
Sortieren
Schnelleres Sortieren

Algorithmen und Datenstrukturen
Kapitel 5

Sortieren - (k?)eine untere Schranke

Frank Heitmann
heitmann@informatik.uni-hamburg.de

11. November 2015

Frank Heitmann heitmann@informatik.uni-hamburg.de 1/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

Sortieren - Die Problemstellung

Definition (Das Sortierproblem)

Eingabe: Eine Sequenz < a1, a2, . . . , an > von n Zahlen.
Gesucht: Eine Permutation < a′1, a′2, . . . , a′n > der Eingabesequenz
mit a′1 ≤ a′2 ≤ . . . ≤ a′n.

Frank Heitmann heitmann@informatik.uni-hamburg.de 2/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

Min/MaxSort (SelectionSort)

Algorithmus 1 MaxSort(A[1 . . . n])

1: for i = n downto 2 do
2: idx = max(A[1..i ])
3: swap(A[i ],A[idx ])
4: end for

Algorithmus 2 max(A[1 . . . n])

1: idxMax = 1
2: for i = 2 to n do
3: if A[i ] > A[idxMax ] then
4: idxMax = i
5: end if
6: end for
7: return idxMax ;

Frank Heitmann heitmann@informatik.uni-hamburg.de 3/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

InsertionSort: Der Algorithmus

Algorithmus 3 InsertionSort(A[1 . . . n])

1: for j = 2 to n do
2: key = A[j ]
3: i = j − 1
4: while i > 0 und A[i ] > key do
5: A[i + 1] = A[i ]
6: i = i − 1
7: end while
8: A[i + 1] = key
9: end for

Frank Heitmann heitmann@informatik.uni-hamburg.de 4/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

BubbleSort

Algorithmus 4 BubbleSort(A[1 . . . n])

1: do
2: bSwap = false
3: for i = 1 to n − 1 do
4: if A[i ] > A[i + 1] then
5: swap(A[i ],A[i + 1])
6: bSwap = true
7: end if
8: end for
9: n = n − 1

10: while bSwap && n > 1

Frank Heitmann heitmann@informatik.uni-hamburg.de 5/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

Divide & Conquer (Wiederholung)

Die drei Schritte des Divide & Conquer (Teile-und-Beherrsche)
Paradigmas

1 Teile das Problem in n Teilprobleme auf

2 Beherrsche die Teilprobleme durch rekursives Lösen
(d.h. teile sie weiter; sind die Teilprobleme hinreichend klein,
löse sie direkt)

3 Verbinde die Lösungen der Teilprobleme zur Lösung des
übergeordneten Problems und letztendlich des ursprünglichen
Problems.

Die Schritte finden auf jeder Rekursionsebene statt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 6/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

Mergesort - Idee

Teile die Eingabe in zwei Teile gleicher (ca.) Größe.

Löse die zwei Teilprobleme unabhängig und rekursiv.

Kombiniere die zwei Ergebnisse in eine Gesamtlösung, wobei
wir nur lineare viel Zeit für die anfängliche Teilung und die
abschließende Zusammenführung nutzen wollen.

Frank Heitmann heitmann@informatik.uni-hamburg.de 7/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

Mergesort - Algorithmus

Algorithmus 5 mergesort(A,l,r)

1: if l < r then
2: q = (l + r)/2
3: mergesort(A, l , q)
4: mergesort(A, q + 1, r)
5: merge(A, l , q, r)
6: end if

Frank Heitmann heitmann@informatik.uni-hamburg.de 8/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

Mergen

Gegeben zwei sortierte Listen A und B.

curA und curB seien Zeiger auf Elemente in A bzw. B. Am
Anfang zeigen sie auf das erste Element der jeweiligen Liste.

Solange beide Listen nicht leer sind:

Seien ai und bj die Elemente auf die curA und curB zeigen.
Füge das kleinere Element der Ausgabeliste hinzu.
Erhöhe den Zeiger der Liste dessen Element gewählt wurde.

Ist eine Liste leer, füge die andere an die Ausgabeliste an.

Frank Heitmann heitmann@informatik.uni-hamburg.de 9/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

QuickSort - Die Idee

Teile: Das Feld A[p..r ] wird in zwei Teilfelder A[p..q − 1] und
A[q + 1..r ] zerlegt, wobei alle Elemente im ersten Teilfeld
kleiner oder gleich A[q] sind und alle Elemente im zweiten
Teilfeld größer oder gleich A[q] sind. Der Index q wird in der
Zerlegungsprozedur berechnet.

Beherrsche: Sortiere die beiden Teilfelder durch rekursive
Aufrufe.

Verbinde: Da die Teilfelder (rekursiv) in-place sortiert werden,
brauchen sie nicht weiter verbunden werden. Das Feld A[p..r ]
ist nun sortiert.

Frank Heitmann heitmann@informatik.uni-hamburg.de 10/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

QuickSort - Psuedocode (1/2)

Algorithmus 6 QuickSort(A, p, r)

1: if p < r then
2: q = Partition(A, p, r)
3: QuickSort(A, p, q − 1)
4: QuickSort(A, q + 1, r)
5: end if

Um ein Array A zu sortieren rufen wir

QuickSort(A, 1, länge[A])

auf.

Frank Heitmann heitmann@informatik.uni-hamburg.de 11/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

QuickSort - Pseudocode (2/2)

Algorithmus 7 Partition(A, p, r)

1: x = A[r ] // dies ist das Pivotelement
2: i = p − 1
3: for j = p to r − 1 do
4: if A[j ] ≤ x then
5: i = i + 1
6: swap(A[i ],A[j ])
7: end if
8: end for
9: swap(A[i + 1],A[r ])

10: return i + 1

Frank Heitmann heitmann@informatik.uni-hamburg.de 12/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

HeapSort - Die Idee

1 Gegeben ein Array, stelle zunächst einen Heap her
(BuildMaxHeap).

2 Vertausche die Wurzel (maximales Element!) mit dem
Element ganz rechts unten (das Element steht im Array ganz
rechts! (Von den noch nicht behandelten Elementen)).

3 Verringere die Heap-Größe um 1 und führe MaxHeapify auf
die Wurzel aus (die und nur die verletzt jetzt möglicherweise
die Heap-Eigenschaft).

4 Fahre bei 2. fort.

Frank Heitmann heitmann@informatik.uni-hamburg.de 13/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

HeapSort - Pseudocode

Algorithmus 8 HeapSort(A)

1: BuildMaxHeap(A)
2: for i = länge[A] downto 2 do
3: swap(A[1],A[i ])
4: heap-größe[A] = heap-größe[A]− 1
5: MaxHeapify(A, 1)
6: end for

Anmerkung

Ist das Array gar nicht vollständig gefüllt, sollte in der for-Schleife
nicht länge[A] genutzt werden, sondern heap-größe[A] (die
weiteren Plätze im Array werden ja gar nicht genutzt!).

Frank Heitmann heitmann@informatik.uni-hamburg.de 14/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

BuildMaxHeap - Die Idee und Pseudocode

1 Suche im Baum von unten nach oben und von rechts nach
links (im Array also von rechts nach links) den ersten Knoten,
der als Wurzel eines Teilbaumes betrachtet, kein Heap mehr
ist.

2 Stelle die Heap-Eigenschaft her (mit einem Aufruf von
MaxHeapify).

3 Fahre bei 1. fort.

Algorithmus 9 BuildMaxHeap(A, i)

1: heap-größe[A] = länge[A]
2: for i = blänge[A]/2c downto 1 do
3: MaxHeapify(A, i)
4: end for

Frank Heitmann heitmann@informatik.uni-hamburg.de 15/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

MaxHeapify - Die Idee

Vergleiche A[i ] mit A[Left(i)] und A[Right(i)].

Ist A[i ] am größten, so sind wir fertig.

Sonst sei max der Index des größeren Elementes, tausche A[i ]
und A[max ] (d.h. tausche A[i ] mit dem größeren Kind).

Fahre nun mit A[max ] (hat den Wert von A[i ]!) so wie eben
mit A[i ] fort.

Anmerkung

Der Wert von A[i ] wandert im Baum nach unten. Bei allen
Tauschoperationen ist dieser Wert beteiligt. Es finden sonst keine
Tauschoperationen statt!

Frank Heitmann heitmann@informatik.uni-hamburg.de 16/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

MaxHeapify - Pseudocode

Algorithmus 10 MaxHeapify(A, i)

1: l = Left(i)
2: r = Right(i)
3: if l ≤ heap-größe[A] und A[l ] > A[i ] then
4: max = l
5: else
6: max = i
7: end if
8: if r ≤ heap-größe[A] und A[r ] > A[max ] then
9: max = r

10: end if
11: if max 6= i then
12: swap(A[i ],A[max ])
13: MaxHeapify(A,max)
14: end if

Frank Heitmann heitmann@informatik.uni-hamburg.de 17/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

Wie schnell geht es?

Wir kennen jetzt Verfahren,

die in O(n2) sortieren (Min/MaxSort (SelectionSort),
InsertionSort, BubbleSort, Quicksort) und welche,

die sogar in O(n · log n) sortieren (MergeSort, HeapSort).

Geht es noch schneller?

Nein! Zumindest nicht bei vergleichenden Sortierverfahren...

Frank Heitmann heitmann@informatik.uni-hamburg.de 18/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

Vergleichendes Sortieren

Alle bisherigen Sortierverfahren basieren auf Vergleichen zwischen
den Eingabeelementen. Diese Sortierverfahren werden daher als
vergleichende Sortierverfahren bezeichnet.

Wir zeigen nun für solche Sortierverfahren eine untere Schranke
von mindestens Ω(n · log n) nötigen Vergleichsoperationen im
schlechtesten Fall.

Wichtige Anmerkung

Damit sind MergeSort und HeapSort asymptotisch (!) optimal!

Frank Heitmann heitmann@informatik.uni-hamburg.de 19/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

Vergleichende Sortierverfahren

Bei vergleichenden Sortierverfahren sind folgende Tests möglich

ai < aj

ai ≤ aj

ai = aj

ai ≥ aj

ai > aj

Nur Aufgrund der Ergebnisse dieser Tests wird die Reihenfolge
bestimmt (insb. wurde z.B. nie mit den Werten der Elemente
selbst gearbeitet).

Anmerkung

Man überlege sich nochmal, dass dies bei allen bisherigen
Sortierverfahren tatsächlich der Fall ist!

Frank Heitmann heitmann@informatik.uni-hamburg.de 20/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

Vergleichende Sortierverfahren

Wir gehen nachfolgend davon aus, dass die Elemente alle paarweise
verschieden sind. Wir brauchen dann nur eine Vergleichsoperation
ai ≤ aj .

Wir können dann vergleichende Sortierverfahren abstrakt als
Entscheidungsbäume betrachten...

Frank Heitmann heitmann@informatik.uni-hamburg.de 21/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

Entscheidungsbäume - Beispiel

1,2,3

1:2

2:3 1:3

1:3

1,3,2 3,1,2

2:32,1,3

2,3,1 3,2,1

<= >

<= >

><=

>

>

<=

<=

Ein Entscheidungsbaum für InsertionSort (Array.length = 3)

Frank Heitmann heitmann@informatik.uni-hamburg.de 22/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

Entscheidungsbäume - Definition (1/2)

Definition

Ein Entscheidungsbaum ist ein binärer Baum, der die Vergleiche
zwischen den Elementen darstellt, die von einem speziellen
Sortieralgorithmus auf einem Array einer bestimmten Größe
durchgeführt werden. Andere Aspekte des Algorithmus werden
vernachlässigt.

1,2,3

1:2

2:3 1:3

1:3

1,3,2 3,1,2

2:32,1,3

2,3,1 3,2,1

<= >

<= >

><=

>

>

<=

<=

Frank Heitmann heitmann@informatik.uni-hamburg.de 23/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

Entscheidungsbäume - Definition (2/2)

Definition

Ein Knoten i : j stellt einen Vergleich zwischen ai und aj da.
Abhängig vom Ergebnis, wird dann im linken oder rechten
Teilbaum weitergearbeitet.

Ein Weg von der Wurzel zu einem Blatt ist eine Ausführung
des Sortieralgorithmus auf einem Array der Länge n.

Ein Blatt ist mit einer Permutation x , y , z gekennzeichnet,
was bedeutet, dass der Algorithmus das Ergebnis
ax ≤ ay ≤ az liefert.

Frank Heitmann heitmann@informatik.uni-hamburg.de 24/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

Entscheidungsbäume - Beispiel 1

1,2,3

1:2

2:3 1:3

1:3

1,3,2 3,1,2

2:32,1,3

2,3,1 3,2,1

<= >

<= >

><=

>

>

<=

<=

Ein Entscheidungsbaum für InsertionSort (Array.length = 3)

Frank Heitmann heitmann@informatik.uni-hamburg.de 25/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

Entscheidungsbäume - Beispiel 2

1,2,3

1:2

2:3 1:3

1:3

1,3,2 3,1,2

2:32,1,3

2,3,1 3,2,1

<= >

<= >

><=

>

>

<=

<=

Ein Entscheidungsbaum für InsertionSort a1 = 7, a2 = 9, a3 = 4

Frank Heitmann heitmann@informatik.uni-hamburg.de 26/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

Entscheidungsbäume - Eigenschaften

Satz

Eine wichtige Erkenntnis: Jeder korrekte Sortieralgorithmus muss
in der Lage sein, jede Permutation seiner Eingabe zu erzeugen.
(Dies ist beweisbar!)
Daher ist eine notwendige Bedingung für die Korrektheit eines
vergleichenden Sortierverfahrens, dass der zugehörige
Entscheidungsbaum mindestens n! von der Wurzel aus erreichbare
Blätter haben muss. (Eingabe hat die Länge n.)

Frank Heitmann heitmann@informatik.uni-hamburg.de 27/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

Die untere Schranke - Die Idee

Da ein Entscheidungsbaum die Vergleiche eines bestimmten
Verfahrens repräsentiert, sind im schlechtesten Fall soviele
Vergleiche nötig, wie Vergleiche auf dem Längsten Pfad im
Entscheidungsbaum von Wurzel bis zu einem Blatt stattfinden.

Die Anzahl der Vergleichsoperationen im schlechtesten Fall
entspricht also der Höhe des Entscheidungsbaumes ... und dieser
muss mindestens n! Blätter haben!

Frank Heitmann heitmann@informatik.uni-hamburg.de 28/47



Sortieren
Schnelleres Sortieren

Bisherige Verfahren
Grenzen der Laufzeitoptimierung

Die untere Schranke - Der Beweis

Sei h die Höhe des Baumes, l die Anzahl der erreichbaren Blätter
und n die Länge des Arrays, dann gilt

n! ≤ l ≤ 2h

Bilden des Logarithmus führt zu

log n! ≤ h

was wegen log n! ∈ Θ(n log n) zum gesuchten Ergebnis führt.

Satz

Jeder vergleichende Sortieralgorithmus muss im schlechtesten Fall
mindestens Ω(n log n) Operationen ausführen.

Satz

HeapSort und MergeSort sind asymptotisch optimal.

Frank Heitmann heitmann@informatik.uni-hamburg.de 29/47



Sortieren
Schnelleres Sortieren

CountingSort

CountingSort - Die Idee

Um die Grenze doch noch zu drücken, gehen wir von
vergleichenden Sortierverfahren weg und nutzen Eigenschaften der
Elemente. (Die Sortierverfahren sind jetzt aber weniger allgemein!)

CountingSort. Sei k ∈ N, wir gehen nun davon aus, dass für jedes
Element ai der Eingabe 0 ≤ ai ≤ k gilt.

Bestimme für jedes ai die Anzahl m der Elemente, die kleiner
als ai sind.

Es ist dann B[m + 1] = ai (im Ausgabearray).

Frank Heitmann heitmann@informatik.uni-hamburg.de 30/47



Sortieren
Schnelleres Sortieren

CountingSort

CountingSort - Pseudocode

Algorithmus 11 CountingSort(A,B, k)

1: for i = 0 to k do
2: C [i ] = 0
3: end for
4: for j = 1 to länge[A] do
5: C [A[j ]] = C [A[j ]] + 1
6: end for
7: for i = 1 to k do
8: C [i ] = C [i ] + C [i − 1]
9: end for

10: for j = länge[A] downto 1 do
11: B[C [A[j ]]] = A[j ]
12: C [A[j ]] = C [A[j ]]− 1
13: end for

Frank Heitmann heitmann@informatik.uni-hamburg.de 31/47



Sortieren
Schnelleres Sortieren

CountingSort

CountingSort - Beispiel

Algorithmus 12 CountingSort(A,B, k) - Teilstück

1: for j = 1 to länge[A] do
2: C [A[j ]] = C [A[j ]] + 1
3: end for

3 5 2 3 2 3 0 0
1 2 3 4 5 6 7 8

2 0 2 3 0
0 1 2 3 4

1
5

A

C

Anmerkung

In C [k] ist nun die Anzahl der Elemente (aus A), die gleich k sind,
gespeichert. C [0] = 2 bedeutet, dass es in A zweimal die 0 gibt.

Frank Heitmann heitmann@informatik.uni-hamburg.de 32/47



Sortieren
Schnelleres Sortieren

CountingSort

CountingSort - Beispiel

Algorithmus 13 CountingSort(A,B, k) - Teilstück

1: for i = 1 to k do
2: C [i ] = C [i ] + C [i − 1]
3: end for

3 5 2 3 2 3 0 0
1 2 3 4 5 6 7 8

2 2 4 7 7
0 1 2 3 4

8
5

A

C

Anmerkung

In C [k] ist nun die Anzahl der Elemente (aus A), die kleiner-gleich
k sind, gespeichert. C [2] = 4 bedeutet, dass es in A vier Element
gibt, die kleiner-gleich 2 sind.

Frank Heitmann heitmann@informatik.uni-hamburg.de 33/47



Sortieren
Schnelleres Sortieren

CountingSort

CountingSort - Beispiel

Algorithmus 14 CountingSort(A,B, k) - Teilstück

1: for j = länge[A] downto 1 do
2: B[C [A[j ]]] = A[j ]
3: C [A[j ]] = C [A[j ]]− 1
4: end for

3 5 2 3 2 3 0 0
1 2 3 4 5 6 7 8

1 2 4 7 7
0 1 2 3 4

8
5

A

C

0B

Frank Heitmann heitmann@informatik.uni-hamburg.de 34/47



Sortieren
Schnelleres Sortieren

CountingSort

CountingSort - Beispiel

Algorithmus 15 CountingSort(A,B, k) - Teilstück

1: for j = länge[A] downto 1 do
2: B[C [A[j ]]] = A[j ]
3: C [A[j ]] = C [A[j ]]− 1
4: end for

3 5 2 3 2 3 0 0
1 2 3 4 5 6 7 8

0 2 4 7 7
0 1 2 3 4

8
5

A

C

0 0B

Frank Heitmann heitmann@informatik.uni-hamburg.de 35/47



Sortieren
Schnelleres Sortieren

CountingSort

CountingSort - Beispiel

Algorithmus 16 CountingSort(A,B, k) - Teilstück

1: for j = länge[A] downto 1 do
2: B[C [A[j ]]] = A[j ]
3: C [A[j ]] = C [A[j ]]− 1
4: end for

3 5 2 3 2 3 0 0
1 2 3 4 5 6 7 8

0 2 4 6 7
0 1 2 3 4

8
5

A

C

0 0 3B

Frank Heitmann heitmann@informatik.uni-hamburg.de 36/47



Sortieren
Schnelleres Sortieren

CountingSort

CountingSort - Beispiel

Algorithmus 17 CountingSort(A,B, k) - Teilstück

1: for j = länge[A] downto 1 do
2: B[C [A[j ]]] = A[j ]
3: C [A[j ]] = C [A[j ]]− 1
4: end for

3 5 2 3 2 3 0 0
1 2 3 4 5 6 7 8

0 2 3 6 7
0 1 2 3 4

8
5

A

C

0 0 2 3B

Frank Heitmann heitmann@informatik.uni-hamburg.de 37/47



Sortieren
Schnelleres Sortieren

CountingSort

CountingSort - Beispiel

Algorithmus 18 CountingSort(A,B, k) - Teilstück

1: for j = länge[A] downto 1 do
2: B[C [A[j ]]] = A[j ]
3: C [A[j ]] = C [A[j ]]− 1
4: end for

3 5 2 3 2 3 0 0
1 2 3 4 5 6 7 8

0 2 3 5 7
0 1 2 3 4

8
5

A

C

0 0 2 3 3B

Frank Heitmann heitmann@informatik.uni-hamburg.de 38/47



Sortieren
Schnelleres Sortieren

CountingSort

CountingSort - Beispiel

Algorithmus 19 CountingSort(A,B, k) - Teilstück

1: for j = länge[A] downto 1 do
2: B[C [A[j ]]] = A[j ]
3: C [A[j ]] = C [A[j ]]− 1
4: end for

3 5 2 3 2 3 0 0
1 2 3 4 5 6 7 8

0 2 2 5 7
0 1 2 3 4

8
5

A

C

0 0 2 2 3 3B

Frank Heitmann heitmann@informatik.uni-hamburg.de 39/47



Sortieren
Schnelleres Sortieren

CountingSort

CountingSort - Beispiel

Algorithmus 20 CountingSort(A,B, k) - Teilstück

1: for j = länge[A] downto 1 do
2: B[C [A[j ]]] = A[j ]
3: C [A[j ]] = C [A[j ]]− 1
4: end for

3 5 2 3 2 3 0 0
1 2 3 4 5 6 7 8

0 2 2 5 7
0 1 2 3 4

7
5

A

C

0 0 2 2 3 3 5B

Frank Heitmann heitmann@informatik.uni-hamburg.de 40/47



Sortieren
Schnelleres Sortieren

CountingSort

CountingSort - Beispiel

Algorithmus 21 CountingSort(A,B, k) - Teilstück

1: for j = länge[A] downto 1 do
2: B[C [A[j ]]] = A[j ]
3: C [A[j ]] = C [A[j ]]− 1
4: end for

3 5 2 3 2 3 0 0
1 2 3 4 5 6 7 8

0 2 2 4 7
0 1 2 3 4

7
5

A

C

0 0 2 2 3 3 3 5B

Frank Heitmann heitmann@informatik.uni-hamburg.de 41/47



Sortieren
Schnelleres Sortieren

CountingSort

CountingSort - Beispiel

Algorithmus 22 CountingSort(A,B, k) - Teilstück

1: for j = länge[A] downto 1 do
2: B[C [A[j ]]] = A[j ]
3: C [A[j ]] = C [A[j ]]− 1
4: end for

3 5 2 3 2 3 0 0
1 2 3 4 5 6 7 8

0 2 2 4 7
0 1 2 3 4

7
5

A

C

0 0 2 2 3 3 3 5B

Frank Heitmann heitmann@informatik.uni-hamburg.de 42/47



Sortieren
Schnelleres Sortieren

CountingSort

CountingSort - Analyse

Algorithmus 23 CountingSort(A,B, k)

1: for i = 0 to k do
2: C [i ] = 0
3: end for
4: for j = 1 to länge[A] do
5: C [A[j ]] = C [A[j ]] + 1
6: end for
7: for i = 1 to k do
8: C [i ] = C [i ] + C [i − 1]
9: end for

10: for j = länge[A] downto 1 do
11: B[C [A[j ]]] = A[j ]
12: C [A[j ]] = C [A[j ]]− 1
13: end for

Frank Heitmann heitmann@informatik.uni-hamburg.de 43/47



Sortieren
Schnelleres Sortieren

CountingSort

CountingSort - Analyse

Wir haben vier for-Schleifen. Zwei in Θ(k), zwei in Θ(n), damit
folgt:

Satz

CountingSort ist ein stabiles Sortierverfahren, das Eingaben der
Länge n, wobei jedes Element zwischen 0 und k liegt, in O(n + k)
sortiert. In der Praxis nutzt man CoutingSort meist, wenn k ∈ O(n)
gilt, so dass CoutingSort dann eine Laufzeit von Θ(n) hat.

Anmerkung

Die Korrektheit kann wieder mit Schleifeninvarianten gezeigt
werden. Zur Übung und bei Bedarf im [Cormen] nachlesen.

Frank Heitmann heitmann@informatik.uni-hamburg.de 44/47



Sortieren
Schnelleres Sortieren

CountingSort

CountingSort - Anmerkung

Anmerkung

CountingSort ist kein vergleichendes Sortierverfahren. Tatsächlich
findet man nirgendwo im Code Vergleiche zwischen zwei
Elementen. CountingSort verwendet die Werte der Elemente als
Index in ein Feld. Die untere Schranke für vergleichendes Sortieren
gilt hier also nicht - und tatsächlich durchbricht CountingSort sie
ja (wenn k ∈ O(n) gilt).

Frank Heitmann heitmann@informatik.uni-hamburg.de 45/47



Sortieren
Schnelleres Sortieren

CountingSort

Weitere Verfahren

Es gibt weitere nicht-vergleichende Sortierverfahren, die - bei
bestimmten Eingaben - die Grenze von Ω(n · log n) durchbrechen.

RadixSort geht von d-stelligen Zahlen aus, wobei jede Stelle k
mögliche Werte hat. Die Zahlen werden dann Stelle für Stelle
beginnend bei der niederwertigsten durch ein stabiles (!)
Sortierverfahren (z.B. CountingSort) sortiert. Die Laufzeit ist
in Θ(d · (n + k)).

BucketSort geht von einer gleichverteilten Eingabe auf dem
Interval [0, 1) aus, teilt dieses Interval in n gleichgroße
Buckets und verteilt die n Eingabewerte auf die Buckets. (Es
sollten dann wenige Eingabewerte im gleichen Bucket liegen.
Die Buckets werden dann sortiert und aneinandergefügt.)

Frank Heitmann heitmann@informatik.uni-hamburg.de 46/47



Sortieren
Schnelleres Sortieren

CountingSort

Zusammenfassung und Ausblick

Vergleichendes Sortieren

InsertionSort, Min/MaxSort (SelectionSort), BubbleSort
QuickSort
MergeSort, HeapSort
Untere Schranke für das vergleichende Sortieren: Ω(n · log n)

Nicht-vergleichendes Sortieren

CountingSort, (RadixSort, BucketSort)

Untere Schranken für andere Verfahren?

Frank Heitmann heitmann@informatik.uni-hamburg.de 47/47


	Sortieren
	Bisherige Verfahren
	Grenzen der Laufzeitoptimierung

	Schnelleres Sortieren
	CountingSort


