
Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Formale Grundlagen der Informatik 3
Kapitel 5

Verification by Model Checking

Frank Heitmann
heitmann@informatik.uni-hamburg.de

4. Januar 2016

Frank Heitmann heitmann@informatik.uni-hamburg.de 1/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Motivation

Ein Beispiel

Mutual Exclusion: Zwei Prozesse, die eine Ressource nutzen wollen,
dies aber nicht zur gleichen Zeit tun sollen (z.B. Schreib-Zugriff auf
eine Datei).

Schöne Eigenschaften

Sicherheit/Safety: Nur ein Prozess ist zur Zeit im kritischen
Abschnitt.

Lebendigkeit/Liveness: Wenn ein Prozess in den kritischen
Abschnitt will (request), dann darf er diesen irgendwann
tatsächlich betreten.

Non-blocking: Ein Prozess kann stets verlangen, in den
kritischen Abschnitt zu gelangen.

...

Frank Heitmann heitmann@informatik.uni-hamburg.de 2/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Motivation

Ein Beispiel

Mutual Exclusion: Zwei Prozesse, die eine Ressource nutzen wollen,
dies aber nicht zur gleichen Zeit tun sollen (z.B. Schreib-Zugriff auf
eine Datei).

Schöne Eigenschaften

Sicherheit/Safety: Nur ein Prozess ist zur Zeit im kritischen
Abschnitt.

Lebendigkeit/Liveness: Wenn ein Prozess in den kritischen
Abschnitt will (request), dann darf er diesen irgendwann
tatsächlich betreten.

Non-blocking: Ein Prozess kann stets verlangen, in den
kritischen Abschnitt zu gelangen.

...

Frank Heitmann heitmann@informatik.uni-hamburg.de 2/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Motivation

Weiter an der Tafel ...

Frank Heitmann heitmann@informatik.uni-hamburg.de 3/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Motivation: Zusammenfassung

Was wir jetzt brauchen:

eine formale Modellierungssprache (⇒ Modell)

eine Logik (⇒ Spezifikation)

Algorithmen, die überprüfen, ob das Modell die Spezifikation
erfüllt

Wichtige Anmerkung

Entwirft man die Modellierungssprache und die Logik sinnvoll, so
hängen Modell M und Formel F zusammen und es macht Sinn von
M |= F zu sprechen. Dann ist man beim Erfüllbarkeitsproblem oder
beim Model-Checking-Problem. Das Äquivalent in der Aussagenlo-
gik wäre, gegeben eine Belegung A und eine Formel F , zu prüfen,
ob A |= F gilt, ob also F unter A wahr ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 4/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Motivation: Zusammenfassung

Was wir jetzt brauchen:

eine formale Modellierungssprache (⇒ Modell)

eine Logik (⇒ Spezifikation)

Algorithmen, die überprüfen, ob das Modell die Spezifikation
erfüllt

Wichtige Anmerkung

Entwirft man die Modellierungssprache und die Logik sinnvoll, so
hängen Modell M und Formel F zusammen und es macht Sinn von
M |= F zu sprechen. Dann ist man beim Erfüllbarkeitsproblem oder
beim Model-Checking-Problem. Das Äquivalent in der Aussagenlo-
gik wäre, gegeben eine Belegung A und eine Formel F , zu prüfen,
ob A |= F gilt, ob also F unter A wahr ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 4/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Motivation: Tool-Support

Ein Tool könnte jetzt:

Eine Sprache (textuell oder visuell) zum Modellieren anbieten

Per Knopf-Druck die Algorithmen starten

Anmerkung

Für die Spezifikation erlaubt das Tool meist nur eine einfache
Eingabe der Formel der jeweiligen Logik.

Frank Heitmann heitmann@informatik.uni-hamburg.de 5/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik

Wir haben

Eine abzählbare Menge V = {x1, x2, . . .} von
aussagenlogischen Variablen oder Atomen.

Das Alphabet besteht dann aus V , den Junktoren ∧, ∨ und ¬
(für “and”, “or” und “not”) und den Klammern (und).

Frank Heitmann heitmann@informatik.uni-hamburg.de 6/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik

Wir haben

Eine abzählbare Menge V = {x1, x2, . . .} von
aussagenlogischen Variablen oder Atomen.

Das Alphabet besteht dann aus V , den Junktoren ∧, ∨ und ¬
(für “and”, “or” und “not”) und den Klammern (und).

Frank Heitmann heitmann@informatik.uni-hamburg.de 6/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Syntax

Definition (Syntax der Aussagenlogik)

Die wohlgeformten Ausdrücke/Formeln der Aussagenlogik (AL)
werden induktiv definiert durch

1 Jede Variable x ∈ V ist eine Formel.

2 Wenn φ eine Formel ist, dann auch ¬φ.

3 Wenn φ und ψ Formeln sind, dann auch (φ ∧ ψ) und (φ ∨ ψ).

4 Nur Formeln, die durch endliche häufige Anwendungen der
Regeln 1-3 entstehen, sind wohlgeformte Formeln der
Aussagenlogik.

Frank Heitmann heitmann@informatik.uni-hamburg.de 7/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Syntax

Definition (Syntax der Aussagenlogik)

Die wohlgeformten Ausdrücke/Formeln der Aussagenlogik (AL)
werden induktiv definiert durch

1 Jede Variable x ∈ V ist eine Formel.

2 Wenn φ eine Formel ist, dann auch ¬φ.

3 Wenn φ und ψ Formeln sind, dann auch (φ ∧ ψ) und (φ ∨ ψ).

4 Nur Formeln, die durch endliche häufige Anwendungen der
Regeln 1-3 entstehen, sind wohlgeformte Formeln der
Aussagenlogik.

Frank Heitmann heitmann@informatik.uni-hamburg.de 7/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Syntax

Definition (Syntax der Aussagenlogik)

Die wohlgeformten Ausdrücke/Formeln der Aussagenlogik (AL)
werden induktiv definiert durch

1 Jede Variable x ∈ V ist eine Formel.

2 Wenn φ eine Formel ist, dann auch ¬φ.

3 Wenn φ und ψ Formeln sind, dann auch (φ ∧ ψ) und (φ ∨ ψ).

4 Nur Formeln, die durch endliche häufige Anwendungen der
Regeln 1-3 entstehen, sind wohlgeformte Formeln der
Aussagenlogik.

Frank Heitmann heitmann@informatik.uni-hamburg.de 7/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Syntax

Definition (Syntax der Aussagenlogik)

Die wohlgeformten Ausdrücke/Formeln der Aussagenlogik (AL)
werden induktiv definiert durch

1 Jede Variable x ∈ V ist eine Formel.

2 Wenn φ eine Formel ist, dann auch ¬φ.

3 Wenn φ und ψ Formeln sind, dann auch (φ ∧ ψ) und (φ ∨ ψ).

4 Nur Formeln, die durch endliche häufige Anwendungen der
Regeln 1-3 entstehen, sind wohlgeformte Formeln der
Aussagenlogik.

Frank Heitmann heitmann@informatik.uni-hamburg.de 7/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Syntax

Definition (Syntax der Aussagenlogik)

Die wohlgeformten Ausdrücke/Formeln der Aussagenlogik (AL)
werden induktiv definiert durch

1 Jede Variable x ∈ V ist eine Formel.

2 Wenn φ eine Formel ist, dann auch ¬φ.

3 Wenn φ und ψ Formeln sind, dann auch (φ ∧ ψ) und (φ ∨ ψ).

4 Nur Formeln, die durch endliche häufige Anwendungen der
Regeln 1-3 entstehen, sind wohlgeformte Formeln der
Aussagenlogik.

Frank Heitmann heitmann@informatik.uni-hamburg.de 7/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Syntax (Alternative)

Alternative Definition der Syntax durch die folgende Grammatik,
wobei x eine Variable darstellt:

φ ::= x | ¬φ | (φ ∧ φ) | (φ ∨ φ)

Frank Heitmann heitmann@informatik.uni-hamburg.de 8/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Abkürzungen etc.

Klammern werden auf übliche Weise eingespart. Ferner haben wir
folgende Abkürzungen:

φ⇒ ψ := ¬φ ∨ ψ
φ⇔ ψ := (φ⇒ ψ) ∧ (ψ ⇒ φ)

> := (x ∨ ¬x)

⊥ := ¬>

für die Implikation, die Biimplikation, die Tautologie und die
Kontradiktion.

Frank Heitmann heitmann@informatik.uni-hamburg.de 9/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Begriffe

Eine Formel, die nur aus einer einzelnen Variable besteht,
nennen wir atomare Formel.

Eine Formel der Form ¬φ nennen wir eine Negation.

(φ ∧ ψ) ist eine Konjunktion.

(φ ∨ ψ) ist eine Disjunktion.

Ein Literal ist eine atomare Formel oder die Negation einer
atomaren Formel, also x oder ¬x für ein x ∈ V . Im ersten Fall
nenne wir die Formel auch positives Literal und im zweiten
Fall negatives Literal.

Frank Heitmann heitmann@informatik.uni-hamburg.de 10/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Begriffe

Eine Formel, die nur aus einer einzelnen Variable besteht,
nennen wir atomare Formel.

Eine Formel der Form ¬φ nennen wir eine Negation.

(φ ∧ ψ) ist eine Konjunktion.

(φ ∨ ψ) ist eine Disjunktion.

Ein Literal ist eine atomare Formel oder die Negation einer
atomaren Formel, also x oder ¬x für ein x ∈ V . Im ersten Fall
nenne wir die Formel auch positives Literal und im zweiten
Fall negatives Literal.

Frank Heitmann heitmann@informatik.uni-hamburg.de 10/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Begriffe

Eine Formel, die nur aus einer einzelnen Variable besteht,
nennen wir atomare Formel.

Eine Formel der Form ¬φ nennen wir eine Negation.

(φ ∧ ψ) ist eine Konjunktion.

(φ ∨ ψ) ist eine Disjunktion.

Ein Literal ist eine atomare Formel oder die Negation einer
atomaren Formel, also x oder ¬x für ein x ∈ V . Im ersten Fall
nenne wir die Formel auch positives Literal und im zweiten
Fall negatives Literal.

Frank Heitmann heitmann@informatik.uni-hamburg.de 10/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Begriffe

Eine Formel, die nur aus einer einzelnen Variable besteht,
nennen wir atomare Formel.

Eine Formel der Form ¬φ nennen wir eine Negation.

(φ ∧ ψ) ist eine Konjunktion.

(φ ∨ ψ) ist eine Disjunktion.

Ein Literal ist eine atomare Formel oder die Negation einer
atomaren Formel, also x oder ¬x für ein x ∈ V . Im ersten Fall
nenne wir die Formel auch positives Literal und im zweiten
Fall negatives Literal.

Frank Heitmann heitmann@informatik.uni-hamburg.de 10/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Begriffe

Eine Formel, die nur aus einer einzelnen Variable besteht,
nennen wir atomare Formel.

Eine Formel der Form ¬φ nennen wir eine Negation.

(φ ∧ ψ) ist eine Konjunktion.

(φ ∨ ψ) ist eine Disjunktion.

Ein Literal ist eine atomare Formel oder die Negation einer
atomaren Formel, also x oder ¬x für ein x ∈ V . Im ersten Fall
nenne wir die Formel auch positives Literal und im zweiten
Fall negatives Literal.

Frank Heitmann heitmann@informatik.uni-hamburg.de 10/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Begriffe

Eine Formel ist in konjunktiver Normalform (KNF) wenn sie
eine Konjunktion von Disjunktionen von Literalen ist. Z.B.

(x2 ∨ ¬x4) ∧ (x1 ∨ ¬x4 ∨ x5) ∧ (¬x3 ∨ x4)

Eine Disjunktion von Literalen wird Klausel genannt. Eine
Formel ist in 3-KNF wenn jede Klausel genau drei Literale
enthält.

Eine Formel ist in disjunktiver Normalform (DNF) wenn sie
eine Disjunktion von Konjunktionen von Literalen ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 11/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Begriffe

Eine Formel ist in konjunktiver Normalform (KNF) wenn sie
eine Konjunktion von Disjunktionen von Literalen ist. Z.B.

(x2 ∨ ¬x4) ∧ (x1 ∨ ¬x4 ∨ x5) ∧ (¬x3 ∨ x4)

Eine Disjunktion von Literalen wird Klausel genannt. Eine
Formel ist in 3-KNF wenn jede Klausel genau drei Literale
enthält.

Eine Formel ist in disjunktiver Normalform (DNF) wenn sie
eine Disjunktion von Konjunktionen von Literalen ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 11/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Semantik

Um die Semantik zu definieren, benötigen wir ein Modell
bzgl. dessen die Wahrheit der Formel definiert werden kann.

Definition (Aussagenlogisches Modell)

Ein Modell einer aussagenlogischen Formel φ ist eine totale
Funktion A : V → {0, 1}.

Ist A(x) = 0, so ist x falsch (in A).

Ist A(x) = 1, so ist x wahr (in A).

Frank Heitmann heitmann@informatik.uni-hamburg.de 12/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Semantik

Um die Semantik zu definieren, benötigen wir ein Modell
bzgl. dessen die Wahrheit der Formel definiert werden kann.

Definition (Aussagenlogisches Modell)

Ein Modell einer aussagenlogischen Formel φ ist eine totale
Funktion A : V → {0, 1}.

Ist A(x) = 0, so ist x falsch (in A).

Ist A(x) = 1, so ist x wahr (in A).

Frank Heitmann heitmann@informatik.uni-hamburg.de 12/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Semantik

Definition (Semantik der AL)

Sei φ eine Formel und A ein Modell. A wird induktiv auf φ
erweitert:

A |= p gdw. A(p) = 1, für ein p ∈ V
A |= ¬φ gdw. A |= φ nicht gilt, notiert als A 6|= φ
A |= φ1 ∧ φ2 gdw. A |= φ1 und A |= φ2 gilt
A |= φ1 ∨ φ2 gdw. A |= φ1 oder A |= φ2 gilt

Frank Heitmann heitmann@informatik.uni-hamburg.de 13/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Semantik

Definition (Semantik der AL)

Sei φ eine Formel und A ein Modell. A wird induktiv auf φ
erweitert:

A |= p gdw. A(p) = 1, für ein p ∈ V
A |= ¬φ gdw. A |= φ nicht gilt, notiert als A 6|= φ
A |= φ1 ∧ φ2 gdw. A |= φ1 und A |= φ2 gilt
A |= φ1 ∨ φ2 gdw. A |= φ1 oder A |= φ2 gilt

Frank Heitmann heitmann@informatik.uni-hamburg.de 13/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Semantik (Begriffe)

A |= φ bezeichnet, dass φ im Modell A wahr ist, d.h. dass
A(φ) = 1.

Ist A(φ) = 0, so schreiben wir A 6|= φ.

Gilt A |= φ, sagen wir A erfüllt φ oder φ ist wahr in A.

Gilt A 6|= φ, sagen wir A falsifiziert φ oder φ ist falsch in A.

Frank Heitmann heitmann@informatik.uni-hamburg.de 14/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Semantik (Begriffe)

A |= φ bezeichnet, dass φ im Modell A wahr ist, d.h. dass
A(φ) = 1.

Ist A(φ) = 0, so schreiben wir A 6|= φ.

Gilt A |= φ, sagen wir A erfüllt φ oder φ ist wahr in A.

Gilt A 6|= φ, sagen wir A falsifiziert φ oder φ ist falsch in A.

Frank Heitmann heitmann@informatik.uni-hamburg.de 14/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Semantik (Begriffe)

A |= φ bezeichnet, dass φ im Modell A wahr ist, d.h. dass
A(φ) = 1.

Ist A(φ) = 0, so schreiben wir A 6|= φ.

Gilt A |= φ, sagen wir A erfüllt φ oder φ ist wahr in A.

Gilt A 6|= φ, sagen wir A falsifiziert φ oder φ ist falsch in A.

Frank Heitmann heitmann@informatik.uni-hamburg.de 14/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Semantik (Begriffe)

A |= φ bezeichnet, dass φ im Modell A wahr ist, d.h. dass
A(φ) = 1.

Ist A(φ) = 0, so schreiben wir A 6|= φ.

Gilt A |= φ, sagen wir A erfüllt φ oder φ ist wahr in A.

Gilt A 6|= φ, sagen wir A falsifiziert φ oder φ ist falsch in A.

Frank Heitmann heitmann@informatik.uni-hamburg.de 14/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Semantik (Begriffe)

Eine Formel φ ist erfüllbar wenn ein Modell A existiert mit
A |= φ.

φ ist falsifizierbar wenn ein A mit A 6|= φ existiert.

φ ist gültig wenn φ in allen Modellen wahr ist. Wir schreiben
dafür |= φ. φ ist dann eine Tautologie.

φ ist eine Kontradiktion, notiert durch φ |=, wenn kein Modell
φ erfüllt.

Zwei Formeln φ und ψ sind äquivalent, wenn A |= φ
gdw. A |= ψ für alle Modelle A gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 15/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Semantik (Begriffe)

Eine Formel φ ist erfüllbar wenn ein Modell A existiert mit
A |= φ.

φ ist falsifizierbar wenn ein A mit A 6|= φ existiert.

φ ist gültig wenn φ in allen Modellen wahr ist. Wir schreiben
dafür |= φ. φ ist dann eine Tautologie.

φ ist eine Kontradiktion, notiert durch φ |=, wenn kein Modell
φ erfüllt.

Zwei Formeln φ und ψ sind äquivalent, wenn A |= φ
gdw. A |= ψ für alle Modelle A gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 15/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Semantik (Begriffe)

Eine Formel φ ist erfüllbar wenn ein Modell A existiert mit
A |= φ.

φ ist falsifizierbar wenn ein A mit A 6|= φ existiert.

φ ist gültig wenn φ in allen Modellen wahr ist. Wir schreiben
dafür |= φ. φ ist dann eine Tautologie.

φ ist eine Kontradiktion, notiert durch φ |=, wenn kein Modell
φ erfüllt.

Zwei Formeln φ und ψ sind äquivalent, wenn A |= φ
gdw. A |= ψ für alle Modelle A gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 15/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Semantik (Begriffe)

Eine Formel φ ist erfüllbar wenn ein Modell A existiert mit
A |= φ.

φ ist falsifizierbar wenn ein A mit A 6|= φ existiert.

φ ist gültig wenn φ in allen Modellen wahr ist. Wir schreiben
dafür |= φ. φ ist dann eine Tautologie.

φ ist eine Kontradiktion, notiert durch φ |=, wenn kein Modell
φ erfüllt.

Zwei Formeln φ und ψ sind äquivalent, wenn A |= φ
gdw. A |= ψ für alle Modelle A gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 15/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

Aussagenlogik: Semantik (Begriffe)

Eine Formel φ ist erfüllbar wenn ein Modell A existiert mit
A |= φ.

φ ist falsifizierbar wenn ein A mit A 6|= φ existiert.

φ ist gültig wenn φ in allen Modellen wahr ist. Wir schreiben
dafür |= φ. φ ist dann eine Tautologie.

φ ist eine Kontradiktion, notiert durch φ |=, wenn kein Modell
φ erfüllt.

Zwei Formeln φ und ψ sind äquivalent, wenn A |= φ
gdw. A |= ψ für alle Modelle A gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 15/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Syntax

Definition (Syntax von LTL)

Die (wohlgeformten) Formeln der Linear Temporal Logic (LTL)
werden durch die folgende Grammatik definiert:

φ ::= v | ¬φ | (φ ∧ φ) | (φ ∨ φ) |
Xφ | Fφ | Gφ | (φUφ)

wobei v ∈ V ein aussagenlogisches Atom ist.

Die neuen Operatoren sind neXt, Finally, Globally und Until.

Frank Heitmann heitmann@informatik.uni-hamburg.de 16/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Syntax

Definition (Syntax von LTL)

Die (wohlgeformten) Formeln der Linear Temporal Logic (LTL)
werden durch die folgende Grammatik definiert:

φ ::= v | ¬φ | (φ ∧ φ) | (φ ∨ φ) |
Xφ | Fφ | Gφ | (φUφ)

wobei v ∈ V ein aussagenlogisches Atom ist.

Die neuen Operatoren sind neXt, Finally, Globally und Until.

Frank Heitmann heitmann@informatik.uni-hamburg.de 16/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Syntax (Alternative)

Definition (Syntax von LTL (alternative))

Die wohlgeformten Ausdrücke/Formeln von LTL werden induktiv
definiert durch

1 Jedes v ∈ V ist eine (atomare) LTL Formel.

2 Wenn φ1 und φ2 Formeln sind, dann auch ¬φ1, (φ1 ∧ φ2) und
(φ1 ∨ φ2).

3 Wenn φ1 und φ2 Formeln sind, dann auch Xφ1,Fφ1,Gφ1 and
(φ1Uφ2).

4 Nur Formeln, die durch endliche häufige Anwendungen der
Regeln 1-3 entstehen, sind wohlgeformte Formeln von LTL.

Zum Klammersparen binden die unären Junktoren ¬,X ,G and F
stärker als U und dann ∧ und ∨.

Frank Heitmann heitmann@informatik.uni-hamburg.de 17/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Syntax (Alternative)

Definition (Syntax von LTL (alternative))

Die wohlgeformten Ausdrücke/Formeln von LTL werden induktiv
definiert durch

1 Jedes v ∈ V ist eine (atomare) LTL Formel.

2 Wenn φ1 und φ2 Formeln sind, dann auch ¬φ1, (φ1 ∧ φ2) und
(φ1 ∨ φ2).

3 Wenn φ1 und φ2 Formeln sind, dann auch Xφ1,Fφ1,Gφ1 and
(φ1Uφ2).

4 Nur Formeln, die durch endliche häufige Anwendungen der
Regeln 1-3 entstehen, sind wohlgeformte Formeln von LTL.

Zum Klammersparen binden die unären Junktoren ¬,X ,G and F
stärker als U und dann ∧ und ∨.

Frank Heitmann heitmann@informatik.uni-hamburg.de 17/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Syntax (Alternative)

Definition (Syntax von LTL (alternative))

Die wohlgeformten Ausdrücke/Formeln von LTL werden induktiv
definiert durch

1 Jedes v ∈ V ist eine (atomare) LTL Formel.

2 Wenn φ1 und φ2 Formeln sind, dann auch ¬φ1, (φ1 ∧ φ2) und
(φ1 ∨ φ2).

3 Wenn φ1 und φ2 Formeln sind, dann auch Xφ1,Fφ1,Gφ1 and
(φ1Uφ2).

4 Nur Formeln, die durch endliche häufige Anwendungen der
Regeln 1-3 entstehen, sind wohlgeformte Formeln von LTL.

Zum Klammersparen binden die unären Junktoren ¬,X ,G and F
stärker als U und dann ∧ und ∨.

Frank Heitmann heitmann@informatik.uni-hamburg.de 17/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Syntax (Alternative)

Definition (Syntax von LTL (alternative))

Die wohlgeformten Ausdrücke/Formeln von LTL werden induktiv
definiert durch

1 Jedes v ∈ V ist eine (atomare) LTL Formel.

2 Wenn φ1 und φ2 Formeln sind, dann auch ¬φ1, (φ1 ∧ φ2) und
(φ1 ∨ φ2).

3 Wenn φ1 und φ2 Formeln sind, dann auch Xφ1,Fφ1,Gφ1 and
(φ1Uφ2).

4 Nur Formeln, die durch endliche häufige Anwendungen der
Regeln 1-3 entstehen, sind wohlgeformte Formeln von LTL.

Zum Klammersparen binden die unären Junktoren ¬,X ,G and F
stärker als U und dann ∧ und ∨.

Frank Heitmann heitmann@informatik.uni-hamburg.de 17/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Syntax (Alternative)

Definition (Syntax von LTL (alternative))

Die wohlgeformten Ausdrücke/Formeln von LTL werden induktiv
definiert durch

1 Jedes v ∈ V ist eine (atomare) LTL Formel.

2 Wenn φ1 und φ2 Formeln sind, dann auch ¬φ1, (φ1 ∧ φ2) und
(φ1 ∨ φ2).

3 Wenn φ1 und φ2 Formeln sind, dann auch Xφ1,Fφ1,Gφ1 and
(φ1Uφ2).

4 Nur Formeln, die durch endliche häufige Anwendungen der
Regeln 1-3 entstehen, sind wohlgeformte Formeln von LTL.

Zum Klammersparen binden die unären Junktoren ¬,X ,G and F
stärker als U und dann ∧ und ∨.

Frank Heitmann heitmann@informatik.uni-hamburg.de 17/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Semantik

LTL Formeln werden entlang der Pfade eines Transitionssystems
interpretiert. Das Transitionssystem übernimmt also die Rolle des
Modells in der Aussagenlogik.

Anmerkung

Gelabelte Transitionssysteme werden zu Ehren von Saul Kripke auch
Kripke-Strukturen genannt. Ihre Definition ist in der Literatur leicht
verschieden. Oft werden z.B. Kantenbeschriftungen verwendet.

Frank Heitmann heitmann@informatik.uni-hamburg.de 18/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Semantik

LTL Formeln werden entlang der Pfade eines Transitionssystems
interpretiert. Das Transitionssystem übernimmt also die Rolle des
Modells in der Aussagenlogik.

Anmerkung

Gelabelte Transitionssysteme werden zu Ehren von Saul Kripke auch
Kripke-Strukturen genannt. Ihre Definition ist in der Literatur leicht
verschieden. Oft werden z.B. Kantenbeschriftungen verwendet.

Frank Heitmann heitmann@informatik.uni-hamburg.de 18/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Semantik

Definition (Transitionssystem)

Ein labelled transition system (LTS) ist ein Tupel
TS = (S , s0,R, L)mit

einer endlichen Menge von Zuständen S ,

einem Startzustand s0 ∈ S ,

einer links-totalen Übergangsrelation R ⊆ S × S und

einer labelling function L : S → P(V), die jedem Zustand s
die Menge der atomaren Formeln L(s) ⊆ V zuweist, die in s
gelten.

Linkstotal bedeutet, dass es zu jedem s ∈ S stets ein s ′ mit
(s, s ′) ∈ R gibt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 19/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Semantik

Definition (Transitionssystem)

Ein labelled transition system (LTS) ist ein Tupel
TS = (S , s0,R, L)mit

einer endlichen Menge von Zuständen S ,

einem Startzustand s0 ∈ S ,

einer links-totalen Übergangsrelation R ⊆ S × S und

einer labelling function L : S → P(V), die jedem Zustand s
die Menge der atomaren Formeln L(s) ⊆ V zuweist, die in s
gelten.

Linkstotal bedeutet, dass es zu jedem s ∈ S stets ein s ′ mit
(s, s ′) ∈ R gibt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 19/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Semantik

Definition (Transitionssystem)

Ein labelled transition system (LTS) ist ein Tupel
TS = (S , s0,R, L)mit

einer endlichen Menge von Zuständen S ,

einem Startzustand s0 ∈ S ,

einer links-totalen Übergangsrelation R ⊆ S × S und

einer labelling function L : S → P(V), die jedem Zustand s
die Menge der atomaren Formeln L(s) ⊆ V zuweist, die in s
gelten.

Linkstotal bedeutet, dass es zu jedem s ∈ S stets ein s ′ mit
(s, s ′) ∈ R gibt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 19/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Semantik

Definition (Transitionssystem)

Ein labelled transition system (LTS) ist ein Tupel
TS = (S , s0,R, L)mit

einer endlichen Menge von Zuständen S ,

einem Startzustand s0 ∈ S ,

einer links-totalen Übergangsrelation R ⊆ S × S und

einer labelling function L : S → P(V), die jedem Zustand s
die Menge der atomaren Formeln L(s) ⊆ V zuweist, die in s
gelten.

Linkstotal bedeutet, dass es zu jedem s ∈ S stets ein s ′ mit
(s, s ′) ∈ R gibt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 19/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Semantik

Definition (Transitionssystem)

Ein labelled transition system (LTS) ist ein Tupel
TS = (S , s0,R, L)mit

einer endlichen Menge von Zuständen S ,

einem Startzustand s0 ∈ S ,

einer links-totalen Übergangsrelation R ⊆ S × S und

einer labelling function L : S → P(V), die jedem Zustand s
die Menge der atomaren Formeln L(s) ⊆ V zuweist, die in s
gelten.

Linkstotal bedeutet, dass es zu jedem s ∈ S stets ein s ′ mit
(s, s ′) ∈ R gibt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 19/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Semantik

Definition (Pfad im LTS)

Ein Pfad π in einem LTS TS = (S , s0,R, L) ist eine unendliche
Sequenz von Zuständen

π = s1s2s3 . . .

derart, dass (si , si+1) ∈ R für alle i ≥ 1.

Mit πi , i ≥ 1 bezeichnen wir den Suffix, der an si startet,
d.h. den Pfad πi = si si+1 . . .

Mit π(i), i ≥ 1, bezeichnen wir den i-ten Zustand in π,
d.h. π(i) = si .

Wenn s1 der Startzustand s0 von TS ist, wird π auch als
Rechnung bezeichnet.

Frank Heitmann heitmann@informatik.uni-hamburg.de 20/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Semantik

Definition (Pfad im LTS)

Ein Pfad π in einem LTS TS = (S , s0,R, L) ist eine unendliche
Sequenz von Zuständen

π = s1s2s3 . . .

derart, dass (si , si+1) ∈ R für alle i ≥ 1.

Mit πi , i ≥ 1 bezeichnen wir den Suffix, der an si startet,
d.h. den Pfad πi = si si+1 . . .

Mit π(i), i ≥ 1, bezeichnen wir den i-ten Zustand in π,
d.h. π(i) = si .

Wenn s1 der Startzustand s0 von TS ist, wird π auch als
Rechnung bezeichnet.

Frank Heitmann heitmann@informatik.uni-hamburg.de 20/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Semantik

Definition (Pfad im LTS)

Ein Pfad π in einem LTS TS = (S , s0,R, L) ist eine unendliche
Sequenz von Zuständen

π = s1s2s3 . . .

derart, dass (si , si+1) ∈ R für alle i ≥ 1.

Mit πi , i ≥ 1 bezeichnen wir den Suffix, der an si startet,
d.h. den Pfad πi = si si+1 . . .

Mit π(i), i ≥ 1, bezeichnen wir den i-ten Zustand in π,
d.h. π(i) = si .

Wenn s1 der Startzustand s0 von TS ist, wird π auch als
Rechnung bezeichnet.

Frank Heitmann heitmann@informatik.uni-hamburg.de 20/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Semantik

Definition (Pfad im LTS)

Ein Pfad π in einem LTS TS = (S , s0,R, L) ist eine unendliche
Sequenz von Zuständen

π = s1s2s3 . . .

derart, dass (si , si+1) ∈ R für alle i ≥ 1.

Mit πi , i ≥ 1 bezeichnen wir den Suffix, der an si startet,
d.h. den Pfad πi = si si+1 . . .

Mit π(i), i ≥ 1, bezeichnen wir den i-ten Zustand in π,
d.h. π(i) = si .

Wenn s1 der Startzustand s0 von TS ist, wird π auch als
Rechnung bezeichnet.

Frank Heitmann heitmann@informatik.uni-hamburg.de 20/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Semantik

Definition (Semantik von LTL (I))

Sei M = (S , s0,R, L) ein LTS und π = s1s2 . . . ein Pfad in M. π
erfüllt eine LTL Formel φ (in M), wenn M, π |= φ gilt, wobei die
Relation |= induktiv definiert ist:

M, π |= v gdw. v ∈ L(s1) für v ∈ V
M, π |= ¬φ gdw. M, π 6|= φ
M, π |= φ1 ∧ φ2 gdw. M, π |= φ1 und M, π |= φ2
M, π |= φ1 ∨ φ2 gdw. M, π |= φ1 oder M, π |= φ2

Frank Heitmann heitmann@informatik.uni-hamburg.de 21/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Semantik

Definition (Semantik von LTL (I))

Sei M = (S , s0,R, L) ein LTS und π = s1s2 . . . ein Pfad in M. π
erfüllt eine LTL Formel φ (in M), wenn M, π |= φ gilt, wobei die
Relation |= induktiv definiert ist:

M, π |= v gdw. v ∈ L(s1) für v ∈ V
M, π |= ¬φ gdw. M, π 6|= φ
M, π |= φ1 ∧ φ2 gdw. M, π |= φ1 und M, π |= φ2
M, π |= φ1 ∨ φ2 gdw. M, π |= φ1 oder M, π |= φ2

Frank Heitmann heitmann@informatik.uni-hamburg.de 21/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Semantik

Definition (Semantik von LTL (II))

M, π |= Xφ gdw. M, π2 |= φ
M, π |= Fφ gdw. M, πi |= φ für ein i ≥ 1
M, π |= Gφ gdw. M, πi |= φ für alle i ≥ 1
M, π |= φ1Uφ2 gdw. ein i ≥ 1 existiert mit M, πi |= φ2

und für alle j < i M, πj |= φ1 gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 22/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Semantik

Definition (Semantik von LTL (III))

Sei M = (S , s0,R, L) ein LTS. Sei φ eine LTL Formel und s ∈ S
ein Zustand von M.

M, s |= φ, wenn M, π |= φ gilt für jeden Pfad π in M, der in s
startet.

Wenn M, s0 |= φ gilt, schreiben wir M |= φ. Wir sagen: M ist
ein Modell für φ oder φ ist in M erfüllt.

Zwei LTL Formeln φ und ψ sind äquivalent, φ ≡ ψ, wenn für
alle Modelle M und alle Pfade π in M gilt: M, π |= φ
gdw. M, π |= ψ.

Frank Heitmann heitmann@informatik.uni-hamburg.de 23/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Semantik

Definition (Semantik von LTL (III))

Sei M = (S , s0,R, L) ein LTS. Sei φ eine LTL Formel und s ∈ S
ein Zustand von M.

M, s |= φ, wenn M, π |= φ gilt für jeden Pfad π in M, der in s
startet.

Wenn M, s0 |= φ gilt, schreiben wir M |= φ. Wir sagen: M ist
ein Modell für φ oder φ ist in M erfüllt.

Zwei LTL Formeln φ und ψ sind äquivalent, φ ≡ ψ, wenn für
alle Modelle M und alle Pfade π in M gilt: M, π |= φ
gdw. M, π |= ψ.

Frank Heitmann heitmann@informatik.uni-hamburg.de 23/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Semantik

Definition (Semantik von LTL (III))

Sei M = (S , s0,R, L) ein LTS. Sei φ eine LTL Formel und s ∈ S
ein Zustand von M.

M, s |= φ, wenn M, π |= φ gilt für jeden Pfad π in M, der in s
startet.

Wenn M, s0 |= φ gilt, schreiben wir M |= φ. Wir sagen: M ist
ein Modell für φ oder φ ist in M erfüllt.

Zwei LTL Formeln φ und ψ sind äquivalent, φ ≡ ψ, wenn für
alle Modelle M und alle Pfade π in M gilt: M, π |= φ
gdw. M, π |= ψ.

Frank Heitmann heitmann@informatik.uni-hamburg.de 23/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Semantik

Definition (Semantik von LTL (III))

Sei M = (S , s0,R, L) ein LTS. Sei φ eine LTL Formel und s ∈ S
ein Zustand von M.

M, s |= φ, wenn M, π |= φ gilt für jeden Pfad π in M, der in s
startet.

Wenn M, s0 |= φ gilt, schreiben wir M |= φ. Wir sagen: M ist
ein Modell für φ oder φ ist in M erfüllt.

Zwei LTL Formeln φ und ψ sind äquivalent, φ ≡ ψ, wenn für
alle Modelle M und alle Pfade π in M gilt: M, π |= φ
gdw. M, π |= ψ.

Frank Heitmann heitmann@informatik.uni-hamburg.de 23/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Semantik. Beispiel

Beispiel

Beispiel: Siehe Tafel... ;-)

Frank Heitmann heitmann@informatik.uni-hamburg.de 24/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Spezifikationsmuster

Für jeden Zustand gilt: Wird eine Ressource angefordert, wird
sie irgendwann zur Verfügung gestellt: G (req ⇒ F ack)

Ein Prozess wird auf jedem Pfad unendlich oft aktiviert:
G (F act)

Was auch immer man tut, ein Prozess wird immer zu einem
Deadlock führen: F (G deadlock)

Tritt ein Ereignis p entlang eines Pfades unendlich oft auf,
dann tritt auch das Ereignis q auf: GF p ⇒ F q

Frank Heitmann heitmann@informatik.uni-hamburg.de 25/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Spezifikationsmuster

Für jeden Zustand gilt: Wird eine Ressource angefordert, wird
sie irgendwann zur Verfügung gestellt: G (req ⇒ F ack)

Ein Prozess wird auf jedem Pfad unendlich oft aktiviert:
G (F act)

Was auch immer man tut, ein Prozess wird immer zu einem
Deadlock führen: F (G deadlock)

Tritt ein Ereignis p entlang eines Pfades unendlich oft auf,
dann tritt auch das Ereignis q auf: GF p ⇒ F q

Frank Heitmann heitmann@informatik.uni-hamburg.de 25/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Spezifikationsmuster

Für jeden Zustand gilt: Wird eine Ressource angefordert, wird
sie irgendwann zur Verfügung gestellt: G (req ⇒ F ack)

Ein Prozess wird auf jedem Pfad unendlich oft aktiviert:
G (F act)

Was auch immer man tut, ein Prozess wird immer zu einem
Deadlock führen: F (G deadlock)

Tritt ein Ereignis p entlang eines Pfades unendlich oft auf,
dann tritt auch das Ereignis q auf: GF p ⇒ F q

Frank Heitmann heitmann@informatik.uni-hamburg.de 25/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Spezifikationsmuster

Für jeden Zustand gilt: Wird eine Ressource angefordert, wird
sie irgendwann zur Verfügung gestellt: G (req ⇒ F ack)

Ein Prozess wird auf jedem Pfad unendlich oft aktiviert:
G (F act)

Was auch immer man tut, ein Prozess wird immer zu einem
Deadlock führen: F (G deadlock)

Tritt ein Ereignis p entlang eines Pfades unendlich oft auf,
dann tritt auch das Ereignis q auf: GF p ⇒ F q

Frank Heitmann heitmann@informatik.uni-hamburg.de 25/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Äquivalenzen

Bisweilen werden weitere Junktoren wie z.B. ⇒ für die Implikation
oder R für “release” benutzt. Diese können durch die Äquivalenzen
φ1 ⇒ φ2 ≡ ¬φ1 ∨ φ2 und φ1Rφ2 ≡ ¬(¬φ1U¬φ2) ausgedrückt
werden. Unsere Junktoren bilden ein “adequate set of connectives”
für LTL, d.h. alle andern Junktoren können durch sie ausgedrückt
werden. Tatsächlich gibt es sogar kleinere Sets.

{¬,∧,X ,U}

ist ein solches. F und G werden dann durch Fφ := >Uφ and
Gφ := ¬F¬φ definiert. Eine kleine Anzahl an Junktoren ist
insb. bei Model Checking Algorithmen hilfreich, da man sich um
weniger Fälle kümmern muss.

Frank Heitmann heitmann@informatik.uni-hamburg.de 26/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Äquivalenzen

Bisweilen werden weitere Junktoren wie z.B. ⇒ für die Implikation
oder R für “release” benutzt. Diese können durch die Äquivalenzen
φ1 ⇒ φ2 ≡ ¬φ1 ∨ φ2 und φ1Rφ2 ≡ ¬(¬φ1U¬φ2) ausgedrückt
werden. Unsere Junktoren bilden ein “adequate set of connectives”
für LTL, d.h. alle andern Junktoren können durch sie ausgedrückt
werden. Tatsächlich gibt es sogar kleinere Sets.

{¬,∧,X ,U}

ist ein solches. F und G werden dann durch Fφ := >Uφ and
Gφ := ¬F¬φ definiert. Eine kleine Anzahl an Junktoren ist
insb. bei Model Checking Algorithmen hilfreich, da man sich um
weniger Fälle kümmern muss.

Frank Heitmann heitmann@informatik.uni-hamburg.de 26/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Vorarbeiten
Syntax
Semantik

LTL: Äquivalenzen

Bisweilen werden weitere Junktoren wie z.B. ⇒ für die Implikation
oder R für “release” benutzt. Diese können durch die Äquivalenzen
φ1 ⇒ φ2 ≡ ¬φ1 ∨ φ2 und φ1Rφ2 ≡ ¬(¬φ1U¬φ2) ausgedrückt
werden. Unsere Junktoren bilden ein “adequate set of connectives”
für LTL, d.h. alle andern Junktoren können durch sie ausgedrückt
werden. Tatsächlich gibt es sogar kleinere Sets.

{¬,∧,X ,U}

ist ein solches. F und G werden dann durch Fφ := >Uφ and
Gφ := ¬F¬φ definiert. Eine kleine Anzahl an Junktoren ist
insb. bei Model Checking Algorithmen hilfreich, da man sich um
weniger Fälle kümmern muss.

Frank Heitmann heitmann@informatik.uni-hamburg.de 26/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL

In der Computation Tree Logic (CTL) ist es möglich über die
Pfade in einem Transistionssystem zu argumentieren. Hierzu wird
die Logik um Pfadquantoren ‘A’ und ‘E’ erweitert. Die Semantik
wird dann über unendliche, gerichtete Bäume definiert, die man
durch ein “unfolding” des Transitionssystems in einen
Erreichbarkeitsbaum erhält.

Frank Heitmann heitmann@informatik.uni-hamburg.de 27/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL

In der Computation Tree Logic (CTL) ist es möglich über die
Pfade in einem Transistionssystem zu argumentieren. Hierzu wird
die Logik um Pfadquantoren ‘A’ und ‘E’ erweitert. Die Semantik
wird dann über unendliche, gerichtete Bäume definiert, die man
durch ein “unfolding” des Transitionssystems in einen
Erreichbarkeitsbaum erhält.

Frank Heitmann heitmann@informatik.uni-hamburg.de 27/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL

In der Computation Tree Logic (CTL) ist es möglich über die
Pfade in einem Transistionssystem zu argumentieren. Hierzu wird
die Logik um Pfadquantoren ‘A’ und ‘E’ erweitert. Die Semantik
wird dann über unendliche, gerichtete Bäume definiert, die man
durch ein “unfolding” des Transitionssystems in einen
Erreichbarkeitsbaum erhält.

Frank Heitmann heitmann@informatik.uni-hamburg.de 27/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL: Syntax

Definition (Syntax von CTL)

Die (wohlgeformten) Formeln der Computation Tree Logic (CTL)
werden durch die folgende Grammatik definiert:

φ ::= v | ¬φ | (φ ∧ φ) | (φ ∨ φ) |
EXφ | EFφ | EGφ | E [φUφ] |
AXφ | AFφ | AGφ | A[φUφ]

wobei v ∈ V ein aussagenlogisches Atom ist.

Kann man natürlich auch wieder mit einer induktiven Definition ma-
chen...

Frank Heitmann heitmann@informatik.uni-hamburg.de 28/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL: Syntax

Definition (Syntax von CTL)

Die (wohlgeformten) Formeln der Computation Tree Logic (CTL)
werden durch die folgende Grammatik definiert:

φ ::= v | ¬φ | (φ ∧ φ) | (φ ∨ φ) |
EXφ | EFφ | EGφ | E [φUφ] |
AXφ | AFφ | AGφ | A[φUφ]

wobei v ∈ V ein aussagenlogisches Atom ist.

Kann man natürlich auch wieder mit einer induktiven Definition ma-
chen...

Frank Heitmann heitmann@informatik.uni-hamburg.de 28/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL: Syntax

Definition (Syntax von CTL)

Die (wohlgeformten) Formeln der Computation Tree Logic (CTL)
werden durch die folgende Grammatik definiert:

φ ::= v | ¬φ | (φ ∧ φ) | (φ ∨ φ) |
EXφ | EFφ | EGφ | E [φUφ] |
AXφ | AFφ | AGφ | A[φUφ]

wobei v ∈ V ein aussagenlogisches Atom ist.

Kann man natürlich auch wieder mit einer induktiven Definition ma-
chen...

Frank Heitmann heitmann@informatik.uni-hamburg.de 28/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL: Semantik

Definition (Semantik von CTL (I))

Sei M = (S , s0,R, L) ein LTS und s ∈ S ein Zustand. Eine CTL
Formel φ ist erfüllt in s (in M), wenn M, s |= φ gilt, wobei die
Relation |= induktiv definiert ist:

M, s |= v gdw. v ∈ L(s) für v ∈ V
M, s |= ¬φ gdw. M, s 6|= φ
M, s |= φ1 ∧ φ2 gdw. M, s |= φ1 und M, s |= φ2
M, s |= φ1 ∨ φ2 gdw. M, s |= φ1 oder M, s |= φ2

Frank Heitmann heitmann@informatik.uni-hamburg.de 29/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL: Semantik

Definition (Semantik von CTL (I))

Sei M = (S , s0,R, L) ein LTS und s ∈ S ein Zustand. Eine CTL
Formel φ ist erfüllt in s (in M), wenn M, s |= φ gilt, wobei die
Relation |= induktiv definiert ist:

M, s |= v gdw. v ∈ L(s) für v ∈ V
M, s |= ¬φ gdw. M, s 6|= φ
M, s |= φ1 ∧ φ2 gdw. M, s |= φ1 und M, s |= φ2
M, s |= φ1 ∨ φ2 gdw. M, s |= φ1 oder M, s |= φ2

Frank Heitmann heitmann@informatik.uni-hamburg.de 29/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL: Semantik

Definition (Semantik von CTL (II))

M, s |= EXφ gdw. ein Zustand s ′ ∈ S existiert mit
(s, s ′) ∈ R und M, s ′ |= φ

M, s |= EFφ gdw. ein Pfad π = s1s2 . . . beginnend bei s
(s1 = s) existiert und ein i ≥ 1, so
dass M, si |= φ gilt.

M, s |= EGφ gdw. ein Pfad π = s1s2 . . . beginnend bei s
(s1 = s) existiert und für alle i ≥ 1
M, si |= φ gilt.

M, s |= E [φ1Uφ2] gdw. ein Pfad π = s1s2 . . . beginnend bei s
existiert und ein j ≥ 1, so dass
M, sj |= φ2
und M, si |= φ1 für alle i < j .

Frank Heitmann heitmann@informatik.uni-hamburg.de 30/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL: Semantik

Definition (Semantik von CTL (III))

M, s |= AXφ gdw. M, s ′ |= φ für alle s ′ ∈ S
mit (s, s ′) ∈ R.

M, s |= AFφ gdw. für alle Pfade π = s1s2 . . . beginnend
bei s ein i ≥ 1 existiert mit M, si |= φ.

M, s |= AGφ gdw. für alle Pfade π = s1s2 . . . beginnend
bei s M, si |= φ für alle i ≥ 1 gilt.

M, s |= A[φ1Uφ2] gdw. für alle Pfade π = s1s2 . . . beginnend
bei s ein j ≥ 1 existiert derart, dass
M, sj |= φ2 und
M, si |= φ1 für alle i < j gilt

Frank Heitmann heitmann@informatik.uni-hamburg.de 31/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL: Semantik

Definition (Semantik von CTL (IV))

Sei M = (S , s0,R, L) ein LTS und φ eine CTL Formel.

Wenn M, s0 |= φ gilt, schreiben wir auch M |= φ und sagen,
dass M ein Modell für φ ist oder dass φ erfüllt ist in M.

Zwei CTL Formeln φ und ψ sind äquivalent, φ ≡ ψ, wenn für
alle Modelle M und alle Zustände s in M auch M, s |= φ
gdw. M, s |= ψ gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 32/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL: Semantik

Definition (Semantik von CTL (IV))

Sei M = (S , s0,R, L) ein LTS und φ eine CTL Formel.

Wenn M, s0 |= φ gilt, schreiben wir auch M |= φ und sagen,
dass M ein Modell für φ ist oder dass φ erfüllt ist in M.

Zwei CTL Formeln φ und ψ sind äquivalent, φ ≡ ψ, wenn für
alle Modelle M und alle Zustände s in M auch M, s |= φ
gdw. M, s |= ψ gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 32/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL: Semantik

Definition (Semantik von CTL (IV))

Sei M = (S , s0,R, L) ein LTS und φ eine CTL Formel.

Wenn M, s0 |= φ gilt, schreiben wir auch M |= φ und sagen,
dass M ein Modell für φ ist oder dass φ erfüllt ist in M.

Zwei CTL Formeln φ und ψ sind äquivalent, φ ≡ ψ, wenn für
alle Modelle M und alle Zustände s in M auch M, s |= φ
gdw. M, s |= ψ gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 32/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL: Semantik. Beispiel

Beispiel

Beispiel: Siehe Tafel... ;-)

Frank Heitmann heitmann@informatik.uni-hamburg.de 33/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL: Spezifikationsmuster

Ein Prozess wird auf jedem Pfad unendlich oft aktiviert:
AG (AF act)

Was auch immer man tut, ein Prozess wird immer zu einem
Deadlock führen: AF (AG deadlock)

Für jeden Zustand gilt: Wird eine Ressource angefordert, wird
sie irgendwann zur Verfügung gestellt: AG (req ⇒ AF ack)

Man kann immer zu einem sicheren Zustand kommen:
AG (EF safe)

Frank Heitmann heitmann@informatik.uni-hamburg.de 34/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL: Spezifikationsmuster

Ein Prozess wird auf jedem Pfad unendlich oft aktiviert:
AG (AF act)

Was auch immer man tut, ein Prozess wird immer zu einem
Deadlock führen: AF (AG deadlock)

Für jeden Zustand gilt: Wird eine Ressource angefordert, wird
sie irgendwann zur Verfügung gestellt: AG (req ⇒ AF ack)

Man kann immer zu einem sicheren Zustand kommen:
AG (EF safe)

Frank Heitmann heitmann@informatik.uni-hamburg.de 34/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL: Spezifikationsmuster

Ein Prozess wird auf jedem Pfad unendlich oft aktiviert:
AG (AF act)

Was auch immer man tut, ein Prozess wird immer zu einem
Deadlock führen: AF (AG deadlock)

Für jeden Zustand gilt: Wird eine Ressource angefordert, wird
sie irgendwann zur Verfügung gestellt: AG (req ⇒ AF ack)

Man kann immer zu einem sicheren Zustand kommen:
AG (EF safe)

Frank Heitmann heitmann@informatik.uni-hamburg.de 34/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL: Spezifikationsmuster

Ein Prozess wird auf jedem Pfad unendlich oft aktiviert:
AG (AF act)

Was auch immer man tut, ein Prozess wird immer zu einem
Deadlock führen: AF (AG deadlock)

Für jeden Zustand gilt: Wird eine Ressource angefordert, wird
sie irgendwann zur Verfügung gestellt: AG (req ⇒ AF ack)

Man kann immer zu einem sicheren Zustand kommen:
AG (EF safe)

Frank Heitmann heitmann@informatik.uni-hamburg.de 34/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL: Äquivalenzen

Oft - und besonders beim Model Checking - benutzt man ein Set
von “adequate connectives”, d.h. ein Set von Junktoren, dass
Ausdrucksstark genug ist, um jede Formel der Logik auszudrücken.

Für CTL ist ein solches Set z.B.

{¬,∧,EX ,EG ,EU}

Alle Formeln, die andere Junktoren benutzen, können stets durch
eine äquivalente Formeln ersetzt werden, die nur Junktoren obiger
Menge benutzen.

Frank Heitmann heitmann@informatik.uni-hamburg.de 35/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL: Äquivalenzen

Oft - und besonders beim Model Checking - benutzt man ein Set
von “adequate connectives”, d.h. ein Set von Junktoren, dass
Ausdrucksstark genug ist, um jede Formel der Logik auszudrücken.

Für CTL ist ein solches Set z.B.

{¬,∧,EX ,EG ,EU}

Alle Formeln, die andere Junktoren benutzen, können stets durch
eine äquivalente Formeln ersetzt werden, die nur Junktoren obiger
Menge benutzen.

Frank Heitmann heitmann@informatik.uni-hamburg.de 35/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

Syntax
Semantik

CTL: Äquivalenzen

Gängige Abkürzungen bzw. Äquivalenzen:

φ1 ∨ φ2 ≡ ¬(¬φ1 ∧ ¬φ2)

> ≡ φ ∨ ¬φ
EFφ ≡ E [>Uφ]

AGφ ≡ ¬EF¬φ
AFφ ≡ ¬EG¬φ
AXφ ≡ ¬EX¬φ

A[φ1Uφ2] ≡ ¬(E [¬φ2U¬(φ1 ∨ φ2)] ∨ EG¬φ2)

Frank Heitmann heitmann@informatik.uni-hamburg.de 36/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

CTL∗

LTL, CTL und CTL∗

CTL∗: Syntax und Semantik

Definition (CTL∗ Syntax)

Die Syntax von CTL∗ ist eine wechselseitig rekursive induktive
Definition, die Pfad- und Zustandsformeln beinhaltet:

Es gibt Zustandsformeln, die in Zuständen ausgewertet
werden:

φ ::= > | p | (¬φ) | (φ ∧ φ) | A[α] | E [α]

wobei p eine atomare Formel ist und α eine Pfadformel.

Es gibt Pfadformeln, die entlang von Pfaden ausgewertet
werden:

α ::= φ | (¬α) | (α ∧ α) | (αUα) | (Gα) | (Fα) | (Xα)

wobei φ eine Zustandsformel ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 37/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

CTL∗

LTL, CTL und CTL∗

CTL∗: Syntax und Semantik

Definition (CTL∗ Syntax)

Die Syntax von CTL∗ ist eine wechselseitig rekursive induktive
Definition, die Pfad- und Zustandsformeln beinhaltet:

Es gibt Zustandsformeln, die in Zuständen ausgewertet
werden:

φ ::= > | p | (¬φ) | (φ ∧ φ) | A[α] | E [α]

wobei p eine atomare Formel ist und α eine Pfadformel.

Es gibt Pfadformeln, die entlang von Pfaden ausgewertet
werden:

α ::= φ | (¬α) | (α ∧ α) | (αUα) | (Gα) | (Fα) | (Xα)

wobei φ eine Zustandsformel ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 37/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

CTL∗

LTL, CTL und CTL∗

CTL∗: Syntax und Semantik

Definition (CTL∗ Syntax)

Die Syntax von CTL∗ ist eine wechselseitig rekursive induktive
Definition, die Pfad- und Zustandsformeln beinhaltet:

Es gibt Zustandsformeln, die in Zuständen ausgewertet
werden:

φ ::= > | p | (¬φ) | (φ ∧ φ) | A[α] | E [α]

wobei p eine atomare Formel ist und α eine Pfadformel.

Es gibt Pfadformeln, die entlang von Pfaden ausgewertet
werden:

α ::= φ | (¬α) | (α ∧ α) | (αUα) | (Gα) | (Fα) | (Xα)

wobei φ eine Zustandsformel ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 37/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

CTL∗

LTL, CTL und CTL∗

CTL∗: Syntax und Semantik

Die Semantik wird dann so wie bei CTL und LTL definiert, je
nachdem, ob es eine Zustands- oder eine Pfadformel ist.

Eine LTL-Formel α ist äquivalent zur CTL∗-Formel A[α]. LTL
kann also als Teillogik von CTL∗ angesehen werden.

CTL ist sofort eine Teillogik von CTL∗, da man die
Pfadformeln auf

α ::= (φUφ) | (Gφ) | (Fφ) | (Xφ)

einschränken kann und dann sofort CTL hat.

Frank Heitmann heitmann@informatik.uni-hamburg.de 38/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

CTL∗

LTL, CTL und CTL∗

CTL∗: Syntax und Semantik

Die Semantik wird dann so wie bei CTL und LTL definiert, je
nachdem, ob es eine Zustands- oder eine Pfadformel ist.

Eine LTL-Formel α ist äquivalent zur CTL∗-Formel A[α]. LTL
kann also als Teillogik von CTL∗ angesehen werden.

CTL ist sofort eine Teillogik von CTL∗, da man die
Pfadformeln auf

α ::= (φUφ) | (Gφ) | (Fφ) | (Xφ)

einschränken kann und dann sofort CTL hat.

Frank Heitmann heitmann@informatik.uni-hamburg.de 38/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

CTL∗

LTL, CTL und CTL∗

CTL∗: Syntax und Semantik

Die Semantik wird dann so wie bei CTL und LTL definiert, je
nachdem, ob es eine Zustands- oder eine Pfadformel ist.

Eine LTL-Formel α ist äquivalent zur CTL∗-Formel A[α]. LTL
kann also als Teillogik von CTL∗ angesehen werden.

CTL ist sofort eine Teillogik von CTL∗, da man die
Pfadformeln auf

α ::= (φUφ) | (Gφ) | (Fφ) | (Xφ)

einschränken kann und dann sofort CTL hat.

Frank Heitmann heitmann@informatik.uni-hamburg.de 38/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

CTL∗

LTL, CTL und CTL∗

LTL, CTL und CTL∗

Zusammenhänge der Logiken

1 In CTL, aber nicht in LTL: φ1 := AGEF p.

Wann immer nötig, kann ein Zustand erreicht werden, in dem
p gilt.

2 In CTL∗, aber weder in LTL noch in CTL: φ2 := E [GF p]

Es gibt einen Pfad mit unendlich vielen p.

3 In LTL, aber nicht in CTL: φ3 := A[GF p ⇒ F q]

Tritt p entlang eines Pfades unendlich oft auf, dann tritt ein q
auf.

4 In LTL und CTL: φ4,1 := AG (p ⇒ AF q) in CTL
bzw. φ4,2 := G (p ⇒ F q) in LTL.

Jedem p folgt irgendwann ein q.

Frank Heitmann heitmann@informatik.uni-hamburg.de 39/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

CTL∗

LTL, CTL und CTL∗

LTL, CTL und CTL∗

Zusammenhänge der Logiken

1 In CTL, aber nicht in LTL: φ1 := AGEF p.

Wann immer nötig, kann ein Zustand erreicht werden, in dem
p gilt.

2 In CTL∗, aber weder in LTL noch in CTL: φ2 := E [GF p]

Es gibt einen Pfad mit unendlich vielen p.

3 In LTL, aber nicht in CTL: φ3 := A[GF p ⇒ F q]

Tritt p entlang eines Pfades unendlich oft auf, dann tritt ein q
auf.

4 In LTL und CTL: φ4,1 := AG (p ⇒ AF q) in CTL
bzw. φ4,2 := G (p ⇒ F q) in LTL.

Jedem p folgt irgendwann ein q.

Frank Heitmann heitmann@informatik.uni-hamburg.de 39/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

CTL∗

LTL, CTL und CTL∗

LTL, CTL und CTL∗

Zusammenhänge der Logiken

1 In CTL, aber nicht in LTL: φ1 := AGEF p.

Wann immer nötig, kann ein Zustand erreicht werden, in dem
p gilt.

2 In CTL∗, aber weder in LTL noch in CTL: φ2 := E [GF p]

Es gibt einen Pfad mit unendlich vielen p.

3 In LTL, aber nicht in CTL: φ3 := A[GF p ⇒ F q]

Tritt p entlang eines Pfades unendlich oft auf, dann tritt ein q
auf.

4 In LTL und CTL: φ4,1 := AG (p ⇒ AF q) in CTL
bzw. φ4,2 := G (p ⇒ F q) in LTL.

Jedem p folgt irgendwann ein q.

Frank Heitmann heitmann@informatik.uni-hamburg.de 39/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

CTL∗

LTL, CTL und CTL∗

LTL, CTL und CTL∗

Zusammenhänge der Logiken

1 In CTL, aber nicht in LTL: φ1 := AGEF p.

Wann immer nötig, kann ein Zustand erreicht werden, in dem
p gilt.

2 In CTL∗, aber weder in LTL noch in CTL: φ2 := E [GF p]

Es gibt einen Pfad mit unendlich vielen p.

3 In LTL, aber nicht in CTL: φ3 := A[GF p ⇒ F q]

Tritt p entlang eines Pfades unendlich oft auf, dann tritt ein q
auf.

4 In LTL und CTL: φ4,1 := AG (p ⇒ AF q) in CTL
bzw. φ4,2 := G (p ⇒ F q) in LTL.

Jedem p folgt irgendwann ein q.

Frank Heitmann heitmann@informatik.uni-hamburg.de 39/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

CTL∗

LTL, CTL und CTL∗

LTL vs. CTL

Take Home Message

LTL und CTL sind beide wichtig, da es jeweils Dinge gibt, die in der
anderen nicht ausgedrückt werden können.

Take Home Message 2

LTL kann nicht über Pfade quantifizieren. CTL kann dafür nicht so
fein über Pfade argumentieren wie LTL. (Für viele ist LTL einfacher;
CTL Formeln wie AFAX p erscheinen schwierig...)

Literatur

Zur heutigen Vorlesung siehe Kapitel 3 in Logic in Computer
Science. Modelling and Reasoning about Systems. Michael Huth
und Mark Ryan, 2. Auflage, Cambridge University Press, 2004.

Frank Heitmann heitmann@informatik.uni-hamburg.de 40/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

CTL∗

LTL, CTL und CTL∗

LTL vs. CTL

Take Home Message

LTL und CTL sind beide wichtig, da es jeweils Dinge gibt, die in der
anderen nicht ausgedrückt werden können.

Take Home Message 2

LTL kann nicht über Pfade quantifizieren. CTL kann dafür nicht so
fein über Pfade argumentieren wie LTL. (Für viele ist LTL einfacher;
CTL Formeln wie AFAX p erscheinen schwierig...)

Literatur

Zur heutigen Vorlesung siehe Kapitel 3 in Logic in Computer
Science. Modelling and Reasoning about Systems. Michael Huth
und Mark Ryan, 2. Auflage, Cambridge University Press, 2004.

Frank Heitmann heitmann@informatik.uni-hamburg.de 40/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

CTL∗

LTL, CTL und CTL∗

LTL vs. CTL

Take Home Message

LTL und CTL sind beide wichtig, da es jeweils Dinge gibt, die in der
anderen nicht ausgedrückt werden können.

Take Home Message 2

LTL kann nicht über Pfade quantifizieren. CTL kann dafür nicht so
fein über Pfade argumentieren wie LTL. (Für viele ist LTL einfacher;
CTL Formeln wie AFAX p erscheinen schwierig...)

Literatur

Zur heutigen Vorlesung siehe Kapitel 3 in Logic in Computer
Science. Modelling and Reasoning about Systems. Michael Huth
und Mark Ryan, 2. Auflage, Cambridge University Press, 2004.

Frank Heitmann heitmann@informatik.uni-hamburg.de 40/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

CTL∗

LTL, CTL und CTL∗

Ausblick: Model Checking

Das Problem

Das model checking problem für LTL oder CTL fragt, gegeben ein
LTS M und eine Formel φ, ob M |= φ gilt, d.h. ob M ein Modell
für φ ist.
Eingabe: Ein LTS M und eine LTL oder CTL Formel φ.

Frage: Gilt M |= φ ?

Frank Heitmann heitmann@informatik.uni-hamburg.de 41/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

CTL∗

LTL, CTL und CTL∗

Ausblick: Model Checking

Satz

Sei M ein LTS.

1 Sei φ eine LTL Formel. Das model checking problem für LTL,
d.h. die Frage, ob M |= φ gilt, ist PSpace-vollständig und
kann in O(|M| · 2|φ|) Zeit entschieden werden.

2 Sei φ eine CTL Formel. Das model checking problem für CTL,
d.h. die Frage, ob M |= φ gilt, kann in O(|M| · |φ|) Zeit
entschieden werden.

Wichtige Anmerkung

Das Modell M wird allerdings i.A. sehr schnell sehr groß. Daher
ist |M| der dominante Faktor, was zu dem berühmten Problem der
Zustandsraumexplosion führt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 42/42

Linear-time Temporal Logic
Computation Tree Logic

CTL vs. LTL

CTL∗

LTL, CTL und CTL∗

Ausblick: Model Checking

Satz

Sei M ein LTS.

1 Sei φ eine LTL Formel. Das model checking problem für LTL,
d.h. die Frage, ob M |= φ gilt, ist PSpace-vollständig und
kann in O(|M| · 2|φ|) Zeit entschieden werden.

2 Sei φ eine CTL Formel. Das model checking problem für CTL,
d.h. die Frage, ob M |= φ gilt, kann in O(|M| · |φ|) Zeit
entschieden werden.

Wichtige Anmerkung

Das Modell M wird allerdings i.A. sehr schnell sehr groß. Daher
ist |M| der dominante Faktor, was zu dem berühmten Problem der
Zustandsraumexplosion führt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 42/42

	Linear-time Temporal Logic
	Vorarbeiten
	Syntax
	Semantik

	Computation Tree Logic
	Syntax
	Semantik

	CTL vs. LTL
	CTL*
	LTL, CTL und CTL*

