∧ φ2 folgt dies schnell aus φ1 ∈ Mi

und φ2 ∈ Mi (wegen ψ ∈ Mi und da Mi eine Hintikka-Menge ist)
und dann aus der Induktionsannahme und der Definition von |=.
(Analog für ∨.)

Für ψ = Xφ folgt dies, da mit ψ ∈ Mi dann nach Konstruktion des
Automaten (insb. der Übergangsrelation δ) dann φ ∈ Mi+1 ist.
Aufgrund der Induktionsannahme wissen wir dann w , i + 1 |= φ
und damit w , i |= ψ (nach Definition von |=).
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Von LTL zu NBA Der Beweis

Wenn ψ ∈ Mi , dann w , i |= ψ

Beweis.

Der spannende Fall φjUψj ∈ Mi . Zwei Fälle:

ψj ∈ Mi . Dann sind wir mit der Induktionsannahme (und der
Definition von |=) sofort fertig.

φj ∈ Mi und X (φjUψj) ∈ Mi . Dann ist nach der Definition
von δ φjUψj ∈ Mi+1, was man iterieren kann, woraus
w , i ′ |= φj (mit Induktionsannahme) und φjUψj ∈ M ′i für
i ′ = i , i + 1, i + 2, . . . folgt.
Es muss nun ein k > i mit ψj ∈ Mk geben (sonst wird kein
Endzustand besucht). Mit der Induktionsannahme folgt
w , k |= ψj und (wegen obigem) w , h |= φj für i ≤ h < k.
Daraus folgt (Definition von |=) w , i |= φjUψj .

Der Fall für R geht analog (⇒ Übung!) und wir sind fertig!
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Frank Heitmann heitmann@informatik.uni-hamburg.de 21/30



Von LTL zu NBA Der Beweis

Wenn ψ ∈ Mi , dann w , i |= ψ

Beweis.

Der spannende Fall φjUψj ∈ Mi . Zwei Fälle:

ψj ∈ Mi . Dann sind wir mit der Induktionsannahme (und der
Definition von |=) sofort fertig.

φj ∈ Mi und X (φjUψj) ∈ Mi . Dann ist nach der Definition
von δ φjUψj ∈ Mi+1, was man iterieren kann, woraus
w , i ′ |= φj (mit Induktionsannahme) und φjUψj ∈ M ′i für
i ′ = i , i + 1, i + 2, . . . folgt.
Es muss nun ein k > i mit ψj ∈ Mk geben (sonst wird kein
Endzustand besucht). Mit der Induktionsannahme folgt
w , k |= ψj und (wegen obigem) w , h |= φj für i ≤ h < k.
Daraus folgt (Definition von |=) w , i |= φjUψj .

Der Fall für R geht analog (⇒ Übung!) und wir sind fertig!
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Von LTL zu NBA Der Beweis

Von LTL zum NBA - Korrektheit

Hinweis

Die Konstruktion und der Beweis klappt auch ohne U-Formeln.
Man muss sich dann bewusst machen, dass es nur eine
Endzustandsmenge gibt (und diese aus genau allen Zuständen
besteht) und dass dann also jede unendliche Rechnung akzeptiert
wird. Der Automat ist aber so konstruiert, dass er bei Rechnungen,
die nicht akzeptiert werden sollen, dann blockiert, weil es keinen
Übergang gibt. (Siehe auch im Beweis die erste Richtung und da
die ersten vier Beobachtungen; die fünfte trifft dann ja nicht zu!)
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Von LTL zu NBA Der Beweis

Der Schluss...

Wir nähern uns dem Ende. Das System wird eher mit einem
Transitionssystem modelliert (oder mit einem Formalismus, der in
dieses übersetzt wird). Daher brauchen wir dafür einen
“Produktautomaten”. Zur Wiederholung ...
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Von LTL zu NBA Der Beweis

Transitionssysteme (Wiederholung)

Definition (Transitionssystem)

Ein labelled transition system (LTS) ist ein Tupel
TS = (S , s0,R, L)mit

einer endlichen Menge von Zuständen S ,

einem Startzustand s0 ∈ S ,

einer links-totalen Übergangsrelation R ⊆ S × S und

einer labelling function L : S → 2P , die jedem Zustand s die
Menge der atomaren Formeln L(s) ⊆ P zuweist, die in s
gelten.
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Transitionssysteme (Wiederholung)

Definition (Pfad im LTS)

Ein Pfad π in einem LTS TS = (S , s0,R, L) ist eine
unendliche Sequenz von Zuständen

π = s1s2s3 . . .

derart, dass (si , si+1) ∈ R für alle i ≥ 1.

Ein Lauf in TS ist ein unendliches Wort a0a1 . . . ∈ (2P)ω, so
dass ein Pfad s0s1 . . . existiert mit ai = L(si ) für alle i . Mit
L(TS) wird die Menge der Läufe von TS bezeichnet.
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Ein weiterer Produktautomat

Definition

Sei TS = (S , s0,R, L) ein LTS über P und A = (Z , 2P , δ, z0,Zend)
ein NBA. Wir definieren deren Produkt als NBA
C := (S × Z , {•},∆, (s0, z0),S × Zend), wobei

∆((s, z), •) = {(s ′, z ′) | (s, s ′) ∈ R ∧ z ′ ∈ δ(z , L(s))}

Satz

Ist TS ein LTS, A ein NBA und C der aus obiger Definition
hervorgegangener NBA. Es gilt L(C ) = ∅ gdw. L(TS) ∩ L(A) = ∅.

Beweis.

Zur Übung...
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Finale!

Satz

Das Model-Checking-Problem mit LTS TS und LTL-Formel φ lässt
sich in Zeit |TS | · 2O(|φ|) entscheiden.

Beweis.

1 Betrachte ¬φ und konstruiere NBA A¬φ mit

L(A¬φ) = L(¬φ) = L(Aφ). Es ist |A¬φ| = 2O(|φ|).

2 Bilde das Produkt C aus LTS TS und A¬φ. Nach obigem ist
|C | = |TS | · 2O(|φ|).

3 Nun ist nach dem vorherigen Satz L(C ) = ∅
gdw. L(TS) ∩ L(A) = ∅ und wir können das Leerheitsproblem
in linearer Zeit, d.h. hier in O(|TS | · 2O(|φ|)) lösen.
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Frank Heitmann heitmann@informatik.uni-hamburg.de 27/30



Von LTL zu NBA Der Beweis

Finale!

Satz

Das Model-Checking-Problem mit LTS TS und LTL-Formel φ lässt
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Zur Lektüre

Literaturhinweis

Der Inhalt der letzte beiden Vorlesungen ist aus Automatentheorie
und Logik von Martin Hofmann und Martin Lange. Erschienen im
Springer-Verlag, 2011.
Dort

Kapitel 5 (komplett) für Büchi-Automaten

Satz 9.4 und Korollar 9.5 aus Kapitel 9 zum Leerheitsproblem

Kapitel 11 (ohne 11.3) für LTL, die Konvertierung zu NBAs
und letztendlich für das Model-Checking-Problem für LTL.
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Zusammenfassung

Aussagenlogik

Syntax & Semantik
Normalform
Resolution
Natürliche Deduktion

Prädikatenlogik

Syntax & Semantik
Normalform
Resolution

LTL, CTL und CTL∗

Syntax & Semantik
Das Model Checking Problem
Automatenbasiertes LTL Model Checking
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Ende ...

Ende
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