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Eingabe: Eine Sequenz < a1, ap,...,a, > von n Zahlen.
Gesucht: Eine Permutation < a}, a}, ..., a}, > der Eingabesequenz
mit a) <a) <...<a),.




Sortieren Bisherige Verfahren
Schnelleres Sortieren Grenzen der Laufzeitoptimierung

Min/MaxSort (SelectionSort)

Algorithmus 1 MaxSort(A[1...n])
1: for i = n downto 2 do

2:  idx = max(A[l..i])
3. swap(A[], Alidx])
4. end for

Algorithmus 2 max(A[l...n])
1. idxMax =1
2: for i =2 to ndo
3 if A[i] > AlidxMax]| then
4 idxMax = i
5.  endif
6
7

. end for
. return idxMax;
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InsertionSort: Der Algorithmus

Algorithmus 3 InsertionSort(A[l... n])
1: for j =2 to ndo
key = A[Jj]
i=j—1
while / > 0 und A[i] > key do
Ali + 1] = A[i]
i=i—1
end while
Ali + 1] = key
end for

@ e Na s N
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BubbleSort

Algorithmus 4 BubbleSort(A[l... n])

1: do

2:  bSwap = false

33 fori=1ton—1do

4: if A[i] > A[i + 1] then
5: swap(A[/], Ali + 1])
6: bSwap = true

7: end if

8: end for

99 n=n-1

._\
e

while bSwap && n > 1
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Divide & Conquer (Wiederholung)

Die drei Schritte des Divide & Conquer (Teile-und-Beherrsche)
Paradigmas

@ Teile das Problem in n Teilprobleme auf

@ Beherrsche die Teilprobleme durch rekursives Losen
(d.h. teile sie weiter; sind die Teilprobleme hinreichend klein,
|6se sie direkt)

© Verbinde die Losungen der Teilprobleme zur Losung des
ibergeordneten Problems und letztendlich des urspriinglichen
Problems.

Die Schritte finden auf jeder Rekursionsebene statt.
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Mergesort - Idee

o Teile die Eingabe in zwei Teile gleicher (ca.) GroBe.
@ Lose die zwei Teilprobleme unabhangig und rekursiv.

e Kombiniere die zwei Ergebnisse in eine Gesamtlésung, wobei
wir nur lineare viel Zeit fiir die anfingliche Teilung und die
abschlieBende Zusammenfiihrung nutzen wollen.
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Algorithmus 5 mergesort(A,l,r)
1: if / < r then
g=(I+r)/2
3:  mergesort(A,l,q)
4 mergesort(A,q+1,r)
5. merge(A,l,q,r)
6: end if
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Mergen

Gegeben zwei sortierte Listen A und B.

cura und curg seien Zeiger auf Elemente in A bzw. B. Am
Anfang zeigen sie auf das erste Element der jeweiligen Liste.

Solange beide Listen nicht leer sind:
o Seien a; und b; die Elemente auf die cura und curg zeigen.
e Fiige das kleinere Element der Ausgabeliste hinzu.
o Erhohe den Zeiger der Liste dessen Element gewahlt wurde.

Ist eine Liste leer, fiige die andere an die Ausgabeliste an.
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QuickSort - Die Idee

@ Teile: Das Feld A[p..r] wird in zwei Teilfelder A[p..q — 1] und
Alg + 1..r] zerlegt, wobei alle Elemente im ersten Teilfeld
kleiner oder gleich A[q] sind und alle Elemente im zweiten
Teilfeld groBer oder gleich A[g] sind. Der Index g wird in der
Zerlegungsprozedur berechnet.

@ Beherrsche: Sortiere die beiden Teilfelder durch rekursive
Aufrufe.

e Verbinde: Da die Teilfelder (rekursiv) in-place sortiert werden,
brauchen sie nicht weiter verbunden werden. Das Feld A|p..r]
ist nun sortiert.
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QuickSort - Psuedocode (1/2)

Algorithmus 6 QuickSort(A, p,r)
1: if p < r then
2: g =Partition(A,p,r)
3:  QuickSort(A,p,q—1)
4:  QuickSort(A,q+1,r)
5. end if

Um ein Array A zu sortieren rufen wir
QuickSort(A, 1, lange[A])
auf.
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QuickSort - Pseudocode (2/2)

Algorithmus 7 Partition(A, p, r)

1:

PJ
e

Qo NSOk ®eDN

x =A[r] // dies ist das Pivotelement
i=p—1
for j=ptor—1do
if Aj] < x then
i=i+1
swap(A[i], Alj])
end if
end for
swap(A[i + 1], A[r])
return j+1

Frank Heitmann heitmann@informatik.uni-hamburg.de

12/47



Sortieren Bisherige Verfahren
Schnelleres Sortieren Grenzen der Laufzeitoptimierung

HeapSort - Die Idee

@ Gegeben ein Array, stelle zunachst einen Heap her
(BuildMaxHeap).

@ Vertausche die Wurzel (maximales Element!) mit dem
Element ganz rechts unten (das Element steht im Array ganz
rechts! (Von den noch nicht behandelten Elementen)).

© Verringere die Heap-GroBe um 1 und fiihre MaxHeapify auf
die Wurzel aus (die und nur die verletzt jetzt moglicherweise
die Heap-Eigenschaft).

© Fahre bei 2. fort.
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HeapSort - Pseudocode

Algorithmus 8 HeapSort(A)
1. BuildMaxHeap(A)
: for i = lange[A] downto 2 do
swap(A[1], A[1])
heap-groBe[A] = heap-groBe[A] — 1
MaxHeapify(A,1)
end for

AL

Anmerkung

Ist das Array gar nicht vollstindig gefiillt, sollte in der for-Schleife
nicht lange[A] genutzt werden, sondern heap-groBe[A] (die
weiteren Platze im Array werden ja gar nicht genutzt!).
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BuildMaxHeap - Die ldee und Pseudocode

© Suche im Baum von unten nach oben und von rechts nach
links (im Array also von rechts nach links) den ersten Knoten,
der als Wurzel eines Teilbaumes betrachtet, kein Heap mehr
ist.

@ Stelle die Heap-Eigenschaft her (mit einem Aufruf von
MaxHeapify).

© Fahre bei 1. fort.

Algorithmus 9 BuildMaxHeap(A, /)

1. heap-groBe[A] = lange[A]

2: for i = |lange[A]/2] downto 1 do
3:  MaxHeapify(A,i)

4: end for
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MaxHeapify - Die Idee

e Vergleiche A[i] mit A[Left(i)] und A[Right(i)].
@ Ist A[i] am groBten, so sind wir fertig.

@ Sonst sei max der Index des groBeren Elementes, tausche A[i]
und A[max] (d.h. tausche A[i] mit dem groBeren Kind).

@ Fahre nun mit A[max] (hat den Wert von A[i]!) so wie eben
mit A[/] fort.

Anmerkung

Der Wert von A[i] wandert im Baum nach unten. Bei allen
Tauschoperationen ist dieser Wert beteiligt. Es finden sonst keine
Tauschoperationen statt!
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MaxHeapify - Pseudocode

Algorithmus 10 MaxHeapify(A, i)

1:

[ S S S
w Ny o

14:

© e NSO WD

1= Left(i)

r = Right(/)

if / < heap-groBe[A] und A[/] > A[i] then
max = |

else
max =i

end if

if r < heap-groBe[A] und A[r] > A[max] then
max =r

end if

. if max # i then

swap(A[i], A[max])
MaxHeapify(A, max)
end if
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Wie schnell geht es?

Wir kennen jetzt Verfahren,

e die in O(n?) sortieren (Min/MaxSort (SelectionSort),
InsertionSort, BubbleSort, Quicksort) und welche,

e die sogar in O(n - log n) sortieren (MergeSort, HeapSort).

Geht es noch schneller?

Nein! Zumindest nicht bei vergleichenden Sortierverfahren...
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Vergleichendes Sortieren

Alle bisherigen Sortierverfahren basieren auf Vergleichen zwischen
den Eingabeelementen. Diese Sortierverfahren werden daher als
vergleichende Sortierverfahren bezeichnet.

Wir zeigen nun fiir solche Sortierverfahren eine untere Schranke
von mindestens Q(n - log n) nétigen Vergleichsoperationen im
schlechtesten Fall.

Wichtige Anmerkung

Damit sind MergeSort und HeapSort asymptotisch (!) optimal!
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Vergleichende Sortierverfahren

Bei vergleichenden Sortierverfahren sind folgende Tests moglich

a; < aj
aj < aj
aj = aj

aj > aj

aj > aj

Nur Aufgrund der Ergebnisse dieser Tests wird die Reihenfolge
bestimmt (insb. wurde z.B. nie mit den Werten der Elemente
selbst gearbeitet).

Anmerkung

Man iiberlege sich nochmal, dass dies bei allen bisherigen
Sortierverfahren tatsachlich der Fall ist!
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Vergleichende Sortierverfahren

Wir gehen nachfolgend davon aus, dass die Elemente alle paarweise

verschieden sind. Wir brauchen dann nur eine Vergleichsoperation
a; < aj.

Wir kdnnen dann vergleichende Sortierverfahren abstrakt als
Entscheidungsbiume betrachten...
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Entscheidungsbaume - Beispiel

Ein Entscheidungsbaum fiir InsertionSort (Array.length = 3)
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Entscheidungsbaume - Definition (1/2)

Definition

Ein Entscheidungsbaum ist ein bindrer Baum, der die Vergleiche
zwischen den Elementen darstellt, die von einem speziellen
Sortieralgorithmus auf einem Array einer bestimmten GroBe
durchgefiihrt werden. Andere Aspekte des Algorithmus werden
vernachlassigt.
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Entscheidungsbaume - Definition (2/2)

Definition
@ Ein Knoten / : j stellt einen Vergleich zwischen a; und a; da.
Abhangig vom Ergebnis, wird dann im linken oder rechten
Teilbaum weitergearbeitet.

@ Ein Weg von der Wurzel zu einem Blatt ist eine Ausfiihrung
des Sortieralgorithmus auf einem Array der Lange n.

e Ein Blatt ist mit einer Permutation x, y, z gekennzeichnet,
was bedeutet, dass der Algorithmus das Ergebnis
ax < a, < a, liefert.
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Entscheidungsbaume - Beispiel 1

Ein Entscheidungsbaum fiir InsertionSort (Array.length = 3)
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Entscheidungsbaume - Beispiel 2

Ein Entscheidungsbaum fiir InsertionSort a1 =7,a, =9,a3 =4
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Entscheidungsbaume - Eigenschaften

Satz

Eine wichtige Erkenntnis: Jeder korrekte Sortieralgorithmus muss
in der Lage sein, jede Permutation seiner Eingabe zu erzeugen.
(Dies ist beweisbar!)

Daher ist eine notwendige Bedingung fiir die Korrektheit eines
vergleichenden Sortierverfahrens, dass der zugehérige
Entscheidungsbaum mindestens n! von der Wurzel aus erreichbare
Blatter haben muss. (Eingabe hat die Linge n.)
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Die untere Schranke - Die Idee

Da ein Entscheidungsbaum die Vergleiche eines bestimmten
Verfahrens reprasentiert, sind im schlechtesten Fall soviele
Vergleiche notig, wie Vergleiche auf dem Langsten Pfad im
Entscheidungsbaum von Wurzel bis zu einem Blatt stattfinden.

Die Anzahl der Vergleichsoperationen im schlechtesten Fall
entspricht also der Hohe des Entscheidungsbaumes ... und dieser
muss mindestens n! Blatter haben!

Frank Heitmann heitmann@informatik.uni-hamburg.de 28/47



Sortieren Bisherige Verfahren
Schnelleres Sortieren Grenzen der Laufzeitoptimierung

Die untere Schranke - Der Beweis

Sei h die Hohe des Baumes, / die Anzahl der erreichbaren Blatter
und n die Lange des Arrays, dann gilt

nl < <2h
Bilden des Logarithmus fiihrt zu

logn! < h

was wegen log n! € ©(nlog n) zum gesuchten Ergebnis fiihrt.

Jeder vergleichende Sortieralgorithmus muss im schlechtesten Fall
mindestens Q(nlog n) Operationen ausfiihren.

HeapSort und MergeSort sind asymptotisch optimal. \
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CountingSort - Die Idee

Um die Grenze doch noch zu driicken, gehen wir von
vergleichenden Sortierverfahren weg und nutzen Eigenschaften der
Elemente. (Die Sortierverfahren sind jetzt aber weniger allgemein!)

CountingSort. Sei k € N, wir gehen nun davon aus, dass fiir jedes

Element a; der Eingabe 0 < a; < k gilt.

@ Bestimme fiir jedes a; die Anzahl m der Elemente, die kleiner
als a; sind.

e Es ist dann B[m + 1] = a; (im Ausgabearray).
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CountingSort - Pseudocode

Algorithmus 11 CountingSort(A, B, k)
1. for i =0 to k do

2: C[i] =0

3: end for

4: for j =1 to lange[A] do
5. C[A[]] = C[A[]] + 1
6: end for

7. for i=1to k do

8 Clil=Cli]+ C[i —1]
9: end for

10: for j = lange[A] downto 1 do
1 B[CIAL]] = Al

122 C[A[]] = C[A[]] - 1
13: end for
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CountingSort - Beispiel

Algorithmus 12 CountingSort(A, B, k) - Teilstiick
1. for j =1 to lange[A] do
> CIAI) = CIAL]] + 1

3: end for
1 2 3 4 5 6 7 8
A [3]s]2]3]2[3]0]0]
01 2 3 4 5
¢ [2]o]2]3]o]1]
Anmerkung

In C[k] ist nun die Anzahl der Elemente (aus A), die gleich k sind,
gespeichert. C[0] = 2 bedeutet, dass es in A zweimal die 0 gibt.
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CountingSort - Beispiel

Algorithmus 13 CountingSort(A, B, k) - Teilstiick
1: for i=1to k do
22 Cli]=Cli]+ C[i —1]

3: end for
1 23456 78
A [3]5]2]3]2[3]0][0]
0123 45
c [2|2]4]7]7]8]
Anmerkung

In C[k] ist nun die Anzahl der Elemente (aus A), die kleiner-gleich
k sind, gespeichert. C[2] = 4 bedeutet, dass es in A vier Element
gibt, die kleiner-gleich 2 sind.
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CountingSort - Beispiel

Algorithmus 14 CountingSort(A, B, k) - Teilstiick

1. for j = lange[A] downto 1 do
> BICIAUT]] = Al

3 ClAN = ClAUl -1

4: end for

C |1]|2|4(7|7]|8

Frank Heitmann heitmann@informatik.uni-hamburg.de

34/47



Sortieren CountingSort
Schnelleres Sortieren

CountingSort - Beispiel

Algorithmus 15 CountingSort(A, B, k) - Teilstiick

1. for j = lange[A] downto 1 do
> BICIAUT]] = Al

3 ClAN = ClAUl -1

4: end for

C |0]|2|4(7|7]|8
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CountingSort - Beispiel

Algorithmus 16 CountingSort(A, B, k) - Teilstiick

1. for j = lange[A] downto 1 do
> BICIAUT]] = Al

3 ClAN = ClAUl -1

4: end for

C |0|2(4([6]|7]|8
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CountingSort - Beispiel

Algorithmus 17 CountingSort(A, B, k) - Teilstiick

1. for j = lange[A] downto 1 do
> BICIAUT]] = Al

3 ClAN = ClAUl -1

4: end for

C |0|2]|3|6]|7]8
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CountingSort - Beispiel

Algorithmus 18 CountingSort(A, B, k) - Teilstiick

1. for j = lange[A] downto 1 do
> BICIAUT]] = Al

3 ClAN = ClAUl -1

4: end for

C |0|12|3(5|7]8
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CountingSort - Beispiel

Algorithmus 19 CountingSort(A, B, k) - Teilstiick

1. for j = lange[A] downto 1 do
> BICIAUT]] = Al

3 ClAN = ClAUl -1

4: end for

C |0|2]|2|5|7]|8
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CountingSort - Beispiel

Algorithmus 20 CountingSort(A, B, k) - Teilstiick

1. for j = lange[A] downto 1 do
> BICIAUT]] = Al

3 ClAN = ClAUl -1

4: end for

C |0|2]|2(5|7|7
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CountingSort - Beispiel

Algorithmus 21 CountingSort(A, B, k) - Teilstiick

1. for j = lange[A] downto 1 do
> BICIAUT]] = Al

3 ClAN = ClAUl -1

4: end for

C |0|2|2(4|7]|7
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CountingSort - Beispiel

Algorithmus 22 CountingSort(A, B, k) - Teilstiick

1. for j = lange[A] downto 1 do
> BICIAUT]] = Al

3 ClAN = ClAUl -1

4: end for

C |0|2|2(4|7]|7

Frank Heitmann heitmann@informatik.uni-hamburg.de 42/47



Sortieren CountingSort
Schnelleres Sortieren

CountingSort - Analyse

Algorithmus 23 CountingSort(A, B, k)
1. for i =0 to k do

2: C[i] =0

3: end for

4: for j =1 to lange[A] do
5. C[A[]] = C[A[]] + 1
6: end for

7. for i=1to k do

8 Clil=Cli]+ C[i —1]
9: end for

10: for j = lange[A] downto 1 do
1 B[CIAL]] = Al

122 C[A[]] = C[A[]] - 1
13: end for
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CountingSort - Analyse

Wir haben vier for-Schleifen. Zwei in ©(k), zwei in ©(n), damit
folgt:
Satz

CountingSort ist ein stabiles Sortierverfahren, das Eingaben der
Lange n, wobei jedes Element zwischen 0 und k liegt, in O(n + k)
sortiert. In der Praxis nutzt man CoutingSort meist, wenn k € O(n)
gilt, so dass CoutingSort dann eine Laufzeit von ©(n) hat.

Anmerkung

Die Korrekthgit kann wieder mit Schleifeninvarianten gezeigt
werden. Zur Ubung und bei Bedarf im [Cormen] nachlesen.
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CountingSort - Anmerkung

Anmerkung

CountingSort ist kein vergleichendes Sortierverfahren. Tatsachlich
findet man nirgendwo im Code Vergleiche zwischen zwei
Elementen. CountingSort verwendet die Werte der Elemente als
Index in ein Feld. Die untere Schranke fiir vergleichendes Sortieren
gilt hier also nicht - und tatsachlich durchbricht CountingSort sie
ja (wenn k € O(n) gilt).
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Weitere Verfahren

Es gibt weitere nicht-vergleichende Sortierverfahren, die - bei
bestimmten Eingaben - die Grenze von Q(n - log n) durchbrechen.

@ RadixSort geht von d-stelligen Zahlen aus, wobei jede Stelle k
mogliche Werte hat. Die Zahlen werden dann Stelle fiir Stelle
beginnend bei der niederwertigsten durch ein stabiles (!)
Sortierverfahren (z.B. CountingSort) sortiert. Die Laufzeit ist
in ©(d - (n+ k)).

@ BucketSort geht von einer gleichverteilten Eingabe auf dem
Interval [0, 1) aus, teilt dieses Interval in n gleichgroBe
Buckets und verteilt die n Eingabewerte auf die Buckets. (Es
sollten dann wenige Eingabewerte im gleichen Bucket liegen.
Die Buckets werden dann sortiert und aneinandergefiigt.)
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Zusammenfassung und Ausblick

@ Vergleichendes Sortieren

InsertionSort, Min/MaxSort (SelectionSort), BubbleSort

o QuickSort

e MergeSort, HeapSort

o Untere Schranke fiir das vergleichende Sortieren: Q(n - log n)

@ Nicht-vergleichendes Sortieren
o CountingSort, (RadixSort, BucketSort)

Untere Schranken fiir andere Verfahren?
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