
LTL, CTL und CTL∗

Model Checking LTL

Formale Grundlagen der Informatik 3
Kapitel 6

Automatenbasiertes LTL Model Checking

Frank Heitmann
heitmann@informatik.uni-hamburg.de

11. Januar 2016

Frank Heitmann heitmann@informatik.uni-hamburg.de 1/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

LTL: Syntax

Definition (Syntax von LTL)

Die (wohlgeformten) Formeln der Linear Temporal Logic (LTL)
werden durch die folgende Grammatik definiert:

φ ::= v | ¬φ | (φ ∧ φ) | (φ ∨ φ) |
Xφ | Fφ | Gφ | (φUφ)

wobei v ∈ V ein aussagenlogisches Atom ist.

Die neuen Operatoren sind neXt, Finally, Globally und Until.

Frank Heitmann heitmann@informatik.uni-hamburg.de 2/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

LTL: Syntax (Alternative)

Definition (Syntax von LTL (alternative))

Die wohlgeformten Ausdrücke/Formeln von LTL werden induktiv
definiert durch

1 Jedes v ∈ V ist eine (atomare) LTL Formel.

2 Wenn φ1 und φ2 Formeln sind, dann auch ¬φ1, (φ1 ∧ φ2) und
(φ1 ∨ φ2).

3 Wenn φ1 und φ2 Formeln sind, dann auch Xφ1,Fφ1,Gφ1 and
(φ1Uφ2).

4 Nur Formeln, die durch endliche häufige Anwendungen der
Regeln 1-3 entstehen, sind wohlgeformte Formeln von LTL.

Zum Klammersparen binden die unären Junktoren ¬,X ,G and F
stärker als U und dann ∧ und ∨.

Frank Heitmann heitmann@informatik.uni-hamburg.de 3/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

Transitionssysteme

LTL und CTL Formeln werden entlang der Pfade eines
Transitionssystems interpretiert. Das Transitionssystem
übernimmt also die Rolle der Belegung in der Aussagenlogik.

Frank Heitmann heitmann@informatik.uni-hamburg.de 4/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

Transitionssysteme

Definition (Transitionssystem)

Ein labelled transition system (LTS) ist ein Tupel
TS = (S , s0,R, L)mit

einer endlichen Menge von Zuständen S ,

einem Startzustand s0 ∈ S ,

einer links-totalen Übergangsrelation R ⊆ S × S und

einer labelling function L : S → P(V), die jedem Zustand s
die Menge der atomaren Formeln L(s) ⊆ V zuweist, die in s
gelten.

Linkstotal bedeutet, dass es zu jedem s ∈ S stets ein s ′ mit
(s, s ′) ∈ R gibt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 5/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

Transitionssysteme

Definition (Pfad im LTS)

Ein Pfad π in einem LTS TS = (S , s0,R, L) ist eine unendliche
Sequenz von Zuständen

π = s1s2s3 . . .

derart, dass (si , si+1) ∈ R für alle i ≥ 1.

Mit πi , i ≥ 1 bezeichnen wir den Suffix, der an si startet,
d.h. den Pfad πi = si si+1 . . .

Mit π(i), i ≥ 1, bezeichnen wir den i-ten Zustand in π,
d.h. π(i) = si .

Wenn s1 der Startzustand s0 von TS ist, wird π auch als
Rechnung bezeichnet.

Frank Heitmann heitmann@informatik.uni-hamburg.de 6/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

LTL: Semantik

Definition (Semantik von LTL (I))

Sei M = (S , s0,R, L) ein LTS und π = s1s2 . . . ein Pfad in M. π
erfüllt eine LTL Formel φ (in M), wenn M, π |= φ gilt, wobei die
Relation |= induktiv definiert ist:

M, π |= v gdw. v ∈ L(s1) für v ∈ V
M, π |= ¬φ gdw. M, π 6|= φ
M, π |= φ1 ∧ φ2 gdw. M, π |= φ1 und M, π |= φ2
M, π |= φ1 ∨ φ2 gdw. M, π |= φ1 oder M, π |= φ2

Frank Heitmann heitmann@informatik.uni-hamburg.de 7/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

LTL: Semantik

Definition (Semantik von LTL (I))

Sei M = (S , s0,R, L) ein LTS und π = s1s2 . . . ein Pfad in M. π
erfüllt eine LTL Formel φ (in M), wenn M, π |= φ gilt, wobei die
Relation |= induktiv definiert ist:

M, π |= v gdw. v ∈ L(s1) für v ∈ V
M, π |= ¬φ gdw. M, π 6|= φ
M, π |= φ1 ∧ φ2 gdw. M, π |= φ1 und M, π |= φ2
M, π |= φ1 ∨ φ2 gdw. M, π |= φ1 oder M, π |= φ2

Frank Heitmann heitmann@informatik.uni-hamburg.de 7/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

LTL: Semantik

Definition (Semantik von LTL (II))

M, π |= Xφ gdw. M, π2 |= φ
M, π |= Fφ gdw. M, πi |= φ für ein i ≥ 1
M, π |= Gφ gdw. M, πi |= φ für alle i ≥ 1
M, π |= φ1Uφ2 gdw. ein i ≥ 1 existiert mit M, πi |= φ2

und für alle j < i M, πj |= φ1 gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 8/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

LTL: Semantik

Definition (Semantik von LTL (III))

Sei M = (S , s0,R, L) ein LTS. Sei φ eine LTL Formel und s ∈ S
ein Zustand von M.

M, s |= φ, wenn M, π |= φ gilt für jeden Pfad π in M, der in s
startet.

Wenn M, s0 |= φ gilt, schreiben wir M |= φ. Wir sagen: M ist
ein Modell für φ oder φ ist in M erfüllt.

Zwei LTL Formeln φ und ψ sind äquivalent, φ ≡ ψ, wenn für
alle Modelle M und alle Pfade π in M auch M, π |= φ
gdw. M, π |= ψ gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 9/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

CTL: Syntax

Definition (Syntax von CTL)

Die (wohlgeformten) Formeln der Computation Tree Logic (CTL)
werden durch die folgende Grammatik definiert:

φ ::= v | ¬φ | (φ ∧ φ) | (φ ∨ φ) |
EXφ | EFφ | EGφ | E [φUφ] |
AXφ | AFφ | AGφ | A[φUφ]

wobei v ∈ V ein aussagenlogisches Atom ist.

Kann man natürlich auch wieder mit einer induktiven Definition ma-
chen!

Frank Heitmann heitmann@informatik.uni-hamburg.de 10/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

CTL: Semantik

Definition (Semantik von CTL (I))

Sei M = (S , s0,R, L) ein LTS und s ∈ S ein Zustand. Eine CTL
Formel φ ist erfüllt in s (in M), wenn M, s |= φ gilt, wobei die
Relation |= induktiv definiert ist:

M, s |= v gdw. v ∈ L(s) für v ∈ V
M, s |= ¬φ gdw. M, s 6|= φ
M, s |= φ1 ∧ φ2 gdw. M, s |= φ1 und M, s |= φ2
M, s |= φ1 ∨ φ2 gdw. M, s |= φ1 oder M, s |= φ2

Frank Heitmann heitmann@informatik.uni-hamburg.de 11/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

CTL: Semantik

Definition (Semantik von CTL (I))

Sei M = (S , s0,R, L) ein LTS und s ∈ S ein Zustand. Eine CTL
Formel φ ist erfüllt in s (in M), wenn M, s |= φ gilt, wobei die
Relation |= induktiv definiert ist:

M, s |= v gdw. v ∈ L(s) für v ∈ V
M, s |= ¬φ gdw. M, s 6|= φ
M, s |= φ1 ∧ φ2 gdw. M, s |= φ1 und M, s |= φ2
M, s |= φ1 ∨ φ2 gdw. M, s |= φ1 oder M, s |= φ2

Frank Heitmann heitmann@informatik.uni-hamburg.de 11/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

CTL: Semantik

Definition (Semantik von CTL (II))

M, s |= EXφ gdw. ein Zustand s ′ ∈ S existiert mit
(s, s ′) ∈ R und M, s ′ |= φ

M, s |= EFφ gdw. ein Pfad π = s1s2 . . . beginnend bei s
(s1 = s) existiert und ein i ≥ 1, so
dass M, si |= φ gilt.

M, s |= EGφ gdw. ein Pfad π = s1s2 . . . beginnend bei s
(s1 = s) existiert und für alle i ≥ 1
M, si |= φ gilt.

M, s |= E [φ1Uφ2] gdw. ein Pfad π = s1s2 . . . beginnend bei s
existiert und ein j ≥ 1, so dass
M, sj |= φ2
und M, si |= φ1 für alle i < j .

Frank Heitmann heitmann@informatik.uni-hamburg.de 12/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

CTL: Semantik

Definition (Semantik von CTL (III))

M, s |= AXφ gdw. M, s ′ |= φ für alle s ′ ∈ S
mit (s, s ′) ∈ R.

M, s |= AFφ gdw. für alle Pfade π = s1s2 . . . beginnend
bei s ein i ≥ 1 existiert mit M, si |= φ.

M, s |= AGφ gdw. für alle Pfade π = s1s2 . . . beginnend
bei s M, si |= φ für alle i ≥ 1 gilt.

M, s |= A[φ1Uφ2] gdw. für alle Pfade π = s1s2 . . . beginnend
bei s ein j ≥ 1 existiert derart, dass
M, sj |= φ2 und
M, si |= φ1 für alle i < j gilt

Frank Heitmann heitmann@informatik.uni-hamburg.de 13/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

CTL: Semantik

Definition (Semantik von CTL (IV))

Sei M = (S , s0,R, L) ein LTS und φ eine CTL Formel.

Wenn M, s0 |= φ gilt, schreiben wir auch M |= φ und sagen,
dass M ein Modell für φ ist oder dass φ erfüllt ist in M.

Zwei CTL Formeln φ und ψ sind äquivalent, φ ≡ ψ, wenn für
alle Modelle M und alle Zustände s in M auch M, s |= φ
gdw. M, s |= ψ gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 14/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

LTL und CTL: Äquivalenzen

Oft benutzt man ein Set von “adequate connectives”, d.h. ein Set
von Junktoren, dass Ausdrucksstark genug ist, um jede Formel der
Logik auszudrücken.

Für LTL ist ein solches Set z.B.

{¬,∧,X ,U}

für CTL z.B.
{¬,∧,EX ,EG ,EU}.

Z.B. ist (in LTL) Fφ := >Uφ und Gφ := ¬F¬φ und (in CTL)
EFφ ≡ E [>Uφ] und AGφ ≡ ¬EF¬φ.

Frank Heitmann heitmann@informatik.uni-hamburg.de 15/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

LTL und CTL: Äquivalenzen

Oft benutzt man ein Set von “adequate connectives”, d.h. ein Set
von Junktoren, dass Ausdrucksstark genug ist, um jede Formel der
Logik auszudrücken.

Für LTL ist ein solches Set z.B.

{¬,∧,X ,U}

für CTL z.B.
{¬,∧,EX ,EG ,EU}.

Z.B. ist (in LTL) Fφ := >Uφ und Gφ := ¬F¬φ und (in CTL)
EFφ ≡ E [>Uφ] und AGφ ≡ ¬EF¬φ.

Frank Heitmann heitmann@informatik.uni-hamburg.de 15/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

CTL∗: Syntax und Semantik

Definition (CTL∗ Syntax)

Die Syntax von CTL∗ ist eine wechselseitig rekursive induktive
Definition, die Pfad- und Zustandsformeln beinhaltet:

Es gibt Zustandsformeln, die in Zuständen ausgewertet
werden:

φ ::= > | p | (¬φ) | (φ ∧ φ) | A[α] | E [α]

wobei p eine atomare Formel ist und α eine Pfadformel.

Es gibt Pfadformeln, die entlang von Pfaden ausgewertet
werden:

α ::= φ | (¬α) | (α ∧ α) | (αUα) | (Gα) | (Fα) | (Xα)

wobei φ eine Zustandsformel ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 16/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

CTL∗: Syntax und Semantik

Definition (CTL∗ Syntax)

Die Syntax von CTL∗ ist eine wechselseitig rekursive induktive
Definition, die Pfad- und Zustandsformeln beinhaltet:

Es gibt Zustandsformeln, die in Zuständen ausgewertet
werden:

φ ::= > | p | (¬φ) | (φ ∧ φ) | A[α] | E [α]

wobei p eine atomare Formel ist und α eine Pfadformel.

Es gibt Pfadformeln, die entlang von Pfaden ausgewertet
werden:

α ::= φ | (¬α) | (α ∧ α) | (αUα) | (Gα) | (Fα) | (Xα)

wobei φ eine Zustandsformel ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 16/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

CTL∗: Syntax und Semantik

Definition (CTL∗ Syntax)

Die Syntax von CTL∗ ist eine wechselseitig rekursive induktive
Definition, die Pfad- und Zustandsformeln beinhaltet:

Es gibt Zustandsformeln, die in Zuständen ausgewertet
werden:

φ ::= > | p | (¬φ) | (φ ∧ φ) | A[α] | E [α]

wobei p eine atomare Formel ist und α eine Pfadformel.

Es gibt Pfadformeln, die entlang von Pfaden ausgewertet
werden:

α ::= φ | (¬α) | (α ∧ α) | (αUα) | (Gα) | (Fα) | (Xα)

wobei φ eine Zustandsformel ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 16/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

CTL∗: Syntax und Semantik

Die Semantik wird dann so wie bei CTL und LTL definiert, je
nachdem, ob es eine Zustands- oder eine Pfadformel ist.

Eine LTL-Formel α ist äquivalent zur CTL∗-Formel A[α]. LTL
kann also als Teillogik von CTL∗ angesehen werden.

CTL ist sofort eine Teillogik von CTL∗, da man die
Pfadformeln auf

α ::= (φUφ) | (Gφ) | (Fφ) | (Xφ)

einschränken kann und dann sofort CTL hat.

Frank Heitmann heitmann@informatik.uni-hamburg.de 17/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

CTL∗: Syntax und Semantik

Die Semantik wird dann so wie bei CTL und LTL definiert, je
nachdem, ob es eine Zustands- oder eine Pfadformel ist.

Eine LTL-Formel α ist äquivalent zur CTL∗-Formel A[α]. LTL
kann also als Teillogik von CTL∗ angesehen werden.

CTL ist sofort eine Teillogik von CTL∗, da man die
Pfadformeln auf

α ::= (φUφ) | (Gφ) | (Fφ) | (Xφ)

einschränken kann und dann sofort CTL hat.

Frank Heitmann heitmann@informatik.uni-hamburg.de 17/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

CTL∗: Syntax und Semantik

Die Semantik wird dann so wie bei CTL und LTL definiert, je
nachdem, ob es eine Zustands- oder eine Pfadformel ist.

Eine LTL-Formel α ist äquivalent zur CTL∗-Formel A[α]. LTL
kann also als Teillogik von CTL∗ angesehen werden.

CTL ist sofort eine Teillogik von CTL∗, da man die
Pfadformeln auf

α ::= (φUφ) | (Gφ) | (Fφ) | (Xφ)

einschränken kann und dann sofort CTL hat.

Frank Heitmann heitmann@informatik.uni-hamburg.de 17/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

LTL, CTL und CTL∗

Zusammenhänge der Logiken

1 In CTL, aber nicht in LTL: φ1 := AGEF p.

Wann immer nötig, kann ein Zustand erreicht werden, in dem
p gilt.

2 In CTL∗, aber weder in LTL noch in CTL: φ2 := E [GF p]

Es gibt einen Pfad mit unendlich vielen p.

3 In LTL, aber nicht in CTL: φ3 := A[GF p ⇒ F q]

Tritt p entlang eines Pfades unendlich oft auf, dann tritt ein q
auf.

4 In LTL und CTL: φ4,1 := AG (p ⇒ AF q) in CTL
bzw. φ4,2 := G (p ⇒ F q) in LTL.

Jedem p folgt irgendwann ein q.

Frank Heitmann heitmann@informatik.uni-hamburg.de 18/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

LTL, CTL und CTL∗

Zusammenhänge der Logiken

1 In CTL, aber nicht in LTL: φ1 := AGEF p.

Wann immer nötig, kann ein Zustand erreicht werden, in dem
p gilt.

2 In CTL∗, aber weder in LTL noch in CTL: φ2 := E [GF p]

Es gibt einen Pfad mit unendlich vielen p.

3 In LTL, aber nicht in CTL: φ3 := A[GF p ⇒ F q]

Tritt p entlang eines Pfades unendlich oft auf, dann tritt ein q
auf.

4 In LTL und CTL: φ4,1 := AG (p ⇒ AF q) in CTL
bzw. φ4,2 := G (p ⇒ F q) in LTL.

Jedem p folgt irgendwann ein q.

Frank Heitmann heitmann@informatik.uni-hamburg.de 18/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

LTL, CTL und CTL∗

Zusammenhänge der Logiken

1 In CTL, aber nicht in LTL: φ1 := AGEF p.

Wann immer nötig, kann ein Zustand erreicht werden, in dem
p gilt.

2 In CTL∗, aber weder in LTL noch in CTL: φ2 := E [GF p]

Es gibt einen Pfad mit unendlich vielen p.

3 In LTL, aber nicht in CTL: φ3 := A[GF p ⇒ F q]

Tritt p entlang eines Pfades unendlich oft auf, dann tritt ein q
auf.

4 In LTL und CTL: φ4,1 := AG (p ⇒ AF q) in CTL
bzw. φ4,2 := G (p ⇒ F q) in LTL.

Jedem p folgt irgendwann ein q.

Frank Heitmann heitmann@informatik.uni-hamburg.de 18/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

LTL, CTL und CTL∗

Zusammenhänge der Logiken

1 In CTL, aber nicht in LTL: φ1 := AGEF p.

Wann immer nötig, kann ein Zustand erreicht werden, in dem
p gilt.

2 In CTL∗, aber weder in LTL noch in CTL: φ2 := E [GF p]

Es gibt einen Pfad mit unendlich vielen p.

3 In LTL, aber nicht in CTL: φ3 := A[GF p ⇒ F q]

Tritt p entlang eines Pfades unendlich oft auf, dann tritt ein q
auf.

4 In LTL und CTL: φ4,1 := AG (p ⇒ AF q) in CTL
bzw. φ4,2 := G (p ⇒ F q) in LTL.

Jedem p folgt irgendwann ein q.

Frank Heitmann heitmann@informatik.uni-hamburg.de 18/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

LTL vs. CTL

Take Home Message

LTL und CTL sind beide wichtig, da es jeweils Dinge gibt, die in der
anderen nicht ausgedrückt werden können.

Take Home Message 2

LTL kann nicht über Pfade quantifizieren. CTL kann dafür nicht so
fein über Pfade argumentieren wie LTL. (Für viele ist LTL einfacher;
CTL Formeln wie AFAX p erscheinen schwierig...)

Literatur

Zu diesem Teil der Vorlesung siehe Kapitel 3 in Logic in Computer
Science. Modelling and Reasoning about Systems. Michael Huth
und Mark Ryan, 2. Auflage, Cambridge University Press, 2004.

Frank Heitmann heitmann@informatik.uni-hamburg.de 19/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

LTL vs. CTL

Take Home Message

LTL und CTL sind beide wichtig, da es jeweils Dinge gibt, die in der
anderen nicht ausgedrückt werden können.

Take Home Message 2

LTL kann nicht über Pfade quantifizieren. CTL kann dafür nicht so
fein über Pfade argumentieren wie LTL. (Für viele ist LTL einfacher;
CTL Formeln wie AFAX p erscheinen schwierig...)

Literatur

Zu diesem Teil der Vorlesung siehe Kapitel 3 in Logic in Computer
Science. Modelling and Reasoning about Systems. Michael Huth
und Mark Ryan, 2. Auflage, Cambridge University Press, 2004.

Frank Heitmann heitmann@informatik.uni-hamburg.de 19/62

LTL, CTL und CTL∗

Model Checking LTL
LTL und CTL
CTL∗

LTL vs. CTL

Take Home Message

LTL und CTL sind beide wichtig, da es jeweils Dinge gibt, die in der
anderen nicht ausgedrückt werden können.

Take Home Message 2

LTL kann nicht über Pfade quantifizieren. CTL kann dafür nicht so
fein über Pfade argumentieren wie LTL. (Für viele ist LTL einfacher;
CTL Formeln wie AFAX p erscheinen schwierig...)

Literatur

Zu diesem Teil der Vorlesung siehe Kapitel 3 in Logic in Computer
Science. Modelling and Reasoning about Systems. Michael Huth
und Mark Ryan, 2. Auflage, Cambridge University Press, 2004.

Frank Heitmann heitmann@informatik.uni-hamburg.de 19/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Das Model-Checking-Problem

Das Problem

Das model checking problem für LTL oder CTL fragt, gegeben ein
LTS M und eine Formel φ, ob M |= φ gilt, d.h. ob M ein Modell
für φ ist.
Eingabe: Ein LTS M und eine LTL oder CTL Formel φ.

Frage: Gilt M |= φ ?

Frank Heitmann heitmann@informatik.uni-hamburg.de 20/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Model Checking. Ergebnisse

Satz

Sei M ein LTS.

1 Sei φ eine LTL Formel. Das model checking problem für LTL,
d.h. die Frage, ob M |= φ gilt, ist PSpace-vollständig und
kann in O(|M| · 2|φ|) Zeit entschieden werden.

2 Sei φ eine CTL Formel. Das model checking problem für CTL,
d.h. die Frage, ob M |= φ gilt, kann in O(|M| · |φ|) Zeit
entschieden werden.

Wichtige Anmerkung

Das Modell M wird allerdings i.A. sehr schnell sehr groß. Daher
ist |M| der dominante Faktor, was zu dem berühmten Problem der
Zustandsraumexplosion führt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 21/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Die Idee

Sei M ein LTS und φ eine LTL Formel.

Zu ¬φ (der Negation der Spezifikation!) konstruieren wir
einen (Büchi-)Automaten A¬φ.

A¬φ akzeptiert genau die Wörter w mit w |= ¬φ.

Bilde den “Produktautomaten” M ∩ A¬φ.

Prüfe, ob die akzeptierte Sprache von M ∩ A¬φ leer ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 22/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Die Idee

Sei M ein LTS und φ eine LTL Formel.

Zu ¬φ (der Negation der Spezifikation!) konstruieren wir
einen (Büchi-)Automaten A¬φ.

A¬φ akzeptiert genau die Wörter w mit w |= ¬φ.

Bilde den “Produktautomaten” M ∩ A¬φ.

Prüfe, ob die akzeptierte Sprache von M ∩ A¬φ leer ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 22/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Die Idee

Sei M ein LTS und φ eine LTL Formel.

Zu ¬φ (der Negation der Spezifikation!) konstruieren wir
einen (Büchi-)Automaten A¬φ.

A¬φ akzeptiert genau die Wörter w mit w |= ¬φ.

Bilde den “Produktautomaten” M ∩ A¬φ.

Prüfe, ob die akzeptierte Sprache von M ∩ A¬φ leer ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 22/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Die Idee

Sei M ein LTS und φ eine LTL Formel.

Zu ¬φ (der Negation der Spezifikation!) konstruieren wir
einen (Büchi-)Automaten A¬φ.

A¬φ akzeptiert genau die Wörter w mit w |= ¬φ.

Bilde den “Produktautomaten” M ∩ A¬φ.

Prüfe, ob die akzeptierte Sprache von M ∩ A¬φ leer ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 22/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Die Idee

Sei M ein LTS und φ eine LTL Formel.

Zu ¬φ (der Negation der Spezifikation!) konstruieren wir
einen (Büchi-)Automaten A¬φ.

A¬φ akzeptiert genau die Wörter w mit w |= ¬φ.

Bilde den “Produktautomaten” M ∩ A¬φ.

Prüfe, ob die akzeptierte Sprache von M ∩ A¬φ leer ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 22/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Das weitere Vorgehen

Wir benötigen jetzt also:

1 Büchi-Automaten (und drumherum)

2 Eine alternative (aber äquivalente) Semantik für LTL

3 Damit dann die Konstruktion für A¬φ
4 Den “Produktautomaten”

5 Den Leerheitstest

Frank Heitmann heitmann@informatik.uni-hamburg.de 23/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Büchi-Automaten und ω-Wörter

Syntaktisch sind Büchi-Automaten wie endliche Automaten
definiert.

Semantisch lesen sie unendliche lange Wörter!

Frank Heitmann heitmann@informatik.uni-hamburg.de 24/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Büchi-Automaten und ω-Wörter

Syntaktisch sind Büchi-Automaten wie endliche Automaten
definiert.

Semantisch lesen sie unendliche lange Wörter!

Frank Heitmann heitmann@informatik.uni-hamburg.de 24/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

ω-Wörter

Definition (ω-Wörter und -Sprachen)

Sei Σ ein endliches Alphabet. Ein unendliches Wort über Σ
(oder ω-Wort) ist eine unendliche Folge w = a0a1a2 . . . von
Buchstaben ai ∈ Σ.

Die Menge aller unendlichen Wörter über Σ wird mit Σω

bezeichnet. Eine Menge L ⊆ Σω wird als ω-Sprache
bezeichnet.

Mit |w |a (w ∈ Σω, a ∈ Σ) wird die Anzahl der Vorkommen
des Buchstabens a im Wort w bezeichnet.

Konkatenation etc. wird erweitert. Es ist allerdings nicht
möglich zwei ω-Wörter zu konkatenieren, sondern nur ein
endliches Wort v und ein ω-Wort w zu v · w zu machen.

Ähnlich macht vω nur für v ∈ Σ∗ Sinn und ist auf Lω für
Sprachen L ⊆ Σ∗ erweiterbar.

Frank Heitmann heitmann@informatik.uni-hamburg.de 25/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

ω-Wörter

Definition (ω-Wörter und -Sprachen)

Sei Σ ein endliches Alphabet. Ein unendliches Wort über Σ
(oder ω-Wort) ist eine unendliche Folge w = a0a1a2 . . . von
Buchstaben ai ∈ Σ.

Die Menge aller unendlichen Wörter über Σ wird mit Σω

bezeichnet. Eine Menge L ⊆ Σω wird als ω-Sprache
bezeichnet.

Mit |w |a (w ∈ Σω, a ∈ Σ) wird die Anzahl der Vorkommen
des Buchstabens a im Wort w bezeichnet.

Konkatenation etc. wird erweitert. Es ist allerdings nicht
möglich zwei ω-Wörter zu konkatenieren, sondern nur ein
endliches Wort v und ein ω-Wort w zu v · w zu machen.

Ähnlich macht vω nur für v ∈ Σ∗ Sinn und ist auf Lω für
Sprachen L ⊆ Σ∗ erweiterbar.

Frank Heitmann heitmann@informatik.uni-hamburg.de 25/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

ω-Wörter

Definition (ω-Wörter und -Sprachen)

Sei Σ ein endliches Alphabet. Ein unendliches Wort über Σ
(oder ω-Wort) ist eine unendliche Folge w = a0a1a2 . . . von
Buchstaben ai ∈ Σ.

Die Menge aller unendlichen Wörter über Σ wird mit Σω

bezeichnet. Eine Menge L ⊆ Σω wird als ω-Sprache
bezeichnet.

Mit |w |a (w ∈ Σω, a ∈ Σ) wird die Anzahl der Vorkommen
des Buchstabens a im Wort w bezeichnet.

Konkatenation etc. wird erweitert. Es ist allerdings nicht
möglich zwei ω-Wörter zu konkatenieren, sondern nur ein
endliches Wort v und ein ω-Wort w zu v · w zu machen.

Ähnlich macht vω nur für v ∈ Σ∗ Sinn und ist auf Lω für
Sprachen L ⊆ Σ∗ erweiterbar.

Frank Heitmann heitmann@informatik.uni-hamburg.de 25/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

ω-Wörter

Definition (ω-Wörter und -Sprachen)

Sei Σ ein endliches Alphabet. Ein unendliches Wort über Σ
(oder ω-Wort) ist eine unendliche Folge w = a0a1a2 . . . von
Buchstaben ai ∈ Σ.

Die Menge aller unendlichen Wörter über Σ wird mit Σω

bezeichnet. Eine Menge L ⊆ Σω wird als ω-Sprache
bezeichnet.

Mit |w |a (w ∈ Σω, a ∈ Σ) wird die Anzahl der Vorkommen
des Buchstabens a im Wort w bezeichnet.

Konkatenation etc. wird erweitert. Es ist allerdings nicht
möglich zwei ω-Wörter zu konkatenieren, sondern nur ein
endliches Wort v und ein ω-Wort w zu v · w zu machen.

Ähnlich macht vω nur für v ∈ Σ∗ Sinn und ist auf Lω für
Sprachen L ⊆ Σ∗ erweiterbar.

Frank Heitmann heitmann@informatik.uni-hamburg.de 25/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

ω-Wörter

Definition (ω-Wörter und -Sprachen)

Sei Σ ein endliches Alphabet. Ein unendliches Wort über Σ
(oder ω-Wort) ist eine unendliche Folge w = a0a1a2 . . . von
Buchstaben ai ∈ Σ.

Die Menge aller unendlichen Wörter über Σ wird mit Σω

bezeichnet. Eine Menge L ⊆ Σω wird als ω-Sprache
bezeichnet.

Mit |w |a (w ∈ Σω, a ∈ Σ) wird die Anzahl der Vorkommen
des Buchstabens a im Wort w bezeichnet.

Konkatenation etc. wird erweitert. Es ist allerdings nicht
möglich zwei ω-Wörter zu konkatenieren, sondern nur ein
endliches Wort v und ein ω-Wort w zu v · w zu machen.

Ähnlich macht vω nur für v ∈ Σ∗ Sinn und ist auf Lω für
Sprachen L ⊆ Σ∗ erweiterbar.

Frank Heitmann heitmann@informatik.uni-hamburg.de 25/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

ω-reguläre Sprachen

Definition (ω-reguläre Sprachen)

Sei L ⊆ Σω. L ist ω-regulär, wenn ein n ∈ N existiert und reguläre
Sprachen U0,U1, . . . ,Un−1,V0,V1, . . . ,Vn−1 ⊆ Σ∗ mit λ 6∈ Vi für
alle i , so dass

L = ∪n−1i=0 UiV
ω
i

gilt.

Satz

Die Klasse der ω-regulären Sprachen ist abgeschlossen unter Verei-
nigung und Linkskonkatenation mit regulären Sprachen.

Frank Heitmann heitmann@informatik.uni-hamburg.de 26/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

ω-reguläre Sprachen

Definition (ω-reguläre Sprachen)

Sei L ⊆ Σω. L ist ω-regulär, wenn ein n ∈ N existiert und reguläre
Sprachen U0,U1, . . . ,Un−1,V0,V1, . . . ,Vn−1 ⊆ Σ∗ mit λ 6∈ Vi für
alle i , so dass

L = ∪n−1i=0 UiV
ω
i

gilt.

Satz

Die Klasse der ω-regulären Sprachen ist abgeschlossen unter Verei-
nigung und Linkskonkatenation mit regulären Sprachen.

Frank Heitmann heitmann@informatik.uni-hamburg.de 26/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Büchi-Automaten

Definition (NBA)

Ein Büchi-Automat (NBA) ist ein 5-Tupel

A = (Z ,Σ, δ, z0,Zend)

mit:

Der endlichen Menge von Zuständen Z .

Dem endlichen Alphabet Σ von Eingabesymbolen.

Der Überführungsfunktion δ : Z × Σ→ 2Z .

Dem Startzustand z0 ∈ Z .

Der Menge der Endzustände Zend ⊆ Z .

Frank Heitmann heitmann@informatik.uni-hamburg.de 27/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Büchi-Automaten

Definition (NBA - Fortsetzung)

Sei w = a0a1a2 . . . ∈ Σω ein Wort. Ein Lauf von A auf w ist
eine unendliche Folge von Zuständen ρ = z0z1z2 . . ., die am
Anfangszustand beginnt und die zi+1 ∈ δ(zi , ai) für alle i ≥ 0
erfüllt.

Mit inf (ρ) wird die Menge der in ρ unendlich oft
vorkommenden Zustände bezeichnet.

Ein Lauf ist akzeptierend wenn inf (ρ) ∩ F 6= ∅ gilt.

L(A) ist die Menge jener Wörter, für die ein akzeptierender
Lauf in A existiert.

Ist |δ(z , a)| = 1 für alle z ∈ Z und a ∈ Σ, dann ist der NBA
deterministische (d.h. ein DBA).

Frank Heitmann heitmann@informatik.uni-hamburg.de 28/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Büchi-Automaten

Definition (NBA - Fortsetzung)

Sei w = a0a1a2 . . . ∈ Σω ein Wort. Ein Lauf von A auf w ist
eine unendliche Folge von Zuständen ρ = z0z1z2 . . ., die am
Anfangszustand beginnt und die zi+1 ∈ δ(zi , ai) für alle i ≥ 0
erfüllt.

Mit inf (ρ) wird die Menge der in ρ unendlich oft
vorkommenden Zustände bezeichnet.

Ein Lauf ist akzeptierend wenn inf (ρ) ∩ F 6= ∅ gilt.

L(A) ist die Menge jener Wörter, für die ein akzeptierender
Lauf in A existiert.

Ist |δ(z , a)| = 1 für alle z ∈ Z und a ∈ Σ, dann ist der NBA
deterministische (d.h. ein DBA).

Frank Heitmann heitmann@informatik.uni-hamburg.de 28/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Büchi-Automaten

Definition (NBA - Fortsetzung)

Sei w = a0a1a2 . . . ∈ Σω ein Wort. Ein Lauf von A auf w ist
eine unendliche Folge von Zuständen ρ = z0z1z2 . . ., die am
Anfangszustand beginnt und die zi+1 ∈ δ(zi , ai) für alle i ≥ 0
erfüllt.

Mit inf (ρ) wird die Menge der in ρ unendlich oft
vorkommenden Zustände bezeichnet.

Ein Lauf ist akzeptierend wenn inf (ρ) ∩ F 6= ∅ gilt.

L(A) ist die Menge jener Wörter, für die ein akzeptierender
Lauf in A existiert.

Ist |δ(z , a)| = 1 für alle z ∈ Z und a ∈ Σ, dann ist der NBA
deterministische (d.h. ein DBA).

Frank Heitmann heitmann@informatik.uni-hamburg.de 28/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Büchi-Automaten

Definition (NBA - Fortsetzung)

Sei w = a0a1a2 . . . ∈ Σω ein Wort. Ein Lauf von A auf w ist
eine unendliche Folge von Zuständen ρ = z0z1z2 . . ., die am
Anfangszustand beginnt und die zi+1 ∈ δ(zi , ai) für alle i ≥ 0
erfüllt.

Mit inf (ρ) wird die Menge der in ρ unendlich oft
vorkommenden Zustände bezeichnet.

Ein Lauf ist akzeptierend wenn inf (ρ) ∩ F 6= ∅ gilt.

L(A) ist die Menge jener Wörter, für die ein akzeptierender
Lauf in A existiert.

Ist |δ(z , a)| = 1 für alle z ∈ Z und a ∈ Σ, dann ist der NBA
deterministische (d.h. ein DBA).

Frank Heitmann heitmann@informatik.uni-hamburg.de 28/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Büchi-Automaten

Definition (NBA - Fortsetzung)

Sei w = a0a1a2 . . . ∈ Σω ein Wort. Ein Lauf von A auf w ist
eine unendliche Folge von Zuständen ρ = z0z1z2 . . ., die am
Anfangszustand beginnt und die zi+1 ∈ δ(zi , ai) für alle i ≥ 0
erfüllt.

Mit inf (ρ) wird die Menge der in ρ unendlich oft
vorkommenden Zustände bezeichnet.

Ein Lauf ist akzeptierend wenn inf (ρ) ∩ F 6= ∅ gilt.

L(A) ist die Menge jener Wörter, für die ein akzeptierender
Lauf in A existiert.

Ist |δ(z , a)| = 1 für alle z ∈ Z und a ∈ Σ, dann ist der NBA
deterministische (d.h. ein DBA).

Frank Heitmann heitmann@informatik.uni-hamburg.de 28/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Büchi-Automaten

Satz

Zu jedem NBA mit mehreren Startzuständen existiert ein
äquivalenter NBA mit nur einem Startzustand (und nur einem
Zustand mehr).

Beweis.

Wie bei NFAs: Führe einen neuen (einzigen) Startzustand zneu ein
und eine a-Kante von zneu zu z , wenn es eine a-Kante von einem
früheren Startzustand zu z gab.

Frank Heitmann heitmann@informatik.uni-hamburg.de 29/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Büchi-Automaten

Satz

Zu jedem NBA mit mehreren Startzuständen existiert ein
äquivalenter NBA mit nur einem Startzustand (und nur einem
Zustand mehr).

Beweis.

Wie bei NFAs: Führe einen neuen (einzigen) Startzustand zneu ein
und eine a-Kante von zneu zu z , wenn es eine a-Kante von einem
früheren Startzustand zu z gab.

Frank Heitmann heitmann@informatik.uni-hamburg.de 29/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Ein Beispiel

Ein DBA für L1 = (a∗b)ω ?

// z0

a

�� b ++
z1

b

		

a
jj

Frank Heitmann heitmann@informatik.uni-hamburg.de 30/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Ein Beispiel

Ein DBA für L1 = (a∗b)ω ?

// z0

a

�� b ++
z1

b

		

a
jj

Frank Heitmann heitmann@informatik.uni-hamburg.de 30/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Noch ein Beispiel

Ein Büchi-Automat für L2 = (a + b)∗aω ?

// z0

a,b

�� a ++
z1

a

		

Der erste Automat war deterministisch, dieser nicht...

Frank Heitmann heitmann@informatik.uni-hamburg.de 31/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Noch ein Beispiel

Ein Büchi-Automat für L2 = (a + b)∗aω ?

// z0

a,b

�� a ++
z1

a

		

Der erste Automat war deterministisch, dieser nicht...

Frank Heitmann heitmann@informatik.uni-hamburg.de 31/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

DBA � NBA

Satz

NBAs sind echt mächtiger als DBAs, d.h. es gibt ω-Sprachen, die
von einem NBA akzeptiert werden können, nicht aber von einem
DBA.

Beweis.

Man kann dies gerade an obigem L2 = {w ∈ {a, b}ω | |w |b <∞}
zeigen. L2 kann nach obigem von einem NBA akzeptiert werden.
Angenommen A = (Z ,Σ, δ, z0,Zend) ist nun ein DBA mit
L(A) = L2, dann

... Hausaufgabe! :)

Frank Heitmann heitmann@informatik.uni-hamburg.de 32/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

DBA � NBA

Satz

NBAs sind echt mächtiger als DBAs, d.h. es gibt ω-Sprachen, die
von einem NBA akzeptiert werden können, nicht aber von einem
DBA.

Beweis.

Man kann dies gerade an obigem L2 = {w ∈ {a, b}ω | |w |b <∞}
zeigen. L2 kann nach obigem von einem NBA akzeptiert werden.
Angenommen A = (Z ,Σ, δ, z0,Zend) ist nun ein DBA mit
L(A) = L2, dann

... Hausaufgabe! :)

Frank Heitmann heitmann@informatik.uni-hamburg.de 32/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

DBA � NBA

Satz

NBAs sind echt mächtiger als DBAs, d.h. es gibt ω-Sprachen, die
von einem NBA akzeptiert werden können, nicht aber von einem
DBA.

Beweis.

Man kann dies gerade an obigem L2 = {w ∈ {a, b}ω | |w |b <∞}
zeigen. L2 kann nach obigem von einem NBA akzeptiert werden.
Angenommen A = (Z ,Σ, δ, z0,Zend) ist nun ein DBA mit
L(A) = L2, dann ... Hausaufgabe! :)

Frank Heitmann heitmann@informatik.uni-hamburg.de 32/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Leerheitsproblem

Satz

Das Leerheitsproblem für NBA ist in Zeit O(n) lösbar, wobei n die
Anzahl der Transitionen des NBA ist.

Beweis.

Sei A = (Z ,Σ, δ, z0,Zend) ein NBA und sei außerdem jedes z ∈ Z
erreichbar.

Es gilt L(A) 6= ∅ gdw. es einen Pfad von z0 zu einem
z ∈ Zend gibt und danach einen (nicht-leeren) Pfad von z nach z .

1 Berechne eine Zerlegung des Zustandsdiagramms in maximale
strenge Zusammenhangskomponenten (SCC) in O(n).

2 Prüfe für jedes z ∈ Zend ob es in einer nicht-trivialen
(mindestens eine Kante) SCC liegt.

Ist der zweite Schritt erfolgreich gilt L(A) 6= ∅, sonst ist die
akzeptierte Sprache leer.

Frank Heitmann heitmann@informatik.uni-hamburg.de 33/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Leerheitsproblem

Satz

Das Leerheitsproblem für NBA ist in Zeit O(n) lösbar, wobei n die
Anzahl der Transitionen des NBA ist.

Beweis.

Sei A = (Z ,Σ, δ, z0,Zend) ein NBA und sei außerdem jedes z ∈ Z
erreichbar. Es gilt L(A) 6= ∅ gdw. es einen Pfad von z0 zu einem
z ∈ Zend gibt und danach einen (nicht-leeren) Pfad von z nach z .

1 Berechne eine Zerlegung des Zustandsdiagramms in maximale
strenge Zusammenhangskomponenten (SCC) in O(n).

2 Prüfe für jedes z ∈ Zend ob es in einer nicht-trivialen
(mindestens eine Kante) SCC liegt.

Ist der zweite Schritt erfolgreich gilt L(A) 6= ∅, sonst ist die
akzeptierte Sprache leer.

Frank Heitmann heitmann@informatik.uni-hamburg.de 33/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Leerheitsproblem

Satz

Das Leerheitsproblem für NBA ist in Zeit O(n) lösbar, wobei n die
Anzahl der Transitionen des NBA ist.

Beweis.

Sei A = (Z ,Σ, δ, z0,Zend) ein NBA und sei außerdem jedes z ∈ Z
erreichbar. Es gilt L(A) 6= ∅ gdw. es einen Pfad von z0 zu einem
z ∈ Zend gibt und danach einen (nicht-leeren) Pfad von z nach z .

1 Berechne eine Zerlegung des Zustandsdiagramms in maximale
strenge Zusammenhangskomponenten (SCC) in O(n).

2 Prüfe für jedes z ∈ Zend ob es in einer nicht-trivialen
(mindestens eine Kante) SCC liegt.

Ist der zweite Schritt erfolgreich gilt L(A) 6= ∅, sonst ist die
akzeptierte Sprache leer.

Frank Heitmann heitmann@informatik.uni-hamburg.de 33/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

NBA und ω-reguläre Sprachen

Satz

1 Seien A,B zwei NBAs und C ein NFA, dann existieren NBAs
D und E mit L(D) = L(A) ∪ L(B) und L(E) = L(C) · L(A).
Ist außerdem λ 6∈ L(C), dann existiert ein NBA F mit
L(F) = L(C)ω.

2 Eine Sprache L ist ω-regulär gdw. ein Büchi-Automat A
existiert mit L(A) = L.

Frank Heitmann heitmann@informatik.uni-hamburg.de 34/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

NBA und ω-reguläre Sprachen

Satz

1 Seien A,B zwei NBAs und C ein NFA, dann existieren NBAs
D und E mit L(D) = L(A) ∪ L(B) und L(E) = L(C) · L(A).
Ist außerdem λ 6∈ L(C), dann existiert ein NBA F mit
L(F) = L(C)ω.

2 Eine Sprache L ist ω-regulär gdw. ein Büchi-Automat A
existiert mit L(A) = L.

Frank Heitmann heitmann@informatik.uni-hamburg.de 34/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

NBA Schnitt

Satz

Seien A und B NBAs mit n bzw. m Zuständen. Dann existiert ein
NBA C mit L(C) = L(A) ∩ L(B) und 3 · n ·m Zuständen.

Beweis

Sei A = (Z ,Σ, δ, z0,Zend) und B = (Z ′,Σ, δ′, z ′0,Z
′
end). Wir

definieren:
...

Frank Heitmann heitmann@informatik.uni-hamburg.de 35/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

NBA Schnitt

Sei A = (Z ,Σ, δ, z0,Zend) und B = (Z ′,Σ, δ′, z ′0,Z
′
end). Wir

definieren:

C := (Z × Z ′ × {0, 1, 2},Σ, δ′′, (z0, z
′
0, 0),Z × Z ′ × {2})

mit δ′′((z , z ′, i), a) := {(u, u′, j) | u ∈ δ(z , a), u′ ∈ δ′(z ′, a)} wobei

j :=


1 , falls i = 0 und u ∈ Zend oder i = 1 und u′ 6∈ Z ′end
2 , falls i = 1 und u′ ∈ Z ′end
0 , sonst.

Weiteres (Korrektheit der Konstruktion) als Hausaufgabe...

Frank Heitmann heitmann@informatik.uni-hamburg.de 36/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Generalisierter NBA

Definition (Generalisierter NBA (GNBA))

Ein generalisierter NBA (GNBA) ist ein Tupel
A = (Z ,Σ, δ,Zstart ,Z

1
end ,Z

2
end , . . . ,Z

k
end), der wie ein NBA

definiert ist mit Ausnahme einer Startzustandsmenge
Zstart ⊆ Z und mehreren Endzustandsmengen.

Ein Lauf ist wie beim NBA definiert mit der Ausnahme, dass
der Lauf bei einem beliebigen z ∈ Zstart beginnen kann.

Ein Lauf ρ ist akzeptierend, falls inf (ρ) ∩ Z i
end 6= ∅ für alle i

gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 37/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Generalisierter NBA

Satz

Zu jedem GNBA A = (Z ,Σ, δ,Zstart ,Z
0
end , . . . ,Z

k−1
end) lässt sich ein

NBA A′ konstruieren mit L(A′) = L(A) und |A′| = 1 + |Z | · (k + 1).

Beweis

Wir definieren
A′ = (Z × {0, . . . , k − 1},Σ,∆,Zstart × {0},Z 0

end × {0}) mit
∆((z , i), a) = {(z ′, j) | z ′ ∈ δ(z , a)} wobei

j :=

{
i + 1 mod k , falls z ∈ Fi

i , sonst.

Frank Heitmann heitmann@informatik.uni-hamburg.de 38/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Generalisierter NBA

Satz

Zu jedem GNBA A = (Z ,Σ, δ,Zstart ,Z
0
end , . . . ,Z

k−1
end) lässt sich ein

NBA A′ konstruieren mit L(A′) = L(A) und |A′| = 1 + |Z | · (k + 1).

Beweis

Wir definieren
A′ = (Z × {0, . . . , k − 1},Σ,∆,Zstart × {0},Z 0

end × {0}) mit
∆((z , i), a) = {(z ′, j) | z ′ ∈ δ(z , a)} wobei

j :=

{
i + 1 mod k , falls z ∈ Fi

i , sonst.

Frank Heitmann heitmann@informatik.uni-hamburg.de 38/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Generalisierter NBA

Beweis.

In der ersten Zustandskomponente wird A simuliert.

In der zweiten Zustandskomponente wird angegeben aus
welcher Endzustandsmenge als nächstes ein Endzustand
besucht werden soll.

Letzteres funktioniert, da in einem akzeptierenden Lauf A aus allen
Mengen Fi unendlich oft einen Zustand besucht. Daraus folgt, dass
wenn A einen Zustand aus Fi besucht, irgendwann einer aus
Fi+1 mod k besucht werden muss (auch wenn dazwischen vielleicht
bereits welche aus einem Fj besucht werden). Damit lässt sich
dann leicht argumentieren, dass ein akzeptierender Lauf in A auch
einer in A′ ist und umgekehrt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 39/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Generalisierter NBA

Beweis.

In der ersten Zustandskomponente wird A simuliert.

In der zweiten Zustandskomponente wird angegeben aus
welcher Endzustandsmenge als nächstes ein Endzustand
besucht werden soll.

Letzteres funktioniert, da in einem akzeptierenden Lauf A aus allen
Mengen Fi unendlich oft einen Zustand besucht. Daraus folgt, dass
wenn A einen Zustand aus Fi besucht, irgendwann einer aus
Fi+1 mod k besucht werden muss (auch wenn dazwischen vielleicht
bereits welche aus einem Fj besucht werden). Damit lässt sich
dann leicht argumentieren, dass ein akzeptierender Lauf in A auch
einer in A′ ist und umgekehrt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 39/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Die Idee

Wie war noch gleich der Plan?!

Sei M ein LTS und φ eine LTL Formel.

Zu ¬φ (der Negation der Spezifikation!) konstruieren wir
einen (Büchi-)Automaten A¬φ.

A¬φ akzeptiert genau die Wörter w mit w |= ¬φ.

Bilde den “Produktautomaten” M ∩ A¬φ.

Prüfe, ob die akzeptierte Sprache von M ∩ A¬φ leer ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 40/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Die Idee

Wie war noch gleich der Plan?!

Sei M ein LTS und φ eine LTL Formel.

Zu ¬φ (der Negation der Spezifikation!) konstruieren wir
einen (Büchi-)Automaten A¬φ.

A¬φ akzeptiert genau die Wörter w mit w |= ¬φ.

Bilde den “Produktautomaten” M ∩ A¬φ.

Prüfe, ob die akzeptierte Sprache von M ∩ A¬φ leer ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 40/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Das Vorgehen (Wiederholung)

1 Büchi-Automaten (und drumherum) (erledigt)

2 Eine alternative (aber äquivalente) Semantik für LTL

3 Damit dann die Konstruktion für A¬φ
4 Den “Produktautomaten” (erledigt, aber ...)

5 Den Leerheitstest (erledigt)

Frank Heitmann heitmann@informatik.uni-hamburg.de 41/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

LTL - alternative Definition

Sei P = {p1, p2, . . .} eine Menge von atomaren Formeln. Sei

φ ::= p | ¬φ | (φ ∨ φ) | Xφ | φUφ

und als Abkürzungen:

φRψ := ¬(¬φU¬ψ)

Fφ := >Uφ

Gφ := ¬F¬φ

Dabei wird φRψ erfüllt, wenn entweder ψ immer gilt oder ψ bis zu
einem Moment gilt, in dem sowohl φ als auch ψ gelten.

Frank Heitmann heitmann@informatik.uni-hamburg.de 42/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

LTL - alternativ

Definition (LTL - alternativ)

Sei w = a0a1 . . . ∈ (2P)ω. Die Semantik ist induktiv für alle i ∈ N
definiert durch:

w , i |= p gdw. p ∈ ai
w , i |= ¬φ gdw. w , i 6|= φ
w , i |= φ1 ∨ φ2 gdw. w , i |= φ1 oder w , i |= φ2
w , i |= Xφ gdw. w , i + 1 |= φ
w , i |= φ1Uφ2 gdw. ein k ≥ i existiert mit w , k |= φ2 und

für alle j mit i ≤ j < k gilt w , j |= φ1

Ein Wort entspricht dabei den Labels jener Zustand, die bei einem
Lauf durch ein LTS besucht werden.

Frank Heitmann heitmann@informatik.uni-hamburg.de 43/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

LTL - alternativ

Definition

Sei Σ = (2P), v ∈ Σω und φ eine LTL-Formel. Es ist v |= φ, falls
v , 0 |= φ und L(φ) = {u | u |= φ}. Zwei Formeln φ und ψ sind
äquivalent, φ ≡ ψ, falls L(φ) = L(ψ) gilt.

Ist z.B. P = {C ,D}, dann ist Σ = {∅, {C}, {D}, {C ,D}}. Will
man nun an ein bestimmtes a ∈ Σ herankommen, so kann man
charakteristische Formeln χa verwenden:

χa := (
∧
p∈a

p) ∧ (
∧
p 6∈a
¬p)

Will man z.B. eine Formel für die Sprache, die nur aus dem Wort
({C}{D})ω besteht, so geht dies mit:

χC ∧ G ((χC ⇒ XχD) ∧ (χD ⇒ XχC))

Frank Heitmann heitmann@informatik.uni-hamburg.de 44/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

LTL - alternativ

Definition

Sei Σ = (2P), v ∈ Σω und φ eine LTL-Formel. Es ist v |= φ, falls
v , 0 |= φ und L(φ) = {u | u |= φ}. Zwei Formeln φ und ψ sind
äquivalent, φ ≡ ψ, falls L(φ) = L(ψ) gilt.

Ist z.B. P = {C ,D}, dann ist Σ = {∅, {C}, {D}, {C ,D}}. Will
man nun an ein bestimmtes a ∈ Σ herankommen, so kann man
charakteristische Formeln χa verwenden:

χa := (
∧
p∈a

p) ∧ (
∧
p 6∈a
¬p)

Will man z.B. eine Formel für die Sprache, die nur aus dem Wort
({C}{D})ω besteht, so geht dies mit:

χC ∧ G ((χC ⇒ XχD) ∧ (χD ⇒ XχC))

Frank Heitmann heitmann@informatik.uni-hamburg.de 44/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Normalform

Definition (Positive Normalform)

Eine LTL-Formel ist in positiver Normalform, wenn sie nur aus
Literalen p,¬p (für ein p ∈ P) und den Operatoren ∨,∧,X ,U und
R aufgebaut ist.

Satz

Zu jeder LTL-Formel φ gibt es eine äquivalente LTL-Formel φ′ in
positiver Normalform. Ferner ist |φ′| ≤ 2 · |φ|.

Beweis.

Zum Beweis betrachtet man jeden Operator in negierter und
nicht-negierter Form und zeigt, dass man ihn wie angegeben
ausdrücken kann. Z.B. ist
Gp ≡ ¬F¬p ≡ ¬(>U¬p) ≡ ¬(¬⊥U¬p) ≡ ⊥Rp und
¬(pRq) ≡ ¬¬(¬pU¬q) ≡ (¬pU¬q).

Frank Heitmann heitmann@informatik.uni-hamburg.de 45/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Normalform

Definition (Positive Normalform)

Eine LTL-Formel ist in positiver Normalform, wenn sie nur aus
Literalen p,¬p (für ein p ∈ P) und den Operatoren ∨,∧,X ,U und
R aufgebaut ist.

Satz

Zu jeder LTL-Formel φ gibt es eine äquivalente LTL-Formel φ′ in
positiver Normalform. Ferner ist |φ′| ≤ 2 · |φ|.

Beweis.

Zum Beweis betrachtet man jeden Operator in negierter und
nicht-negierter Form und zeigt, dass man ihn wie angegeben
ausdrücken kann. Z.B. ist
Gp ≡ ¬F¬p ≡ ¬(>U¬p) ≡ ¬(¬⊥U¬p) ≡ ⊥Rp und
¬(pRq) ≡ ¬¬(¬pU¬q) ≡ (¬pU¬q).

Frank Heitmann heitmann@informatik.uni-hamburg.de 45/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Normalform

Definition (Positive Normalform)

Eine LTL-Formel ist in positiver Normalform, wenn sie nur aus
Literalen p,¬p (für ein p ∈ P) und den Operatoren ∨,∧,X ,U und
R aufgebaut ist.

Satz

Zu jeder LTL-Formel φ gibt es eine äquivalente LTL-Formel φ′ in
positiver Normalform. Ferner ist |φ′| ≤ 2 · |φ|.

Beweis.

Zum Beweis betrachtet man jeden Operator in negierter und
nicht-negierter Form und zeigt, dass man ihn wie angegeben
ausdrücken kann. Z.B. ist
Gp ≡ ¬F¬p ≡ ¬(>U¬p) ≡ ¬(¬⊥U¬p) ≡ ⊥Rp und
¬(pRq) ≡ ¬¬(¬pU¬q) ≡ (¬pU¬q).

Frank Heitmann heitmann@informatik.uni-hamburg.de 45/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Abwicklung von U und R

Satz

Es gilt pUq ≡ q ∨ (p ∧ X (pUq)).

Beweis.

Sei w , i |= pUq. Dann gibt es ein k ≥ i mit w , k |= q und w , j |= p
für alle j mit i ≤ j < k . Zwei Fälle:

1 k = i . Dann gilt w , i |= q.

2 k > i . Dann ist w , i |= p und w , i + 1 |= pUq (Warum?) und
daher w , i |= X (pUq).

Damit gilt w , i |= q ∨ (p ∧ X (pUq)).

Frank Heitmann heitmann@informatik.uni-hamburg.de 46/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Abwicklung von U und R

Satz

Es gilt pUq ≡ q ∨ (p ∧ X (pUq)).

Beweis.

Sei w , i |= pUq. Dann gibt es ein k ≥ i mit w , k |= q und w , j |= p
für alle j mit i ≤ j < k . Zwei Fälle:

1 k = i . Dann gilt w , i |= q.

2 k > i . Dann ist w , i |= p und w , i + 1 |= pUq (Warum?) und
daher w , i |= X (pUq).

Damit gilt w , i |= q ∨ (p ∧ X (pUq)).

Frank Heitmann heitmann@informatik.uni-hamburg.de 46/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Abwicklung von U und R

Satz

Es gilt pUq ≡ q ∨ (p ∧ X (pUq)).

Beweis.

Sei w , i |= pUq. Dann gibt es ein k ≥ i mit w , k |= q und w , j |= p
für alle j mit i ≤ j < k . Zwei Fälle:

1 k = i . Dann gilt w , i |= q.

2 k > i . Dann ist w , i |= p und w , i + 1 |= pUq (Warum?) und
daher w , i |= X (pUq).

Damit gilt w , i |= q ∨ (p ∧ X (pUq)).

Frank Heitmann heitmann@informatik.uni-hamburg.de 46/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Abwicklung von U und R

Die Rückrichtung zeigt man analog. Ebenso wie die Abwicklung
von R:

Satz

Es gilt pRq ≡ q ∧ (p ∨ X (pRq)).

Beweis.

Zur Übung...

Frank Heitmann heitmann@informatik.uni-hamburg.de 47/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Von LTL zum NBA - Die Idee

Wir konstruieren nun einen NBA, der genau die Menge aller
Modelle für eine LTL Formel φ erkennt.

Die Idee ist als Zustände Hintikka-Mengen zu benutzen. Diese
enthalten gerade die (Unter-)Formeln, die an einer
bestimmten Stelle im Modell gelten müssen.

Diese werden in jedem Schritt nichtdeterministisch geraten.

Durch die Konsistenz der Hintikka-Mengen wird
ausgeschlossen, dass etwas geraten wird, was bereits der
Aussagenlogik widerspricht.

U und R Formeln werden entsprechend ihrer Abwicklung
behandelt.

Dass U nicht unendlich lange abgewickelt wird, wird durch die
Akzeptanzbedingung sichergestellt.

Der X Operator wird durch die Übergänge behandelt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 48/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Von LTL zum NBA - Die Idee

Wir konstruieren nun einen NBA, der genau die Menge aller
Modelle für eine LTL Formel φ erkennt.

Die Idee ist als Zustände Hintikka-Mengen zu benutzen. Diese
enthalten gerade die (Unter-)Formeln, die an einer
bestimmten Stelle im Modell gelten müssen.

Diese werden in jedem Schritt nichtdeterministisch geraten.

Durch die Konsistenz der Hintikka-Mengen wird
ausgeschlossen, dass etwas geraten wird, was bereits der
Aussagenlogik widerspricht.

U und R Formeln werden entsprechend ihrer Abwicklung
behandelt.

Dass U nicht unendlich lange abgewickelt wird, wird durch die
Akzeptanzbedingung sichergestellt.

Der X Operator wird durch die Übergänge behandelt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 48/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Von LTL zum NBA - Die Idee

Wir konstruieren nun einen NBA, der genau die Menge aller
Modelle für eine LTL Formel φ erkennt.

Die Idee ist als Zustände Hintikka-Mengen zu benutzen. Diese
enthalten gerade die (Unter-)Formeln, die an einer
bestimmten Stelle im Modell gelten müssen.

Diese werden in jedem Schritt nichtdeterministisch geraten.

Durch die Konsistenz der Hintikka-Mengen wird
ausgeschlossen, dass etwas geraten wird, was bereits der
Aussagenlogik widerspricht.

U und R Formeln werden entsprechend ihrer Abwicklung
behandelt.

Dass U nicht unendlich lange abgewickelt wird, wird durch die
Akzeptanzbedingung sichergestellt.

Der X Operator wird durch die Übergänge behandelt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 48/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Von LTL zum NBA - Die Idee

Wir konstruieren nun einen NBA, der genau die Menge aller
Modelle für eine LTL Formel φ erkennt.

Die Idee ist als Zustände Hintikka-Mengen zu benutzen. Diese
enthalten gerade die (Unter-)Formeln, die an einer
bestimmten Stelle im Modell gelten müssen.

Diese werden in jedem Schritt nichtdeterministisch geraten.

Durch die Konsistenz der Hintikka-Mengen wird
ausgeschlossen, dass etwas geraten wird, was bereits der
Aussagenlogik widerspricht.

U und R Formeln werden entsprechend ihrer Abwicklung
behandelt.

Dass U nicht unendlich lange abgewickelt wird, wird durch die
Akzeptanzbedingung sichergestellt.

Der X Operator wird durch die Übergänge behandelt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 48/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Von LTL zum NBA - Die Idee

Wir konstruieren nun einen NBA, der genau die Menge aller
Modelle für eine LTL Formel φ erkennt.

Die Idee ist als Zustände Hintikka-Mengen zu benutzen. Diese
enthalten gerade die (Unter-)Formeln, die an einer
bestimmten Stelle im Modell gelten müssen.

Diese werden in jedem Schritt nichtdeterministisch geraten.

Durch die Konsistenz der Hintikka-Mengen wird
ausgeschlossen, dass etwas geraten wird, was bereits der
Aussagenlogik widerspricht.

U und R Formeln werden entsprechend ihrer Abwicklung
behandelt.

Dass U nicht unendlich lange abgewickelt wird, wird durch die
Akzeptanzbedingung sichergestellt.

Der X Operator wird durch die Übergänge behandelt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 48/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Von LTL zum NBA - Die Idee

Wir konstruieren nun einen NBA, der genau die Menge aller
Modelle für eine LTL Formel φ erkennt.

Die Idee ist als Zustände Hintikka-Mengen zu benutzen. Diese
enthalten gerade die (Unter-)Formeln, die an einer
bestimmten Stelle im Modell gelten müssen.

Diese werden in jedem Schritt nichtdeterministisch geraten.

Durch die Konsistenz der Hintikka-Mengen wird
ausgeschlossen, dass etwas geraten wird, was bereits der
Aussagenlogik widerspricht.

U und R Formeln werden entsprechend ihrer Abwicklung
behandelt.

Dass U nicht unendlich lange abgewickelt wird, wird durch die
Akzeptanzbedingung sichergestellt.

Der X Operator wird durch die Übergänge behandelt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 48/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Von LTL zum NBA - Vorarbeiten

Definition (Fischer-Ladner-Abschluss)

Sei φ eine LTL-Formel in positiver Normalform. Der
Fischer-Ladner-Abschluss von φ ist die kleinste Menge FL(φ), die φ
enthält und für die folgendes gilt:

1 p ∨ q ∈ FL(φ)⇒ {p, q} ⊆ FL(φ)

2 p ∧ q ∈ FL(φ)⇒ {p, q} ⊆ FL(φ)

3 Xp ∈ FL(φ)⇒ p ∈ FL(φ)

4 pUq ∈ FL(φ)⇒ {p, q, q∨(p∧X (pUq)), p∧X (pUq),X (pUq)}
5 pRq ∈ FL(φ)⇒ {p, q, q∧ (p∨X (pRq)), p∨X (pRq),X (pRq)}

Frank Heitmann heitmann@informatik.uni-hamburg.de 49/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Von LTL zum NBA - Vorarbeiten

Definition (Hintikka-Mengen)

Sei φ eine LTL-Formel in positiver Normalform. Eine
Hintikka-Menge für φ ist eine Menge M ⊆ FL(φ) mit

1 p ∨ q ∈ M ⇒ p ∈ M oder q ∈ M

2 p ∧ q ∈ M ⇒ p ∈ M und q ∈ M

3 pUq ∈ M ⇒ q ∈ M oder (p ∈ M und X (pUq) ∈ M)

4 pRq ∈ M ⇒ q ∈ M und (p ∈ M oder X (pRq) ∈ M)

Frank Heitmann heitmann@informatik.uni-hamburg.de 50/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Von LTL zum NBA - Vorarbeiten

Definition (Hintikka-Mengen (Teil 2))

Eine Hintikka-Menge M heißt konsistent, falls es kein p ∈ P
mit {p,¬p} ⊆ M gibt.

Mit H(φ) wird die Menge aller konsistenten Hintikka-Mengen
bezeichnet.

Mit P+(M) wird die Menge aller positiven Literale in M
bezeichnet (also P+(M) = M ∩ P).

Mit P−(M) wird die Menge aller negativen Literale in M
bezeichnet.

Frank Heitmann heitmann@informatik.uni-hamburg.de 51/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Von LTL zum NBA - Vorarbeiten

Definition (Hintikka-Mengen (Teil 2))

Eine Hintikka-Menge M heißt konsistent, falls es kein p ∈ P
mit {p,¬p} ⊆ M gibt.

Mit H(φ) wird die Menge aller konsistenten Hintikka-Mengen
bezeichnet.

Mit P+(M) wird die Menge aller positiven Literale in M
bezeichnet (also P+(M) = M ∩ P).

Mit P−(M) wird die Menge aller negativen Literale in M
bezeichnet.

Frank Heitmann heitmann@informatik.uni-hamburg.de 51/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Von LTL zum NBA - Vorarbeiten

Definition (Hintikka-Mengen (Teil 2))

Eine Hintikka-Menge M heißt konsistent, falls es kein p ∈ P
mit {p,¬p} ⊆ M gibt.

Mit H(φ) wird die Menge aller konsistenten Hintikka-Mengen
bezeichnet.

Mit P+(M) wird die Menge aller positiven Literale in M
bezeichnet (also P+(M) = M ∩ P).

Mit P−(M) wird die Menge aller negativen Literale in M
bezeichnet.

Frank Heitmann heitmann@informatik.uni-hamburg.de 51/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Von LTL zum NBA - Vorarbeiten

Definition (Hintikka-Mengen (Teil 2))

Eine Hintikka-Menge M heißt konsistent, falls es kein p ∈ P
mit {p,¬p} ⊆ M gibt.

Mit H(φ) wird die Menge aller konsistenten Hintikka-Mengen
bezeichnet.

Mit P+(M) wird die Menge aller positiven Literale in M
bezeichnet (also P+(M) = M ∩ P).

Mit P−(M) wird die Menge aller negativen Literale in M
bezeichnet.

Frank Heitmann heitmann@informatik.uni-hamburg.de 51/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Von LTL zum NBA - Der Satz

Satz

Zu jeder LTL-Formel φ in positiver Normalform kann ein NBA Aφ
konstruiert werden mit L(Aφ) = L(φ). Ferner ist |Aφ| ≤ 22·|φ|.

Korollar

Zu jeder LTL-Formel φ kann ein NBA Aφ konstruiert werden mit
L(Aφ) = L(φ). Ferner ist |Aφ| ≤ 2O(|φ|).

Frank Heitmann heitmann@informatik.uni-hamburg.de 52/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Von LTL zum NBA - Der Satz

Satz

Zu jeder LTL-Formel φ in positiver Normalform kann ein NBA Aφ
konstruiert werden mit L(Aφ) = L(φ). Ferner ist |Aφ| ≤ 22·|φ|.

Korollar

Zu jeder LTL-Formel φ kann ein NBA Aφ konstruiert werden mit
L(Aφ) = L(φ). Ferner ist |Aφ| ≤ 2O(|φ|).

Frank Heitmann heitmann@informatik.uni-hamburg.de 52/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Von LTL zum NBA - Die Konstruktion

Seien p1Uq1, p2Uq2, . . . , pkUqk alle in FL(φ) vorkommenden
U-Formeln. Wir definieren

A := (H(φ),Σ, δ,Zstart ,Z
1
end , . . . ,Z

k
end)

wobei:

Zstart := {M | φ ∈ M}
Z i
end := {M | piUqi ∈ M ⇒ qi ∈ M}

Ferner ist
δ(M, a) := {M ′ | ∀Xq ∈ M : q ∈ M ′}

im Fall P+(M) ⊆ a und P−(M) ∩ a = ∅ und sonst

δ(M, a) := ∅.

Frank Heitmann heitmann@informatik.uni-hamburg.de 53/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Von LTL zum NBA - Korrektheit

Satz

Zu jeder LTL-Formel φ in positiver Normalform kann ein NBA Aφ
konstruiert werden mit L(Aφ) = L(φ). Ferner ist |Aφ| ≤ 22·|φ|.

Beweis.

Beweis der Korrektheit der Konstruktion

... als Hausaufgabe

Frank Heitmann heitmann@informatik.uni-hamburg.de 54/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Von LTL zum NBA - Korrektheit

Satz

Zu jeder LTL-Formel φ in positiver Normalform kann ein NBA Aφ
konstruiert werden mit L(Aφ) = L(φ). Ferner ist |Aφ| ≤ 22·|φ|.

Beweis.

Beweis der Korrektheit der Konstruktion
... als Hausaufgabe

Frank Heitmann heitmann@informatik.uni-hamburg.de 54/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Der Schluss...

Wir nähern uns dem Ende. Das System wird eher mit einem
Transitionssystem modelliert (oder mit einem Formalismus, der in
dieses übersetzt wird). Daher brauchen wir dafür einen
“Produktautomaten”. Zur Wiederholung ...

Frank Heitmann heitmann@informatik.uni-hamburg.de 55/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Transitionssysteme

Definition (Transitionssystem)

Ein labelled transition system (LTS) ist ein Tupel
TS = (S , s0,R, L)mit

einer endlichen Menge von Zuständen S ,

einem Startzustand s0 ∈ S ,

einer links-totalen Übergangsrelation R ⊆ S × S und

einer labelling function L : S → 2P , die jedem Zustand s die
Menge der atomaren Formeln L(s) ⊆ P zuweist, die in s
gelten.

Frank Heitmann heitmann@informatik.uni-hamburg.de 56/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Transitionssysteme

Definition (Pfad im LTS)

Ein Pfad π in einem LTS TS = (S , s0,R, L) ist eine
unendliche Sequenz von Zuständen

π = s1s2s3 . . .

derart, dass (si , si+1) ∈ R für alle i ≥ 1.

Ein Lauf in TS ist ein unendliches Wort a0a1 . . . ∈ (2P)ω, so
dass ein Pfad s0s1 . . . existiert mit ai = L(si) für alle i . Mit
L(TS) wird die Menge der Läufe von TS bezeichnet.

Frank Heitmann heitmann@informatik.uni-hamburg.de 57/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Ein weiterer Produktautomat

Definition

Sei TS = (S , s0,R, L) ein LTS über P und A = (Z , 2P , δ, z0,Zend)
ein NBA. Wir definieren deren Produkt als NBA
C := (S × Z , {•},∆, (s0, z0),S × Zend), wobei

∆((s, z), •) = {(s ′, z ′) | (s, s ′) ∈ R ∧ z ′ ∈ δ(z , λ(s))}

Satz

Ist TS ein LTS, A ein NBA und C der aus obiger Definition
hervorgegangener NBA. Es gilt L(C) = ∅ gdw. L(TS) ∩ L(A) = ∅.

Beweis.

Zur Übung...

Frank Heitmann heitmann@informatik.uni-hamburg.de 58/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Ein weiterer Produktautomat

Definition

Sei TS = (S , s0,R, L) ein LTS über P und A = (Z , 2P , δ, z0,Zend)
ein NBA. Wir definieren deren Produkt als NBA
C := (S × Z , {•},∆, (s0, z0),S × Zend), wobei

∆((s, z), •) = {(s ′, z ′) | (s, s ′) ∈ R ∧ z ′ ∈ δ(z , λ(s))}

Satz

Ist TS ein LTS, A ein NBA und C der aus obiger Definition
hervorgegangener NBA. Es gilt L(C) = ∅ gdw. L(TS) ∩ L(A) = ∅.

Beweis.

Zur Übung...

Frank Heitmann heitmann@informatik.uni-hamburg.de 58/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Finale!

Satz

Das Model-Checking-Problem mit LTS TS und LTL-Formel φ lässt
sich in Zeit |TS | · 2O(|φ|) entscheiden.

Beweis.

1 Betrachte ¬φ und konstruiere NBA A¬φ mit

L(A¬φ) = L(¬φ) = L(Aφ). Es ist |A¬φ| = 2O(|φ|).

2 Bilde das Produkt C aus LTS TS und A¬φ. Nach obigem ist
|C | = |TS | · 2O(|φ|).

3 Nun ist nach dem vorherigen Satz L(C) = ∅
gdw. L(TS) ∩ L(A) = ∅ und wir können das Leerheitsproblem
in linearer Zeit, d.h. hier in O(|TS | · 2O(|φ|)) lösen.

Frank Heitmann heitmann@informatik.uni-hamburg.de 59/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Finale!

Satz

Das Model-Checking-Problem mit LTS TS und LTL-Formel φ lässt
sich in Zeit |TS | · 2O(|φ|) entscheiden.

Beweis.

1 Betrachte ¬φ und konstruiere NBA A¬φ mit

L(A¬φ) = L(¬φ) = L(Aφ). Es ist |A¬φ| = 2O(|φ|).

2 Bilde das Produkt C aus LTS TS und A¬φ. Nach obigem ist
|C | = |TS | · 2O(|φ|).

3 Nun ist nach dem vorherigen Satz L(C) = ∅
gdw. L(TS) ∩ L(A) = ∅ und wir können das Leerheitsproblem
in linearer Zeit, d.h. hier in O(|TS | · 2O(|φ|)) lösen.

Frank Heitmann heitmann@informatik.uni-hamburg.de 59/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Finale!

Satz

Das Model-Checking-Problem mit LTS TS und LTL-Formel φ lässt
sich in Zeit |TS | · 2O(|φ|) entscheiden.

Beweis.

1 Betrachte ¬φ und konstruiere NBA A¬φ mit

L(A¬φ) = L(¬φ) = L(Aφ). Es ist |A¬φ| = 2O(|φ|).

2 Bilde das Produkt C aus LTS TS und A¬φ. Nach obigem ist
|C | = |TS | · 2O(|φ|).

3 Nun ist nach dem vorherigen Satz L(C) = ∅
gdw. L(TS) ∩ L(A) = ∅ und wir können das Leerheitsproblem
in linearer Zeit, d.h. hier in O(|TS | · 2O(|φ|)) lösen.

Frank Heitmann heitmann@informatik.uni-hamburg.de 59/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Finale!

Satz

Das Model-Checking-Problem mit LTS TS und LTL-Formel φ lässt
sich in Zeit |TS | · 2O(|φ|) entscheiden.

Beweis.

1 Betrachte ¬φ und konstruiere NBA A¬φ mit

L(A¬φ) = L(¬φ) = L(Aφ). Es ist |A¬φ| = 2O(|φ|).

2 Bilde das Produkt C aus LTS TS und A¬φ. Nach obigem ist
|C | = |TS | · 2O(|φ|).

3 Nun ist nach dem vorherigen Satz L(C) = ∅
gdw. L(TS) ∩ L(A) = ∅ und wir können das Leerheitsproblem
in linearer Zeit, d.h. hier in O(|TS | · 2O(|φ|)) lösen.

Frank Heitmann heitmann@informatik.uni-hamburg.de 59/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Zur Lektüre

Literaturhinweis

Der Inhalt der heutigen Vorlesung ist aus Automatentheorie und
Logik von Martin Hofmann und Martin Lange. Erschienen im
Springer-Verlag, 2011.
Dort

Kapitel 5 (komplett) für Büchi-Automaten

Satz 9.4 und Korollar 9.5 aus Kapitel 9 zum Leerheitsproblem

Kapitel 11 (ohne 11.3) für LTL, die Konvertierung zu NBAs
und letztendlich für das Model-Checking-Problem für LTL.

Frank Heitmann heitmann@informatik.uni-hamburg.de 60/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Für zu Hause (1/2)

Für zu Hause:

1 DBA � NBA [bisschen knifflig, aber geht]

2 Korrektheit beim Produktautomaten zweier NBAs [einfach]

3 Beweis des Satzes zum Produkt aus NBA und TS [einfach]

Dann bereitet euch noch (mit Kapitel 11 aus dem eben erwähnten
Buch) auf

Beweis der Konstruktion LTL→ NBA [schwierig]

vor.

Frank Heitmann heitmann@informatik.uni-hamburg.de 61/62

LTL, CTL und CTL∗

Model Checking LTL
Grober Ablauf
Im Detail

Für zu Hause (2/2)

Satz

Sei F eine geschlossene Formel in Skolemform. F ist genau dann
erfüllbar, wenn F ein Herbrand-Modell besitzt.

Satz (Gödel-Herbrand-Skolem)

Für jede geschlossene Formel in Skolemform F gilt: F ist genau
dann erfüllbar, wenn die Formelmenge E (F) im aussagenlogischen
Sinne erfüllbar ist.

Literatur

Erst selbst versuchen, dann bei Bedarf in die Kapitel 2.4 und 2.5
aus dem Buch Logik für Informatiker von Uwe Schöning gucken.

Frank Heitmann heitmann@informatik.uni-hamburg.de 62/62

	LTL, CTL und CTL*
	LTL und CTL
	CTL*

	Model Checking LTL
	Grober Ablauf
	Im Detail

