Frank Heitmann
heitmann@informatik.uni-hamburg.de

11. Januar 2016

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

LTL: Syntax

Definition (Syntax von LTL)
Die (wohlgeformten) Formeln der Linear Temporal Logic (LTL)

werden durch die folgende Grammatik definiert:

¢ = v]=¢[(pAg)](sV9) |
X¢ | Fo| Gol(oUd)

wobei v € V ein aussagenlogisches Atom ist.

Die neuen Operatoren sind neXt, Finally, Globally und Until. J

Frank Heitmann heitmann@informatik.uni-hamburg.de 2/62

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

LTL: Syntax (Alternative)

Definition (Syntax von LTL (alternative))

Die wohlgeformten Ausdriicke/Formeln von LTL werden induktiv
definiert durch
@ Jedes v € V ist eine (atomare) LTL Formel.
@ Wenn ¢; und ¢, Formeln sind, dann auch —¢1, (¢1 A ¢2) und
(¢1V $2).
© Wenn ¢; und ¢, Formeln sind, dann auch X¢1, F¢1, Gp1 and
(p1U2).

@ Nur Formeln, die durch endliche haufige Anwendungen der
Regeln 1-3 entstehen, sind wohlgeformte Formeln von LTL.

Zum Klammersparen binden die undren Junktoren —, X, G and F
starker als U und dann A und V.

Frank Heitmann heitmann@informatik.uni-hamburg.de

3/62

LTL und CTL Formeln werden entlang der Pfade eines
Transitionssystems interpretiert. Das Transitionssystem
libernimmt also die Rolle der Belegung in der Aussagenlogik.

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

Transitionssysteme

Definition (Transitionssystem)

Ein labelled transition system (LTS) ist ein Tupel
TS = (S, s0, R, L)mit

einer endlichen Menge von Zustinden S,
einem Startzustand sy € S,

einer links-totalen Ubergangsrelation R C S x S und

einer labelling function L : S — P(V), die jedem Zustand s
die Menge der atomaren Formeln L(s) C V zuweist, die in s
gelten.

Linkstotal bedeutet, dass es zu jedem s € S stets ein s’ mit
(s,s') € R gibt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 5/62

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

Transitionssysteme

Definition (Pfad im LTS)

Ein Pfad m in einem LTS TS = (S, s, R, L) ist eine unendliche
Sequenz von Zustanden

T — S152S3 ...

derart, dass (s;, s;+1) € R fiir alle / > 1.
e Mitzn, i>1 bezeichnen wir den Suffix, der an s; startet,
d.h. den Pfad ' = sjsjy7 ...
e Mit (i), i > 1, bezeichnen wir den i-ten Zustand in T,
d.h. 7T(i) = 5.
@ Wenn s; der Startzustand s von TS ist, wird 7 auch als
Rechnung bezeichnet.

Frank Heitmann heitmann@informatik.uni-hamburg.de 6/62

Sei M = (S,s0, R, L) ein LTS und 7 = s15... ein Pfad in M. &
erfiillt eine LTL Formel ¢ (in M), wenn M, 7 = ¢ gilt, wobei die

Relation = induktiv definiert ist:

M,7 = v gdw.
M, 7 = —¢ gdw.
M,m = ¢1 A ¢ gdw.
M, = ¢1V oo gdw.

velL(s)firveV

M, = ¢

M, = ¢1 und M, |= ¢
M, = ¢1 oder M, 7w = ¢

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

LTL: Semantik

Definition (Semantik von LTL (I))

Sei M = (S,s0, R, L) ein LTS und m = sys5... ein Pfad in M. 7
erfiillt eine LTL Formel ¢ (in M), wenn M, 7 = ¢ gilt, wobei die
Relation = induktiv definiert ist:

M, 7= v gdw. v e lL(s) firveV

M, 7 = —¢ gdw. M, [~ ¢

M, ml=¢1 ANy gdw. M,7 = ¢1 und M, |= @2
M,):¢1\/¢2 gdw. M, 7= ¢1 oder M, |= ¢

Frank Heitmann heitmann@informatik.uni-hamburg.de

7/62

M, 7 = X
M,m &= F¢
M, Go
M,ﬂ- |:¢1U¢2

gdw.
gdw.
gdw.
gdw.

M7 o

M, r = ¢ fiir ein i > 1

M, 7l = o firallei>1

ein i > 1 existiert mit M, 7' = ¢
und fiir alle j < i M,/ |= ¢1 gilt.

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

LTL: Semantik

Definition (Semantik von LTL (I11))
Sei M = (S, s0, R, L) ein LTS. Sei ¢ eine LTL Formel und s € S
ein Zustand von M.
e M,s = ¢, wenn M, 7 |= ¢ gilt fiir jeden Pfad 7 in M, derin s
startet.

e Wenn M, sy = ¢ gilt, schreiben wir M |= ¢. Wir sagen: M ist
ein Modell fiir ¢ oder ¢ ist in M erfiillt.

@ Zwei LTL Formeln ¢ und 1 sind dquivalent, ¢ =), wenn fiir
alle Modelle M und alle Pfade 7 in M auch M, 7 = ¢
gdw. M, 7 = 9 gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 9/62

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

CTL: Syntax

Definition (Syntax von CTL)

Die (wohlgeformten) Formeln der Computation Tree Logic (CTL)
werden durch die folgende Grammatik definiert:

¢ = v|=g|(ong)|(oVe)]
EX¢ | EF¢ | EGo | E[pUg] |
AX¢ | AF¢ | AGo | AlpUd]

wobei v € V ein aussagenlogisches Atom ist.

Kann man natiirlich auch wieder mit einer induktiven Definition ma-
chen!

Frank Heitmann heitmann@informatik.uni-hamburg.de 10/62

Sei M = (S,s0, R, L) ein LTS und s € S ein Zustand. Eine CTL
Formel ¢ ist erfiillt in s (in M), wenn M, s = ¢ gilt, wobei die
Relation = induktiv definiert ist:

M,skEv gdw. vel(s)firveV

M,s = —¢ gdw. M,s |~ ¢

M,sk=¢1 Ao gdw. M,s = o1 und M,s = ¢
M,slE¢1Vga gdw. M,s|= ¢y oder M,s = ¢

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

CTL: Semantik

Definition (Semantik von CTL (I))

Sei M = (S,s0, R, L) ein LTS und s € S ein Zustand. Eine CTL
Formel ¢ ist erfiillt in s (in M), wenn M, s |= ¢ gilt, wobei die
Relation = induktiv definiert ist:

M,skE=v gdw. vel(s)firveV

M;s = —¢ gdw. M,s ¢

M,sk=¢1 ANpa gdw. M,s = ¢1 und M,s = ¢
M,;s=¢1V o gdw. M,s = ¢1 oder M,s = ¢o

Frank Heitmann heitmann@informatik.uni-hamburg.de 11/62

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

CTL: Semantik

Definition (Semantik von CTL (II))

M;s = EX® gdw. ein Zustand s’ € S existiert mit
(s,s') e Rund M,s" = ¢
M,s = EF¢ gdw. ein Pfad m = 515, ... beginnend bei s

(s1 = s) existiert und ein i > 1, so
dass M, s; = ¢ gilt.

M;s = EG¢ gdw. ein Pfad m = 515, ... beginnend bei s
(s1 = s) existiert und fiir alle j > 1
M,s; = ¢ gilt.

M,s = E[¢1U¢2] gdw. ein Pfad m = 515, ... beginnend bei s
existiert und ein j > 1, so dass
M, Sj ‘: gbz
und M, s; = ¢ fiir alle i < .

Frank Heitmann heitmann@informatik.uni-hamburg.de 12/62

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

CTL: Semantik

Definition (Semantik von CTL (lIl))

M,s &= AX¢ gdw. M,s' ¢ firalles’ €S
mit (s,s’) € R.
M,s = AF¢ gdw. fiir alle Pfade m = s1s, ... beginnend
bei s ein i > 1 existiert mit M, s; = ¢.
M,s = AGo gdw. fiir alle Pfade m = 515, ... beginnend

bei s M,s; = ¢ fiir alle i > 1 gilt.
M,s = Alp1Upo] gdw. fiir alle Pfade m = 515, ... beginnend

bei s ein j > 1 existiert derart, dass

M, s; = ¢2 und

M, s; = ¢ fir alle i < j gilt

Frank Heitmann heitmann@informatik.uni-hamburg.de 13/62

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

CTL: Semantik

Definition (Semantik von CTL (IV))
Sei M = (S, s0, R, L) ein LTS und ¢ eine CTL Formel.

e Wenn M, sy |= ¢ gilt, schreiben wir auch M = ¢ und sagen,
dass M ein Modell fiir ¢ ist oder dass ¢ erfiillt ist in M.

@ Zwei CTL Formeln ¢ und) sind dquivalent, ¢ = 1), wenn fiir
alle Modelle M und alle Zustinde s in M auch M,s = ¢
gdw. M,s = 9 gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 14/62

Oft benutzt man ein Set von “adequate connectives”, d.h. ein Set
von Junktoren, dass Ausdrucksstark genug ist, um jede Formel der
Logik auszudriicken.

Fir LTL ist ein solches Set z.B.

{‘\ /A\.X,U}
fir CTL z.B.
{—=, N, EX, EG, EU}.
ZB.ist (in LTL) F¢:= TU¢ und Gp := ~F—¢ und (in CTL)

EF¢p = E[TU()] und AGop = —EF—0.

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

LTL und CTL: Aquivalenzen

Oft benutzt man ein Set von “adequate connectives”, d.h. ein Set
von Junktoren, dass Ausdrucksstark genug ist, um jede Formel der
Logik auszudriicken.

Fur LTL ist ein solches Set z.B.
{ﬁv /\7 X7 U}

fir CTL z.B.
{—, A, EX, EG, EU}.

ZB.ist (in LTL) F¢ := TU¢ und G¢ := ~F—¢ und (in CTL)
EF¢ = E[TU¢] und AGp = ~EF .

Frank Heitmann heitmann@informatik.uni-hamburg.de 15/62

Die Syntax von CTL" ist eine wechselseitig rekursive induktive
Definition, die Pfad- und Zustandsformeln beinhaltet:

@ Es gibt Zustandsformeln, die in Zustanden ausgewertet
werden:

d:=T|p|(=9)]| (6N Q)| Ala] | E[a]

wobei p eine atomare Formel ist und « eine Pfadformel.

@ Es gibt Pfadformeln, die entlang von Pfaden ausgewertet
werden:

ax=¢ | (ma) | (aNa)]| (ala) | (Ga) | (Fa) | (Xa)

wobei ¢ eine Zustandsformel ist.

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

CTL": Syntax und Semantik

Definition (CTL"* Syntax)

Die Syntax von CTL" ist eine wechselseitig rekursive induktive
Definition, die Pfad- und Zustandsformeln beinhaltet:

@ Es gibt Zustandsformeln, die in Zustdnden ausgewertet
werden:

¢=Tpl (=) | (¢A0)] Al | Eld

wobei p eine atomare Formel ist und « eine Pfadformel.

Frank Heitmann heitmann@informatik.uni-hamburg.de

16/62

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

CTL": Syntax und Semantik

Definition (CTL"* Syntax)

Die Syntax von CTL* ist eine wechselseitig rekursive induktive
Definition, die Pfad- und Zustandsformeln beinhaltet:

@ Es gibt Zustandsformeln, die in Zustdnden ausgewertet
werden:

¢=Tpl (=) | (¢A0)] Al | Eld

wobei p eine atomare Formel ist und « eine Pfadformel.

o Es gibt Pfadformeln, die entlang von Pfaden ausgewertet
werden:

a:=¢|(-a) | (@Aa)| (ala) | (Ga) | (Fa) | (Xa)

wobei ¢ eine Zustandsformel ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 16/62

@ Die Semantik wird dann so wie bei CTL und LTL definiert, je
nachdem, ob es eine Zustands- oder eine Pfadformel ist.

@ Eine LTL-Formel « ist dquivalent zur CTL*-Formel A[a]. LTL
kann also als Teillogik von CTL* angesehen werden.

o CTL ist sofort eine Teillogik von CTL*, da man die
Pfadformeln auf

a = (oUd) | (Go) | (Fo) | (Xo)

einschranken kann und dann sofort CTL hat.

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

CTL": Syntax und Semantik

@ Die Semantik wird dann so wie bei CTL und LTL definiert, je
nachdem, ob es eine Zustands- oder eine Pfadformel ist.

e Eine LTL-Formel « ist dquivalent zur CTL*-Formel A[a]. LTL
kann also als Teillogik von CTL* angesehen werden.

Frank Heitmann heitmann@informatik.uni-hamburg.de

17/62

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

CTL": Syntax und Semantik

@ Die Semantik wird dann so wie bei CTL und LTL definiert, je
nachdem, ob es eine Zustands- oder eine Pfadformel ist.

e Eine LTL-Formel « ist dquivalent zur CTL*-Formel A[a]. LTL
kann also als Teillogik von CTL* angesehen werden.

@ CTL ist sofort eine Teillogik von CTL*, da man die
Pfadformeln auf

a = (oU9) | (Go) | (Fo) | (X¢)

einschranken kann und dann sofort CTL hat.

Frank Heitmann heitmann@informatik.uni-hamburg.de

17/62

Zusammenhange der Logiken
© In CTL, aber nicht in LTL: ¢1 := AGEF p.
o Wann immer nétig, kann ein Zustand erreicht werden, in dem
p gilt.
@ In CTL*, aber weder in LTL noch in CTL: ¢, := E[GF p]
e Es gibt einen Pfad mit unendlich vielen p.
© In LTL, aber nicht in CTL: ¢3 := A[GF p = F 4]
e Tritt p entlang eines Pfades unendlich oft auf, dann tritt ein g
auf.
Q InLTL und CTL: ¢4 1 := AG(p = AF q) in CTL
bzw. ¢42 := G(p = F q) in LTL.

e Jedem p folgt irgendwann ein g.

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

LTL, CTL und CTL"

Zusammenhange der Logiken
@ In CTL, aber nicht in LTL: ¢; := AGEF p.

e Wann immer nétig, kann ein Zustand erreicht werden, in dem
p gilt.
@ In CTL", aber weder in LTL noch in CTL: ¢, := E[GF p]

e Es gibt einen Pfad mit unendlich vielen p.

Frank Heitmann heitmann@informatik.uni-hamburg.de

18/62

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

LTL, CTL und CTL"

Zusammenhange der Logiken
@ In CTL, aber nicht in LTL: ¢; := AGEF p.

e Wann immer nétig, kann ein Zustand erreicht werden, in dem
p gilt.
@ In CTL", aber weder in LTL noch in CTL: ¢, := E[GF p]
e Es gibt einen Pfad mit unendlich vielen p.
© In LTL, aber nicht in CTL: ¢3 := A[GF p= F q]

e Tritt p entlang eines Pfades unendlich oft auf, dann tritt ein g
auf.

Frank Heitmann heitmann@informatik.uni-hamburg.de 18/62

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

LTL, CTL und CTL"

Zusammenhange der Logiken
@ In CTL, aber nicht in LTL: ¢; := AGEF p.

e Wann immer nétig, kann ein Zustand erreicht werden, in dem
p gilt.
@ In CTL", aber weder in LTL noch in CTL: ¢» := E[GF p]
e Es gibt einen Pfad mit unendlich vielen p.
© In LTL, aber nicht in CTL: ¢3 := A[GF p= F q]
e Tritt p entlang eines Pfades unendlich oft auf, dann tritt ein g
auf.
Q InLTL und CTL: ¢s1 := AG(p = AF q) in CTL
bzw. ¢a2 := G(p = F q) in LTL.

e Jedem p folgt irgendwann ein q.

Frank Heitmann heitmann@informatik.uni-hamburg.de 18/62

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

LTL vs. CTL

Take Home Message

LTL und CTL sind beide wichtig, da es jeweils Dinge gibt, die in der
anderen nicht ausgedriickt werden konnen.

Frank Heitmann heitmann@informatik.uni-hamburg.de 19/62

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

LTL vs. CTL

Take Home Message

LTL und CTL sind beide wichtig, da es jeweils Dinge gibt, die in der
anderen nicht ausgedriickt werden konnen.

Take Home Message 2

LTL kann nicht iiber Pfade quantifizieren. CTL kann dafiir nicht so
fein iber Pfade argumentieren wie LTL. (Fiir viele ist LTL einfacher;
CTL Formeln wie AFAX p erscheinen schwierig...)

|

V.

Frank Heitmann heitmann@informatik.uni-hamburg.de 19/62

LTL, CTL und CTL* LTL und CTL
Model Checking LTL CTL*

LTL vs. CTL

Take Home Message

LTL und CTL sind beide wichtig, da es jeweils Dinge gibt, die in der
anderen nicht ausgedriickt werden kdnnen.

Take Home Message 2

LTL kann nicht iiber Pfade quantifizieren. CTL kann dafiir nicht so
fein iber Pfade argumentieren wie LTL. (Fiir viele ist LTL einfacher;
CTL Formeln wie AFAX p erscheinen schwierig...)

\

Literatur

Zu diesem Teil der Vorlesung siehe Kapitel 3 in Logic in Computer
Science. Modelling and Reasoning about Systems. Michael Huth
und Mark Ryan, 2. Auflage, Cambridge University Press, 2004.

N

Frank Heitmann heitmann@informatik.uni-hamburg.de 19/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Das Model-Checking-Problem

Das Problem

Das model checking problem fiir LTL oder CTL fragt, gegeben ein
LTS M und eine Formel ¢, ob M |= ¢ gilt, d.h. ob M ein Modell
fiir ¢ ist.
Eingabe: Ein LTS M und eine LTL oder CTL Formel ¢.
Frage: Gt ME¢?

Frank Heitmann heitmann@informatik.uni-hamburg.de

20/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Model Checking. Ergebnisse

Satz
Sei M ein LTS.
© Sei ¢ eine LTL Formel. Das model checking problem fiir LTL,
d.h. die Frage, ob M |= ¢ gilt, ist PSPACE-vollstindig und
kann in O(|M| - 2191} Zeit entschieden werden.
@ Sei ¢ eine CTL Formel. Das model checking problem fiir CTL,

d.h. die Frage, ob M |= ¢ gilt, kann in O(|M| - |¢|) Zeit
entschieden werden.

Wichtige Anmerkung

Das Modell M wird allerdings i.A. sehr schnell sehr groB. Daher
ist [M| der dominante Faktor, was zu dem beriihmten Problem der
Zustandsraumexplosion fiihrt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 21/62

Sei M ein LTS und ¢ eine LTL Formel.

@ Zu —¢ (der Negation der Spezifikation!) konstruieren wir
einen (Biichi-)Automaten A_.

e A_, akzeptiert genau die Worter w mit w = —¢.

@ Bilde den “Produktautomaten” M N A_.

@ Priife, ob die akzeptierte Sprache von M N A_ leer ist.

Sei M ein LTS und ¢ eine LTL Formel.

@ Zu —¢ (der Negation der Spezifikation!) konstruieren wir
einen (Biichi-)Automaten A-.

e A_, akzeptiert genau die Worter w mit w = —¢.

@ Bilde den “Produktautomaten” M N A_,.

@ Priife, ob die akzeptierte Sprache von M N A_ leer ist.

Sei M ein LTS und ¢ eine LTL Formel.

@ Zu —¢ (der Negation der Spezifikation!) konstruieren wir
einen (Biichi-)Automaten A-.

o A., akzeptiert genau die Worter w mit w = —¢.
Bilde den “Produktautomaten” M N A_.

Priife, ob die akzeptierte Sprache von M N A leer ist.

Sei M ein LTS und ¢ eine LTL Formel.

@ Zu —¢ (der Negation der Spezifikation!) konstruieren wir
einen (Biichi-)Automaten A-.

o A., akzeptiert genau die Worter w mit w = —¢.
@ Bilde den “Produktautomaten” M N A_;.

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Die Idee

Sei M ein LTS und ¢ eine LTL Formel.

@ Zu —¢ (der Negation der Spezifikation!) konstruieren wir
einen (Biichi-)Automaten A_;.

o A4 akzeptiert genau die Worter w mit w |= —¢.
e Bilde den “Produktautomaten” M N A_.
@ Priife, ob die akzeptierte Sprache von M N A, leer ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 22/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Das weitere Vorgehen

Wir bendtigen jetzt also:

@ Biichi-Automaten (und drumherum)

@ Eine alternative (aber dquivalente) Semantik fiir LTL
© Damit dann die Konstruktion fiir A-

Q@ Den “Produktautomaten”

© Den Leerheitstest

Frank Heitmann heitmann@informatik.uni-hamburg.de 23/62

@ Syntaktisch sind Biichi-Automaten wie endliche Automaten
definiert.

@ Semantisch lesen sie unendliche lange Worter!

@ Syntaktisch sind Biichi-Automaten wie endliche Automaten
definiert.

@ Semantisch lesen sie unendliche lange Worter!

@ Sei X ein endliches Alphabet. Ein unendliches Wort iiber
(oder w-Wort) ist eine unendliche Folge w = agajay ... von
Buchstaben a; € ¥.

Die Menge aller unendlichen Waérter liber > wird mit 2%
bezeichnet. Eine Menge L C ¥ wird als w-Sprache
bezeichnet.

Mit |w|, (w € £¥, a € X) wird die Anzahl der Vorkommen
des Buchstabens a im Wort w bezeichnet.

Konkatenation etc. wird erweitert. Es ist allerdings nicht
moglich zwei w-Worter zu konkatenieren, sondern nur ein
endliches Wort v und ein w-Wort w zu v - w zu machen.

Ahnlich macht v¥ nur fiir v € ¥* Sinn und ist auf L“ fiir
Sprachen L C X* erweiterbar.

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

w-Worter

Definition (w-Worter und -Sprachen)

@ Sei X ein endliches Alphabet. Ein unendliches Wort iiber
(oder w-Wort) ist eine unendliche Folge w = apajay ... von
Buchstaben a; € Y.

@ Die Menge aller unendlichen Woérter iiber ¥ wird mit X%
bezeichnet. Eine Menge L C X wird als w-Sprache
bezeichnet.

Frank Heitmann heitmann@informatik.uni-hamburg.de

25/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

w-Worter

Definition (w-Worter und -Sprachen)

@ Sei X ein endliches Alphabet. Ein unendliches Wort iiber
(oder w-Wort) ist eine unendliche Folge w = apajay ... von
Buchstaben a; € Y.

@ Die Menge aller unendlichen Woérter iiber ¥ wird mit X%
bezeichnet. Eine Menge L C X wird als w-Sprache
bezeichnet.

e Mit |w|, (w € X¥, a € X) wird die Anzahl der Vorkommen
des Buchstabens a im Wort w bezeichnet.

Frank Heitmann heitmann@informatik.uni-hamburg.de

25/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

w-Worter

Definition (w-Worter und -Sprachen)

@ Sei X ein endliches Alphabet. Ein unendliches Wort iiber
(oder w-Wort) ist eine unendliche Folge w = apajay ... von
Buchstaben a; € Y.

@ Die Menge aller unendlichen Woérter iiber ¥ wird mit X%
bezeichnet. Eine Menge L C X wird als w-Sprache
bezeichnet.

e Mit |w|, (w € X%, a € ¥) wird die Anzahl der Vorkommen
des Buchstabens a im Wort w bezeichnet.

@ Konkatenation etc. wird erweitert. Es ist allerdings nicht
moglich zwei w-Worter zu konkatenieren, sondern nur ein
endliches Wort v und ein w-Wort w zu v - w zu machen.

Frank Heitmann heitmann@informatik.uni-hamburg.de

25/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

w-Worter

Definition (w-Worter und -Sprachen)

Sei ¥ ein endliches Alphabet. Ein unendliches Wort iiber ¥
(oder w-Wort) ist eine unendliche Folge w = apajay ... von
Buchstaben a; € Y.

Die Menge aller unendlichen Wérter iiber ¥ wird mit ¥¢

bezeichnet. Eine Menge L C X wird als w-Sprache
bezeichnet.

Mit |w|, (w € £¥, a € X) wird die Anzahl der Vorkommen
des Buchstabens a im Wort w bezeichnet.

Konkatenation etc. wird erweitert. Es ist allerdings nicht
moglich zwei w-Worter zu konkatenieren, sondern nur ein
endliches Wort v und ein w-Wort w zu v - w zu machen.
Ahnlich macht v* nur fiir v € £* Sinn und ist auf L¥ fiir
Sprachen L C ¥* erweiterbar.

Frank Heitmann heitmann@informatik.uni-hamburg.de

25/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

w-reguldre Sprachen

Definition (w-reguldre Sprachen)
Sei L C ¥*. L ist w-reguldr, wenn ein n € N existiert und regulire
Sprachen Uy, U, ..., Up—1, Vo, V1,..., Vo1 C Z* mit A € V; fiir
alle /, so dass

L= Uy

gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 26/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

w-reguldre Sprachen

Definition (w-reguldre Sprachen)

Sei L C ¥*. L ist w-reguldr, wenn ein n € N existiert und regulire
Sprachen Uo, Uty ..., Up1, Vo, Vi, ..., V1 C ZF mit A ¢ V; fiir
alle /, so dass

L=UlZ UiV

gilt.

Satz

Die Klasse der w-reguldren Sprachen ist abgeschlossen unter Verei-
nigung und Linkskonkatenation mit reguldren Sprachen.

|

A

Frank Heitmann heitmann@informatik.uni-hamburg.de 26/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Blichi-Automaten

Definition (NBA)
Ein Biichi-Automat (NBA) ist ein 5-Tupel

A= (Za za 67 20, Zend)
mit:

Der endlichen Menge von Zustinden Z.

Der Uberfiihrungsfunktion § : Z x ¥ — 2Z.
Dem Startzustand zy € Z.

Der Menge der Endzustinde Ze,q C Z.

Frank Heitmann heitmann@informatik.uni-hamburg.de

Dem endlichen Alphabet > von Eingabesymbolen.

27/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Biichi-Automaten

Definition (NBA - Fortsetzung)

@ Sei w = gpajaz ... € X¥ ein Wort. Ein Lauf von A auf w ist

eine unendliche Folge von Zustidnden p = zgz12 . . ., die am
Anfangszustand beginnt und die zj11 € §(z;, a;) fur alle i >0
erfiillt.

Frank Heitmann heitmann@informatik.uni-hamburg.de

28/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Biichi-Automaten

Definition (NBA - Fortsetzung)
@ Sei w = gpajaz ... € X¥ ein Wort. Ein Lauf von A auf w ist

eine unendliche Folge von Zustidnden p = zgz12 . . ., die am
Anfangszustand beginnt und die zj11 € §(z;, a;) fur alle i >0
erfiillt.

e Mit inf(p) wird die Menge der in p unendlich oft
vorkommenden Zustinde bezeichnet.

Frank Heitmann heitmann@informatik.uni-hamburg.de 28/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Blichi-Automaten

Definition (NBA - Fortsetzung)

@ Sei w = gpajaz ... € X¥ ein Wort. Ein Lauf von A auf w ist

eine unendliche Folge von Zustidnden p = zgz12 . . ., die am
Anfangszustand beginnt und die zj11 € §(z;, a;) fur alle i >0
erfiillt.

e Mit inf(p) wird die Menge der in p unendlich oft
vorkommenden Zustinde bezeichnet.

e Ein Lauf ist akzeptierend wenn inf(p) N F #) gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 28/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Blichi-Automaten

Definition (NBA - Fortsetzung)

@ Sei w = gpajaz ... € X¥ ein Wort. Ein Lauf von A auf w ist

eine unendliche Folge von Zustidnden p = zgz12 . . ., die am
Anfangszustand beginnt und die zj11 € §(z;, a;) fur alle i >0
erfiillt.

e Mit inf(p) wird die Menge der in p unendlich oft
vorkommenden Zustinde bezeichnet.

e Ein Lauf ist akzeptierend wenn inf(p) N F #) gilt.

@ L(A) ist die Menge jener Worter, fiir die ein akzeptierender
Lauf in A existiert.

Frank Heitmann heitmann@informatik.uni-hamburg.de 28/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Blichi-Automaten

Definition (NBA - Fortsetzung)

@ Sei w = gpajaz ... € X¥ ein Wort. Ein Lauf von A auf w ist

eine unendliche Folge von Zustidnden p = zgz12 . . ., die am
Anfangszustand beginnt und die zj11 € §(z;, a;) fur alle i >0
erfiillt.

e Mit inf(p) wird die Menge der in p unendlich oft
vorkommenden Zustinde bezeichnet.

e Ein Lauf ist akzeptierend wenn inf(p) N F #) gilt.

@ L(A) ist die Menge jener Worter, fiir die ein akzeptierender
Lauf in A existiert.

@ Ist [6(z,a)| =1 fiir alle z € Z und a € ¥, dann ist der NBA
deterministische (d.h. ein DBA).

Frank Heitmann heitmann@informatik.uni-hamburg.de 28/62

Zu jedem NBA mit mehreren Startzustanden existiert ein
dquivalenter NBA mit nur einem Startzustand (und nur einem
Zustand mehr).

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Biichi-Automaten

Satz

Zu jedem NBA mit mehreren Startzustianden existiert ein
dquivalenter NBA mit nur einem Startzustand (und nur einem
Zustand mehr).

Beweis.

Wie bei NFAs: Fiihre einen neuen (einzigen) Startzustand zpe, ein
und eine a-Kante von z,e, zu z, wenn es eine a-Kante von einem
fritheren Startzustand zu z gab. O

Frank Heitmann heitmann@informatik.uni-hamburg.de 29/62

Ein DBA fiir L; = (a*b)* ?

Ein DBA fiir L; = (a*b)* ?

Ein Biichi-Automat fiir Ly = (a + b)*a® ?

Ein Biichi-Automat fiir Ly = (a + b)*a® ?

Der erste Automat war deterministisch, dieser nicht... J

NBAs sind echt méchtiger als DBAs, d.h. es gibt w-Sprachen, die
von einem NBA akzeptiert werden kénnen, nicht aber von einem
DBA.

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

DBA < NBA

Satz

NBASs sind echt machtiger als DBAs, d.h. es gibt w-Sprachen, die

von einem NBA akzeptiert werden kénnen, nicht aber von einem
DBA.

Beweis.

Man kann dies gerade an obigem Ly = {w € {a, b}* | |w|p < o0}
zeigen. Ly kann nach obigem von einem NBA akzeptiert werden.
Angenommen A = (Z, X%, 0, 2p, Zeng) ist nun ein DBA mit

L(A) = Ly, dann O

Frank Heitmann heitmann@informatik.uni-hamburg.de

32/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

DBA < NBA

Satz

NBASs sind echt machtiger als DBAs, d.h. es gibt w-Sprachen, die

von einem NBA akzeptiert werden kénnen, nicht aber von einem
DBA.

Beweis.

Man kann dies gerade an obigem Ly = {w € {a, b}* | |w|p < o0}
zeigen. Ly kann nach obigem von einem NBA akzeptiert werden.
Angenommen A = (Z, X%, 0, 2p, Zeng) ist nun ein DBA mit

L(A) = Ly, dann ... Hausaufgabe! :) O

Frank Heitmann heitmann@informatik.uni-hamburg.de

32/62

Das Leerheitsproblem fiir NBA ist in Zeit O(n) Iésbar, wobei n die
Anzahl der Transitionen des NBA ist.

Sei A= (Z,X%,0, 20, Zeng) €in NBA und sei auBerdem jedes z € Z
erreichbar.

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Leerheitsproblem

Satz

Das Leerheitsproblem fiir NBA ist in Zeit O(n) Iésbar, wobei n die
Anzahl der Transitionen des NBA ist.

Beweis.

Sei A= (Z,%,9,2p, Zeng) €in NBA und sei auBerdem jedes z € Z
erreichbar. Es gilt L(A) # 0 gdw. es einen Pfad von z zu einem
z € Zepng gibt und danach einen (nicht-leeren) Pfad von z nach z.

Frank Heitmann heitmann@informatik.uni-hamburg.de 33/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Leerheitsproblem

Satz

Das Leerheitsproblem fiir NBA ist in Zeit O(n) Iésbar, wobei n die
Anzahl der Transitionen des NBA ist.

Beweis.

Sei A= (Z,%,9,2p, Zeng) €in NBA und sei auBerdem jedes z € Z
erreichbar. Es gilt L(A) # 0 gdw. es einen Pfad von z zu einem
z € Zepng gibt und danach einen (nicht-leeren) Pfad von z nach z.

© Berechne eine Zerlegung des Zustandsdiagramms in maximale
strenge Zusammenhangskomponenten (SCC) in O(n).

@ Priife fiir jedes z € Z.,4 0b es in einer nicht-trivialen
(mindestens eine Kante) SCC liegt.

Ist der zweite Schritt erfolgreich gilt L(A) # (), sonst ist die
akzeptierte Sprache leer. O

Frank Heitmann heitmann@informatik.uni-hamburg.de 33/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

NBA und w-regulare Sprachen

@ Seien A, B zwei NBAs und C ein NFA, dann existieren NBAs
D und E mit L(D) = L(A) U L(B) und L(E) = L(C) - L(A).
Ist auBerdem A ¢ L(C), dann existiert ein NBA F mit
L(F) = L(C)~.

Frank Heitmann heitmann@informatik.uni-hamburg.de 34/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

NBA und w-regulare Sprachen

@ Seien A, B zwei NBAs und C ein NFA, dann existieren NBAs
D und E mit L(D) = L(A) U L(B) und L(E) = L(C) - L(A).
Ist auBerdem A ¢ L(C), dann existiert ein NBA F mit
L(F) = L(C)~.

@ Eine Sprache L ist w-regulidr gdw. ein Biichi-Automat A
existiert mit L(A) = L.

Frank Heitmann heitmann@informatik.uni-hamburg.de 34/62

Seien A und B NBAs mit n bzw. m Zustanden. Dann existiert ein
NBA C mit L(C) = L(A)N L(B) und 3 - n- m Zustanden.

Sei A= (Z,X%,0, 20, Zeng) und B = (Z’,Z,(S’,z(’),Zénd). Wir
definieren:

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

NBA Schnitt

Sei A= (Z,X%,0,29, Zeng) und B = (Z', %, ¢, z;, Z;nd). Wir
definieren:

C:=(ZxZ %x{0,1,2},%,8" (2,2,0),Z x Z' x {2})
mit 6" ((z,2',1),a) == {(u,v',j) | u € 6(z,a),u’ € §'(Z',a)} wobei
1 ,fallsi=0und u€ Zyg oderi=1und v/ & Z! |
ji=% 2 ,fallsi=1und v €Z,

0 , sonst.

Weiteres (Korrektheit der Konstruktion) als Hausaufgabe...

Frank Heitmann heitmann@informatik.uni-hamburg.de

36/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Generalisierter NBA

Definition (Generalisierter NBA (GNBA))

@ Ein generalisierter NBA (GNBA) ist ein Tupel
A=(Z,%,8, Zstart, ZL 4, Z2 41+ - - Zé‘nd), der wie ein NBA
definiert ist mit Ausnahme einer Startzustandsmenge

Zstart € Z und mehreren Endzustandsmengen.

@ Ein Lauf ist wie beim NBA definiert mit der Ausnahme, dass
der Lauf bei einem beliebigen z € Z.+ beginnen kann.

o Ein Lauf p ist akzeptierend, falls inf(p) N Z! , #) fiir alle i
gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 37/62

Zu jedem GNBA A = (Z, %, 8, Zstart, Z0,y - - -, Z: 1) lasst sich ein
NBA A" konstruieren mit L(A’) = L(A) und |A'| =1+|Z|-(k+1).

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Generalisierter NBA

Satz
Zu jedem GNBA A = (Z,%, 6, Zstart, Z° 7k 1) ldsst sich ein

end’ " * end

NBA A’ konstruieren mit L(A’) = L(A) und \A’| =1+|Z| - (k+1).

Beweis

Wir definieren
A = (Z xAo,.. 1} ¥, A, Zstare x {0}, 22, x {0}) mit
A((z,i),a) = {(,j) | z/ € (5(2, a)} wobei

.| i+1 modk ,fallszecF;
J = i . sonst.

Frank Heitmann heitmann@informatik.uni-hamburg.de 38/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Generalisierter NBA

Beweis.
@ In der ersten Zustandskomponente wird A simuliert.

@ In der zweiten Zustandskomponente wird angegeben aus
welcher Endzustandsmenge als nichstes ein Endzustand
besucht werden soll.

Frank Heitmann heitmann@informatik.uni-hamburg.de 39/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Generalisierter NBA

Beweis.
@ In der ersten Zustandskomponente wird A simuliert.

@ In der zweiten Zustandskomponente wird angegeben aus
welcher Endzustandsmenge als nidchstes ein Endzustand
besucht werden soll.

Letzteres funktioniert, da in einem akzeptierenden Lauf A aus allen
Mengen F; unendlich oft einen Zustand besucht. Daraus folgt, dass
wenn A einen Zustand aus F; besucht, irgendwann einer aus

Fit1 mod k besucht werden muss (auch wenn dazwischen vielleicht
bereits welche aus einem F; besucht werden). Damit lasst sich
dann leicht argumentieren, dass ein akzeptierender Lauf in A auch
einer in A’ ist und umgekehrt. O]

Frank Heitmann heitmann@informatik.uni-hamburg.de 39/62

®

®

®

®

Wie war noch gleich der Plan?!

Sei M ein LTS und ¢ eine LTL Formel.

Zu —¢ (der Negation der Spezifikation!) konstruieren wir
einen (Biichi-)Automaten A_.

A_4 akzeptiert genau die Worter w mit w = —¢.
Bilde den “Produktautomaten” M N A_.

Priife, ob die akzeptierte Sprache von M N A leer ist.

LTL, CTL und CTL* Grober Ablauf

Model Checking LTL Im Detail
Die Idee
Wie war noch gleich der Plan?!
Sei M ein LTS und ¢ eine LTL Formel.
@ Zu —¢ (der Negation der Spezifikation!) konstruieren wir

einen (Biichi-)Automaten A_.

A-, akzeptiert genau die Worter w mit w = —¢.
Bilde den “Produktautomaten” M N A_,.
Priife, ob die akzeptierte Sprache von M M A_y4 leer ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 40/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Das Vorgehen (Wiederholung)

@ Biichi-Automaten (und drumherum) (erledigt)

@ Eine alternative (aber dquivalente) Semantik fiir LTL
© Damit dann die Konstruktion fiir A-

© Den “Produktautomaten” (erledigt, aber ...)

© Den Leerheitstest (erledigt)

Frank Heitmann heitmann@informatik.uni-hamburg.de 41/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

LTL - alternative Definition

Sei P = {p1, p2, ...} eine Menge von atomaren Formeln. Sei

pu=p| 9| (oVe)|Xo| U
und als Abkiirzungen:
oRY = —(-pU~v)

Fo TUS
Gp = —F-¢

Dabei wird ¢ R erfiillt, wenn entweder) immer gilt oder ¢ bis zu
einem Moment gilt, in dem sowohl ¢ als auch) gelten.

Frank Heitmann heitmann@informatik.uni-hamburg.de 42/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

LTL - alternativ

Definition (LTL - alternativ)

Sei w = agay ... € (2F)¥. Die Semantik ist induktiv fiir alle i € N

definiert durch:

w,i = p gdw.
w,i = ¢ gdw.
w,i=¢1Vea gdw.
w,i = X gdw.

W,i |: gbl Ud)z gdw.

p € aj

w,i = ¢

w,i = ¢1 oder w,i = ¢o
w,i+1E¢

ein k > i existiert mit w, k = ¢ und
fir alle j mit i < j < k gilt w,j E ¢1

Ein Wort entspricht dabei den Labels jener Zustand, die bei einem

Lauf durch ein LTS besucht werden.

Frank Heitmann heitmann@informatik.uni-hamburg.de

43/62

Sei ¥ = (2P), v € ¥ und ¢ eine LTL-Formel. Es ist v |= ¢, falls
v,0 = ¢ und L(¢) = {u| u = ¢}. Zwei Formeln ¢ und 1) sind
aquivalent, ¢ = 1, falls L(¢) = L(v) gilt.

LTL, CTL und CTL™ Grober Ablauf
Model Checking LTL Im Detail

LTL - alternativ

Definition

Sei ¥ = (2P), v € ¥ und ¢ eine LTL-Formel. Es ist v |= ¢, falls
v,0 = ¢ und L(¢) = {u| u = ¢}. Zwei Formeln ¢ und 1) sind
aquivalent, ¢ =1, falls L(¢) = L(v) gilt.

Ist z.B. P = {C,D}, dann ist ¥ = {0,{C},{D},{C,D}}. Will
man nun an ein bestimmtes a € X~ herankommen, so kann man
charakteristische Formeln x, verwenden:

xa=(A\ P)A(/\ -p)
pEa péa

Will man z.B. eine Formel fiir die Sprache, die nur aus dem Wort
({C}{D})“ besteht, so geht dies mit:

xc A G((xc = Xxp) A(xp = Xxc))

Frank Heitmann heitmann@informatik.uni-hamburg.de 44/62

Eine LTL-Formel ist in positiver Normalform, wenn sie nur aus
Literalen p,—p (fiir ein p € P) und den Operatoren V, A, X, U und
R aufgebaut ist.

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Normalform

Definition (Positive Normalform)

Eine LTL-Formel ist in positiver Normalform, wenn sie nur aus
Literalen p,—p (fiir ein p € P) und den Operatoren V, A, X, U und
R aufgebaut ist.

Satz

Zu jeder LTL-Formel ¢ gibt es eine dquivalente LTL-Formel ¢' in
positiver Normalform. Ferner ist |¢/| < 2 -|d]|.

Frank Heitmann heitmann@informatik.uni-hamburg.de 45/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Normalform

Definition (Positive Normalform)

Eine LTL-Formel ist in positiver Normalform, wenn sie nur aus
Literalen p,—p (fiir ein p € P) und den Operatoren V, A, X, U und
R aufgebaut ist.

Satz

Zu jeder LTL-Formel ¢ gibt es eine dquivalente LTL-Formel ¢ in
positiver Normalform. Ferner ist |¢/| < 2 -|d]|.

Beweis.

Zum Beweis betrachtet man jeden Operator in negierter und
nicht-negierter Form und zeigt, dass man ihn wie angegeben
ausdriicken kann. Z.B. ist

Gp=-F-p=-(TU-p)=-(—-LU-p) = LRp und

—(pRq) = ==(-pU—q) = (=pU—q). O

Frank Heitmann heitmann@informatik.uni-hamburg.de 45/62

Es gilt pUg = q V (p A X(pUq)).

Sei w,i = pUq. Dann gibt es ein k > i mit w,k =qund w,j = p
fir alle j mit i <j < k. Zwei Fille:

Q@ k=. Danngilt w,i = gq.
@ k> i Dannist w,i=pund w,i+ 1k pUg (Warum?) und
daher w,i = X(pUq).

Damit gilt w,i = qV (p A X(pUg)). O]

Es gilt pUg = q V (p A X(pUq)).

Sei w,i = pUq. Dann gibt es ein k > i mit w,k =qund w,j = p
fir alle j mit i <j < k. Zwei Fille:
Q@ k=i Danngiltw,iEq.
@ k> i Dannist w,i}=pund w,i+ 1 pUqg (Warum?) und
daher w, i = X(pUgq).
Damit gilt w,i = q V (p A X(pUg)). O

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Abwicklung von U und R

Satz
Es gilt pUg = q V (p A X(pUq)).

Beweis.
Sei w,i = pUq. Dann gibt es ein k > i mit w,k =qund w,j = p
fir alle j mit 7 < j < k. Zwei Falle:
Q@ k=i Danngiltw,i[Eq.
@ k> i Dannist w,i=pund w,i+ 1 pUg (Warum?) und
daher w, i = X(pUq).
Damit gilt w,i = q V (p A X(pUq)). O

Frank Heitmann heitmann@informatik.uni-hamburg.de 46/62

Die Riickrichtung zeigt man analog. Ebenso wie die Abwicklung
von R:

Es gilt pRg=q A (pV X(pRq)). '

Zur Ubung. ..

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Von LTL zum NBA - Die Idee

Wir konstruieren nun einen NBA, der genau die Menge aller
Modelle fiir eine LTL Formel ¢ erkennt.

@ Die Idee ist als Zustande Hintikka-Mengen zu benutzen. Diese
enthalten gerade die (Unter-)Formeln, die an einer
bestimmten Stelle im Modell gelten miissen.

Frank Heitmann heitmann@informatik.uni-hamburg.de 48/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Von LTL zum NBA - Die Idee

Wir konstruieren nun einen NBA, der genau die Menge aller
Modelle fiir eine LTL Formel ¢ erkennt.

@ Die Idee ist als Zustande Hintikka-Mengen zu benutzen. Diese
enthalten gerade die (Unter-)Formeln, die an einer
bestimmten Stelle im Modell gelten miissen.

@ Diese werden in jedem Schritt nichtdeterministisch geraten.

Frank Heitmann heitmann@informatik.uni-hamburg.de 48/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Von LTL zum NBA - Die Idee

Wir konstruieren nun einen NBA, der genau die Menge aller
Modelle fiir eine LTL Formel ¢ erkennt.

@ Die Idee ist als Zustande Hintikka-Mengen zu benutzen. Diese
enthalten gerade die (Unter-)Formeln, die an einer
bestimmten Stelle im Modell gelten miissen.

@ Diese werden in jedem Schritt nichtdeterministisch geraten.

@ Durch die Konsistenz der Hintikka-Mengen wird
ausgeschlossen, dass etwas geraten wird, was bereits der
Aussagenlogik widerspricht.

Frank Heitmann heitmann@informatik.uni-hamburg.de 48/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Von LTL zum NBA - Die Idee

Wir konstruieren nun einen NBA, der genau die Menge aller
Modelle fiir eine LTL Formel ¢ erkennt.

@ Die Idee ist als Zustande Hintikka-Mengen zu benutzen. Diese
enthalten gerade die (Unter-)Formeln, die an einer
bestimmten Stelle im Modell gelten miissen.

@ Diese werden in jedem Schritt nichtdeterministisch geraten.

@ Durch die Konsistenz der Hintikka-Mengen wird
ausgeschlossen, dass etwas geraten wird, was bereits der
Aussagenlogik widerspricht.

@ U und R Formeln werden entsprechend ihrer Abwicklung
behandelt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 48/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Von LTL zum NBA - Die Idee

Wir konstruieren nun einen NBA, der genau die Menge aller
Modelle fiir eine LTL Formel ¢ erkennt.

@ Die Idee ist als Zustande Hintikka-Mengen zu benutzen. Diese
enthalten gerade die (Unter-)Formeln, die an einer
bestimmten Stelle im Modell gelten miissen.

@ Diese werden in jedem Schritt nichtdeterministisch geraten.

@ Durch die Konsistenz der Hintikka-Mengen wird
ausgeschlossen, dass etwas geraten wird, was bereits der
Aussagenlogik widerspricht.

@ U und R Formeln werden entsprechend ihrer Abwicklung
behandelt.

@ Dass U nicht unendlich lange abgewickelt wird, wird durch die
Akzeptanzbedingung sichergestellt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 48/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Von LTL zum NBA - Die Idee

Wir konstruieren nun einen NBA, der genau die Menge aller
Modelle fiir eine LTL Formel ¢ erkennt.

Die Idee ist als Zustiande Hintikka-Mengen zu benutzen. Diese
enthalten gerade die (Unter-)Formeln, die an einer
bestimmten Stelle im Modell gelten miissen.

Diese werden in jedem Schritt nichtdeterministisch geraten.

@ Durch die Konsistenz der Hintikka-Mengen wird

ausgeschlossen, dass etwas geraten wird, was bereits der
Aussagenlogik widerspricht.

U und R Formeln werden entsprechend ihrer Abwicklung
behandelt.

Dass U nicht unendlich lange abgewickelt wird, wird durch die
Akzeptanzbedingung sichergestellt.

Der X Operator wird durch die Uberginge behandelt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 48/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Von LTL zum NBA - Vorarbeiten

Definition (Fischer-Ladner-Abschluss)
Sei ¢ eine LTL-Formel in positiver Normalform. Der
Fischer-Ladner-Abschluss von ¢ ist die kleinste Menge FL(¢), die ¢
enthalt und fiir die folgendes gilt:
Q@ pVqeFL()={p,q} S FL(¢)
@ pAqeFL(p)={p,q} S FL(¢)
@ Xpe FL(¢) = p € FL(9)
Q@ pUq € FL(¢) = {p,q, 9V (pAX(pUq)), pAX(pUq), X(pUq)}
@ pRq € FL(¢) = {p,q,9N(pV X(pRq)), pV X(pRq), X(pRq)}

Frank Heitmann heitmann@informatik.uni-hamburg.de 49/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Von LTL zum NBA - Vorarbeiten

Definition (Hintikka-Mengen)
Sei ¢ eine LTL-Formel in positiver Normalform. Eine
Hintikka-Menge fiir ¢ ist eine Menge M C FL(¢) mit
Q@ pVgeM=pe Moderge M
Q@ pANgeM=peMundge M
© pUge M= g€ M oder (p € M und X(pUq) € M)
Q pRge M= g Mund (p € M oder X(pRq) € M)

Frank Heitmann heitmann@informatik.uni-hamburg.de

50/62

o Eine Hintikka-Menge M heiBt konsistent, falls es kein p € P
mit {p, —p} C M gibt.

e Mit H(¢) wird die Menge aller konsistenten Hintikka-Mengen
bezeichnet.

e Mit Pt (M) wird die Menge aller positiven Literale in M
bezeichnet (also PT(M) = M N P).

e Mit P~ (M) wird die Menge aller negativen Literale in M
bezeichnet.

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Von LTL zum NBA - Vorarbeiten

Definition (Hintikka-Mengen (Teil 2))
o Eine Hintikka-Menge M heiBt konsistent, falls es kein p € P
mit {p, ~p} C M gibt.
e Mit H(¢) wird die Menge aller konsistenten Hintikka-Mengen
bezeichnet.

Frank Heitmann heitmann@informatik.uni-hamburg.de 51/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Von LTL zum NBA - Vorarbeiten

Definition (Hintikka-Mengen (Teil 2))
o Eine Hintikka-Menge M heiBt konsistent, falls es kein p € P
mit {p, —p} C M gibt.

e Mit H(¢) wird die Menge aller konsistenten Hintikka-Mengen
bezeichnet.

e Mit Pt (M) wird die Menge aller positiven Literale in M
bezeichnet (also PT(M) = MnN P).

Frank Heitmann heitmann@informatik.uni-hamburg.de 51/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Von LTL zum NBA - Vorarbeiten

Definition (Hintikka-Mengen (Teil 2))
o Eine Hintikka-Menge M heiBt konsistent, falls es kein p € P
mit {p, ~p} C M gibt.
e Mit H(¢) wird die Menge aller konsistenten Hintikka-Mengen
bezeichnet.

e Mit Pt (M) wird die Menge aller positiven Literale in M
bezeichnet (also PT(M) = MnN P).

e Mit P~ (M) wird die Menge aller negativen Literale in M
bezeichnet.

Frank Heitmann heitmann@informatik.uni-hamburg.de 51/62

Zu jeder LTL-Formel ¢ in positiver Normalform kann ein NBA A,
konstruiert werden mit L(Ay) = L(¢). Ferner ist |Ay| < 22191,

Zu jeder LTL-Formel ¢ in positiver Normalform kann ein NBA A,
konstruiert werden mit L(Ay) = L(¢). Ferner ist |Ay| < 22191,

Zu jeder LTL-Formel ¢ kann ein NBA Ay konstruiert werden mit
L(Ag) = L(¢). Ferner ist |Ay| < 200D,

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Von LTL zum NBA - Die Konstruktion

Seien p1Uqi, p2Uqa, . . ., pcUgy alle in FL(¢) vorkommenden
U-Formeln. Wir definieren

A= (H(¢)7 Za 67 Zstarta Zlnd,) Zeknd)

e

wobei:

Zstart = {M|¢€M}
end = {M|piUgie M= q; € M}

Ferner ist
§(M,a):={M'|vYXqge M:qe M}

im Fall PT(M) C aund P~(M)Na=(und sonst
§(M, a) := 0.

Frank Heitmann heitmann@informatik.uni-hamburg.de 53/62

Zu jeder LTL-Formel ¢ in positiver Normalform kann ein NBA A,
konstruiert werden mit L(Ay) = L(¢). Ferner ist |Ay| < 22191,

Beweis der Korrektheit der Konstruktion

O

Zu jeder LTL-Formel ¢ in positiver Normalform kann ein NBA A,
konstruiert werden mit L(Ay) = L(¢). Ferner ist |Ay| < 22191,

Beweis der Korrektheit der Konstruktion
... als Hausaufgabe O

Wir n3dhern uns dem Ende. Das System wird eher mit einem
Transitionssystem modelliert (oder mit einem Formalismus, der in
dieses iibersetzt wird). Daher brauchen wir dafiir einen
“Produktautomaten”. Zur Wiederholung ...

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Transitionssysteme

Definition (Transitionssystem)

Ein labelled transition system (LTS) ist ein Tupel
TS = (S, s0, R, L)mit

einer endlichen Menge von Zustinden S,
einem Startzustand sy € S,

einer links-totalen Ubergangsrelation R C S x S und

einer labelling function L : S — 2P, die jedem Zustand s die
Menge der atomaren Formeln L(s) C P zuweist, die in s
gelten.

Frank Heitmann heitmann@informatik.uni-hamburg.de 56/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Transitionssysteme

Definition (Pfad im LTS)

@ Ein Pfad 7 in einem LTS TS = (S, s, R, L) ist eine
unendliche Sequenz von Zustanden

T = 51553 . . .

derart, dass (sj, si+1) € R fiir alle / > 1.

e Ein Laufin TS ist ein unendliches Wort aga; ... € (2F)“, so

dass ein Pfad spsj ... existiert mit a; = L(s;) fiir alle /. Mit
L(TS) wird die Menge der Laufe von TS bezeichnet.

Frank Heitmann heitmann@informatik.uni-hamburg.de

57/62

Sei TS = (S, s0, R, L) ein LTS iiber P und A = (Z,2",6, 29, Zend)
ein NBA. Wir definieren deren Produkt als NBA
C:=(SxZ,{e},A (50,20),S X Zend), wobei

A((s,z),8) ={(s',Z) | (s,5') € RAZ €6(z,\(s))}

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Ein weiterer Produktautomat

Definition

Sei TS = (S, s0, R, L) ein LTS iiber P und A = (Z,2F, 6, z0, Zepa)
ein NBA. Wir definieren deren Produkt als NBA
C:=(SxZ,{e},A (50,20),S X Zeng), wobei

A((s,z),0) ={(s',2) | (s,5') € RAZ € (z,\(s))}
Satz
Ist TS ein LTS, A ein NBA und C der aus obiger Definition
hervorgegangener NBA. Es gilt L(C) = 0 gdw. L(TS) N L(A) = 0.

Beweis.
Zur Ubung... O

Frank Heitmann heitmann@informatik.uni-hamburg.de 58/62

Das Model-Checking-Problem mit LTS TS und LTL-Formel ¢ lasst
sich in Zeit | TS| - 290%)) entscheiden.

© Betrachte —¢ und konstruiere NBA A_; mit
L(A-y) = L(—¢) = L(Ay). Es ist |A_y| = 200D,

@ Bilde das Produkt C aus LTS TS und A-,;. Nach obigem ist
|IC| = |TS| .20(¢l)

© Nun ist nach dem vorherigen Satz L(C) = ()
gdw. L(TS) N L(A) = 0 und wir kénnen das Leerheitsproblem
in linearer Zeit, d.h. hier in O(| TS| - 290D I5sen.

O

Das Model-Checking-Problem mit LTS TS und LTL-Formel ¢ lasst
sich in Zeit | TS| - 290%)) entscheiden.

© Betrachte =¢ und konstruiere NBA A_4 mit
L(A-y) = L(—¢) = L(Ay). Es ist |A_y4| = 2009D.

@ Bilde das Produkt C aus LTS TS und A_;. Nach obigem ist
C| = | TS| - 200D,

© Nun ist nach dem vorherigen Satz L(C) = ()
gdw. L(TS) N L(A) = 0 und wir kénnen das Leerheitsproblem
in linearer Zeit, d.h. hier in O(| TS| - 200¢D) I5sen.

O

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Finale!

Satz

Das Model-Checking-Problem mit LTS TS und LTL-Formel ¢ lasst
sich in Zeit | TS| - 2909 entscheiden.

Beweis.
© Betrachte —¢ und konstruiere NBA A_4 mit
L(Aog) = L(=¢p) = L(Ag). Es ist |A_y| = 200D,
@ Bilde das Produkt C aus LTS TS und A-4. Nach obigem ist
|IC|=|TS|- 20(l9l)

Frank Heitmann heitmann@informatik.uni-hamburg.de 59/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Finale!

Satz

Das Model-Checking-Problem mit LTS TS und LTL-Formel ¢ lasst
sich in Zeit | TS| - 2909 entscheiden.

Beweis.
© Betrachte —¢ und konstruiere NBA A_4 mit
L(Aog) = L(=¢p) = L(Ag). Es ist |A_y| = 200D,
@ Bilde das Produkt C aus LTS TS und A-4. Nach obigem ist
|IC|=|TS|- 20(l9l)
© Nun ist nach dem vorherigen Satz L(C) =0

gdw. L(TS) N L(A) = 0 und wir kénnen das Leerheitsproblem
in linearer Zeit, d.h. hier in O(] TS| - 20(¢D) |6sen.

O

Frank Heitmann heitmann@informatik.uni-hamburg.de 59/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Zur Lektire

Literaturhinweis
Der Inhalt der heutigen Vorlesung ist aus Automatentheorie und
Logik von Martin Hofmann und Martin Lange. Erschienen im
Springer-Verlag, 2011.
Dort

o Kapitel 5 (komplett) fiir Biichi-Automaten

@ Satz 9.4 und Korollar 9.5 aus Kapitel 9 zum Leerheitsproblem

e Kapitel 11 (ohne 11.3) fiir LTL, die Konvertierung zu NBAs
und letztendlich fiir das Model-Checking-Problem fiir LTL.

Frank Heitmann heitmann@informatik.uni-hamburg.de

60/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Fiir zu Hause (1/2)

Fiir zu Hause:

@ DBA < NBA [bisschen knifflig, aber geht]
@ Korrektheit beim Produktautomaten zweier NBAs [einfach]
© Beweis des Satzes zum Produkt aus NBA und TS [einfach]

Dann bereitet euch noch (mit Kapitel 11 aus dem eben erwihnten
Buch) auf

@ Beweis der Konstruktion LTL — NBA [schwierig]

vor.

Frank Heitmann heitmann@informatik.uni-hamburg.de 61/62

LTL, CTL und CTL* Grober Ablauf
Model Checking LTL Im Detail

Fiir zu Hause (2/2)

Satz

Sei F eine geschlossene Formel in Skolemform. F ist genau dann
erfiillbar, wenn F ein Herbrand-Modell besitzt.

Satz (Godel-Herbrand-Skolem)

Fiir jede geschlossene Formel in Skolemform F gilt: F ist genau
dann erfiillbar, wenn die Formelmenge E(F) im aussagenlogischen
Sinne erfiillbar ist.

Literatur

Erst selbst versuchen, dann bei Bedarf in die Kapitel 2.4 und 2.5
aus dem Buch Logik fiir Informatiker von Uwe Schéning gucken.

Frank Heitmann heitmann@informatik.uni-hamburg.de 62/62

	LTL, CTL und CTL*
	LTL und CTL
	CTL*

	Model Checking LTL
	Grober Ablauf
	Im Detail

