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Von LTL zu NBA Der Beweis

Die Idee
Wie war noch gleich der Plan?!
Sei M ein LTS und ¢ eine LTL Formel.
@ Zu —¢ (der Negation der Spezifikation!) konstruieren wir

einen (Biichi-)Automaten A_.

A_4 akzeptiert genau die Worter w mit w |= —¢.
Bilde den “Produktautomaten™ M N A_,.
Priife, ob die akzeptierte Sprache von M M A_y leer ist.
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Von LTL zu NBA Der Beweis

Das Vorgehen (Wiederholung)

@ Biichi-Automaten (und drumherum) (erledigt)

@ Eine alternative (aber dquivalente) Semantik fiir LTL
© Damit dann die Konstruktion fiir A_

© Den “Produktautomaten” (erledigt, aber ...)

© Den Leerheitstest (erledigt)
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Von LTL zu NBA Der Beweis

LTL - alternative Definition

Sei P = {p1, p2, ...} eine Menge von atomaren Formeln. Sei

pu=p| 9| (oVe)| Xo|oUg
und als Abkiirzungen:
Ry = —(=pU~Y)

Fo = TU9
Gop = —-F-¢

Dabei wird ¢pR erfiillt, wenn entweder 1) immer gilt oder 1 bis zu
einem Moment gilt, in dem sowohl ¢ als auch ) gelten.
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Von LTL zu NBA Der Beweis

LTL - alternativ

Definition (LTL - alternativ)

Sei w = agay ... € (27)¥. Die Semantik ist induktiv fiir alle i € N
definiert durch:

w,i = p gdw. p € a;

w, i = ¢ gdw. w,ilE¢

w,i = ¢1 Vo gdw. w,il= ¢1 oder w,i = ¢

w,i = X¢ gdw. w,i+1E¢

w,i = ¢p1Udr  gdw. ein k > i existiert mit w, k = ¢ und

fir alle j mit i < j < k gilt w,j = ¢1

Ein Wort entspricht dabei den Labels jener Zustand, die bei einem
Lauf durch ein LTS besucht werden.
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Sei ¥ = (2F), v € ¥¥ und ¢ eine LTL-Formel. Es ist v = ¢, falls
v,0 = ¢ und L(¢) = {u | u = ¢}. Zwei Formeln ¢ und 1 sind
aquivalent, ¢ = 1, falls L(¢) = L(v) gilt.




Von LTL zu NBA Der Beweis

LTL - alternativ

Definition

Sei ¥ = (2F), v € ¥ und ¢ eine LTL-Formel. Es ist v |= ¢, falls
v,0 = ¢ und L(¢) ={u| u = ¢}. Zwei Formeln ¢ und 1) sind
dquivalent, ¢ = 1, falls L(¢) = L(v) gilt.

Ist z.B. P = {C,D}, dann ist X = {0,{C},{D},{C,D}}. Will
man nun an ein bestimmtes a € ¥~ herankommen, so kann man
charakteristische Formeln x, verwenden:

xa=(A\P)A(/\ -p)
pEa péa

Will man z.B. eine Formel fiir die Sprache, die nur aus dem Wort
({C}{D})” besteht, so geht dies mit:

xc A G((xc = Xxp) A (xp = Xxc))
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Eine LTL-Formel ist in positiver Normalform, wenn sie nur aus
Literalen p, —p (fiir ein p € P) und den Operatoren V, A, X, U und
R aufgebaut ist.




Von LTL zu NBA Der Beweis

Normalform

Definition (Positive Normalform)

Eine LTL-Formel ist in positiver Normalform, wenn sie nur aus
Literalen p, —p (fiir ein p € P) und den Operatoren V, A, X, U und
R aufgebaut ist.

Satz

Zu jeder LTL-Formel ¢ gibt es eine dquivalente LTL-Formel ¢’ in
positiver Normalform. Ferner ist |¢/| < 2 -|d|.
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Von LTL zu NBA Der Beweis

Normalform

Definition (Positive Normalform)

Eine LTL-Formel ist in positiver Normalform, wenn sie nur aus
Literalen p, —p (fiir ein p € P) und den Operatoren V, A, X, U und
R aufgebaut ist.

Satz

Zu jeder LTL-Formel ¢ gibt es eine dquivalente LTL-Formel ¢ in
positiver Normalform. Ferner ist |¢/| < 2 -|d|.

Beweis.

Zum Beweis betrachtet man jeden Operator in negierter und
nicht-negierter Form und zeigt, dass man ihn wie angegeben
ausdriicken kann. Z.B. ist

Gp=-F-p=-(TU-p)=-(—-LU-p) = _LRp und

—(pRq) = ==(—pU—q) = (—pU—q). O
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Es gilt pUg = q V (p A X(pUq)).

Sei w,i |= pUq. Dann gibt es ein k > i mit w,k =qund w,j = p
fiir alle j mit i < j < k. Zwei Falle:
Q@ k=. Danngilt w,i |=gq.
@ k> i Dannist w,i=pund w,i+ 1k pUg (Warum?) und
daher w,i = X(pUq).
Damit gilt w,i = q V (p A X(pUg)). O




Es gilt pUg = q V (p A X(pUq)).

Sei w,i |= pUq. Dann gibt es ein k > i mit w,k =qund w,j = p
fiir alle j mit i < j < k. Zwei Flle:
Q@ k=i. Danngitw,iEgq.
@ k> i Dannist w,i=pund w,i+ 1k pUg (Warum?) und
daher w, i = X(pUq).
Damit gilt w,i = q V (p A X(pUgq)). O




Von LTL zu NBA Der Beweis

Abwicklung von U und R

Satz
Es gilt pUg = q V (p A X(pUg)).

Beweis.
Sei w,i |= pUq. Dann gibt es ein k > i mit w,k =qund w,j = p
fur alle j mit / < j < k. Zwei Falle:
Q@ k=i Danngitw,i|q.
@ k> i Dannist w,i=pund w,i+1E pUg (Warum?) und
daher w,i = X(pUq).
Damit gilt w,i = qV (p A X(pUgq)). O]
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Die Riickrichtung zeigt man analog. Ebenso wie die Abwicklung
von R:

Es gilt pRqg=q A (pV X(pRq)).

Zur Ubung. .. O




Von LTL zu NBA Der Beweis

Von LTL zum NBA - Die Idee

Wir konstruieren nun einen NBA, der genau die Menge aller
Modelle fiir eine LTL Formel ¢ erkennt.

@ Die Idee ist als Zustande Hintikka-Mengen zu benutzen. Diese

enthalten gerade die (Unter-)Formeln, die an einer
bestimmten Stelle im Modell gelten miissen.
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Von LTL zum NBA - Die Idee
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@ Die Idee ist als Zustande Hintikka-Mengen zu benutzen. Diese
enthalten gerade die (Unter-)Formeln, die an einer
bestimmten Stelle im Modell gelten miissen.

@ Diese werden in jedem Schritt nichtdeterministisch geraten.

@ Durch die Konsistenz der Hintikka-Mengen wird
ausgeschlossen, dass etwas geraten wird, was bereits der
Aussagenlogik widerspricht.
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ausgeschlossen, dass etwas geraten wird, was bereits der
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@ U und R Formeln werden entsprechend ihrer Abwicklung
behandelt.

@ Dass U nicht unendlich lange abgewickelt wird, wird durch die
Akzeptanzbedingung sichergestellt.
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Von LTL zu NBA Der Beweis

Von LTL zum NBA - Die Idee

Wir konstruieren nun einen NBA, der genau die Menge aller
Modelle fiir eine LTL Formel ¢ erkennt.

Die ldee ist als Zustéande Hintikka-Mengen zu benutzen. Diese
enthalten gerade die (Unter-)Formeln, die an einer
bestimmten Stelle im Modell gelten miissen.

Diese werden in jedem Schritt nichtdeterministisch geraten.
Durch die Konsistenz der Hintikka-Mengen wird
ausgeschlossen, dass etwas geraten wird, was bereits der
Aussagenlogik widerspricht.

U und R Formeln werden entsprechend ihrer Abwicklung
behandelt.

Dass U nicht unendlich lange abgewickelt wird, wird durch die
Akzeptanzbedingung sichergestellt.

Der X Operator wird durch die Uberginge behandelt.
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Von LTL zu NBA Der Beweis

Von LTL zum NBA - Vorarbeiten

Definition (Fischer-Ladner-Abschluss)
Sei ¢ eine LTL-Formel in positiver Normalform. Der
Fischer-Ladner-Abschluss von ¢ ist die kleinste Menge FL(¢), die ¢
enthalt und fiir die folgendes gilt:
Q@ pVqeFL()={p,q} € FL(¢)
@ pAge FL(¢) = {p,q} C FL(®)
© Xp € FL(¢) = p € FL()
Q@ pUqg € FL(¢) = {p, 9,9V (pAX(pUq)), pAX(pUq), X(pUq)}
© pRq € FL(¢) = {p.q,9 A (pV X(pRq)), pV X(pRq), X(pRq)}
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Von LTL zu NBA Der Beweis

Von LTL zum NBA - Vorarbeiten

Definition (Hintikka-Mengen)
Sei ¢ eine LTL-Formel in positiver Normalform. Eine
Hintikka-Menge fiir ¢ ist eine Menge M C FL(¢) mit
Q@ pVvgeM=pe Moderge M
Q@ pANgeM=peMundge M
© pUge M= qge M oder (p € M und X(pUq) € M)
Q pRge M= g Mund (p € M oder X(pRq) € M)
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o Eine Hintikka-Menge M heiBt konsistent, falls es kein p € P
mit {p, —p} C M gibt.

e Mit H(¢) wird die Menge aller konsistenten Hintikka-Mengen
bezeichnet.

e Mit Pt (M) wird die Menge aller atomaren Formeln
bezeichnet, die als positives Literal in M auftreten (oder kurz:
alle positiven Literale in M), also PT(M) =M N P.

e Mit P~ (M) wird die Menge aller atomaren Formeln

bezeichnet, die als negatives Literal in M auftreten, also
P~(M)={pe P|—-pec M}.




Von LTL zu NBA Der Beweis

Von LTL zum NBA - Vorarbeiten

Definition (Hintikka-Mengen (Teil 2))
o Eine Hintikka-Menge M heiBt konsistent, falls es kein p € P
mit {p, 7p} C M gibt.
e Mit H(¢) wird die Menge aller konsistenten Hintikka-Mengen
bezeichnet.
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Von LTL zum NBA - Vorarbeiten

Definition (Hintikka-Mengen (Teil 2))
o Eine Hintikka-Menge M heiBt konsistent, falls es kein p € P
mit {p, 7p} C M gibt.
e Mit H(¢) wird die Menge aller konsistenten Hintikka-Mengen
bezeichnet.

e Mit PT(M) wird die Menge aller atomaren Formeln

bezeichnet, die als positives Literal in M auftreten (oder kurz:

alle positiven Literale in M), also PT(M) = MnN P.

e Mit P~ (M) wird die Menge aller atomaren Formeln
bezeichnet, die als negatives Literal in M auftreten, also
P=(M)={peP|-pe M}
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Zu jeder LTL-Formel 6 in positiver Normalform kann ein NBA Ay
konstruiert werden mit L(Ag) = L(0). Ferner ist |Ag| < 241,

Zu jeder LTL-Formel 6 kann ein NBA Ay konstruiert werden mit
L(Ag) = L(0). Ferner ist |Ag| < 20(10])

Nebenbemerkung

Im Satz oben steht im Exponenten 4|6|. Im Buch ist dort der Faktor
2. Ich meine, 2 kann man widerlegen, mit 4 klappt es und ich glaube
man kann sogar 2,5 - |6] — 1,5 zeigen (aber nicht weniger). Nach-
folgend ist das nicht ganz so wichtig. Es geniigt sich die Grenze aus
dem Korrollar zu merken, also |Ag| < 200D,
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Von LTL zu NBA Der Beweis

Von LTL zum NBA - Der Satz

Satz

Zu jeder LTL-Formel 0 in positiver Normalform kann ein NBA Ay
konstruiert werden mit L(Ag) = L(0). Ferner ist |Ag| < 241,

Korollar

Zu jeder LTL-Formel 6 kann ein NBA Ay konstruiert werden mit
L(Ag) = L(B). Ferner ist |Ag| < 200D,

|

Nebenbemerkung

Im Satz oben steht im Exponenten 4|6|. Im Buch ist dort der Faktor
2. Ich meine, 2 kann man widerlegen, mit 4 klappt es und ich glaube
man kann sogar 2,5 - |0| — 1,5 zeigen (aber nicht weniger). Nach-
folgend ist das nicht ganz so wichtig. Es geniigt sich die Grenze aus
dem Korrollar zu merken, also |Ag| < 2009,
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Von LTL zu NBA Der Beweis

Von LTL zum NBA - Die Konstruktion

Seien prUq1, p2Uqa, . . ., pkUqk alle in FL(0) vorkommenden
U-Formeln. Wir definieren

A= (H(0),%,6, Zotarts Z2 g, - - -+ ZX 1)

5 e

wobei:

Lstart = {M|9€M}
end = {M|piUgie M= q; € M}

Ferner ist
§(M,a) :={M' |YXqge M:qe M}

im Fall PT(M) C aund P~(M)Na=( und sonst

(M, a) := 0.
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Von LTL zu NBA Der Beweis

Von LTL zum NBA - Die Konstruktion

Hinweise

@ Das Alphabet ist ¥ = 2", wobei P die Menge der atomaren
Formeln ist.

@ Im Spezialfall, dass in 6 gar keine U-Formeln auftreten, gibt es
nur eine Endzustandsmenge

Zeng = H(0)

(alle Zustande sind also Endzusténde).
@ Ist 5(M, a) := (), so bedeutet dies, dass der Zustand M keine

a-Kante hat (es bedeutet nicht, dass der Zustand () der
Nachfolgezustand ist).
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Von LTL zu NBA Der Beweis

Von LTL zum NBA - Korrektheit

Satz

Zu jeder LTL-Formel 8 in positiver Normalform kann ein NBA Ay
konstruiert werden mit L(Ag) = L(6). Ferner ist |Ag| < 2*1°1.

Beweis.
Zu zeigen ist L(Ag) C L(0), L(Ap) 2 L(0) und die Schranke.
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Beweis.
Zu zeigen ist L(Ag) C L(0), L(Ap) 2 L(0) und die Schranke.

Fiir die Schranke kann man mittels Induktion
|FL(6)| < 40|

zeigen (wobei wir fiir |#| die Atome und Junktoren z&hlen und
beachten, dass z.B. |FL(¢pUv)| = |FL(¢)| + |FL(x)| + 4 gilt).
Damit gilt dann |H(8)| < 2% (maximale Anzahl der Teilmengen
von FL(0)).
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Von LTL zum NBA - Korrektheit

Satz

Zu jeder LTL-Formel 8 in positiver Normalform kann ein NBA Ay
konstruiert werden mit L(Ag) = L(6). Ferner ist |Ag| < 2*1°1.

Beweis.
Zu zeigen ist L(Ag) C L(0), L(Ap) 2 L(0) und die Schranke.

Fiir die Schranke kann man mittels Induktion
|FL(6)| < 40|

zeigen (wobei wir fiir |#| die Atome und Junktoren z&hlen und
beachten, dass z.B. |FL(¢pUv)| = |FL(¢)| + |FL(x)| + 4 gilt).
Damit gilt dann |H(8)| < 2% (maximale Anzahl der Teilmengen
von FL(0)).

Seien nachfolgend ¢1 U1, . .., dx Utk alle U-Formeln in FL(0).
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Sei w € L(6) (wir wollen w € L(Ag) zeigen).

M; = {yp € FL(0) | w,i = v} fiir jedes i € N

Wir bemerken:

@ M, € H(0) (die Menge der Formeln muss eine Hintikka-Menge
bilden)

e Die Sequenz der M; ist eine Folge von Zustanden in Ay
@ 0 My (wegen w € L(6))
e Sequenz beginnt in einem Startzustand
@ Ist Xy € M;, dann gilt ¢ € M1
© Ist der /-te Buchstabe von w ein a, soist MNP = a
e Sequenz ist eine korrekte, unendliche(!) Rechnung
Q Ist ¢;Uy; € M;, dann gibt es ein /' > i mit ¢); € My
e Rechnung ist akzeptierend (gibt es keine U-Formeln geniigt
bereits obiges)




Sei w € L(0) (wir wollen w € L(Ap) zeigen). Sei

M; :={y € FL(0) | w,i =} fir jedes i € N

Wir bemerken:

O M; € H(0) (die Menge der Formeln muss eine Hintikka-Menge
bilden)

e Die Sequenz der M; ist eine Folge von Zustdnden in Ay
@ 0 My (wegen w € L(6))
e Sequenz beginnt in einem Startzustand
@ Ist Xy € M;, dann gilt ¢ € M1
© Ist der /-te Buchstabe von w ein a, soist MNP = a
e Sequenz ist eine korrekte, unendliche(!) Rechnung
@ Ist ¢;Uy); € M;, dann gibt es ein i’ > i mit ¥; € My
e Rechnung ist akzeptierend (gibt es keine U-Formeln geniigt
bereits obiges)




Von LTL zu NBA Der Beweis
Beweis.
Sei w € L(0) (wir wollen w € L(Ag) zeigen). Sei
M; = {¢p € FL(0) | w,i |= 9} fiir jedes i € N

Wir bemerken:

@ M; € H(0) (die Menge der Formeln muss eine Hintikka-Menge
bilden)

e Die Sequenz der M; ist eine Folge von Zustidnden in Ay
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Sei nun w € L(Ag) (w € L(0) ist zu zeigen). Es gibt einen
akzeptierenden Lauf My, My, ... von Ay auf w = wowy .... Wir
zeigen

Wenn ¢ € M;, dann w,i |= 9

fur alle i € N und alle 1) € FL(¢) mittels Induktion iiber den
Formelaufbau.

Induktionsanfang: Ist ¢» = p € P, dann ist p € M; und der
Ubergang in Ag von M; nach M;.1 geht nur, wenn p € w; ist und
damit gilt w, i = p. Analog zeigt man fiir 1 = —p, dass p € w;
sein muss und damit w, i = —p.




Von LTL zu NBA Der Beweis

Beweis.

Sei nun w € L(Ag) (w € L(0) ist zu zeigen). Es gibt einen
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Beweis.

Sei nun w € L(Ag) (w € L(0) ist zu zeigen). Es gibt einen
akzeptierenden Lauf My, My, ... von Ay auf w = wowy .... Wir
zeigen

Wenn ¢ € M;, dann w,i = ¢

fiir alle i € N und alle ¢ € FL(¢) mittels Induktion iiber den
Formelaufbau.

Induktionsanfang: Ist ¢y = p € P, dann ist p € M; und der
Ubergang in Ay von M; nach M;_; geht nur, wenn p € w; ist und
damit gilt w, i = p. Analog zeigt man fiir ¢ = —p, dass p € w;
sein muss und damit w, i = —p.
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Wenn ¢ € M;, dann w, i =1 J

Beweis.
Induktionsschritt. Fiir ¢ = ¢1 Ao /o0 coc cohnell e o
und ¢p € M; (wegen 1) € M; und da M; eine Hintikka-Menge ist)
und dann aus der Induktionsannahme und der Definition von |=.
(Analog fiir V.)

Fiir ¢ = X ¢ folgt dies, da mit ¢ € M; dann nach Konstruktion des
Automaten (insb. der Ubergangsrelation &) dann ¢ € M; 1 ist.
Aufgrund der Induktionsannahme wissen wir dann w, i+ 1 = ¢
und damit w, i =1 (nach Definition von |=).
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und ¢ € M; (wegen » € M; und da M; eine Hintikka-Menge ist)
und dann aus der Induktionsannahme und der Definition von =.

(Analog fiir V.)

Fiir v = X¢ folgt dies, da mit ¢ € M; dann nach Konstruktion des
Automaten (insb. der Ubergangsrelation §) dann ¢ € M;,q ist.
Aufgrund der Induktionsannahme wissen wir dann w,i+ 1 | ¢
und damit w, i =1 (nach Definition von |=).
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Wenn ¢ € M;, dann w,i =1 J

Der spannende Fall ¢;Uvy; € M;. Zwei Falle:

@ 1); € M;. Dann sind wir mit der Induktionsannahme (und der
Definition von |=) sofort fertig.

e ¢j € M; und X(¢;Ut;) € M;. Dann ist nach der Definition
von  ¢;Uv; € M1, was man iterieren kann, woraus
w, i’ = ¢j (mit Induktionsannahme) und ¢;Uv; € M/ fiir
i"'=i,i+1,i+2,... folgt.
Es muss nun ein k > i mit v; € M geben (sonst wird kein
Endzustand besucht). Mit der Induktionsannahme folgt
w, k = 1; und (wegen obigem) w, h |= ¢; fiir i < h < k.
Daraus folgt (Definition von =) w, i |= ¢;U1);.

Der Fall fiir R geht analog (= Ubung!) und wir sind fertig! O]
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Von LTL zum NBA - Korrektheit

Hinweis

Die Konstruktion und der Beweis klappt auch ohne U-Formeln.
Man muss sich dann bewusst machen, dass es nur eine
Endzustandsmenge gibt (und diese aus genau allen Zustianden
besteht) und dass dann also jede unendliche Rechnung akzeptiert
wird. Der Automat ist aber so konstruiert, dass er bei Rechnungen,
die nicht akzeptiert werden sollen, dann blockiert, weil es keinen
Ubergang gibt. (Siehe auch im Beweis die erste Richtung und da
die ersten vier Beobachtungen; die fiinfte trifft dann ja nicht zu!)
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Der Schluss...

Wir n3dhern uns dem Ende. Das System wird eher mit einem
Transitionssystem modelliert (oder mit einem Formalismus, der in
dieses iibersetzt wird). Daher brauchen wir dafiir einen
“Produktautomaten”. Zur Wiederholung ...
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Transitionssysteme (Wiederholung)

Definition (Transitionssystem)

Ein labelled transition system (LTS) ist ein Tupel
TS = (S, s0, R, L)mit

einer endlichen Menge von Zustinden S,

°
@ einem Startzustand sg € S,

@ einer links-totalen Ubergangsrelation R C S x S und
°

einer labelling function L : S — 2P, die jedem Zustand s die
Menge der atomaren Formeln L(s) C P zuweist, die in s
gelten.
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Transitionssysteme (Wiederholung)

Definition (Pfad im LTS)

e Ein Pfad 7 in einem LTS TS = (S, s, R, L) ist eine
unendliche Sequenz von Zustianden

T — 515253 ...

derart, dass (sj, si+1) € R fiir alle / > 1.

@ Ein Laufin TS ist ein unendliches Wort aga; ... € (2F)“, so
dass ein Pfad sps; . .. existiert mit a; = L(s;) fiir alle i. Mit
L(TS) wird die Menge der Laufe von TS bezeichnet.
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Ein weiterer Produktautomat

Definition

Sei TS = (S, s0, R, L) ein LTS iiber P und A = (Z,2F, 6, z0, Zepa)
ein NBA. Wir definieren deren Produkt als NBA
C:=(SxZ,{e},A (50,20),S X Zeng), wobei

A((s,z),0) ={(s',Z) | (s,5') € RAZ €(z,L(s))}
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Ein weiterer Produktautomat

Definition

Sei TS = (S, s0, R, L) ein LTS iiber P und A = (Z,2F, 6, z0, Zepa)
ein NBA. Wir definieren deren Produkt als NBA

C = (S X Z, {O},A, (50,20),5 X Zenc/): wobei

A((s,z),0) ={(s',2') | (s,s') e RAZ € 6(z,L(s))}
Satz
Ist TS ein LTS, A ein NBA und C der aus obiger Definition
hervorgegangener NBA. Es gilt L(C) = 0 gdw. L(TS) N L(A) = 0.

Beweis.
Zur Ubung... O]
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Das Model-Checking-Problem mit LTS TS und LTL-Formel ¢ lasst
sich in Zeit | TS| - 20U%) entscheiden.

© Betrachte —¢ und konstruiere NBA A_; mit
L(A-y) = L(—¢) = L(Ay). Es ist |A_y| = 200D,

@ Bilde das Produkt C aus LTS TS und A_;. Nach obigem ist
IC| = | TS| .20(¢l)

© Nun ist nach dem vorherigen Satz L(C) = ()
gdw. L(TS) N L(A) = 0 und wir kénnen das Leerheitsproblem
in linearer Zeit, d.h. hier in O(| TS| - 2°0¢D) Issen.

O




Das Model-Checking-Problem mit LTS TS und LTL-Formel ¢ lasst
sich in Zeit | TS| - 20U%) entscheiden.

© Betrachte —¢ und konstruiere NBA A_4 mit
L(A-y) = L(=¢) = L(Ay). Esist |A_y| = 200D,

@ Bilde das Produkt C aus LTS TS und A_;. Nach obigem ist
|C| = | TS| - 2009D.

© Nun ist nach dem vorherigen Satz L(C) = ()
gdw. L(TS) N L(A) = 0 und wir kénnen das Leerheitsproblem
in linearer Zeit, d.h. hier in O(| TS| - 2°09D) Issen.

O
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Finale!

Satz

Das Model-Checking-Problem mit LTS TS und LTL-Formel ¢ lasst
sich in Zeit | TS| - 29U¢) entscheiden.

Beweis.
© Betrachte —¢ und konstruiere NBA A_y mit
L(A-y) = L(=¢) = L(Ap). Es ist |A_y| = 200D,
@ Bilde das Produkt C aus LTS TS und A_4. Nach obigem ist
|IC| =|TS|- 20(|8])
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Zur Lekture

Literaturhinweis
Der Inhalt der letzte beiden Vorlesungen ist aus Automatentheorie
und Logik von Martin Hofmann und Martin Lange. Erschienen im
Springer-Verlag, 2011.
Dort
o Kapitel 5 (komplett) fiir Biichi-Automaten
@ Satz 9.4 und Korollar 9.5 aus Kapitel 9 zum Leerheitsproblem
e Kapitel 11 (ohne 11.3) fiir LTL, die Konvertierung zu NBAs
und letztendlich fiir das Model-Checking-Problem fiir LTL.
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Zusammenfassung

@ Aussagenlogik
Syntax & Semantik
Normalform
Resolution
Natiirliche Deduktion
o Pradikatenlogik
e Syntax & Semantik
e Normalform
o Resolution
o LTL, CTL und CTL*
e Syntax & Semantik
e Das Model Checking Problem
e Automatenbasiertes LTL Model Checking
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