Frank Heitmann
heitmann@informatik.uni-hamburg.de

4. Januar 2016

Linear-time Temporal Logic
Computation Tree Logic
CTL vs. LTL

Motivation

Mutual Exclusion: Zwei Prozesse, die eine Ressource nutzen wollen,
dies aber nicht zur gleichen Zeit tun sollen (z.B. Schreib-Zugriff auf
eine Datei).

Frank Heitmann heitmann@informatik.uni-hamburg.de 2/42

Linear-time Temporal Logic
Computation Tree Logic
CTL vs. LTL

Motivation

Mutual Exclusion: Zwei Prozesse, die eine Ressource nutzen wollen,
dies aber nicht zur gleichen Zeit tun sollen (z.B. Schreib-Zugriff auf
eine Datei).
@ Sicherheit/Safety: Nur ein Prozess ist zur Zeit im kritischen
Abschnitt.

o Lebendigkeit/Liveness: Wenn ein Prozess in den kritischen
Abschnitt will (request), dann darf er diesen irgendwann
tatsachlich betreten.

@ Non-blocking: Ein Prozess kann stets verlangen, in den
kritischen Abschnitt zu gelangen.

\

Frank Heitmann heitmann@informatik.uni-hamburg.de 2/42

Weiter an der Tafel ...

Linear-time Temporal Logic
Computation Tree Logic
CTL vs. LTL

Motivation: Zusammenfassung

Was wir jetzt brauchen:
e eine formale Modellierungssprache (= Modell)
e eine Logik (= Spezifikation)

@ Algorithmen, die {iberpriifen, ob das Modell die Spezifikation
erfiillt

Frank Heitmann heitmann@informatik.uni-hamburg.de 4/42

Linear-time Temporal Logic
Computation Tree Logic
CTL vs. LTL

Motivation: Zusammenfassung

Was wir jetzt brauchen:

e eine formale Modellierungssprache (= Modell)

e eine Logik (= Spezifikation)

@ Algorithmen, die {iberpriifen, ob das Modell die Spezifikation

erfiillt

Wichtige Anmerkung
Entwirft man die Modellierungssprache und die Logik sinnvoll, so
hdngen Modell M und Formel F zusammen und es macht Sinn von
M = F zu sprechen. Dann ist man beim Erfiillbarkeitsproblem oder
beim Model-Checking-Problem. Das Aquivalent in der Aussagenlo-
gik ware, gegeben eine Belegung A und eine Formel F, zu priifen,
ob A = F gilt, ob also F unter A wabhr ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 4/42

Ein Tool konnte jetzt:

@ Eine Sprache (textuell oder visuell) zum Modellieren anbieten

@ Per Knopf-Druck die Algorithmen starten

Fiir die Spezifikation erlaubt das Tool meist nur eine einfache
Eingabe der Formel der jeweiligen Logik.

Wir haben

@ Eine abzihlbare Menge V = {x1, x2, ...} von
aussagenlogischen Variablen oder Atomen.

@ Das Alphabet besteht dann aus V/, den Junktoren A, V und —
(fir "and”, “or” und “not”) und den Klammern (und).

Wir haben

@ Eine abzihlbare Menge V = {x1, x2, ...} von
aussagenlogischen Variablen oder Atomen.

@ Das Alphabet besteht dann aus V/, den Junktoren A, V und —
(fir “and”, “or” und “not”) und den Klammern (und).

Die wohlgeformten Ausdriicke/Formeln der Aussagenlogik (AL)
werden induktiv definiert durch

© Jede Variable x € V ist eine Formel.
@ Wenn ¢ eine Formel ist, dann auch —¢.
© Wenn ¢ und ¢ Formeln sind, dann auch (¢ A ¢) und (¢ V ¥).

@ Nur Formeln, die durch endliche haufige Anwendungen der
Regeln 1-3 entstehen, sind wohlgeformte Formeln der
Aussagenlogik.

Die wohlgeformten Ausdriicke/Formeln der Aussagenlogik (AL)
werden induktiv definiert durch

@ Jede Variable x € V ist eine Formel.
@ Wenn ¢ eine Formel ist, dann auch —¢.
© Wenn ¢ und ¢ Formeln sind, dann auch (¢ A ¢) und (¢ V ¥).

@ Nur Formeln, die durch endliche haufige Anwendungen der
Regeln 1-3 entstehen, sind wohlgeformte Formeln der
Aussagenlogik.

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

Aussagenlogik: Syntax

Definition (Syntax der Aussagenlogik)

Die wohlgeformten Ausdriicke/Formeln der Aussagenlogik (AL)
werden induktiv definiert durch

@ Jede Variable x € V ist eine Formel.

@ Wenn ¢ eine Formel ist, dann auch —¢.

Frank Heitmann heitmann@informatik.uni-hamburg.de

7/42

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

Aussagenlogik: Syntax

Definition (Syntax der Aussagenlogik)

Die wohlgeformten Ausdriicke/Formeln der Aussagenlogik (AL)
werden induktiv definiert durch

@ Jede Variable x € V ist eine Formel.

@ Wenn ¢ eine Formel ist, dann auch —¢.

© Wenn ¢ und ¢ Formeln sind, dann auch (¢ A ¢) und (¢ V).

Frank Heitmann heitmann@informatik.uni-hamburg.de

7/42

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

Aussagenlogik: Syntax

Definition (Syntax der Aussagenlogik)

Die wohlgeformten Ausdriicke/Formeln der Aussagenlogik (AL)
werden induktiv definiert durch

@ Jede Variable x € V ist eine Formel.

@ Wenn ¢ eine Formel ist, dann auch —¢.

© Wenn ¢ und ¢ Formeln sind, dann auch (¢ A ¢) und (¢ V).

@ Nur Formeln, die durch endliche haufige Anwendungen der

Regeln 1-3 entstehen, sind wohlgeformte Formeln der
Aussagenlogik.

Frank Heitmann heitmann@informatik.uni-hamburg.de

7/42

Alternative Definition der Syntax durch die folgende Grammatik,
wobei x eine Variable darstellt:

pr=x|-91(pNP) | (¢V)

Klammern werden auf iibliche Weise eingespart. Ferner haben wir
folgende Abkiirzungen:

p=v¢ = VY

pe = (p=>Y)AN ([=9)
T = (xV-x)
1 = =T

fiir die Implikation, die Biimplikation, die Tautologie und die
Kontradiktion.

@ Eine Formel, die nur aus einer einzelnen Variable besteht,
nennen wir atomare Formel.

@ Eine Formel der Form —¢ nennen wir eine Negation.
e (¢ A1) ist eine Konjunktion.
@ (¢ V1) ist eine Disjunktion.

@ Ein Literal ist eine atomare Formel oder die Negation einer
atomaren Formel, also x oder —x fiir ein x € V. Im ersten Fall
nenne wir die Formel auch positives Literal und im zweiten
Fall negatives Literal.

@ Eine Formel, die nur aus einer einzelnen Variable besteht,
nennen wir atomare Formel.

@ Eine Formel der Form —¢ nennen wir eine Negation.

@ (¢ A1) ist eine Konjunktion.

@ (¢ V1) ist eine Disjunktion.

@ Ein Literal ist eine atomare Formel oder die Negation einer
atomaren Formel, also x oder —x fiir ein x € V. Im ersten Fall

nenne wir die Formel auch positives Literal und im zweiten
Fall negatives Literal.

@ Eine Formel, die nur aus einer einzelnen Variable besteht,
nennen wir atomare Formel.

@ Eine Formel der Form —¢ nennen wir eine Negation.

o (¢ A) ist eine Konjunktion.
(¢ V 1) ist eine Disjunktion.
Ein Literal ist eine atomare Formel oder die Negation einer
atomaren Formel, also x oder —x fiir ein x € V. Im ersten Fall

nenne wir die Formel auch positives Literal und im zweiten
Fall negatives Literal.

@ Eine Formel, die nur aus einer einzelnen Variable besteht,
nennen wir atomare Formel.

@ Eine Formel der Form —¢ nennen wir eine Negation.
o (¢ A) ist eine Konjunktion.
e (¢ V1) ist eine Disjunktion.

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

Aussagenlogik: Begriffe

@ Eine Formel, die nur aus einer einzelnen Variable besteht,
nennen wir atomare Formel.

Eine Formel der Form —¢ nennen wir eine Negation.
(¢ A1) ist eine Konjunktion.
(¢ V 1) ist eine Disjunktion.

Ein Literal ist eine atomare Formel oder die Negation einer
atomaren Formel, also x oder —x fiir ein x € V. Im ersten Fall
nenne wir die Formel auch positives Literal und im zweiten
Fall negatives Literal.

Frank Heitmann heitmann@informatik.uni-hamburg.de 10/42

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

Aussagenlogik: Begriffe

e Eine Formel ist in konjunktiver Normalform (KNF) wenn sie
eine Konjunktion von Disjunktionen von Literalen ist. Z.B.

(x2V—=xa) A(x1VxaV x5) A (—x3V xa)

Eine Disjunktion von Literalen wird Klausel genannt. Eine
Formel ist in 3-KNF wenn jede Klausel genau drei Literale
enthalt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 11/42

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

Aussagenlogik: Begriffe

e Eine Formel ist in konjunktiver Normalform (KNF) wenn sie
eine Konjunktion von Disjunktionen von Literalen ist. Z.B.

(x2V—=xa) A(x1VxaV x5) A (—x3V xa)

Eine Disjunktion von Literalen wird Klausel genannt. Eine
Formel ist in 3-KNF wenn jede Klausel genau drei Literale
enthalt.

e Eine Formel ist in disjunktiver Normalform (DNF) wenn sie
eine Disjunktion von Konjunktionen von Literalen ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 11/42

Um die Semantik zu definieren, benétigen wir ein Modell
bzgl. dessen die Wahrheit der Formel definiert werden kann.

Ein Modell einer aussagenlogischen Formel ¢ ist eine totale
Funktion A : V — {0,1}.

Ist A(x) =0, so ist x falsch (in A).
Ist A(x) =1, so ist x wahr (in A).

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

Aussagenlogik: Semantik

Um die Semantik zu definieren, benétigen wir ein Modell
bzgl. dessen die Wahrheit der Formel definiert werden kann.
Definition (Aussagenlogisches Modell)

Ein Modell einer aussagenlogischen Formel ¢ ist eine totale
Funktion A : V — {0,1}.

e Ist A(x) =0, so ist x falsch (in A).
o Ist A(x) =1, so ist x wahr (in A).

Frank Heitmann heitmann@informatik.uni-hamburg.de 12/42

Sei ¢ eine Formel und A ein Modell. A wird induktiv auf ¢

erweitert:
AEp gdw. A(p) =1,fireinpe V
A= —¢ gdw. A | ¢ nicht gilt, notiert als A £~ ¢

A): o1 N gdw. A |: ¢1 und A ‘: ¢ gilt
AE 01V gdw. Al ¢1 oder A = ¢ gilt

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

Aussagenlogik: Semantik

Definition (Semantik der AL)

Sei ¢ eine Formel und A ein Modell. A wird induktiv auf ¢
erweitert:

AEp gdw. A(p) = 1,firein pe V

A= —¢ gdw. A [= ¢ nicht gilt, notiert als A (= ¢
AE¢1 N2 gdw. Al ¢1 und A ¢ gilt

AE 01V gdw. Al ¢1 oder A ': ¢o gilt

Frank Heitmann heitmann@informatik.uni-hamburg.de

13/42

e A = ¢ bezeichnet, dass ¢ im Modell A wahr ist, d.h. dass
A¢) =1,

e Ist A(¢) =0, so schreiben wir A [~ ¢.

e Gilt A = ¢, sagen wir A erfiillt ¢ oder ¢ ist wahr in A.

e Gilt A [~ ¢, sagen wir A falsifiziert ¢ oder ¢ ist falsch in A.

e A = ¢ bezeichnet, dass ¢ im Modell A wahr ist, d.h. dass
A(p) =1.

e Ist A(¢) =0, so schreiben wir A (= ¢.

e Gilt A = ¢, sagen wir A erfiillt ¢ oder ¢ ist wahr in A.

e Gilt A [~ ¢, sagen wir A falsifiziert ¢ oder ¢ ist falsch in A.

e A = ¢ bezeichnet, dass ¢ im Modell A wahr ist, d.h. dass
A(¢) = 1.

e Ist A(¢) =0, so schreiben wir A (= ¢.

e Gilt A = ¢, sagen wir A erfiillt ¢ oder ¢ ist wahr in A.

e A = ¢ bezeichnet, dass ¢ im Modell A wahr ist, d.h. dass
A(p) =1.

e Ist A(¢) =0, so schreiben wir A (= ¢.

e Gilt A = ¢, sagen wir A erfiillt ¢ oder ¢ ist wahr in A.

o Gilt A £ ¢, sagen wir A falsifiziert ¢ oder ¢ ist falsch in A.

Eine Formel ¢ ist erfiillbar wenn ein Modell A existiert mit
AE ¢.

¢ ist falsifizierbar wenn ein A mit A [~ ¢ existiert.

@ ist giiltig wenn ¢ in allen Modellen wahr ist. Wir schreiben
dafiir = ¢. ¢ ist dann eine Tautologie.

¢ ist eine Kontradiktion, notiert durch ¢ |=, wenn kein Modell
¢ erfiillt.

Zwei Formeln ¢ und v sind dquivalent, wenn A |= ¢
gdw. A |= 9 fiir alle Modelle A gilt.

Eine Formel ¢ ist erfiillbar wenn ein Modell A existiert mit
AE ¢.
¢ ist falsifizierbar wenn ein A mit A [~ ¢ existiert.

@ ist giiltig wenn ¢ in allen Modellen wahr ist. Wir schreiben

dafiir = ¢. ¢ ist dann eine Tautologie.

¢ ist eine Kontradiktion, notiert durch ¢ |=, wenn kein Modell
¢ erfiillt.

Zwei Formeln ¢ und v sind dquivalent, wenn A |= ¢

gdw. A |= 9 fiir alle Modelle A gilt.

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

Aussagenlogik: Semantik (Begriffe)

@ Eine Formel ¢ ist erfiillbar wenn ein Modell A existiert mit
A E ¢.
e ¢ ist falsifizierbar wenn ein A mit A [~ ¢ existiert.

@ ¢ ist giiltig wenn ¢ in allen Modellen wahr ist. Wir schreiben
dafiir = ¢. ¢ ist dann eine Tautologie.

Frank Heitmann heitmann@informatik.uni-hamburg.de

15/42

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

Aussagenlogik: Semantik (Begriffe)

@ Eine Formel ¢ ist erfiillbar wenn ein Modell A existiert mit
A E ¢.
e ¢ ist falsifizierbar wenn ein A mit A [~ ¢ existiert.

@ ¢ ist giiltig wenn ¢ in allen Modellen wahr ist. Wir schreiben
dafiir = ¢. ¢ ist dann eine Tautologie.

@ ¢ ist eine Kontradiktion, notiert durch ¢ =, wenn kein Modell
¢ erfiillt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 15/42

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

Aussagenlogik: Semantik (Begriffe)

@ Eine Formel ¢ ist erfiillbar wenn ein Modell A existiert mit
A E ¢.
e ¢ ist falsifizierbar wenn ein A mit A [~ ¢ existiert.

@ ¢ ist giiltig wenn ¢ in allen Modellen wahr ist. Wir schreiben
dafiir = ¢. ¢ ist dann eine Tautologie.

@ ¢ ist eine Kontradiktion, notiert durch ¢ =, wenn kein Modell
¢ erfiillt.

@ Zwei Formeln ¢ und 1 sind dquivalent, wenn A |= ¢
gdw. A = 9 fiir alle Modelle A gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 15/42

Die (wohlgeformten) Formeln der Linear Temporal Logic (LTL)
werden durch die folgende Grammatik definiert:

¢ u= v|¢|(6A9)[(6V9)|
X¢ | Fo| Go | (pUg)

wobei v € V ein aussagenlogisches Atom ist.

Die neuen Operatoren sind neXt, Finally, Globally und Until.

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

LTL: Syntax

Definition (Syntax von LTL)
Die (wohlgeformten) Formeln der Linear Temporal Logic (LTL)

werden durch die folgende Grammatik definiert:

¢ = v|-d|(dAP)|(pV Q)|
Xo | Fo| Go | (pUg)

wobei v € V ein aussagenlogisches Atom ist.

Die neuen Operatoren sind neXt, Finally, Globally und Until. J

Frank Heitmann heitmann@informatik.uni-hamburg.de 16/42

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

LTL: Syntax (Alternative)

Definition (Syntax von LTL (alternative))

Die wohlgeformten Ausdriicke/Formeln von LTL werden induktiv
definiert durch

Zum Klammersparen binden die unaren Junktoren —, X, G and F
starker als U und dann A und V.

Frank Heitmann heitmann@informatik.uni-hamburg.de 17/42

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

LTL: Syntax (Alternative)

Definition (Syntax von LTL (alternative))

Die wohlgeformten Ausdriicke/Formeln von LTL werden induktiv
definiert durch

Q@ Jedes v € V ist eine (atomare) LTL Formel.

Zum Klammersparen binden die unaren Junktoren —, X, G and F
starker als U und dann A und V.

Frank Heitmann heitmann@informatik.uni-hamburg.de 17/42

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

LTL: Syntax (Alternative)

Definition (Syntax von LTL (alternative))

Die wohlgeformten Ausdriicke/Formeln von LTL werden induktiv
definiert durch
Q@ Jedes v € V ist eine (atomare) LTL Formel.
@ Wenn ¢1 und ¢ Formeln sind, dann auch —¢1, (¢1 A ¢2) und
(¢1V ¢2).

Zum Klammersparen binden die unaren Junktoren —, X, G and F
starker als U und dann A und V.

Frank Heitmann heitmann@informatik.uni-hamburg.de 17/42

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

LTL: Syntax (Alternative)

Definition (Syntax von LTL (alternative))
Die wohlgeformten Ausdriicke/Formeln von LTL werden induktiv
definiert durch
Q@ Jedes v € V ist eine (atomare) LTL Formel.
@ Wenn ¢1 und ¢ Formeln sind, dann auch —¢1, (¢1 A ¢2) und
(¢1V ¢2).
© Wenn ¢; und ¢, Formeln sind, dann auch X¢1, F¢1, Gp1 and
(p1U¢2).

Zum Klammersparen binden die unaren Junktoren —, X, G and F
starker als U und dann A und V.

Frank Heitmann heitmann@informatik.uni-hamburg.de 17/42

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

LTL: Syntax (Alternative)

Definition (Syntax von LTL (alternative))
Die wohlgeformten Ausdriicke/Formeln von LTL werden induktiv
definiert durch
Q@ Jedes v € V ist eine (atomare) LTL Formel.
@ Wenn ¢1 und ¢ Formeln sind, dann auch —¢1, (¢1 A ¢2) und
(¢1V ¢2).
© Wenn ¢; und ¢, Formeln sind, dann auch X¢1, F¢1, Gp1 and
(p1U¢2).

@ Nur Formeln, die durch endliche haufige Anwendungen der
Regeln 1-3 entstehen, sind wohlgeformte Formeln von LTL.

Zum Klammersparen binden die unaren Junktoren —, X, G and F
starker als U und dann A und V.

Frank Heitmann heitmann@informatik.uni-hamburg.de 17/42

LTL Formeln werden entlang der Pfade eines Transitionssystems
interpretiert. Das Transitionssystem iibernimmt also die Rolle des
Modells in der Aussagenlogik.

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

LTL: Semantik

LTL Formeln werden entlang der Pfade eines Transitionssystems
interpretiert. Das Transitionssystem iibernimmt also die Rolle des
Modells in der Aussagenlogik.

4

Gelabelte Transitionssysteme werden zu Ehren von Saul Kripke auch
Kripke-Strukturen genannt. lhre Definition ist in der Literatur leicht
verschieden. Oft werden z.B. Kantenbeschriftungen verwendet.

Frank Heitmann heitmann@informatik.uni-hamburg.de 18/42

Ein labelled transition system (LTS) ist ein Tupel
TS = (S, 0, R, L)mit

@ einer endlichen Menge von Zustdnden S,

@ einem Startzustand sy € S,
@ einer links-totalen Ubergangsrelation R C S x S und

e einer labelling function L : S — P(V), die jedem Zustand s
die Menge der atomaren Formeln L(s) C V zuweist, die in s
gelten.

Linkstotal bedeutet, dass es zu jedem s € S stets ein s’ mit
(s,s") € R gibt.

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

LTL: Semantik

Definition (Transitionssystem)

Ein labelled transition system (LTS) ist ein Tupel
TS = (S, s0, R, L)mit

@ einer endlichen Menge von Zustdnden S,

Linkstotal bedeutet, dass es zu jedem s € S stets ein s’ mit
(s,s') € R gibt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 19/42

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

LTL: Semantik

Definition (Transitionssystem)

Ein labelled transition system (LTS) ist ein Tupel
TS = (S, s0, R, L)mit
@ einer endlichen Menge von Zustdnden S,

@ einem Startzustand sy € S,

Linkstotal bedeutet, dass es zu jedem s € S stets ein s’ mit
(s,s') € R gibt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 19/42

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

LTL: Semantik

Definition (Transitionssystem)

Ein labelled transition system (LTS) ist ein Tupel
TS = (S, s0, R, L)mit

@ einer endlichen Menge von Zustdnden S,

@ einem Startzustand sy € S,

@ einer links-totalen Ubergangsrelation R C S x S und

Linkstotal bedeutet, dass es zu jedem s € S stets ein s’ mit
(s,s') € R gibt.

Frank Heitmann heitmann@informatik.uni-hamburg.de

19/42

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

LTL: Semantik

Definition (Transitionssystem)

Ein labelled transition system (LTS) ist ein Tupel
TS = (S, s0, R, L)mit

einer endlichen Menge von Zustdnden S,
einem Startzustand sy € S,

einer links-totalen Ubergangsrelation R C S x S und

einer labelling function L : S — P(V), die jedem Zustand s
die Menge der atomaren Formeln L(s) C V zuweist, die in s
gelten.

Linkstotal bedeutet, dass es zu jedem s € S stets ein s’ mit
(s,s') € R gibt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 19/42

Ein Pfad 7w in einem LTS TS = (S, so, R, L) ist eine unendliche
Sequenz von Zustdnden

T = 515253 ...

derart, dass (sj, si+1) € R fiir alle i > 1.
e Mit 7/, i > 1 bezeichnen wir den Suffix, der an s; startet,
d.h. den Pfad 7' = sjsjyq ...
e Mit (i), i > 1, bezeichnen wir den j-ten Zustand in T,
d.h. (i) = s;.
@ Wenn s; der Startzustand sy von TS ist, wird 7 auch als
Rechnung bezeichnet.

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

LTL: Semantik

Definition (Pfad im LTS)

Ein Pfad 7w in einem LTS TS = (S, so, R, L) ist eine unendliche
Sequenz von Zustdnden

T = 515253 ...

derart, dass (s, si+1) € R fiir alle i > 1.

e Mit 7/, i > 1 bezeichnen wir den Suffix, der an s; startet,
d.h. den Pfad 7' = SiSi41 - --

Frank Heitmann heitmann@informatik.uni-hamburg.de 20/42

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

LTL: Semantik

Definition (Pfad im LTS)

Ein Pfad 7w in einem LTS TS = (S, so, R, L) ist eine unendliche
Sequenz von Zustdnden

T = 515253 ...

derart, dass (s, si+1) € R fiir alle i > 1.
e Mit 7/, i > 1 bezeichnen wir den Suffix, der an s; startet,
d.h. den Pfad 7' = SiSi41 - --

e Mit 7(i), i > 1, bezeichnen wir den i-ten Zustand in T,
d.h. 7T(i) = 5.

Frank Heitmann heitmann@informatik.uni-hamburg.de 20/42

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

LTL: Semantik

Definition (Pfad im LTS)

Ein Pfad 7w in einem LTS TS = (S, so, R, L) ist eine unendliche
Sequenz von Zustdnden

T = 515253 ...

derart, dass (s, si+1) € R fiir alle i > 1.
e Mit 7/, i >1 be;eichnen wir den Suffix, der an s; startet,
d.h. den Pfad 7' = sjsjyq ...
e Mit 7(i), i > 1, bezeichnen wir den i-ten Zustand in T,
d.h. 7T(i) = 5.
@ Wenn s; der Startzustand s von TS ist, wird 7 auch als
Rechnung bezeichnet.

Frank Heitmann heitmann@informatik.uni-hamburg.de 20/42

Sei M = (S,sp, R, L) ein LTS und m = s15... ein Pfad in M. &
erfiillt eine LTL Formel ¢ (in M), wenn M, 7 = ¢ gilt, wobei die
Relation = induktiv definiert ist:

M,7 = v gdw. v € L(sy) firveV

M, = —¢ gdw. M, 7}~ ¢

M. mlE=E¢1 ANpa gdw. M,7 = ¢1 und M, |= @2
M,mE=d1Vor gdw. M,m = ¢1 oder M, |= ¢

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax

CTL vs. LTL Semantik
LTL: Semantik

Definition (Semantik von LTL (I))

Sei M = (S,s0, R, L) ein LTS und 7w = s3s,... ein Pfad in M. 7
erfiillt eine LTL Formel ¢ (in M), wenn M, 7 = ¢ gilt, wobei die
Relation |= induktiv definiert ist:

M,m=v gdw. v e lL(s) firveV

M, 7 = —¢ gdw. M, [£ ¢

M.t ¢1 ANgpa gdw. M,7 = ¢1 und M, |= @2
M,?T):¢1\/¢2 gdw. M,W):(bl oderl\/l,7r):¢2

Frank Heitmann heitmann@informatik.uni-hamburg.de 21/42

M,m = X¢
M, = F¢
M, 7= Go
M’T‘- |:¢1U¢2

gdw.
gdw.
gdw.
gdw.

M, = 6

M, 7' |= ¢ fiir ein i > 1

M, 7 |= ¢ fiir alle i > 1

ein i > 1 existiert mit M, 7/ = ¢
und fiir alle j < i M, 7/ |= ¢1 gilt.

Sei M = (S, sp, R, L) ein LTS. Sei ¢ eine LTL Formel und s € S
ein Zustand von M.
e M;s = ¢, wenn M, 7 |= ¢ gilt fiir jeden Pfad 7 in M, derin s
startet.

e Wenn M, sy = ¢ gilt, schreiben wir M |= ¢. Wir sagen: M ist
ein Modell fiir ¢ oder ¢ ist in M erfiillt.

@ Zwei LTL Formeln ¢ und) sind dquivalent, ¢ = 1), wenn fiir
alle Modelle M und alle Pfade 7 in M gilt: M, 7 = ¢
gdw. M, = 4.

Sei M = (S, sp, R, L) ein LTS. Sei ¢ eine LTL Formel und s € S
ein Zustand von M.

e M,s = ¢, wenn M, = ¢ gilt fiir jeden Pfad 7 in M, derin s
startet.

e Wenn M, sy = ¢ gilt, schreiben wir M |= ¢. Wir sagen: M ist
ein Modell fiir ¢ oder ¢ ist in M erfiillt.

@ Zwei LTL Formeln ¢ und ¢ sind dquivalent, ¢ = 1), wenn fiir
alle Modelle M und alle Pfade 7 in M gilt: M, 7 = ¢
gdw. M, = 1.

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

LTL: Semantik

Definition (Semantik von LTL (I1))
Sei M = (S, s, R, L) ein LTS. Sei ¢ eine LTL Formel und s € S
ein Zustand von M.

e M,s = ¢, wenn M, |= ¢ gilt fiir jeden Pfad 7 in M, derin s
startet.

e Wenn M, sy = ¢ gilt, schreiben wir M |= ¢. Wir sagen: M ist
ein Modell fiir ¢ oder ¢ ist in M erfiillt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 23/42

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax

CTL vs. LTL Semantik
LTL: Semantik

Definition (Semantik von LTL (I1))
Sei M = (S, s, R, L) ein LTS. Sei ¢ eine LTL Formel und s € S
ein Zustand von M.
e M,s = ¢, wenn M, |= ¢ gilt fiir jeden Pfad 7 in M, derin s
startet.
e Wenn M, sy = ¢ gilt, schreiben wir M |= ¢. Wir sagen: M ist
ein Modell fiir ¢ oder ¢ ist in M erfiillt.
@ Zwei LTL Formeln ¢ und 1 sind dquivalent, ¢ = 1, wenn fiir
alle Modelle M und alle Pfade 7 in M gilt: M, 7w = ¢
gdw. M, 7 = 1.

Frank Heitmann heitmann@informatik.uni-hamburg.de 23/42

Beispiel: Siehe Tafel... ;-)

Fiir jeden Zustand gilt: Wird eine Ressource angefordert, wird
sie irgendwann zur Verfiigung gestellt: G(req = F ack)

Ein Prozess wird auf jedem Pfad unendlich oft aktiviert:

G(F act)

Was auch immer man tut, ein Prozess wird immer zu einem
Deadlock fiihren: F(G deadlock)

Tritt ein Ereignis p entlang eines Pfades unendlich oft auf,
dann tritt auch das Ereignis g auf: GF p= F q

o Fiir jeden Zustand gilt: Wird eine Ressource angefordert, wird
sie irgendwann zur Verfiigung gestellt: G(req = F ack)

@ Ein Prozess wird auf jedem Pfad unendlich oft aktiviert:
G(F act)

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

LTL: Spezifikationsmuster

e Fiir jeden Zustand gilt: Wird eine Ressource angefordert, wird
sie irgendwann zur Verfiigung gestellt: G(req = F ack)

@ Ein Prozess wird auf jedem Pfad unendlich oft aktiviert:
G(F act)

@ Was auch immer man tut, ein Prozess wird immer zu einem
Deadlock fiihren: F(G deadlock)

Frank Heitmann heitmann@informatik.uni-hamburg.de 25/42

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

LTL: Spezifikationsmuster

@ Fiir jeden Zustand gilt: Wird eine Ressource angefordert, wird
sie irgendwann zur Verfiigung gestellt: G(req = F ack)

@ Ein Prozess wird auf jedem Pfad unendlich oft aktiviert:
G(F act)

@ Was auch immer man tut, ein Prozess wird immer zu einem
Deadlock fiihren: F(G deadlock)

@ Tritt ein Ereignis p entlang eines Pfades unendlich oft auf,
dann tritt auch das Ereignis g auf: GF p= F ¢q

Frank Heitmann heitmann@informatik.uni-hamburg.de 25/42

Bisweilen werden weitere Junktoren wie z.B. = fiir die Implikation
oder R fiir “release” benutzt. Diese kénnen durch die Aquivalenzen
$1 = 2 = =1V 2 und P1Rp2 = —(—¢1U~¢2) ausgedriickt
werden. Unsere Junktoren bilden ein “adequate set of connectives”
fir LTL, d.h. alle andern Junktoren konnen durch sie ausgedriickt
werden. Tatsdchlich gibt es sogar kleinere Sets.

{—=, A, X, U}
ist ein solches. F und G werden dann durch F¢ := T U¢ and
G := = F—¢ definiert. Eine kleine Anzahl an Junktoren ist

insb. bei Model Checking Algorithmen hilfreich, da man sich um
weniger Falle kiimmern muss.

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

LTL: Aquivalenzen

Bisweilen werden weitere Junktoren wie z.B. = fiir die Implikation
oder R fiir “release” benutzt. Diese kénnen durch die Aquivalenzen
$1 = 2 = =1V 2 und P1Rp2 = —(—¢1U~¢2) ausgedriickt
werden. Unsere Junktoren bilden ein “adequate set of connectives”
fir LTL, d.h. alle andern Junktoren kdnnen durch sie ausgedriickt
werden. Tatsichlich gibt es sogar kleinere Sets.

{_‘7 /\7X7 U}

ist ein solches. F und G werden dann durch F¢ := T U¢ and
G¢ := = F—¢ definiert.

Frank Heitmann heitmann@informatik.uni-hamburg.de 26/42

Linear-time Temporal Logic Vorarbeiten
Computation Tree Logic Syntax
CTL vs. LTL Semantik

LTL: Aquivalenzen

Bisweilen werden weitere Junktoren wie z.B. = fiir die Implikation
oder R fiir “release” benutzt. Diese kénnen durch die Aquivalenzen
$1 = 2 = =1V 2 und P1Rp2 = —(—¢1U~¢2) ausgedriickt
werden. Unsere Junktoren bilden ein “adequate set of connectives”
fir LTL, d.h. alle andern Junktoren kdnnen durch sie ausgedriickt
werden. Tatsichlich gibt es sogar kleinere Sets.

{_‘7 /\7X7 U}

ist ein solches. F und G werden dann durch F¢ := T U¢ and
G¢ := = F—¢ definiert. Eine kleine Anzahl an Junktoren ist
insb. bei Model Checking Algorithmen hilfreich, da man sich um
weniger Falle kiimmern muss.

Frank Heitmann heitmann@informatik.uni-hamburg.de 26/42

In der Computation Tree Logic (CTL) ist es moglich iiber die
Pfade in einem Transistionssystem zu argumentieren. =~
die Logik um Pfadquantoren ‘A" und ‘E’ erweitert. Die Semantik
wird dann iliber unendliche, gerichtete Baume definiert, die man
durch ein “unfolding” des Transitionssystems in einen
Erreichbarkeitsbaum erhilt.

In der Computation Tree Logic (CTL) ist es moglich iiber die
Pfade in einem Transistionssystem zu argumentieren. Hierzu wird
die Logik um Pfadquantoren ‘A’ und ‘E’ erweitert. = 00
wird dann iliber unendliche, gerichtete Baume definiert, die man
durch ein “unfolding” des Transitionssystems in einen
Erreichbarkeitsbaum erhilt.

Linear-time Temporal Logic
Computation Tree Logic
CTL vs. LTL

Syntax
Semantik

CTL

In der Computation Tree Logic (CTL) ist es moglich iiber die
Pfade in einem Transistionssystem zu argumentieren. Hierzu wird
die Logik um Pfadquantoren ‘A’ und ‘E’ erweitert. Die Semantik
wird dann (iber unendliche, gerichtete Bdume definiert, die man
durch ein “unfolding” des Transitionssystems in einen
Erreichbarkeitsbaum erhilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 27/42

Die (wohlgeformten) Formeln der Computation Tree Logic (CTL)
werden durch die folgende Grammatik definiert:

¢ = v|-d|(dANP)]| (pV)|
EXo | EF¢ | EGo | E[pUd] |
AXo | AF¢ | AGo | AlpUg]

wobei v € V ein aussagenlogisches Atom ist.

Linear-time Temporal Logic
Computation Tree Logic
CTL vs. LTL

Syntax
Semantik

CTL: Syntax

Definition (Syntax von CTL)

Die (wohlgeformten) Formeln der Computation Tree Logic (CTL)
werden durch die folgende Grammatik definiert:

¢ == v|-¢|(pAS)]|(dV9)|
EX¢ | EFp | EGo | E[pUd] |
AX¢p | AF¢ | AGo | AlpUg]

wobei v € V ein aussagenlogisches Atom ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de 28/42

Linear-time Temporal Logic
Computation Tree Logic
CTL vs. LTL

Syntax
Semantik

CTL: Syntax

Definition (Syntax von CTL)

Die (wohlgeformten) Formeln der Computation Tree Logic (CTL)
werden durch die folgende Grammatik definiert:

¢ == v[=¢[(ond)[(oV9) |
EX¢ | EF¢ | EGo | E[pUg] |
AX¢ | AF¢ | AGo | AlpUd]

wobei v € V ein aussagenlogisches Atom ist.

Kann man natiirlich auch wieder mit einer induktiven Definition ma-
chen...

Frank Heitmann heitmann@informatik.uni-hamburg.de 28/42

Sei M = (S,sp, R, L) ein LTS und s € S ein Zustand. Eine CTL
Formel ¢ ist erfiillt in s (in M), wenn M, s |= ¢ gilt, wobei die
Relation = induktiv definiert ist:

M,skEv gdw. v e lL(s)firveV

M,s = —¢ gdw. M,s |~ ¢

M,sk=¢1 ANpo gdw. M,s = ¢1 und M,s = ¢
M,sl=¢1V ¢ gdw. M,s = ¢1 oder M, s = ¢

Linear-time Temporal Logic
Computation Tree Logic

CTL: Semantik

Syntax
Semantik

Definition (Semantik von CTL (I))

Sei M = (S,sp, R, L) ein LTS und s € S ein Zustand. Eine CTL
Formel ¢ ist erfiillt in s (in M), wenn M, s |= ¢ gilt, wobei die
Relation |= induktiv definiert ist:

M,s = v gdw. vel(s)firveV

M,s = ¢ gdw. M,s o

M,sk=¢1 ANpa gdw. M,s = ¢ und M,s = ¢
M;sE=¢1V o gdw. M,s = ¢1 oder M,s = ¢»

Frank Heitmann heitmann@informatik.uni-hamburg.de 29/42

Linear-time Temporal Logic
Computation Tree Logic
CTL vs. LTL

CTL: Semantik

Syntax
Semantik

Definition (Semantik von CTL (II))

M,s = EX¢

M,s = EF¢

M,s = EG¢

M,s = E[¢p1U¢o]

ein Zustand s’ € S existiert mit
(s,s') € Rund M,s" = ¢

ein Pfad m = s;15, ... beginnend bei s
(s1 = s) existiert und ein i > 1, so
dass M, s; = ¢ gilt.

ein Pfad m = 515, ... beginnend bei s
(s1 = s) existiert und fiir alle j > 1
M,s; E ¢ gilt.

ein Pfad m = s15, ... beginnend bei s
existiert und ein j > 1, so dass

Ma Sj |: ¢2

und M, s; |= ¢4 fiir alle i < j.

Frank Heitmann heitmann@informatik.uni-hamburg.de

30/42

Linear-time Temporal Logic
Computation Tree Logic
CTL vs. LTL

Syntax
Semantik

CTL: Semantik

Definition (Semantik von CTL (I11))

M,s = AX¢ gdw. M,s' = ¢ firalles’ €S
mit (s,s’) € R.
M;s = AF¢ gdw. fiir alle Pfade m = s1s, ... beginnend
bei s ein i > 1 existiert mit M, s; = ¢.
M;s = AGo gdw. fiir alle Pfade m = s1s, ... beginnend

bei s M,s; = ¢ fiir alle i > 1 gilt.
M,s = Alp1Ugpo] gdw. fiir alle Pfade m = s15, ... beginnend

bei s ein j > 1 existiert derart, dass

M, s; = ¢2 und

M,s; = ¢1 fur alle i < j gilt

Frank Heitmann heitmann@informatik.uni-hamburg.de 31/42

Sei M = (S,s0,R, L) ein LTS und ¢ eine CTL Formel.
e Wenn M, sy = ¢ gilt, schreiben wir auch M = ¢ und sagen,
dass M ein Modell fiir ¢ ist oder dass ¢ erfiillt ist in M.
@ Zwei CTL Formeln ¢ und ¢ sind dquivalent, ¢ = 1), wenn fiir
alle Modelle M und alle Zustinde s in M auch M,s |= ¢
gdw. M, s = v gilt.

Sei M = (S,s0,R, L) ein LTS und ¢ eine CTL Formel.

e Wenn M, sy = ¢ gilt, schreiben wir auch M = ¢ und sagen,
dass M ein Modell fiir ¢ ist oder dass ¢ erfiillt ist in M.

@ Zwei CTL Formeln ¢ und % sind dquivalent, ¢ = 1), wenn fiir
alle Modelle M und alle Zustinde s in M auch M,s |= ¢
gdw. M,s = v gilt.

Linear-time Temporal Logic
Computation Tree Logic

CTL: Semantik

Syntax
Semantik

Definition (Semantik von CTL (IV))
Sei M = (S, s0, R, L) ein LTS und ¢ eine CTL Formel.

e Wenn M, sy = ¢ gilt, schreiben wir auch M = ¢ und sagen,
dass M ein Modell fiir ¢ ist oder dass ¢ erfiillt ist in M.

@ Zwei CTL Formeln ¢ und v sind dquivalent, ¢ = 1), wenn fiir
alle Modelle M und alle Zustdnde s in M auch M,s = ¢
gdw. M, s = 9 gilt.

Frank Heitmann heitmann@informatik.uni-hamburg.de

32/42

Beispiel: Siehe Tafel... ;-)

Ein Prozess wird auf jedem Pfad unendlich oft aktiviert:
AG(AF act)

Was auch immer man tut, ein Prozess wird immer zu einem
Deadlock fithren: AF(AG deadlock)

Fiir jeden Zustand gilt: Wird eine Ressource angefordert, wird
sie irgendwann zur Verfligung gestellt: AG(req = AF ack)

Man kann immer zu einem sicheren Zustand kommen:
AG(EF safe)

@ Ein Prozess wird auf jedem Pfad unendlich oft aktiviert:
AG(AF act)

@ Was auch immer man tut, ein Prozess wird immer zu einem
Deadlock fiihren: AF(AG deadlock)

Fiir jeden Zustand gilt: Wird eine Ressource angefordert, wird
sie irgendwann zur Verfligung gestellt: AG(req = AF ack)

Man kann immer zu einem sicheren Zustand kommen:
AG(EF safe)

Linear-time Temporal Logic
Computation Tree Logic
CTL vs. LTL

Syntax
Semantik

CTL: Spezifikationsmuster

@ Ein Prozess wird auf jedem Pfad unendlich oft aktiviert:
AG(AF act)

@ Was auch immer man tut, ein Prozess wird immer zu einem
Deadlock fiihren: AF(AG deadlock)

@ Fiir jeden Zustand gilt: Wird eine Ressource angefordert, wird
sie irgendwann zur Verfiigung gestellt: AG(req = AF ack)

Frank Heitmann heitmann@informatik.uni-hamburg.de 34/42

Linear-time Temporal Logic
Computation Tree Logic
CTL vs. LTL

Syntax
Semantik

CTL: Spezifikationsmuster

@ Ein Prozess wird auf jedem Pfad unendlich oft aktiviert:
AG(AF act)

@ Was auch immer man tut, ein Prozess wird immer zu einem
Deadlock fiihren: AF(AG deadlock)

@ Fiir jeden Zustand gilt: Wird eine Ressource angefordert, wird
sie irgendwann zur Verfiigung gestellt: AG(req = AF ack)

@ Man kann immer zu einem sicheren Zustand kommen:
AG(EF safe)

Frank Heitmann heitmann@informatik.uni-hamburg.de 34/42

Oft - und besonders beim Model Checking - benutzt man ein Set
von “adequate connectives”, d.h. ein Set von Junktoren, dass
Ausdrucksstark genug ist, um jede Formel der Logik auszudriicken.

Fur CTL ist ein solches Set z.B.
{—, N\, EX,EG, EU}

Alle Formeln, die andere Junktoren benutzen, kénnen stets durch
eine dquivalente Formeln ersetzt werden, die nur Junktoren obiger
Menge benutzen.

Linear-time Temporal Logic
Computation Tree Logic
CTL vs. LTL

Syntax
Semantik

CTL: Aquivalenzen

Oft - und besonders beim Model Checking - benutzt man ein Set
von “adequate connectives”, d.h. ein Set von Junktoren, dass
Ausdrucksstark genug ist, um jede Formel der Logik auszudriicken.

Fiir CTL ist ein solches Set z.B.
{—, A\, EX, EG,EU}

Alle Formeln, die andere Junktoren benutzen, kdnnen stets durch
eine dquivalente Formeln ersetzt werden, die nur Junktoren obiger
Menge benutzen.

Frank Heitmann heitmann@informatik.uni-hamburg.de 35/42

Gingige Abkiirzungen bzw. Aquivalenzen:

$1V P2
-

EF¢
AGo
AF¢
AX
Alp1U¢o]

=(=¢1 A =)

¢V g

E[TU9]

—EF—¢

—EG—¢

—EX—¢

“(E[=p2U~(¢1 V ¢2)] V EG—2)

Die Syntax von CTL" ist eine wechselseitig rekursive induktive
Definition, die Pfad- und Zustandsformeln beinhaltet:

@ Es gibt Zustandsformeln, die in Zustanden ausgewertet
werden:

6:=T |p| ()| (6A¢)|Ala] | E[a]

wobei p eine atomare Formel ist und « eine Pfadformel.

@ Es gibt Pfadformeln, die entlang von Pfaden ausgewertet
werden:

ax=¢ | (ma) | (aAa)]| (ala) | (Ga) | (Fa) | (Xa)

wobei ¢ eine Zustandsformel ist.

—

Linear-time Temporal Logic CTL*

Computation Tree Logic
CTL vs. LTL LTL, CTL und CTL

CTL": Syntax und Semantik

Definition (CTL"* Syntax)

Die Syntax von CTL* ist eine wechselseitig rekursive induktive
Definition, die Pfad- und Zustandsformeln beinhaltet:

@ Es gibt Zustandsformeln, die in Zustidnden ausgewertet
werden:

¢:=Tpl (=) | (¢A0)] Al | Eld

wobei p eine atomare Formel ist und « eine Pfadformel.

Frank Heitmann heitmann@informatik.uni-hamburg.de

37/42

Linear-time Temporal Logic CTL*

Computation Tree Logic
CTL vs. LTL LTL, CTL und CTL

CTL": Syntax und Semantik

Definition (CTL"* Syntax)

Die Syntax von CTL* ist eine wechselseitig rekursive induktive
Definition, die Pfad- und Zustandsformeln beinhaltet:

@ Es gibt Zustandsformeln, die in Zustidnden ausgewertet
werden:

¢:=Tpl (=) | (¢A0)] Al | Eld

wobei p eine atomare Formel ist und « eine Pfadformel.

o Es gibt Pfadformeln, die entlang von Pfaden ausgewertet
werden:

a:z=¢ | (ma) [(aAa)|(ala) | (Ga) | (Fa) | (Xa)

wobei ¢ eine Zustandsformel ist.

Frank Heitmann heitmann@informatik.uni-hamburg.de

37/42

@ Die Semantik wird dann so wie bei CTL und LTL definiert, je
nachdem, ob es eine Zustands- oder eine Pfadformel ist.

@ Eine LTL-Formel « ist dquivalent zur CTL*-Formel A[a]. LTL
kann also als Teillogik von CTL* angesehen werden.

@ CTL ist sofort eine Teillogik von CTL*, da man die
Pfadformeln auf

a = (pUp) | (Go) | (Fo) | (Xo)

einschranken kann und dann sofort CTL hat.

Linear-time Temporal Logic CTL*

Computation Tree Logic *
CTL vs. LTL LTL, CTL und CTL

CTL": Syntax und Semantik

@ Die Semantik wird dann so wie bei CTL und LTL definiert, je
nachdem, ob es eine Zustands- oder eine Pfadformel ist.

@ Eine LTL-Formel « ist dquivalent zur CTL*-Formel A[a]. LTL
kann also als Teillogik von CTL* angesehen werden.

Frank Heitmann heitmann@informatik.uni-hamburg.de

38/42

Linear-time Temporal Logic CTL*

Computation Tree Logic *
CTL vs. LTL LTL, CTL und CTL

CTL": Syntax und Semantik

@ Die Semantik wird dann so wie bei CTL und LTL definiert, je
nachdem, ob es eine Zustands- oder eine Pfadformel ist.

@ Eine LTL-Formel « ist dquivalent zur CTL*-Formel A[a]. LTL
kann also als Teillogik von CTL* angesehen werden.

e CTL ist sofort eine Teillogik von CTL*, da man die
Pfadformeln auf

a = (oUs) | (Go) | (Fo) | (X9)

einschranken kann und dann sofort CTL hat.

Frank Heitmann heitmann@informatik.uni-hamburg.de

38/42

Zusammenhinge der Logiken
@ In CTL, aber nicht in LTL: ¢ := AGEF p.
o Wann immer notig, kann ein Zustand erreicht werden, in dem
p gilt.
@ In CTL", aber weder in LTL noch in CTL: ¢» := E[GF p]
e Es gibt einen Pfad mit unendlich vielen p.
© In LTL, aber nicht in CTL: ¢3 := A[GF p = F q]
e Tritt p entlang eines Pfades unendlich oft auf, dann tritt ein g
auf.

@ In LTL und CTL: ¢4y := AG(p = AF q) in CTL
bzw. ¢40 := G(p = F q) in LTL.

e Jedem p folgt irgendwann ein g.

Linear-time Temporal Logic CTL*
Computation Tree Logic LTL. CTL und CTL*

LTL, CTL und CTL"

Zusammenhange der Logiken
@ In CTL, aber nicht in LTL: ¢; := AGEF p.

e Wann immer nétig, kann ein Zustand erreicht werden, in dem
p gilt.
@ In CTL", aber weder in LTL noch in CTL: ¢, := E[GF p]

e Es gibt einen Pfad mit unendlich vielen p.

Frank Heitmann heitmann@informatik.uni-hamburg.de

39/42

Linear-time Temporal Logic CTL*
Computation Tree Logic LTL. CTL und CTL*

LTL, CTL und CTL"

Zusammenhange der Logiken
@ In CTL, aber nicht in LTL: ¢; := AGEF p.

e Wann immer nétig, kann ein Zustand erreicht werden, in dem
p gilt.
@ In CTL", aber weder in LTL noch in CTL: ¢, := E[GF p]
e Es gibt einen Pfad mit unendlich vielen p.
© In LTL, aber nicht in CTL: ¢3 := A[GF p = F 4]

e Tritt p entlang eines Pfades unendlich oft auf, dann tritt ein g
auf.

Frank Heitmann heitmann@informatik.uni-hamburg.de 39/42

Linear-time Temporal Logic cTL*

Computation Tree Logic *
CTL vs. LTL LTL, CTL und CTL

LTL, CTL und CTL"

Zusammenhange der Logiken
@ In CTL, aber nicht in LTL: ¢; := AGEF p.

e Wann immer nétig, kann ein Zustand erreicht werden, in dem
p gilt.
@ In CTL", aber weder in LTL noch in CTL: ¢, := E[GF p]
e Es gibt einen Pfad mit unendlich vielen p.
© In LTL, aber nicht in CTL: ¢3 := A[GF p = F 4]
e Tritt p entlang eines Pfades unendlich oft auf, dann tritt ein g
auf.
Q InLTL und CTL: ¢s1 := AG(p = AF q) in CTL
bzw. ¢4 := G(p = F q) in LTL.

e Jedem p folgt irgendwann ein q.

Frank Heitmann heitmann@informatik.uni-hamburg.de 39/42

Linear-time Temporal Logic CTL*

Computation Tree Logic *
CTL vs. LTL LTL, CTL und CTL

LTL vs. CTL

Take Home Message

LTL und CTL sind beide wichtig, da es jeweils Dinge gibt, die in der
anderen nicht ausgedriickt werden konnen.

Frank Heitmann heitmann@informatik.uni-hamburg.de 40/42

Linear-time Temporal Logic CTL*

Computation Tree Logic *
CTL vs. LTL LTL, CTL und CTL

LTL vs. CTL

Take Home Message

LTL und CTL sind beide wichtig, da es jeweils Dinge gibt, die in der
anderen nicht ausgedriickt werden konnen.

Take Home Message 2

LTL kann nicht iiber Pfade quantifizieren. CTL kann dafiir nicht so
fein tiber Pfade argumentieren wie LTL. (Fiir viele ist LTL einfacher;
CTL Formeln wie AFAX p erscheinen schwierig...)

|

\

Frank Heitmann heitmann@informatik.uni-hamburg.de 40/42

Linear-time Temporal Logic
Computation Tree Logic
CTL vs. LTL

CTL*
LTL, CTL und CTL*

LTL vs. CTL

Take Home Message

LTL und CTL sind beide wichtig, da es jeweils Dinge gibt, die in der
anderen nicht ausgedriickt werden konnen.

|

Take Home Message 2
LTL kann nicht iiber Pfade quantifizieren. CTL kann dafiir nicht so

fein tiber Pfade argumentieren wie LTL. (Fiir viele ist LTL einfacher;
CTL Formeln wie AFAX p erscheinen schwierig...)

Literatur

Zur heutigen Vorlesung siehe Kapitel 3 in Logic in Computer
Science. Modelling and Reasoning about Systems. Michael Huth
und Mark Ryan, 2. Auflage, Cambridge University Press, 2004.

N

Frank Heitmann heitmann@informatik.uni-hamburg.de 40/42

Das model checking problem fiir LTL oder CTL fragt, gegeben ein
LTS M und eine Formel ¢, ob M = ¢ gilt, d.h. ob M ein Modell
fiir ¢ ist.
Eingabe: Ein LTS M und eine LTL oder CTL Formel ¢.
Frage: Gt MEo¢?

Linear-time Temporal Logic cTL*

Computation Tree Logic *
CTL vs. LTL LTL, CTL und CTL

Ausblick: Model Checking

Satz
Sei M ein LTS.

@ Sei ¢ eine LTL Formel. Das model checking problem fiir LTL,
d.h. die Frage, ob M |= ¢ gilt, ist PSPACE-vollstindig und
kann in O(|M| - 291} Zeit entschieden werden.

@ Sei ¢ eine CTL Formel. Das model checking problem fiir CTL,
d.h. die Frage, ob M = ¢ gilt, kann in O(|M| - |¢|) Zeit
entschieden werden.

Frank Heitmann heitmann@informatik.uni-hamburg.de 42/42

Linear-time Temporal Logic
Computation Tree Logic
CTL vs. LTL

Ausblick: Model Checking

CTL*
LTL, CTL und CTL*

Satz
Sei M ein LTS.

@ Sei ¢ eine LTL Formel. Das model checking problem fiir LTL,
d.h. die Frage, ob M |= ¢ gilt, ist PSPACE-vollstindig und
kann in O(|M| - 291} Zeit entschieden werden.

@ Sei ¢ eine CTL Formel. Das model checking problem fiir CTL,

d.h. die Frage, ob M = ¢ gilt, kann in O(|M| - |¢|) Zeit
entschieden werden.

Wichtige Anmerkung

Das Modell M wird allerdings i.A. sehr schnell sehr groB. Daher
ist [M| der dominante Faktor, was zu dem beriihmten Problem der
Zustandsraumexplosion fiihrt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 42/42

	Linear-time Temporal Logic
	Vorarbeiten
	Syntax
	Semantik

	Computation Tree Logic
	Syntax
	Semantik

	CTL vs. LTL
	CTL*
	LTL, CTL und CTL*

