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Prozesse als Ordnungen..

©—> L TG

START STOP

Eigenschaften der Handlungen:

e extensional, d.h. durch ihre Wirkung beschreibbar

e unteilbar (auch atomar), d.h. sie werden vom Prozessor ununter-

brochen ausgefiihrt s
satomare Operation

e geordnet

a) durch eine totale Ordnung: sequentieller Prozess
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Prozesse als Ordnungen..

Q-’ a:x:=3 > b:y:=4 > C: z:= X+y O

e geordnet

a) durch eine totale Ordnung: sequentieller Prozess

b) partielle Ordnung: nichtsequentieller Prozess, d.h. zeit-

. lich/kausal unabhéngige Handlungen sind moglich
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Prozesse als Ordnungen..

als Petrinetz

@-’ a:x=3

START

C: Z:= X+y ——>©

e,
4 o sToP

®_’b: y:

START

b) partielle Ordnung: nichtsequentieller Prozess, d.h. zeit-

. lich/kausal unabhéngige Handlungen sind moglich
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Prozesse als Ordnungen..

als Petrinetz

@-’ a:x=3

START

C: Z:= X+y ——>©

e,
4 oy sToP

Q_’b: y:

START

b) partielle Ordnung: nichtsequentieller Prozess, d.h. zeit-

. lich/kausal unabhéngige Handlungen sind moglich
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Prozesse als Ordnungen..

als Petrinetz

©—> a:x=3

START

C: Z:= X+y ——>©

g,
4 oy sToP

Q_’b: y:

START

b) partielle Ordnung: nichtsequentieller Prozess, d.h. zeit-

. lich/kausal unabhéngige Handlungen sind moglich
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Prozesse als Ordnungen..

als Petrinetz

©—> a:x=3

START

C: Z:= X+y ——>®

e,
4 o sTop

Q_’b: y:

START

b) partielle Ordnung: nichtsequentieller Prozess, d.h. zeit-

. lich/kausal unabhéngige Handlungen sind moglich
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als Petrinetz

C: Z:= X+y _>©

STOP
®_' b: y:=4 /M
O als (Aktions-)Folgen:

als Striktordnung a;b;c und b;a;c
oder partielle Ordnung

partial order semantics interleaving semantics
PO-Semantik_ Folgen-Semantik
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Definition 2.2 Sei A eine Menge und R C A x A eine (bindre) Relation.

a) (A, R) heifst partielle Ordnung (partially ordered set, poset), falls gilt:

1. YVa € A. (a,a) € R “Reflexivitit”
2. Ya,be A. (a,b) e RA(bja) e R=a=1Db “Antisymmetrie”
3. Ya,b,c € A. (a,b) € RA (b,c) € R= (a,c) € R “Transitivitét”

Schreibweise: a < b fiir (a,b) € R

-
AN (1) Zyklen?

> N
AN :
\ keine Zyklen !!!
x> @5

X o
R ={(a,a),(a,c),(b,a),...}
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Definition 2.2 Sei A eine Menge und R C A x A eine (bindre) Relation.

b Striktordnung
‘#) (A, R) heifit partielle-Ordnung(parti set), falls gilt:
Irreflexivitit.
1. Va€ A. (a,a) € R i ivitit”
2 % : 5 ; fscs % . 5 4
3. Ya,b,c € A. (a,b) € RA (b,c) € R= (a,c) € R “Transitivitét”

Schreibweise: a < b fiir (a,b) € R

@\'52 @X{ Zyklen?

G
\ \ Reine Zyklen !!!
v& \Q ’9\

E@ > &)
\_

R={(aa)(ac)(ba)..}
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> N
partielle
Ordnung
fti O On
R ={(a,a),(a,c),(b,a),...}
b 2 s

e ’

/ \ strikte
B 47 0 o Ordnung

| S = R qg — {(b,a),(a,C),(b,C);-"}
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o ;

N

@

\/

®

S=R-id={(b,a),(ac),(b,c),..}

<

(®
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strikte.

Ordnung

<&

Priizedenz-
Relation.
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e

o 40 ©) 0

strikte.

Ordnung

S=R-id={(bha)(ac)(bc),.}

Definition 2.3

1. b heif$t|direkter Nachfolger

von a (in Zeichen: a < b), falls:

a<b:ea<bN—-dce A.a<cNec<b

keiner
2. (A, <) heifit |Prdazedenzrelation |zu (A, <) ;

Priizedenz-
Relation.
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we /
/ v\ \ strikte

Ordnung
) Y Y Y Y %3
® & T
; 1 ., .§
Prizedenz=
© > ©) Ordnung

Q=5 - 5%={(ba),(a,c), (c,d), (@d), re), U3d), (b,e), ([, 9), (h,9)}

<?:=<o<={(a,b)|Jec.a <cAc<b}

Forma Seite. 15




c) (A, R) heifit totale oder lineare Ordnung (totally ordered set),
falls qilt:
1. (A, R) ist partielle Ordnung

2. Ya,b € A. a # b impliziert (a,b) € RV (b,a) € R
“Vollstiandigkeit”

©—> a:x:=3 > b:yi=4 > c: z=x+y 4’@

START STOP

O O O
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a:b;c und b:a;c

{@,0),(b,0)}

interleaving semantics
Folgen-Semantik_

(a,0),(b,0)}

(a,0),(b,0)}

e) Fiir eine Striktordnung (A, <) ist
Lin(A, <) := {(A, <1)| <1 ist lineare Striktordnung mit | <C<}
die Menge der |linearen (oder seriellen) Vervollstandigungen| von

(A, <).

Fo 17




Beispiel: (A, <)

a
d e

ImlA <=t a b ¢ d ¢ |
o b a8 ¢ e ¥ ,
a.-a b e ., : 7

Konstruktionsprinzip?
a8 9 ¢ ¢ .1
o 4 ¢ b &7 .
g b d € ¢ 1 3
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Beispiel: (A, <)
a a, a, a, as
b, b, b, b, b,
LZTL(A < ‘ bl as by a3 b3 as bs a5 0bs
ai ‘ b1 bz as b3 ay b4 as b5
bo b3 as by as b5

ay; as as

Konstruktionsprinzip?
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2.2 Logische und vektorielle Zeitstempel

globale Zert.

AR

lokale Zeit.

Formale Grundlagen der Informatik 11 Kap 2: Partielle Ordnungen Seite. 20




Minkowski-Diagramm wurde 1908 von Hermann Minkowski entwickelt
t

..+,99,100,101,...

X
Relation Relation
,Vor Jnebenliufig”

...,100,101,102,...
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Definition 2.5 Ein Nachrichten-Modell ist ein System von n Funkti-

onseinheiten bzw. Prozessoren pg,...,pn_1, die

e [okale Rechenschritte ausfiihren und

e Nachrichten an andere versenden.

6 ¢

Po Q

P4 (/,5\5 ¢i\6 ?\7

P1

O

P2 — O ,
$9 ?10 €E’11
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Definition 2.6 FEs wird eine Relation [vor| C ® X ® definiert. Fiir
b1, 02 € ® gelte (¢p1 vor ¢2), falls folgendes gilt:

a) Gehoren ¢1 und ¢ zu dem selben Prozessor (d.h. sie liegen auf der
selben (linear geordneten) Zeitachse), dann gilt (¢1 vor ¢2) genau
dann, wenn @1 vor ¢2 auf der Zeitachse liegt.

b) Gehoren ¢1 und @2 zu [verschiedenen|Prozessoren (d.h. sie liegen
auf verschiedenen Zeitachsen) und ist ¢1 das Sendeereignis einer
Nachricht, die in ¢o empfangen wird, dann gilt (¢1 vor ¢2).

C) vor st t”“gnszm?} auch irreflexiv ? d.b. Striktordnung ?
2 3
Po £) >

P1 / \
Y o
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Definition 2.6 FEs wird eine Relation [vor| C ® X ® definiert. Fiir
b1, 02 € ® gelte (¢p1 vor ¢2), falls folgendes gilt:

a) Gehoren ¢ und ¢2 zu dem |selben| Prozessor (d.h. sie liegen auf
der selben Zeitachse), dann gilt (¢1 vor ¢2) genau dann, wenn ¢;
vor ¢o auf der Zeitachse liegt.

b) Gehoren ¢1 und @2 zu [verschiedenen|Prozessoren (d.h. sie liegen
auf verschiedenen Zeitachsen) und ist ¢1 das Sendeereignis einer
Nachricht, die in ¢o empfangen wird, dann gilt (¢1 vor ¢2).

C) vor st transitiv auch irreflexiv ? d.b. Striktordnung ?

Annabme: reflexiv in. @1
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Abbildung 2.5 Banksystem mit 4 Filialen py, ..

B

Ly :— Ly — mij

@

ZBj e CUj —+ mz-j

- P3

Abbildung 2.6 Ubertragung von Nachrichten iiber Kanal
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Do AL lokale Zeit.

1 7 8 7t
10 €
(D
D1 &
20 €
P2 >
30 € Zeit

Gesamtgeldmenge : 10 4 20 4+ 30 = 60

m(os, ¢g) = 2
1,2,3,...,10 sind die Zeitzustinde der lokalen Uhren

Problem : Die Bankleitung moéchte immer wieder in Intervallen die
insgesamt umlaufende Geldmenge ermitteln. Diese sollte immer gleich
60 sein.
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Po Q >
10€ :

D1 &
(20€

p2 N >

/ ;
¢8 / Zeit-Schnitt. ¢9 ¢10 Zeit
Verfahren 1:

Die Bankleitung fordert alle Funktionseinheiten auf, die Kontostidnde zu
einem bestimmten Zeitpunkt t ihrer lokalen Zeit mitzuteilen.

Erwartung : 5 = 60. Defizit: Nachrichten unterwegs
Py Il an P
Beispiel 2.8 Zeitpunkt t =5 DRSOy SR
po : xo= 10—-1 = 9 Py:2an py;
p1 2 1= 20+41-3 = 18
ps i Ta= 302 = 28 unterwegs: § €
2. 35450 Problem:

die noch nicht empfangenen Nachrichten!
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Po Q >
10 €
D1 &
20 €
P2 - >
I ;
30 € Z :
€ Ps 28 / ®9 P10 Zeit
Verfahren 2:
Die Bankleitung bittet die |Summe der abgesandten minus der Summe
der eingegangenen Betrige|zu x; jeweils hinzuzuzéihlen.
Erwartung : > = 60.
Beispiel 6.18 Zeitpunkt t =5
Po i Zo= 941 = 10
p1 £y = 18=143 = 20
p2 1 xy= 2842 =30
> 60
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Zez't-gcbm'tt, Abb, 2.8
1

Do >

10 € 10€
. Zukun
Vergangenbeit. iz

P . -

20 € 3¢€
t

D2 >

30 € 30 € Zeit

Problem:
Nachrichten aus der Zukunft. in die Vergangenbeit. !
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Abb. 2.8

Do >

10 €
. Zukun
Vergangenbeit. 7

%1 >
20 € 3€
:

t

P2 | >

30 € 30 € Zeit

eshalb stellt sich die Frage, wie die Relation vor im System beobachtet
werden kann. Dazu bestimmen wir eine Jlogische Uhr LT (¢)|mit
¢1 vor ¢ = LT(¢1) < LT(¢2).

Zur Realisierung fiihrt jede Funktionseinheit p; eine Variable LT; mit
Anfangswert LT; = 0 mit. Den Nachrichten wird der neue Wert des
Sendeereignisses beigefiigt (logische Zeitstempel). Ein Ereignis ¢ von p;
setzt LT; auf einen um 1 groffleren Wert als das Maximum des alten
Wertes und eines ggf. in ¢ empfangenen Zeitstempels.
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pO 0 —(r 7 |

P1 o # .
1 3

P2 2 9, $ >

P9 10 Zeit

Abbildung 2.9 Senden mit logischen Zeitstempeln

Definition 2.10 Sei ¢ ein Ereignis von p;. Dann bezeichnet LT (¢) den
von ¢ berechneten Wert von LT;.

Satz 2.11 Fliir die Ereignisse ¢1,¢p2 € ® qilt :
@1 vor ¢o = LT(qbl) o< LT(gbg)
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Algorithmus 2.2 Verfahren der Bankleitung bonsistenter

Schnitt.

1. Man fiihre logische Uhren ein.
2. Man lege ein t € Q mit ¢ > O fest.
3. Fiir jede Funktionseinheit p; :
- Bestimme in Bezug auf die lokale Zeit aufeinander folgende Ereignisse ¢ und ¢’ von p;
mit LT (¢) <t < LT(¢'), falls ¢ nicht vor dem ersten Ereignis von p; liegt.
- Setze c; auf den Wert von x; zwischen ¢ und ¢’
oder auf den Anfangswert, falls ¢ vor dem ersten Ereignis von p; liegt. Sende c¢; an Leitung.
- Sende den Wert jeder Geldsendung an Leitung, die ab ¢’ ankommt, aber einen
Zeitstempel < LT (¢) hat.

P1 G2 93

Po \ - 6 7
10 € @
| b 2
5 7
P1 © “d _ o; >
20 € 2 3 5 @
1 (2) oy
P2 | >
30€ | P8 “ [1=1.5 P9 P10 Zeit
— Q
9+20+28=57
Es kommen an :|1 in ¢4 und |2 in ¢. Die Summe ist 57 + 3 = 60.

Formale Grundlagen der Informatik 11

Kap 2: Partielle Ordnungen

Seite. 32




Algorithmus 2.2 Verfahren der Bankleitung bonsistenter

Schnitt.

1. Man fiihre logische Uhren ein.

Problem:
Nachrichten aus der Zukunft. in die Vergangenbeit. ?

¢2 ¢3
6 7
¢ ¢ 2
. @™ ,
3 4 5 @
1 (2) S ‘|8
P2 - y
(30¢€ | ?8 “\[t=1,5 P9 P10 Zeit
. N
9+20+28=57
Es kommen an :|1 in ¢4 und |2 in ¢. Die Summe ist 57 + 3 = 60.
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1 Kapitel 5 — Synchronisierung

Jetzt betrachten wir den Algorithmus, den Lamport vorgeschlagen hat, um Ereignissen
Zeiten zuzuweisen. Betrachten Sie die drei in Abbildung 5.7 (a) gezeigten Prozesse. Die
Prozesse werden auf unterschiedlichen Maschinen ausgefiihrt, die jeweils eine eigene
Uhr haben und mit einer eigenen Geschwindigkeit ausgefiihrt werden. Wie aus der Abbil-
dung ersichtlich ist, hat die Uhr, wenn sie sechsmal in Prozess 0 getickt hat, in Prozess 1
achtmal getickt, und in Prozess 2 zehnmal. Jede Uhr lduft mit einer konstanten Geschwin-
digkeit, aber aufgrund von Unterschieden in den Kristallen sind diese Geschwindigkeiten
unterschiedlich.

Zum Zeitpunkt 6 sendet der Prozess 0 die Nachricht A an Prozess 1. Wie lange es dauert,
bis diese Nachricht ankommt, ist davon abhiingig, welcher Uhr Sie glauben. In jedem Fall
ist die Uhr in Prozess 1 gleich 16, wenn sie ankommt. Wenn die Nachricht die Startzeit 6
enthiilt, schlieft Prozess 1 daraus, dass die Nachricht fiir ihren Weg 10 Ticks bendtigt hat.
Dieser Wert ist sicherlich moglich. Nach dieser Beweisfiihrung benétigt Nachricht B von
I nach 2 16 Ticks, was ebenfalls ein plausibler Wert ist.

Und jetzt wird es lustig. Nachricht C von 2 an 1 wird zum Zeitpunkt 60 gesendet und
kommt zum Zeitpunkt 56 an. Analog dazu wird die Nachricht D von 1 an 0 zum Zeit-
punkt 64 gesendet und kommt zum Zeitpunkt 54 an. Diese Werte sind offensichtlich un-

moglich. Genau diese Situation muss verhindert werden.

Die lvon Lamport vorgeschlagene Losung entsteht direkt aus der Passiert-vor-Relation.
Weil C zum Zeitpunkt 60 gesendet wurde, muss sie zum Zeitpunkt 61 oder spiter ankom-
men. Aus diesem Grund enthiilt jede Nachricht die Sendezeit, entsprechend der Uhr des
Senders. Kommt eine Nachricht an und die Uhr des Empfingers zeigt einen Wert, der vor
der Sendezeit der Nachricht liegt, stellt der Empfiinger seine Uhr schnell auf 1 Tick hoher
als die Sendezeit. In Abbildung 5.7 (b) sehen wir, dass C jetzt zum Zeitpunkt 61 eintrifft,
und D analog dazu zum Zeitpunkt 70.

(a) (b)

Abbildung 5.7: (a) Drei Prozesse, die jeweils eine eigene Uhr besitzen; die Uhren werden mit
unterschiedlichen Geschwindigkeiten ausgefiihrt. (b) Der Algorithmus von Lamport korrigiert die
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i Aktualisierung 1 Aktualisierung __i

Beispie ;

Als eine N
Datenba Aktualisierung 1 wird Replizierte Datenbank ;. lisierung 2 wird
tung zu vor Aktualisierung 2 vor Aktualisierung 1
Au vorgenommen vorgenommen
Stidten | "
mer an « Abbildung 5.8: Aktualisierungen einer replizierten Datenbank und Verursachung eines
eine Ab! inkonsistenten Zustands

OPCratioN auT JeUeTr IEPITK AUSZCTUNTT WETUC T TS S:

Tatsiichlich gibt es eine strengere Forderung in Hinblick auf die Aktualisierungen. Ange-
nommen, ein Kunde in San Francisco will $ 100 auf sein Konto einzahlen, auf dem sich
momentan $ 1.000 befinden. Gleichzeitig initiiert ein Bankangestellter in New York eine
Aktualisierung, bei der dem Konto des Kunden 1 Prozent Zinsen gutgeschrieben werden.
Beide Aktualisierungen sollten auf beide Kopien der Datenbank ausgefiihrt werden. Auf-
grund der Kommunikationsverzégerungen im zugrunde liegenden Netzwerk kinnen die
Aktualisierungen jedoch in der in Abbildung 5.8 gezeigten Reihenfolge eintreffen.

Die Aktualisierungsoperation des Kunden wird in San Francisco vor der Zinsaktualisie-
rung vorgenommen. Im Gegensatz dazu wird die Kopie des Kontos in der Replik in New
York zuerst mit dem einen Prozent Zinsen aktualisiert und danach mit der Einzahlung von
$ 100. Damit enthiilt die Datenbank in San Francisco einen Gesamtkontostand von $
1.111, wiihrend die Datenbank in New York nur $ 1.110 aufweist.

Kap 2: Partielle Ordnungen Seite. 36




informatik

Andrew Tanenbaum A
" Marten van Steen Aktualisierung 1 Aktuahsmrung 2

Vertellte Systeme | (I T S e e S

Grundlagen und Paradigmen

' ; Replizierte Datenbank 5 :
Aktualisierung 1 wird plizie Aktualisierung 2 wird
vor Aktualisierung 2 vor Aktualisierung 1

vorgenommen vorgenommen

Tititi PEARSON Abbildung 5.8: Aktualisierungen einer replizierten Datenbank und Verursachung eines
inkonsistenten Zustands

Der wichtigere Aspekt dabei ist, dass beide Kopien genau gleich sein sollten. Im Allge-
meinen benétigt man in solchen Situationen einen vollstiindig sortierten Multicast, d.h.
eine Multicast-Operation, wobei alle Nachrichten in derselben Reihenfolge an alle Emp-
finger ausgeliefert werden. Die Zeitstempel von Lamport kénnen genutzt werden, um
diese vollstindig sortierten Multicasts auf vollig verteilte Weise zu implementieren.
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19'5 Globale Zustande

Abbildung 10.9 Schnitte

_ -
|
G \ e} e ( €3 |

P ® K
m;' m2 |
|

Physische
Pz s 2 yZeit |
ez | ez €3 |
Inkonsistenter
Schnitt Konsistenter Schnitt

|

Auflerdem konnen wir die globale History von  als die Vereinigung der einzelnen
Prozesshistories bilden:

H= hyuh;u..Uhy_,

Mathematisch kénnen wir eine beliebige Menge mit Zustinden der einzelnen Pro-
zesse heranziehen, um einen globalen Zustand S = (s,, s,, ..., sy) zu bilden. Aber wel-

Formale Grundlagen der Informatik II Kap 2: Partielle Ordnungen Seite
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in Anwendungen oft benotigt: totale Ordnung auf Ereignissen im Netz,

Striktordnung totale Ordnung
auf Prozess auf Prozess
T Lamport-Ordnung

Zeitstempel

(LT(¢1),pi) < (LT(¢2), pj)

gdw.
a)LT(¢1) < LT(¢p2) oder

b)LT (1) = LT(¢2) wund i<j tie-break-rule

(2,p5) < (3,p2)  (2,p5) > (2,p2)  (2,p5) < (4,Dp8)

g

L. Lamport Ldmébort- Ordnung
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0
O '
0 '

Zeit

Abbildung 2.9 Senden mit logischen Zeitstempeln
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Aufgabe (verteilter wechselseitiger Ausschluss)

Schreiben Sie einen Algorithmus fiir verteilten wechselseitigen Aus-
schluss. Dabei senden Prozessoren, die in den kritischen Abschnitt ein-
treten wollen, eine Anfrage (request) an die anderen und legen einen
Zeitstempel ts bei. Wenn sie von allen Prozessoren ein reply erhalten
haben, diirfen Sie in den kritischen Abschnitt eintreten.

P1

P3
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5.2.2 Vektor-Zeitstempel

Lampur[—Zeilslcmpc] fiihren zu einer Situation, in der alle Ereignisse in einem verteilten
sortiert sind, mit der Eigenschaft, wenn Ereignis a vor Ereignis b
statlgefundcn hat, a in dieser Reihenfolge auch vor b positioniert wird, d.h. C(a) < C(b).

Bei Verwendung der Lamport-Zeitstempel kann jedoch nichts tiber die Beziehung zwi-
schen zwei Ereignissen a und b ausgesagt werden, wenn man nur ihre Zeitwerte C(a)
bzw. C(b) vergleicht. Mit anderen Worten, wenn C(a) < C(b) gilt, dann impliziert das
nicht unbedingt, dass a tatsichlich vor b stattgefunden hat. Dafiir braucht man noch etwas
mehr.

Um zu verstehen, was passiert, stellen Sie sich ein Nachrichtensystem vor, wobei die Pro-
zesse Artikel verdffentlichen und auf veroffentlichte Artikel reagieren. Eines der bekann-
teren Beispiele fiir ein solches Nachrichtensystem ist das elektronische schwarze Brett im
Internet, Network News (siehe beispielsweise Comer, 2000b). Benutzer und damit Pro-
zesse treten bestimmten Diskussionsgruppen bei. Die Vertffentlichungen innerhalb einer
solchen Gruppe, egal ob es sich dabei um Artikel oder Antworten darauf handelt, werden
per Multicast an alle Gruppenmitglieder geschickt. Um sicherzustellen, dass die Reaktio-
nen nach ihren zugehorigen Verdffentlichungen ausgeliefert werden, konnen wir festle-
gen, dass ein vollstindig sortiertes Multicasting-Schema verwendet werden soll, wie oben
beschrieben. Ein solches Schema impliziert jedoch nicht, dass, sollte Nachricht 8 nach
Nachricht A ausgeliefert werden, B tatsichlich eine Reaktion darauf ist, was mithilfe von
Nachricht A verdffentlicht wurde. Tatsiichlich kénnen die beiden Nachrichten véllig un-
abhiingig voneinander sein. Ein vollstindig sortiertes Multicasting ist in diesem Fall zu
streng.

Das Problem, das durch die Lamport-Zeitstempel nicht gelost wird, ist die Kausalitiit. In
unserem Beispiel geht der Empfang eines Artikels kausal immer der Veroffentlichung ei-
ner Antwort voraus. Miissen also innerhalb einer Gruppe von Prozessen kausale Bezie-
hungen bewahrt werden, sollte der Empfang einer Antwort auf einen Artikel immer dem
Empfang dieses Artikels folgen, Nicht mehr und nicht weniger. Wenn zwei Artikel oder
Antworten unabhingig voneinander sind, sollte ihre Auslieferungsreihenfolge iiberhaupt
keine Rolle spielen.

Die Kausalitidt kann mithilfe von Vektor-Zeitstempeln erfasst werden. Ein Vektor-Zeit-
. stempel VT{a), der einem Ereignis a zugewiesen wurde, hat die Eigenschaft, dass fiir Er-
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Wir haben gesehen, dass gilt:

gbl vor gbg = LT(gbl) =~ LT(gbg)

Stellt die Relation < die vor-Relation exakt dar, d.h. gilt auch die fol-

gende Umkehrung?

LT (¢1) < LT(p2) = ¢1 vor ¢,

et
p 0 0 1 2 7 7
4 95 D6
) £ )— ) >
P1 o O3 3
Abb. 2.9
0 1 3
D2 % g > fb} i
9 10 11 12 Zeit
Formale Grundlagen der Informatik 11 Kap 2: Partielle Ordnungen Seite. 45




?
LT(¢1) < LT(¢2) <= ¢1 vor ¢o

Definition 2.15 ¢ heifstj unabhéngig|von ¢ bzw. ¢, heifit ngbenlaufig

zu ¢, geschrieben als ¢ || P2, falls gilt :
¢1 || ¢2 & —(é1 vor ¢2) A —(¢p2 vor ¢1)

Gesucht ist eine strikte Ordnung auf @, die || darstellt.
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0
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Definition 2.16 (Vektorzeit, vektorieller Zeitstempel)

Jede Funktionseinheit p; fithrt eine Variable v; mit Werten in N (lokale
Vektorzeit ) und dem Nullvektor 0 als Anfangswert. Falls p; ein Ereignis
¢ bearbeitet, wird der Zeitstempel U; wie folgt aktualisiert:

Fiir die eigene Komponente i von p; gelte:

U;|i] — vili] + 1 (Inkrementieren des eigenen Stempels)

Fiir die anderen Komponenten j # i von p; gelte:

#;[§] — max(;[j], VT mlj]) falls eine Nachricht m mit dem Vektorzeit-
stempel VT, empfangen wird. Wird keine Nachricht empfangen, bleibt
U;[j] unverdndert (j # i).

(Aktualisieren der anderen Komponenten)

N
N

\\g"'7j17'°')

N

N
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Definition 2.17 (Vektor-Uhr)
Die Abbildung VC' : ® — N" wird definiert durch VC(¢) = v;, wobei v;
der von ¢ in p; berechnete Wert ist.

(0,0,0) \(1,0,0) (2,0,0) (3,5,3)

(0,0,0) (1,3,1 ’

0,0,0 0, 2,0,2 ,
e Y ;‘f’ o s ¢ -
D9 10 P11 12 Zeit
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¢1 P2

QC >
Po (0,0,0) (1,0,0) (2,0,0)
A</54 ?5
p1 (0,0,0) Y1.1,0) 2,1) >
®9 10 ¢11 12 Zeit

Definition 2.18

a) Partielle Ordnung auf N" :
v1[i] < vali]

b) Strikte Ordnung auf N" :

c) U,7 heiflen unvergleichbar, falls

Formale Grundlagen der Informatik LI
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v < Uy & Vi € {1,...,n} :
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$1 P2 P3
N N N >
Po (0,0,00 \(1,0,0) 2,0,0) 3,5,3)
51 0 o fo
P1 (000 Y1,1,00 A1,2,1) (1,3,1 4,3) (2,5,3) »
0.0,0 2,0,2 0, _(2,3,4
D9 (0,0,0) d qg’( )¢V 5( ) &
Qg 10 Q11 12 Zeit
Definition 2.15 ¢; heiffitf unabhingig von ¢2 bzw. ¢, heifif nebenlaufig

2u ¢2, geschrieben als @1 || ¢2, falls gilt :
o1 || g2 & (91 vor ¢2) A —(¢2 vor ¢)
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Po

P1

D2
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(0,0,0)

(0,0,0)

(0,0,0)

|
Satz 7.28

(1,0,0) = (2,0,0) VC(p1) < VC(h2) & ¢1 vor ¢
\ VC(¢1),VC(p2) unvergleichbar < ¢1 || ¢2

(1,1,0) =—»(1,2,1)

A

(0,0,]) =—p (2,0,2)




Aufgabe 2.20 Der Bankleitung werden sténdig alle Vektor-Zeiten
VC(¢) gesanat. Kann Sie darauf ein Verfahren aufbauen, um das Bilanz-
Problem zu lésen?
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>
_(2.3,4) Z
éll 512 Zelt
. Satz 2-119
(1,0,0) —'!"’ (2,00) VC(p1) < VC(h2) & ¢1 vor ¢

\ “ VC(¢1),VC(¢p2) unvergleichbar < ¢1 || P2
(1,1,0) =2 (12.1)

(0,0,1) =S——p> (2.0.2)

Formale Grundlagen der Informatik 11 Kap 2: Partielle Ordnungen Seite.  §3




Wir erldutern den Begriff Nebenldufigkeit anhand eines Beispiels von
Dijkstra : Gegeben seien vier paarweise verschiedene natiirliche Zah-
len {a(1),a(2),a(3),a(4)} C N. Es soll eine Maschine konstruiert wer-
den, die anzeigt, welche der vier Zahlen den grofiten Wert hat. Den
Zahlen seien elektrische Strome entsprechender Starke zugeordnet, die
die Relais paarweise ansteuern.
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Strom a(i)

\§ E
AU
e
|
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d|a(1) <a(4) ? ela(2)<a(4)?| flaB)<a@4)?
-+
1 2 3 4
? T Al G

(_q(l), . o= (7.12.2.9)
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| Was passiert, wenn der Schalter schlief3t?

i, auch fiir die Strome an den Relais

~

d|a(1) <a(4) ? ela(2)<a(4)?| flaB)<a@4)?
-+
1 2 3 4
? T Al G

(a(1), ..., a(4))= (7,12,2,9)
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f | a(3) <a(4)?
-+
i A

(a(1), ..., a(4))= (7,12,2,9)
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(a(1), ..., a(4))= (7,12,2,9)
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(a(1), ..., a(4))= (7,12,2,9)
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\

(a(1), ..., a(4))= (7,12,2,9)
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(a(1), ..., a(4))= (7,12,2,9)
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d|a(1) <a(4) ? ela(2)<a(4)?| fla3)<a4)?
| - +

1 2 3 4
¥ Q Al G

(a(1), ..., a(4))= (7,12,2,9)
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Prizedenzen verschiedener Interpretationen.

[ A serielle Interpretation

a(1) <a(4) ? ela(2) <a@)?| fla@)<a@)?

Schalter an

nebenldufige Interpretation L_Lir_"f_ez_.
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Schalter an > a N c M ¢ F——¥» Lampe?2

Bei der seriellen Interpretation wurde

e das Schaltbild der Relais-Anordnung (unnétigerweise) auf die zeit-
liche Anordnung iibertragen,

e an nur eine ausfithrende Funktionseinheit gedacht (entsprechend
der einzigen Linie und co = id),

e die dreifache Gesamtschaltzeit in Kauf genommen. Schalter ]

Dagegen wird bei der nebenlédufigen Interpretation

e nur die tatsédchliche kausale Abhéngigkeit in die zeitliche~Ax
nung iibernommen,

Lampe 2
e die grofite mogliche Nebenldufigkeit dargestellt (6 Funktionsein-
heiten entsprechend der Elementezahl des grofiten Schnitts).

e die Gesamtschaltzeit nur durch die maximale Relaisschaltzeit be-
stimmt.
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