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In der Aussagenlogik kann man Wahrheitstafeln aufmalen. In der
Pradikatenlogik existieren unendlich viele Strukturen. Die Lage ist
aber noch schlimmer:

Dann ist z.B. mit A = (U, /), wobei U =N,
I(P)={(m,n) | m< n} und I(f)(n) = n+ 1 eine erfiillende
Struktur gegeben.
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Unendliche Strukturen
Der Satz von Church

Eine besondere Formel

In der Aussagenlogik kann man Wahrheitstafeln aufmalen. In der
Pradikatenlogik existieren unendlich viele Strukturen. Die Lage ist
aber noch schlimmer:

Eine besondere Formel

Sei

F = VxP(x,f(x))A

Vy=P(y,y) A
VuvvWw((P(u, v) A P(v,w)) = P(u,w))
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F = VxP(x,f(x))A

Vy=P(y,y) A
VuvvwWw((P(u, v) A P(v,w)) = P(u,w))

F hat aber kein endliches Modell, d.h. U kann nicht endlich sein!
Idee: Angenommen U ware endlich, betrachte fiir ein beliebiges

m € U eine Folge mg, m;, my, ..., wobei mg = m und

mjt1 = I(f)(m;). Dann muss sich in dieser Folge ein Wert m, das
erste Mal wiederholen. Aus dem ersten und dritten Konjunkt folgt
dann (my, my) € I(P), was dem zweiten Konjunkt widerspricht.
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Unentscheidbarkeit
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Resolution

Unendliche Strukturen
Der Satz von Church

Merke

Ergebnis

Es gibt nicht nur unendlich viele Strukturen, es gibt auch Formeln,
fir die eine (erfiillende) Struktur ein unendlich groBes Universum
bendtigt.
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Tatsachlich ist die Lage noch viel schlimmer:

Satz (Satz von Church)

Das Gililtigkeitsproblem der Pradikatenlogik (also das Problem
gegeben eine Formel F € Lp, ist F eine Tautologie?) ist
unentscheidbar.

Beweis.

Wir wollen den Beweis hier nicht im Detail fiihren. Zunachst zeigt
man dass das sogenannte Postsche Korrespondenzproblem:
Gegeben: endliche Folge (x1,y1),. - -, (XK, yx) mit x;, y; € {0,1}+.
Gesucht: eine Folge von Indizes i, .. ., in€{l,..., k}, n>1 mit
Xip Xiy « « - Xip = YirYip - - - Yiy-

unentscheidbar ist. Dann reduziert man dies auf das
Giiltigkeitsproblem der Pradikatenlogik. Ol
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Das Erfiillbarkeitsproblem der Pradikatenlogik (also der Problem
gegeben eine Formel F € Lpy, ist F erfiillbar?) ist unentscheidbar.
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Unentscheidbarkeit

Satz

Das Erfiillbarkeitsproblem der Pradikatenlogik (also der Problem
gegeben eine Formel F € Lpy, ist F erfiillbar?) ist unentscheidbar.

Beweis.

F ist giiltig genau dann, wenn —F unerfiillbar ist. Kénnten wir also
Erfiillbarkeit entscheiden, so konnten wir das Verfahren auf —F
anwenden und damit entscheiden, ob F giiltig ist. (Aus dem
vorherigen Satz wissen wir aber, dass wir dies nicht entscheiden
konnen, also auch Erfiillbarkeit nicht.) O
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Unentscheidbarkeit
Herbrand-Theorie
Resolution

Begriffe
Satze

Motivation

Ein bisschen Hoffnung ...

Auch wenn das Erfiillbarkeitsproblem unentscheidbar ist, heit das
nicht, dass es nicht sinnvolle Verfahren geben kann, um zu
ermitteln, ob eine Formel F erfiillbar ist. Das Verfahren wiirde die
Frage nur nicht entscheiden. Vielleicht gibt das Verfahren nicht
immer die richtige Losung aus, oder es terminiert nicht immer ...
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ermitteln, ob eine Formel F erfiillbar ist. Das Verfahren wiirde die
Frage nur nicht entscheiden. Vielleicht gibt das Verfahren nicht
immer die richtige Losung aus, oder es terminiert nicht immer ...

Ein Problem ist nun, dass fiir U beliebige Mengen mdglich sind.
Kann man dies einschrianken? Kann man Strukturen “griffiger”
machen, so dass man sie auf bestimmte Art und Weise
durchwandern kann? ...
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Unentscheidbarkeit Begriff
Herbrand-Theorie egritie

H Satze
Resolution “

Herbrand-Universum

Definition (Herbrand-Universum)

Sei F eine geschlossene Formel in Skolemform. Das
Herbrand-Universum D(F) wird wie folgt induktiv gebildet:
@ Alle in F vorkommenden Konstanten sind in D(F). Enthalt F
keine Konstanten, so sei die neue Konstante a in D(F).

@ Fiir jedes in F vorkommende k-stellige Funktionssymbol f und
Terme t1,...,tx € D(F) ist auch f(t1,...,t) € D(F).
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@ Alle in F vorkommenden Konstanten sind in D(F). Enthalt F
keine Konstanten, so sei die neue Konstante a in D(F).

@ Fiir jedes in F vorkommende k-stellige Funktionssymbol f und
Terme t1,...,tx € D(F) ist auch f(t1,...,t) € D(F).

Anmerkung

In D(F) sind also alle variablenfreien Terme, die aus Bestandteilen
von F gebildet werden kdnnen.
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Unentscheidbarkeit Begriff
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Herbrand-Universum - Beispiel

Sei

T

VxYyP(x, f(y), )

VxVyP(f(x), b, g(x,y))
H = \V/XP(f(X)X))

(9}
|
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Unentscheidbar
Herbrand-The
Resolu
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"'or

Herbrand-Universum - Belsplel

Sei
F = VXVY'D(X’ f(y), C)
G = VXVyP(f(X)vbvg(va))
H = \V/XP(f(X)X))

Dann ist

D(F) {c, f(c), £(£(c)), £(F(f(c))),- . .}
D(G) = {b,f(b),g(b,b),f(f(b)),f(g(b,b)),
g(b, f(b)), g(f(b), b),g(b, g(b, b)),
g(g(b, b), b),g(f(b),g(b, b)), .- .}
D(H) = {a, f(a,a),
= f(a,f(a,a)),f(f(a,a),a),f(f(a,a),f(aa)),...}
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D(F) wird nun als 'Standard’-Grundbereich benutzt, um nach
Modellen zu suchen. Dies reicht tatsachlich und hilft uns auf
gewisse Art und Weise nach Modellen zu suchen.
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Herbrand-Struktur und -Modell

Definition (Herbrand-Struktur und -Modell)
Sei F eine geschlossene Formel in Skolemform. Dann heiBt
A = (U, ) Herbrand-Struktur zu F, wenn:

Q@ U=D(F)

@ Fiir jedes in F auftretende k-stellige Funktionssymbol f und

Terme t1,... t, € D(F)ist I(f)(t1,...,te) = f(t1,..., t).

Ist eine Herbrand-Struktur A ein Modell fiir eine Formel F, so
nennen wir A ein Herbrand-Modell.
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Anmerkungen

Anmerkung
Zwei Anmerkungen:
© Durch die Festlegung der Interpretation der Funktionssymbole
wird Syntax und Semantik von Termen quasi gleichgeschaltet.
Die Bedeutung (Semantik) eines Terms ist der Term
(syntaktisch) selbst.
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© Durch die Festlegung der Interpretation der Funktionssymbole
wird Syntax und Semantik von Termen quasi gleichgeschaltet.
Die Bedeutung (Semantik) eines Terms ist der Term
(syntaktisch) selbst.

@ Die Definition der Herbrand-Struktur legt viel fest. Offen ist
aber dann noch die Interpretation der Pradikatensymbole.
Dies schrankt einen ein und hilft, die Suche nach erfiillenden
Strukturen zu vereinfachen. (Das Erfiillbarkeitsproblem der
Pradikatenlogik bleibt aber unentscheidbar!)
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Man kann nun folgende Sitze zeigen:

Sei F eine geschlossene Formel in Skolemform. F ist genau dann
erfiillbar, wenn F ein Herbrand-Modell besitzt.
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Begriffe
Satze

Man kann nun folgende Satze zeigen:

Satz

Sei F eine geschlossene Formel in Skolemform. F ist genau dann
erflillbar, wenn F ein Herbrand-Modell besitzt.

Satz (Satz von Léwenheim-Skolem)

Jede erfiillbare Formel der Pradikatenlogik besitzt ein abzdhlbares
Modell (eine Struktur mit abzdhlbarem Universum).

Beweis.
Folgt sofort aus obigem, da Herbrand-Modelle abzédhlbar sind. [
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Unentscheidbarkeit Begriff
Herbrand-Theorie cgrite

Resolution Sétze
Abzahlbare Modelle

Wichtige Anmerkung

Wenn wir zu Anfang gezeigt haben, dass einige Formeln der Pradi-
katenlogik unendlich groBe Strukturen bendtigen, so wissen wir nun

immerhin, dass Strukturen mit abzahlbar unendlichen Universen aus-
reichend sind!

Frank Heitmann heitmann@informatik.uni-hamburg.de 14/43



Man kann dies nun nutzen, um ein Verfahren zu entwickeln, dass
systematisch alle Strukturen (bzw. bestimmte Strukturen)
durchgeht und irgendwann eine erfiillende findet, sofern denn eine
existiert.

Das gleich vorgestellte Verfahren muss namlich nicht terminieren!
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Herbrand-Expansion - Motivation

Nachstes Ziel

Man kann dies nun nutzen, um ein Verfahren zu entwickeln, dass
systematisch alle Strukturen (bzw. bestimmte Strukturen)
durchgeht und irgendwann eine erfiillende findet, sofern denn eine
existiert.

Dies widerspricht nicht der Unentscheidbarkeit der Pradikatenlogik!
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Sei F =Vy;...VyF* eine Aussagen in Skolemform (F* ist die
Matrix). Dann ist

E(F) = {FIn/ulle/t].. . y/t] | tr,-... tx € D(F)}

die Herbrand-Expansion von F.




Sei F =Vy;...VyF* eine Aussagen in Skolemform (F* ist die
Matrix). Dann ist

E(F) = {FIn/ulle/t].. . y/t] | tr,-... tx € D(F)}

die Herbrand-Expansion von F.

Die Formeln in E(F) sind quasi wie aussagenlogische Formeln!




Fiir jede geschlossene Formel in Skolemform F gilt: F ist genau
dann erfiillbar, wenn die Formelmenge E(F) im aussagenlogischen
Sinne erfiillbar ist.
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Herbrand-Theorie S"g !
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Resolution

Ein Satz

Satz (Godel-Herbrand-Skolem)

Fiir jede geschlossene Formel in Skolemform F gilt: F ist genau
dann erfiillbar, wenn die Formelmenge E(F) im aussagenlogischen
Sinne erfiillbar ist.

Anmerkung

Der Satz besagt quasi, dass eine pradikatenlogische Formel durch
(i.A.) unendlich viele aussagenlogische Formeln approximiert
werden kann.
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In Kombination mit dem Endlichkeitssatz der Aussagenlogik:

Eine Menge M von Formeln ist genau dann erfiillbar, wenn jede
endliche Teilmenge von M erfiillbar ist.

ergibt dies den folgenden Satz von Herbrand:




Unentscheidbarkeit
Herbrand-Theorie
Resolution

Begriffe
Satze

Noch ein Satz

In Kombination mit dem Endlichkeitssatz der Aussagenlogik:

Satz (Endlichkeitssatz (der Aussagenlogik))

Eine Menge M von Formeln ist genau dann erfiillbar, wenn jede
endliche Teilmenge von M erfiillbar ist.

ergibt dies den folgenden Satz von Herbrand:

Satz (Herbrand)

Eine Aussage F in Skolemform ist genau dann unerfiillbar, wenn es
eine endliche Teilmenge von E(F) gibt, die (im aussagenlogischen
Sinne) unerfiillbar ist.
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Zum Algorithmus von Gilmore

Aus dem Satz von Herbrand lasst sich ein Algorithmus entwickeln,
der {iberpriift, ob eine pradikatenlogische Formel unerfiillbar ist.

ABER: Pradikatenlogik ist unentscheidbar, also hat der
Algorithmus irgendeinen Haken. In diesem Fall: Er terminiert nicht
zwingend!
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Zum Algorithmus von Gilmore

Aus dem Satz von Herbrand lasst sich ein Algorithmus entwickeln,
der {iberpriift, ob eine pradikatenlogische Formel unerfiillbar ist.

ABER: Pradikatenlogik ist unentscheidbar, also hat der
Algorithmus irgendeinen Haken. In diesem Fall: Er terminiert nicht
zwingend!

Anmerkung

Man spricht hier von einem Semi-Entscheidungsverfahren. Auf den
'Ja’-Instanzen halten wir nach endlicher Zeit mit der korrekten
Antwort an. (Bei den 'Nein'-Instanzen wissen wir aber immer nicht,
ob das "Ja’ noch kommt oder ob diese eine 'Nein'-Instanz ist...)
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Unentscheidbarkeit
Herbrand-Theorie
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Begriffe
Sitze

Der Algorithmus von Gilmore

Der Algorithmus von Gilmore arbeitet wie folgt:

@ Sei F1, Fp, F3, ... eine Aufzihlung von E(F).

@ Eingabe ist eine pradikatenlogische Formel F in Skolemform.
©@ n=0

Q n=n+1

@ Priife, ob (F1 A Fo A ... A Fp) unerfiillbar ist (z.B. mit
Wahrheitstafeln der Aussagenlogik).

O Falls ja, stoppe und gib "unerfiillbar’ aus. Falls nein, gehe zu
Schritt 4.
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Wir haben damit ein Semi-Entscheidungsverfahren

o fiir das Unerfiillbarkeitsproblem

o fiir das Giiltigkeitsproblem

Ferner kdnnte man systematisch endliche Modelle durchgehen und
hadtte dann auch ein Semi-Entscheidungsverfahren fiir

o erfullbare Formeln mit endlichen Modellen

Die erfiillbaren, aber nicht giiltigen Formeln mit unendlichen
Modellen bleiben einem aber verwehrt! Und bei den obigen
Verfahren wei8 man bei Nicht-Termination immer nicht, ob noch
eine Antwort kommt oder ob dies eine 'Nein’-Instanz ist!
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Folgerungen aus dem Algorithmus

Wir haben damit ein Semi-Entscheidungsverfahren

o fiir das Unerfiillbarkeitsproblem

o fiir das Giiltigkeitsproblem

Ferner konnte man systematisch endliche Modelle durchgehen und
hatte dann auch ein Semi-Entscheidungsverfahren fiir

o erfiillbare Formeln mit endlichen Modellen
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Unentscheidbarkeit Grundresolution
Herbrand-Theorie Unifikation
Resolution Pradikatenlogische Resolution

Motivation

Statt wie im Algorithmus eben angedeutet Wahrheitstafeln fiir den
Unerfiillbarkeitstest zu benutzen, konnen wir auch auf
(aussagenlogische) Resolution zuriickgreifen. Die Matrix muss
dafiir in KNF gebracht werden, aber das konnen wir ja ....
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Unentscheidbarkeit Grundresolution
Herbrand-Theorie Unifikation
Resolution Pradikatenlogische Resolution

Grundresolutionsalgorithmus

Es sei wieder Fi, Fp, ... eine Aufzdhlung von E(F). Der
Grundresolutionsalgorithmus arbeitet wie folgt:

@ Eingabe ist eine Aussage F in Skolemform mit der Matrix F*
in KNF.

Q@ /=0

O M=

Q Wiederhole:
o i=i+1
° M:MU{F,}
o M = Res*(M)

bis O € M.
© Gib 'unerfiillbar’ aus und stoppe.
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Unentscheidbarkeit Grundresolution
Herbrand-Theorie Unifikation
Resolution Pradikatenlogische Resolution

Begriffe

Die Bezeichnung Grundresolutionsalgorithmus kommt von
folgenden Begriffen:

Definition
Sei F eine Formel in Skolemform mit Matrix F*.

@ Eine Substitution, die alle freien Variablen in F durch
variablenfreie Terme ersetzt wird Grundsubstitution genannt.
(Die Substitutionen in der Definition von E(F) sind also
Grundsubstitutionen.)
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Unentscheidbarkeit Grundresolution
Herbrand-Theorie Unifikation
Resolution Pradikatenlogische Resolution

Begriffe

Die Bezeichnung Grundresolutionsalgorithmus kommt von
folgenden Begriffen:

Definition
Sei F eine Formel in Skolemform mit Matrix F*.

@ Eine Substitution, die alle freien Variablen in F durch
variablenfreie Terme ersetzt wird Grundsubstitution genannt.
(Die Substitutionen in der Definition von E(F) sind also
Grundsubstitutionen.)

@ Wenn alle freien Variablen in F* durch eine Grundsubstitution
ersetzt werden, nennen wir das Resultat eine Grundinstanz
von F*.
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Begriffe

Die Bezeichnung Grundresolutionsalgorithmus kommt von
folgenden Begriffen:

Definition
Sei F eine Formel in Skolemform mit Matrix F*.

@ Eine Substitution, die alle freien Variablen in F durch
variablenfreie Terme ersetzt wird Grundsubstitution genannt.
(Die Substitutionen in der Definition von E(F) sind also
Grundsubstitutionen.)

@ Wenn alle freien Variablen in F* durch eine Grundsubstitution
ersetzt werden, nennen wir das Resultat eine Grundinstanz
von F*.

@ Werden die freien Variablen in F* durch eine Substitution
ersetzt, so nennen wir das Resultat eine Instanz von F*.
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Bei Eingabe einer Aussage F in Skolemform mit Matrix F* in KNF
stoppt der Grundresolutionsalgorithmus genau dann nach endlich
vielen Schritten mit der Ausgabe 'unerfiillbar’, wenn F unerfiillbar
ist.
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Zum Grundresolutionsalgorithmus

Satz

Bei Eingabe einer Aussage F in Skolemform mit Matrix F* in KNF
stoppt der Grundresolutionsalgorithmus genau dann nach endlich
vielen Schritten mit der Ausgabe 'unerfiillbar’, wenn F unerfiillbar
ist.

Anmerkung

Der Algorithmus erzeugt meist viel mehr Elemente in M als nétig.
Bei der Darstellung eines Beweises fiir die Unerfiillbarkeit geniigt es
geeignete Grundinstanzen der Klauseln in F* anzugeben und diese
dann in einem Resolutionsgraphen zur leeren Klausel zu resolvieren.

v
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Zur Formel
F =Vx(P(x) A =P(f(x)))

geniigen bereits die Substitutionen [x/a] und [x/f(a)] um zu einer
unerfiillbaren Klauselmenge zu kommen:

{P(a)} {=P(f(a))} {P(f(a))} {=P(f(f(2)))}

L

O
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Beispiel

Zur Formel
F =Vx(P(x) A =P(f(x)))

geniigen bereits die Substitutionen [x/a] und [x/f(a)] um zu einer
unerfiillbaren Klauselmenge zu kommen:

{P(a)} {=P(f(a))} {P(f(a)} {=P(f(f(a)))}

T

Anmerkung

Genauer gengiligt es sogar fiir jede Klausel in F* individuell
geeignete Substitutionen zu finden, die dann auf diese Klausel aber
nicht auf die ganze Klauselmenge F* angewendet werden.
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Motivation

Motivation

Wenn man einige Grundsubstitutionen macht, merkt man recht
schnell, dass man sich oft durch eine (Grund-)Substitution zu
schnell einschrankt (und dadurch zu vorausschauend arbeiten
muss). Ziel ist es daher in einer Weise zu substituieren, dass man
nicht mehr als notig substitutiert und insb. nicht mehr als notig
geschlossene Terme einfiihrt.
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Motivation

Motivation

Wenn man einige Grundsubstitutionen macht, merkt man recht
schnell, dass man sich oft durch eine (Grund-)Substitution zu
schnell einschrankt (und dadurch zu vorausschauend arbeiten
muss). Ziel ist es daher in einer Weise zu substituieren, dass man
nicht mehr als notig substitutiert und insb. nicht mehr als notig
geschlossene Terme einfiihrt.

Hat man z.B. {P(x),=Q(g(x))} und {=P(f(y))}, so wiirde die

)
Substitution [x/f(y)] gentigen, um zu {=Q(g(f(y)))} zu
resolvieren.
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Motivation

Motivation

Wenn man einige Grundsubstitutionen macht, merkt man recht
schnell, dass man sich oft durch eine (Grund-)Substitution zu
schnell einschrankt (und dadurch zu vorausschauend arbeiten
muss). Ziel ist es daher in einer Weise zu substituieren, dass man
nicht mehr als notig substitutiert und insb. nicht mehr als notig
geschlossene Terme einfiihrt.

Hat man z.B. {P(x),=Q(g(x))} und {=P(f(y))}, so wiirde die
Substitution [x/f(y)] gentigen, um zu {=Q(g(f(y)))} zu
resolvieren. Mit dem bisherigen geht das aber nicht. In der
pradikatenlogischen Resolution will man genau dies erlauben. Um
die formal auszudriicken brauchen wir noch den Begriff der
Unifikation...
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Eine Substitution o ist ein Unifikator einer endlichen Menge von
Literalen L = {Ly,..., Lk}, wenn Lyjo = ... = Lyo, wenn also
|Lo| = 1. Wir sagen dann, dass L unifizierbar ist.

o heiBt allgemeinster Unifikator von L, falls fiir jeden Unifikator
o’ von L gilt, dass es eine Substitution sub gibt mit ¢/ = osub,
d.h. wenn fiir jede Formel F Fo’ = Fosub gilt.
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Unifikator

Definition (Unifikator)

Eine Substitution o ist ein Unifikator einer endlichen Menge von
Literalen L = {L;,...,Lx}, wenn Lyjo = ... = Lo, wenn also
|Lo| = 1. Wir sagen dann, dass L unifizierbar ist.

o heiBt allgemeinster Unifikator von L, falls fiir jeden Unifikator
o’ von L gilt, dass es eine Substitution sub gibt mit ¢/ = osub,
d.h. wenn fiir jede Formel F Fo’ = Fosub gilt.
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Unifikationsalgorithmus

Satz (Unifikationssatz)

Jede unifizierbare Menge von Literalen besitzt auch einen
allgemeinsten Unifikator.

Beweis.

Der nachfolgende Unifikationsalgorithmus ermittelt einen
allgemeinsten Unifikator sofern einer existiert und gibt sonst aus,
dass die Menge nicht unifizierbar ist.

Einen detaillierten Korrektheitsbeweis findet man im Buch von
Schoéning. O
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Unifikationsalgorithmus

Eingabe: nicht-leere Literalmenge L.

@ sub =[]
@ Wiederhole so lange |Lsub| > 1:

e Wandere von links nach rechts durch die Literale in Lsub bis
die erste Position gefunden wird an der sich mindestens zwei
Literale unterscheiden

e Ist keines der beiden eine Variable brich mit 'nicht unifizierbar’
ab.

e sonst sei x die Variable t der Term
e Kommt x in t vor, brich mit 'nicht unifizierbar’ ab.
e sonst setze sub = sub[x/t] und fahre fort

@ Gib sub aus
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Unifikation - Beispiel
Beispiel

Sei
L={P(x,y), P(f(a),g(x)), P(f(2),g(f(2)))}

dann
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Unifikation - Beispiel
Beispiel

Sei
L={P(x,y), P(f(a),g(x)), P(f(2),g(f(2)))}

dann
@ erster Unterschied bei x und f(a), also sub; = [x/f(a)] (oder
x und f(z) dann sub = [x/f(z)])
o Lsuby = {P(f(a),y), P(f(a), 8(f(a))), P(f(2), &((2)))}
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Unifikation - Beispiel

Sei
L={P(x,y), P(f(a),g(x)), P(f(2),g(f(2)))}

dann
@ erster Unterschied bei x und f(a), also sub; = [x/f(a)] (oder
x und f(z) dann sub = [x/f(z)])
o Lsuby = {P(f(a),y), P(f(a), 8(f(a))), P(f(2), &((2)))}
@ nichster Unterschied bei z und a, also suby, = subi[z/a]
o Lsub, = {P(f(a),y), P(f(a), 8(f(a)))}
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Unifikation - Beispiel

Sei
L={P(x,y), P(f(a),&(x)), P(f(z),&(f(2)))}
dann
@ erster Unterschied bei x und f(a), also sub; = [x/f(a)] (oder
x und f(z) dann sub = [x/f(z)])
o Lsuby = {P(f(a),y), P(f(a), 8(f(a))), P(f(2), &((2)))}
@ nichster Unterschied bei z und a, also suby, = subi[z/a]
o Lsub, = {P(f(a),y), P(f(a), g(f(a)))}
© néchster Unterschied bei y und g(f(a)), also
subs = sub,|y/g(f(a))]
o Lsubs = {P(f(a), g(f(a)))}
und wir sind fertig!
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Unifikation - Beispiel

Sei
L={P(x,y), P(f(a),&(x)), P(f(z),&(f(2)))}
dann
@ erster Unterschied bei x und f(a), also sub; = [x/f(a)] (oder
x und f(z) dann sub = [x/f(z)])
o Lsuby = {P(f(a),y), P(f(a), 8(f(a))), P(f(2), &((2)))}
@ nichster Unterschied bei z und a, also suby, = subi[z/a]
o Lsub, = {P(f(a),y), P(f(a), 8(f(a)))}
© néchster Unterschied bei y und g(f(a)), also
subs = sub,|y/g(f(a))]
o Lsubs = {P(f(a), g(f(a)))}
und wir sind fertig!
Der allgemeinste Unifikator ist o = [x/f(a)][z/a][y/g(f(a))].
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Mit der Unifikation kénnen wir nun unser Ziel der
'zuriickhaltenden’ Resolution erreichen und die pradikatenlogische
Resolution formulieren ...
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Resolution

Definition (Pradikatenlogische Resolution)

Seien Ki, K> und R pradikatenlogische Klauseln. Dann ist R eine
pradikatenlogische Resolvente von K; und Kb, falls folgendes gilt:
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Resolution

Definition (Pradikatenlogische Resolution)

Seien Ki, K> und R pradikatenlogische Klauseln. Dann ist R eine
pradikatenlogische Resolvente von K; und Kb, falls folgendes gilt:

© Es gibt Substitutionen s; und s, die
Variablenumbenennungen sind, so dass Kis; und Kjs, keine
gemeinsamen Variablen enthalten.
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Resolution

Definition (Pradikatenlogische Resolution)
Seien Ki, K> und R pradikatenlogische Klauseln. Dann ist R eine

pradikatenlogische Resolvente von K; und Kb, falls folgendes gilt:

© Es gibt Substitutionen s; und s, die
Variablenumbenennungen sind, so dass Kis; und Kjs, keine
gemeinsamen Variablen enthalten.
@ Es gibt eine Menge von Literalen Ly,..., L, € K151 und
1., L, € Kasy (wobei n,m > 1), so dass
L={L1,...,Lm, L5,..., L} unifizierbar ist. Sei sub der
allgemeinste Unifikator von L.
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Resolution

Definition (Pradikatenlogische Resolution)

Seien Ki, K> und R pradikatenlogische Klauseln. Dann ist R eine
pradikatenlogische Resolvente von K; und Kb, falls folgendes gilt:
© Es gibt Substitutionen s; und s, die
Variablenumbenennungen sind, so dass Kis; und Kjs, keine
gemeinsamen Variablen enthalten.

@ Es gibt eine Menge von Literalen Ly,..., L, € K151 und

15+ Ly € Kasp (wobei n,m > 1), so dass
L={L1,...,Lm, L5,..., L} unifizierbar ist. Sei sub der
allgemeinste Unifikator von L.

© R hat die Form

R = ((Kist — {L1, ..., L)) U (Kaso — {L%,... L' }))sub
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Resolution - Beispiel 1

o Besplel
Sei K1 = {P(f(x)), ~Q(2), P(2)} und K» = {~P(x), R(g(x),a)}
Wir wahlen P(f(x)), P(z) € Ki und =P(x) € K> zur Resolution
aus. Damit:
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Resolution - Beispiel 1

Sei K1 = {P(f(x)),~Q(2), P(z)} und K» = {=P(x), R(g(x),a)}
Wir wahlen P(f(x)), P(z) € Ki und =P(x) € K> zur Resolution

aus. Damit:
{P(f(x)), ~Q(2), P(2)} {2P(x), R(g(x), a)}
s1=[ 52=[X/u}l
{P(f(x)), ~Q(2), P(2)} {=P(u), R(g(u), a)}
sub=[z/(x)][u/f(x)} sub=[z/f(x)][u/f(x)1l
{P(f(x)), ~Q(f (A))}/m, R(g(f(x)),a)}

{(=Q(f(x)), R(g(f(x)), a)}
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Resolution - Beispiel 1 (kiirzer)

Das Beispiel von eben kiirzer:
Sei K1 = {P(f(x)), ~Q(2), P(2)} und K» = {=~P(x), R(g(x),a)}
Wir wahlen P(f(x)), P(z) € Ki und =P(x) € K> zur Resolution

aus. Damit:

Frank Heitmann heitmann@informatik.uni-hamburg.de 35/43



Unentscheidbarkeit Grundresolution

Herbrand-Theorie Unifikation
Resolution Pradikatenlogische Resolution

Resolution - Beispiel 1 (kiirzer)

Das Beispiel von eben kiirzer:
Sei K1 = {P(f(x)), ~Q(2), P(2)} und K» = {=~P(x), R(g(x),a)}
Wir wahlen P(f(x)), P(z) € Ki und =P(x) € K> zur Resolution

aus. Damit:

{P(f(x)), ~Q(2), P(2)} {=P(x), R(g(x), a)}

l sl,;uazélx//u],subz[z/f(xmu/f(x)l

{=Q(f(x)), R(g(f(x)), a)}
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Resolution - Beispiel 1 (noch kiirzer)

Das Beispiel von eben noch kompakter:

Sei K1 = {P(f(x)), =Q(2), P(2)} und Ky = {=P(x), R(g(x),a)}
Wir wahlen P(f(x)), P(z) € Ki und =P(x) € K> zur Resolution
aus. Damit:
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Resolution - Beispiel 1 (noch kiirzer)

Das Beispiel von eben noch kompakter:
Sei K1 = {P(f(x)), ~Q(2), P(2)} und K» = {=~P(x), R(g(x),a)}
Wir wahlen P(f(x)), P(z) € Ki und =P(x) € K> zur Resolution

aus. Damit:

{P(f(x)), ~Q(2), P(2)} {=P(x), R(g(x), a)}

z/f/x
[z/f/ )]l Sl

{=Q(f(x)), R(g(f(x)), a)}
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Resolution - Beispiel 2

Beispiel
Sei Ky = {P(f(x)), ~Q(2), P(2)} und Kz — {~P(x), R(g(x),a)}
Wir wahlen P(z) € Ki und =P(x) € K3 zur Resolution aus. Damit:
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Resolution - Beispiel 2

Beispiel
Sei Ky = {P(f(x)), ~Q(2), P(2)} und Kz — {~P(x), R(g(x),a)}
Wir wahlen P(z) € Ki und =P(x) € K3 zur Resolution aus. Damit:

{P(f(x)); ~Q(2), P(2)} {=P(x), R(g(x), a)}

s1=|] sa=[x/u]
{P(f(x)),~Q(2), P(2)} {=P(v), R(g(v),a)}
sub=[u/z] sub:[u/z]l

{P(f(x)), ~Q(2), P(2)} {=P(2), R(g(2),a)}

\

{P(f(x)), ~Q(2), R(g(2),a)}
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Resolution - Beispiel 2 (kiirzer)

Oder in kompakter Schreibweise:
Sei K1 = {P(f(x)),~Q(2), P(z)} und Kz = {=P(x), R(g(x), a)}
Wir wahlen P(z) € Ki und =P(x) € K> zur Resolution aus. Damit:
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Resolution - Beispiel 2 (kiirzer)

Oder in kompakter Schreibweise:
Sei K1 = {P(f(x)),~Q(2), P(z)} und Kz = {=P(x), R(g(x), a)}
Wir wahlen P(z) € Ki und =P(x) € K> zur Resolution aus. Damit:

{P(f(x)),~Q(2), P(2)} {=P(x), R(g(x), a)}

= e

{P(f(x)), ~Q(2), R(g(2),a)}
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Resolutionssatz

Satz (Resolutionssatz der Pradikatenlogik)

Sei F eine Aussage in Skolemform mit der Matrix F* in KNF.
Dann gilt: F ist genau dann unerfiillbar, wenn O € Res*(F*).

Beweis.

Es ist wieder die Korrektheit und die Vollstandigkeit des Verfahrens
zu zeigen. Im Beweis wird auf die Grundresolution zuriickgegriffen.
Dafiir wird das folgende Lifting-Lemma bendtigt. O]

Satz (Lifting-Lemma)

Seien K1, Ky zwei pradikatenlogische Klauseln, K1, Kj
Grundinstanzen von ihnen mit Resolvente R'. Dann gibt es eine
pradikatenlogische Resolvente R von K1 und Ky, so dass R’
Grundinstanz von R ist.
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Zusammenfassung

Wir haben heute:

@ Formeln gesehen, die unendlich groBe Modell bendtigen
@ die Unentscheidbarkeit der Pradikatenlogik gesehen

@ mit Herbrand-Universum, -Struktur und -Modell gesehen, wie
Syntax und Semantik “gleich” gemacht werden und damit gesehen,
dass immerhin abzdhlbare Strukturen geniigen.

@ mit der Herbrand-Expansion und den Sitzen von
Godel-Herbrand-Skolem und Herbrand den Ubergang zum
Algorithmus von Gilmore bzw. zum Grundresolutionsalgorithmus
geschafft (und damit zuriick zur Aussagenlogik)

@ die Pradikatenlogische Resolution eingefiihrt, wozu noch der
Unifikationsalgorithmus bendtig wurde.
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Sei F eine geschlossene Formel in Skolemform. F ist genau dann
erfiillbar, wenn F ein Herbrand-Modell besitzt.

Fiir jede geschlossene Formel in Skolemform F gilt: F ist genau
dann erfiillbar, wenn die Formelmenge E(F) im aussagenlogischen
Sinne erfiillbar ist.
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Ausblick (2/2)

Satz (Unifikationssatz)

Jede unifizierbare Menge von Literalen besitzt auch einen
allgemeinsten Unifikator.

Satz (Lifting-Lemma)

Seien K1, Ky zwei pradikatenlogische Klauseln, K1, K}
Grundinstanzen von ihnen mit Resolvente R'. Dann gibt es eine
pradikatenlogische Resolvente R von K1 und Ky, so dass R’
Grundinstanz von R ist.

Satz (Resolutionssatz der Pradikatenlogik)

Sei F eine Aussage in Skolemform mit der Matrix F* in KNF.
Dann gilt: F ist genau dann unerfiillbar, wenn O € Res*(F*).
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Hausaufgabe

Zur Ubung

© Die heutige Vorlesung in der Vogelperspektive noch einmal
nachvollziehen. Was geschieht wo? Was wird wo benétigt?

@ Versucht die obigen fiinf Satze zu beweisen. Bei Bedarf schaut
in die Literatur (siehe unten).

Literatur

Die heutige Vorlesung orientiert sich stark an den Kapiteln 2.4 und
2.5 aus dem Buch Logik fiir Informatiker von Uwe Schoning.
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