# Formale Grundlagen der Informatik 1 Kapitel 18

Prädikatenlogische Normalformen

Frank Heitmann heitmann@informatik.uni-hamburg.de

13. & 14. Juni 2016

#### Motivation

Für verschiedene Beweise und Verfahren (insb. Resolution) benötigen wir wieder eine Normalform. Es gibt in der Prädikatenlogik

- Normalformen basierend auf Äquivalenz
  - aussagenlogische Äquivalenzen übertragen
  - neue Äquivalenzen durch Quantoren
  - Gebundene Umbenennung von Variablen
  - Pränexform
- Normalformen basierend auf Erfüllbarkeitsäquivalenz
  - Bindung freier Variablen
  - Skolemisierung
  - Klauselnormalform

# Aussagenlogische Äquivalenzen

#### **Definition**

Zwei (prädikatenlogische) Formeln F und G sind äquivalent, falls  $\mathcal{A}(F) = \mathcal{A}(G)$  für jede Struktur  $\mathcal{A}$  gilt.

#### Satz

Wenn in zwei äquivalenten aussagenlogischen Formeln prädikatenlogische Formeln (uniform) für die Aussagensymbole substituiert werden, ergibt dies zwei äquivalente Formeln der Prädikatenlogik.

#### **Beispiel**

Wegen  $F \wedge G \equiv G \wedge F$  ist auch  $\forall x P(x) \wedge \exists y Q(y) \equiv \exists y Q(y) \wedge \forall x P(x)$ .

Aufgrund der semantischen Definition der Quantoren ergeben sich weitere (prädikatenlogische) Äquivalenzen ...

## Satz (Dualität von ∀ und ∃)

Sei F eine beliebige prädikatenlogische Formeln. Es ist:

$$\neg \forall x F \equiv \exists x \neg F$$

$$\neg \exists x F \equiv \forall x \neg F$$

### Satz (Leere Quantifikation und Skopuserweiterung)

Seien F und G beliebige prädikatenlogische Formeln und trete x nicht frei in G auf. Es ist:

$$G \equiv \forall xG \equiv \exists xG$$

$$(\forall xF \land G) \equiv \forall x(F \land G)$$

$$(\forall xF \lor G) \equiv \forall x(F \lor G)$$

$$(\exists xF \land G) \equiv \exists x(F \land G)$$

$$(\exists xF \lor G) \equiv \exists x(F \lor G)$$

$$(G \Rightarrow \forall xF) \equiv \forall x(G \Rightarrow F)$$

$$(G \Rightarrow \exists xF) \equiv \exists x(G \Rightarrow F)$$

$$(\forall xF \Rightarrow G) \equiv \exists x(F \Rightarrow G)$$

$$(\exists xF \Rightarrow G) \equiv \forall x(F \Rightarrow G)$$

Man beachte, dass keine neuen Variablen-Bindungen entstehen!

#### Satz (Distributivität)

Seien F und G beliebige prädikatenlogische Formeln. Es ist:

$$(\forall x F \land \forall x G) \equiv \forall x (F \land G)$$

$$(\exists x F \vee \exists x G) \equiv \exists x (F \vee G)$$

#### Satz

Es gelten die folgenden Nicht-Äquivalenzen:

$$(\forall x F \lor \forall x G) \not\equiv \forall x (F \lor G)$$

$$(\exists x F \land \exists x G) \not\equiv \exists x (F \land G)$$

### Satz (Vertauschung der Quantorenreihenfolge)

Sei F eine beliebige prädikatenlogische Formel. Es ist:

$$\forall x \forall y F \equiv \forall y \forall x F$$
$$\exists x \exists y F \equiv \exists y \exists x F$$

#### Satz

Es gilt die folgenden Nicht-Äquivalenzen:

$$\forall x \exists y F \not\equiv \exists y \forall x F$$

### Ein Beweis

Die Beweise verlaufen alle recht ähnlich:

$$(\forall x F \land G) \equiv \forall x (F \land G) (x \text{ nicht frei in } G)$$

$$\begin{array}{lll} & \mathcal{A}(\forall x F \wedge G) = 1 \\ gdw. & \mathcal{A}(\forall x F) = 1 \text{ und } \mathcal{A}(G) = 1 \\ gdw. & \text{für alle } d \in U \ \mathcal{A}_{[x/d]}(F) = 1 \text{ und } \mathcal{A}(G) = 1 \\ gdw. & \text{für alle } d \in U \ \mathcal{A}_{[x/d]}(F) = 1 \text{ und } \mathcal{A}_{[x/d]}(G) = 1 \\ gdw. & \text{für alle } d \in U \ \mathcal{A}_{[x/d]}(F \wedge G) = 1 \\ gdw. & \mathcal{A}(\forall x (F \wedge G)) = 1 \\ \end{array} \qquad \begin{array}{ll} \textit{Konjunktion} \\ \textit{Konjunktion} \\ \textit{Allquantor} \end{array}$$

Die anderen zur Übung ...

### Ersetzbarkeitstheorem

Um die Äquivalenzen nutzen zu können, brauchen wir wieder ein Ersetzbarkeitstheorem ...

#### Satz (Ersetzbarkeitstheorem)

Seien F und G äquivalente Formeln und trete F in H als Teilformel auf. Gehe H' aus H hervor, indem F (in H) durch G ersetzt wird. Dann gilt  $H \equiv H'$ .

#### Beweis.

Der Beweis gelingt wieder mit struktureller Induktion und verläuft wie im aussagenlogischen Fall. Spannend sind die Quantoren: Wenn  $H_1$  und  $H_1'$  äquivalent sind, dann gilt  $\exists x H_1 \equiv \exists x H_1'$  und  $\forall x H_1 \equiv \forall x H_1'$ . Beweis dazu: Sei  $H_1 \equiv H_1'$  und  $\mathcal{A}$  ein Modell von  $\exists x H_1$ . Dann gibt es ein  $d \in \mathcal{U}$ , so dass  $\mathcal{A}_{[x/d]}(H_1) = 1$ . Wegen  $H_1 \equiv H_1'$  ist dann auch  $\mathcal{A}_{[x/d]}(H_1') = 1$  und damit ist  $\mathcal{A}(\exists x H_1') = 1$ . Die andere Richtung und der  $\forall$ -Fall werden analog bewiesen.

# Beispiel

#### Beispiel

$$\exists x P(x) \Rightarrow \neg \forall y Q(y)$$

$$\equiv \exists x P(x) \Rightarrow \exists y \neg Q(y)$$

$$\equiv \forall x (P(x) \Rightarrow \exists y \neg Q(y))$$

$$\equiv \forall x \exists y (P(x) \Rightarrow \neg Q(y))$$

#### Wichtige Anmerkung

Es geht bei diesen Beispielen nicht um den Sinn der Formel, nur um die (Äquivalenz-)Umformungen!

Stimmt diese Äquivalenz?

$$\forall x F(x) \land \forall x G(x) \equiv \forall x (F(x) \land G(x))$$

- Ja!
- 2 Nein!
- Manchmal!
- Weiß ich nicht ...

Stimmt diese Äquivalenz?

$$\forall x F(x) \lor G(x) \equiv \forall x (F(x) \lor G(x))$$

- Ja!
- 2 Nein!
- Manchmal!
- Weiß ich nicht ...

Stimmt diese Äquivalenz?

$$\exists x F(x) \lor G \equiv \exists x (F(x) \lor G)$$

- Ja!
- Nein!
- Manchmal!
- Weiß ich nicht ...

# Zur Nachbereitung

#### Zur Nachbereitung

- Ja!
- 2 Nein, da das x in G gebunden wird. Die linke Formel kann durch eine Struktur, die G(x) wahr macht, wahr gemacht werden. Die rechte nicht (zwingend).
- Manchmal, nämlich dann, wenn x nicht frei in G auftritt. Sonst hat man ein ähnliches Problem wie eben.

## Zur BPF

Was stört uns jetzt noch?

# Beispiel

#### **Beispiel**

$$\exists x P(x) \lor \neg (P(a) \lor \exists x Q(x))$$

$$\equiv \exists x P(x) \lor (\neg P(a) \land \neg \exists x Q(x))$$

$$\equiv \exists x P(x) \lor (\neg P(a) \land \forall x \neg Q(x))$$

$$\equiv \exists x P(x) \lor \forall x (\neg P(a) \land \neg Q(x))$$

## Zur BPF

#### Was stört uns jetzt noch?

- Gleiche Variable kann an unterschiedlichen Quantoren stehen
  - ⇒ Gebundene Umbennenung
- Eine Variable kann frei und gebunden auftreten
  - ⇒ Gebundene Umbennenung
- Die Quantoren sind verstreut
  - ⇒ Pränexform
- Das überhaupt freie Variablen auftreten (später)
  - ⇒ Bindung durch Existenzquantoren
- Das Existenzquantoren auftreten (später)
  - ⇒ Skolemisierung

# Gebundene Umbenennung (Vorbereitung)

## Definition ((Variablen-)Substitution)

Sei F eine Formel, x eine Variable und t ein Term. F[x/t] ist die Formel, die aus F hervorgeht, wenn jedes freie Vorkommen von x in F durch t ersetzt wird. [x/t] wird als Substitution bezeichnet.

## Satz (Überführungslemma)

Sei F eine Formel, x eine Variable und t ein Term, der keine in F gebundene Variable enthält. Dann gilt für jede Struktur A:

$$\mathcal{A}(F[x/t]) = \mathcal{A}_{[x/\mathcal{A}(t)]}(F)$$

Beweis mündlich ... siehe Schöning, Übung 58

# Gebundene Umbenennung

#### Satz (Gebundene Umbenennung)

Sei F eine Formel und y eine Variable, die nicht in F vorkommt. Dann gilt:

$$\exists x F \equiv \exists y F[x/y] \text{ und } \forall x F \equiv \forall y F[x/y]$$

#### Beweis.

Sei A eine beliebige Struktur. Dann:

$$\mathcal{A}(\exists y F[x/y]) = 1$$

gdw. es ein  $d \in U$  gibt mit  $\mathcal{A}_{[y/d]}(F[x/y]) = 1$ 

*gdw*. es ein  $d \in U$  gibt mit  $A_{\lceil v/d \rceil \lceil x/d \rceil}(F) = 1$ 

 $\mathit{gdw}.$  es ein  $d \in \mathit{U}$  gibt mit  $\mathcal{A}_{[\mathit{y/d}]}(\exists \mathit{xF}) = 1$ 

gdw.  $A(\exists xF) = 1$ 

 $egin{align*} egin{align*} ar{U}_{[y/d]}(F[x/y]) &= 1 & \mathsf{Quantor-Interpretation} \ ar{U}_{[x/d][x/d]}(F) &= 1 & \mathsf{Überf\"{u}hrungslemma} \ \end{pmatrix}$ 

Quantor-Interpretation

y nicht frei in F

Der ∀-Fall geht analog.



# Gebundene Umbenennung

### Satz (Gebundene Umbenennung)

Sei F eine Formel und y eine Variable, die nicht in F vorkommt. Dann gilt:

$$\exists x F \equiv \exists y F[x/y] \text{ und } \forall x F \equiv \forall y F[x/y]$$

Der Satz erlaubt es uns gebundene Variablen umzubenennen. Wir können damit erreichen, dass keine gleichen Variablen mehr an unterschiedlichen Quantoren stehen und dass gebundene Variablen anders benannt werden als freie.

#### Wichtige Anmerkung

Achtung! Umbenennung freier Variablen erhält die Äquivalenz *nicht*! Z.B. ist  $P(x) \not\equiv P(y)$ !

## Sind F und G äquivalent?

$$F = \forall x (P(x) \Rightarrow (\exists x Q(x) \lor R(x)))$$
  
$$G = \forall y (P(y) \Rightarrow (\exists x Q(x) \lor R(y)))$$

- Ja!
- Nein!
- Manchmal
- Weiß ich nicht ...

### Sind F und G äquivalent?

$$F = \exists x (P(x) \land (\exists x Q(x) \lor R(x)))$$
  
$$G = \exists x (P(x) \land \exists z (Q(z) \lor R(z)))$$

- Ja!
- Nein!
- Manchmal
- Weiß ich nicht ...

## Sind F und G äquivalent?

$$F = \exists x P(x) \lor P(x)$$

$$G = \exists x P(x) \lor P(z)$$

- Ja!
- Nein!
- Manchmal
- Weiß ich nicht ...

# Zur Nachbereitung

#### Zur Nachbereitung

- Ja!
- **2** Nein, wenn das hintere  $\exists x$  nach vorne gezogen wird, entsteht eine neue Variablenbindung, die nicht sein darf!
- 3 Nein, hier wurde die freie Variable umbenannt!

# Beispiel

#### Beispiel

Bei der Umbenennung immer gucken, auf welche Variablen sich ein Quantor bezieht und diese dann einheitlich umbenennen:

$$\forall x \exists y (P(x) \Rightarrow (\exists x Q(x) \lor P(y) \lor Q(x)))$$

$$\equiv \forall x \exists y (P(x) \Rightarrow (\exists z Q(z) \lor P(y) \lor Q(x)))$$

$$\equiv \forall x \exists y \exists z (P(x) \Rightarrow (Q(z) \lor P(y) \lor Q(x)))$$

Oder

$$\forall x \exists y (P(x) \Rightarrow (\exists x Q(x) \lor P(y) \lor Q(x)))$$

$$\equiv \forall u \exists y (P(u) \Rightarrow (\exists x Q(x) \lor P(y) \lor Q(u)))$$

$$\equiv \forall u \exists y \exists x (P(u) \Rightarrow (Q(x) \lor P(y) \lor Q(u)))$$

# Beispiel

#### **Beispiel**

Und nie freie Variablen umbenennen:

$$\forall x P(x) \lor Q(x) \equiv \forall z P(z) \lor Q(x) \text{ aber}$$
  
 $\forall x P(x) \lor Q(x) \not\equiv \forall x P(x) \lor Q(z)$ 

### Definition - BPF

## Definition (Bereinigte Pränexform)

Eine Formel F heißt **bereinigt**, wenn in F keine Variable sowohl gebunden als auch frei auftritt und wenn alle Quantoren unterschiedliche Quantorenvariablen aufweisen.

F ist in **Pränexform**, falls sie die Form  $F = Q_1y_1Q_2y_2\dots Q_ny_nG$  hat, wobei die  $Q_i \in \{\forall,\exists\}$  sind und in G keine Quantoren vorkommen.  $Q_1y_1\dots Q_ny_n$  wird als **Präfix**, G als **Matrix** von F bezeichnet.

Ist eine Formel G bereinigt, in Pränexform und äquivalent zu einer Formel F, so nenne wir G bereinigte Pränexform oder kurz **BPF** zu F.

#### Satz

Zu jeder Formel F gibt es eine äquivalente Formel G in BPF.

#### **Beweis**

Wir gehen davon aus, dass F kein  $\Leftrightarrow$  enthält. Ansonsten nutzen wir die Äquivalenzen aus der Aussagenlogik, um diesen zu entfernen. Der Beweis gelingt dann mit struktureller Induktion: Induktionsanfang. Ist F atomar, so ist F bereits in BPF. Induktionsannahme. Seien  $F_1$  und  $F_2$  Formeln mit den äquivalenten BPFs  $F_1 \equiv Q_1x_1\dots Q_nx_nG_1$  und  $F_2 \equiv Q_1'y_1\dots Q_m'y_mG_2$ . Wegen des Satzes von der gebundenen Umbenennung dürfen wir annehmen, dass  $x_i \neq y_j$  für alle i und j und keine in  $F_1$  oder  $F_2$  freien Variablen zu den  $x_i$  oder  $y_j$  gehören.

#### **Beweis**

Die Fälle ∧, ∨ und die Fälle der Quantoren sind einfach:

$$F_{1} \wedge F_{2} \equiv Q_{1}x_{1} \dots Q_{n}x_{n}G_{1} \wedge Q'_{1}y_{1} \dots Q'_{m}y_{m}G_{2}$$

$$\equiv Q_{1}x_{1} \dots Q_{n}x_{n}Q'_{1}y_{1} \dots Q'_{m}y_{m}(G_{1} \wedge G_{2})$$

$$F_{1} \vee F_{2} \equiv Q_{1}x_{1} \dots Q_{n}x_{n}G_{1} \vee Q'_{1}y_{1} \dots Q'_{m}y_{m}G_{2}$$

$$\equiv Q_{1}x_{1} \dots Q_{n}x_{n}Q'_{1}y_{1} \dots Q'_{m}y_{m}(G_{1} \vee G_{2})$$

$$\exists xF_{1} = \exists xQ_{1}x_{1} \dots Q_{n}x_{n}G_{1} \text{ BPF, wenn } x \neq x_{i}$$

$$\forall xF_{1} = \forall xQ_{1}x_{1} \dots Q_{n}x_{n}G_{1} \text{ BPF, wenn } x \neq x_{i}$$

Ist  $x = x_i$  für ein i, dann kommt x nicht frei in  $Q_1x_1 \dots Q_nx_nG_1$  vor und es ist  $\exists xF_1 = \forall xF_1 \equiv Q_1x_1 \dots Q_nx_nG_1$  in BPF.

#### Beweis.

Spannendes passiert bei  $\neg$  und  $\Rightarrow$ . Wir setzen  $\overline{Q}=\exists$ , wenn  $Q=\forall$  und  $\overline{Q}=\forall$ , wenn  $Q=\exists$ . Damit:

$$\neg F_1 \equiv \neg Q_1 x_1 \dots Q_n x_n G_1 
\equiv \overline{Q_1} x_1 \dots \overline{Q_n} x_n \neg G_1 
F_1 \Rightarrow F_2 \equiv Q_1 x_1 \dots Q_n x_n G_1 \Rightarrow Q'_1 y_1 \dots Q'_m y_m G_2 
\equiv \overline{Q_1} x_1 \dots \overline{Q_n} x_n Q'_1 y_1 \dots Q'_m y_m (G_1 \Rightarrow G_2)$$

Die Matrix lässt sich anschließend bei Bedarf noch in KNF oder DNF bringen.

Daraus lässt sich ein Verfahren ableiten, um eine BPF zu erstellen:

- Durch gebundene Umbenennung Variablen so umbenennen, dass keine zwei Quantorenvariablen (unterschiedlicher Quantoren) gleich benannt sind und keine Quantorenvariable den gleichen Namen wie eine freie Variable hat. (Achtung: Nur gebundene Variablen umbenennen, nicht freie!) Es entsteht eine äquivalente, bereinigte Formel.
- 2 Durch Äquivalenzumformungen die Quantoren nach vorne ziehen. Dabei bei der Negation und bei der Prämisse der Implikation die Quantoren flippen. Es entsteht eine äquivalente, bereinigte Pränexform (eine BPF).
- Ggf. noch weitere Äquivalenzumformungen (der Aussagenlogik) vornehmen, um die Matrix in KNF oder DNF zu bringen.

## Zur Klauselnormalform

## Was stört uns jetzt (immer) noch?

- Gleiche Variable kann an unterschiedlichen Quantoren stehen (erledigt)
  - ⇒ Gebundene Umbennenung
- Eine Variable kann frei und gebunden auftreten (erledigt)
  - ⇒ Gebundene Umbennenung
- Die Quantoren sind verstreut (erledigt)
  - ⇒ Pränexform
- Das überhaupt freie Variablen auftreten (jetzt!)
  - ⇒ Bindung durch Existenzquantoren
- Das Existenzquantoren auftreten (jetzt!)
  - ⇒ Skolemisierung

# Erfüllbarkeitsäquivalenz

Die gleich folgenden Schritte erhalten die Äquivalenz nicht, wir werden aber sehen, dass sie die *Erfüllbarkeitsäquivalenz* erhalten und für viele Dinge reicht das!

### Definition (Erfüllbarkeitsäquivalenz)

Zwei Formeln F und G sind **erfüllbarkeitsäquivalent**, wenn F genau dann erfüllbar ist, wenn G dies ist. Wir notieren dies als  $F \equiv_{e} G$ .

#### Anmerkung

Zwei Formeln sind also dann erfüllbarkeitsäquivalent, wenn sie beide erfüllbar sind (auch wenn dafür möglicherweise unterschiedliche Strukturen nötig sind) oder auch wenn sie beide unerfüllbar sind. - Wegen letzterem ist diese Eigenschaft für z.B. Resolution ausreichend!

## Freie Variablen binden

#### Satz

Sei F eine Formel, x eine Variable. F ist genau dann erfüllbar, wenn  $\exists x F$  erfüllbar ist.

#### Beweis.

Sei A ein Modell für F, dann ist

$$\mathcal{A}_{[x/\mathcal{A}(x)]}(F) = \mathcal{A}(F) = 1$$

also gibt es ein  $d \in U$  (nämlich  $\mathcal{A}(x)$ ) so dass  $\mathcal{A}_{[x/d]}(F) = 1$  ist und folglich ist  $\mathcal{A}(\exists xF) = 1$ .

Sei umgekehrt  $\mathcal{A}$  ein Modell für  $\exists x F$ . Dann gibt es ein  $d \in U$  mit  $\mathcal{A}_{[x/d]}(F) = 1$  und folglich ist  $\mathcal{A}_{[x/d]}$  ein Modell für F und F somit erfüllbar.

## Freie Variablen binden

#### Satz

Zu jeder prädikatenlogischen Formel gibt es eine erfüllbarkeitsäquivalente geschlossene Formel.

#### Beweis.

Sei F eine Formel und seien  $x_1, \ldots, x_n$  die in F frei vorkommenden Variablen. F und  $\exists x_1 \ldots \exists x_n F$  sind erfüllbarkeitsäquivalent (schnell über vollständige Induktion zu zeigen).

Um freie Variablen loszuwerden, binden wir sie also einfach durch Existenzquantoren (stets **vor** die aktuelle Formel!).

## Beispiel

### Beispiel

Existenzquantoren ganz nach vorne schreiben! Zu

$$F = \forall x (P(x) \Rightarrow P(y))$$

ist

$$F' = \exists y \forall x (P(x) \Rightarrow P(y))$$

erfüllbarkeitsäguivalent, aber i.A. nicht

$$F'' = \forall x \exists y (P(x) \Rightarrow P(y))$$

### Zur Nachbereitung

Die obigen beiden Formeln F' und F'' sind tatsächlich erfüllbarkeitsäquivalent (und sogar äquivalent, beides sind nämlich Tautologien). **Im Allgemeinen** klappt das aber nicht, wie das nächste Beispiel zeigt.

## Beispiel

### Beispiel

Folgendes ist Unfug:

$$\exists x P(x) \land \neg P(x)$$
  

$$\equiv_e \exists x P(x) \land \neg \exists x P(x)$$
  

$$\equiv \exists x P(x) \land \forall x \neg P(x)$$

(die oberste Formel ist erfüllbar, die unterste nicht). So geht es:

$$\exists x P(x) \land \neg P(x)$$

$$\equiv \exists y P(y) \land \neg P(x)$$

$$\equiv \exists y (P(y) \land \neg P(x))$$

$$\equiv_{e} \exists x \exists y (P(y) \land \neg P(x))$$

## Skolemisierung

#### Ziel

Eigentlich ist das jetzt alles schon sehr schön, aber Existenzquantoren sind nicht so gut handhabbar wie Allquantoren. Daher wäre es schön, wenn wir die auch noch wegkriegen könnten

# Skolemisierung (Basis)

#### Satz

Sei F eine Formel, x eine Variable und a eine Konstante, die nicht in F auftritt. Dann sind F[x/a] und  $\exists xF$  erfüllbarkeitsäquivalent.

#### Beweis.

Sei  $\mathcal{A}$  ein Modell für F[x/a]. Dann gilt wegen des Überführungslemmas  $\mathcal{A}_{[x/\mathcal{A}(a)]}(F) = \mathcal{A}(F[x/a]) = 1$  und damit  $\mathcal{A}(\exists xF) = 1$ . Sei umgekehrt  $\mathcal{B}$  ein Modell von  $\exists xF$ . Dann gibt es ein  $d \in U$  mit  $\mathcal{B}_{[x/d]}(F) = 1$ . Stimme die Struktur  $\mathcal{A}$  nun überall mit  $\mathcal{B}$  überein, außer auf a hier definieren wir  $\mathcal{A}(a) = d$ . Da a in F nicht vorkommt ist  $\mathcal{B}_{[x/d]}(F) = \mathcal{A}_{[x/d]}(F) = \mathcal{A}_{[x/A(a)]}(F)$  (all diese Abbildungen tun nämlich das gleiche) und wegen des Überführungslemmas gilt dann  $\mathcal{A}_{[x/\mathcal{A}(a)]}(F) = \mathcal{A}(F[x/a])$  und damit ist auch F[x/a] erfüllbar.

# Skolemisierung (Basis)

#### Satz

Sei F eine Formel, x eine Variable und a eine Konstante, die nicht in F auftritt. Dann sind F[x/a] und  $\exists xF$  erfüllbarkeitsäquivalent.

Damit können wir jetzt also eine an einen Existenzquantor gebundene Variable durch eine Konstante ersetzen. (Wenn es uns nur um die Erfüllbarkeitsäquivalenz geht.)

Allerdings muss dazu der Existenzquantor ganz vorne stehen (im Präfix)! Wir können das aber verallgemeinern ...

## Skolemisierung

#### Satz

Sei  $F = \forall y_1 \dots \forall y_k \exists z G$ ,  $k \geq 0$  und f ein k-stelliges Funktionssymbol, dass nicht in F vorkommt. Dann sind F und  $\forall y_1 \dots \forall y_k G[z/f(y_1, \dots, y_k)]$  erfüllbarkeitsäquivalent.

#### Beweis.

Der Fall k=0 wurde eben behandelt (ein 0-stelliges Funktionssymbol ist eine Konstante). Der allgemeine Fall geht ähnlich (siehe Schöning).

## Skolemisierung

#### Satz

Sei  $F = \forall y_1 \dots \forall y_k \exists z G$ ,  $k \geq 0$  und f ein k-stelliges Funktionssymbol, dass nicht in F vorkommt. Dann sind F und  $\forall y_1 \dots \forall y_k G[z/f(y_1, \dots, y_k)]$  erfüllbarkeitsäquivalent.

### Definition (Skolemisierung)

f oben wird **Skolemfunktion** genannt. Im Falle k=0 auch **Skolemkonstante**. Die Bildung von F' heißt **Skolemisierung** (von F). Ein Formel ist in **Skolemform**, wenn sie in BPF ist, geschlossen ist und keine Existenzquantoren enthält. Eine Formel ist in **Klauselnormalform**, wenn ihre Matrix zusätzlich in KNF ist. (Die Matrix enthält dann alle relevanten Informationen!)

## Fragen

Wie sieht die Skolemform zu

$$F = \exists x \exists y \forall z \exists u P(x, y, z, u)$$

aus?

- $\triangledown \forall z P(f(z), f(z), z, f(z))$

- Weiß ich nicht ...

## Fragen

Wie sieht die Skolemform zu

$$F = \exists x \forall y \exists z \forall u \exists v P(x, y, z, u, v)$$

aus?

- $\forall y \forall u P(f(y, u), y, g(u), u, a)$

- Weiß ich nicht ...

## Zur Nachbereitung

### Zur Nachbereitung

- Richtig ist Nummer 4.
- 2 Richtig ist Nummer 3.

## Vorgehen

### Vorgehen

Bei der Skolemisierung:

- 1 Von einer Formel in BPF ausgehen.
- 2 Die Existenzquantoren von links nach rechts durchgehen.
- Sei ∃x ein solcher. Dann wird x ersetzt durch ein neues Funktionssymbol f, das als Argumente alle durch Allquantoren gebundenen Variablen hat, die links von diesem Existenzquantor stehen. Das ∃x wird dann gestrichen.

# Beispiel

### Beispiel

So wird aus

$$\exists x \forall y \forall z \exists u \exists v P(x, y, z, u, v)$$

Dann

$$\forall y \forall z P(a, y, z, f(y, z), g(y, z))$$

#### Denn

- links von  $\exists x$  ist kein Allquantor, also wird x durch eine neue Konstante (0-stelliges Funktionssymbol) a ersetzt
- ② links von  $\exists u$  stehen  $\forall y$  und  $\forall z$ , also wird u durch f(y,z) ersetzt
- $\odot$  und ebenso für  $\exists v$ .

### Klauselnormalform

#### Satz (Erstellung der Klauselnormalform)

Zu jeder Formel existiert eine erfüllbarkeitsäguivalente Formel in Klauselnormalform.

#### Beweis.

Sei  $F \in \mathcal{L}_{PL}$  beliebig. Die Umformungsschritte:

- ① Umbenennung der gebundenen Variablen ( $F_1$  bereinigt):  $F_1 \equiv F$
- 2 Bindung aller freien Variablen durch Existenzquantoren ( $F_2$ bereinigt, geschlossen):  $F_2 \equiv_e F_1$
- **3** Erstellung einer Pränexform ( $F_3$  in BPF):  $F_3 \equiv F_2$
- 4 Skolemisierung ( $F_4$  in Skolemform):  $F_4 \equiv_e F_3$
- **6** Umformung der Matrix in KNF ( $F_5$  in Klauselnormalform):  $F_5 \equiv F_4$

 $F_5$  und F sind erfüllbarkeitsäguivalent und  $F_5$  ist in Klauselnormalform.

## Wichtige Anmerkung

### Wichtige Anmerkung

Bei der Erstellung der Klauselnormalform insbesondere auf folgendes achten:

- Bei der gebundenen Umbenennung die gebundenen Variablen umbenennen, nicht die freien!
- 2 Bei der Bindung der freien Variablen durch Existenzquantoren die neuen Existenzquantoren ganz nach vorne schreiben.
- 3 Bei der Erstellung der Pränexform die Quantoren zwar nach vorne ziehen, aber nicht über andere (gegenteilige) Quantoren herüber!  $\forall x \exists y F \not\equiv \exists y \forall x F$ ! Und darauf achten, dass bei Negation und vorne in der Implikation der Quantor flippt, wenn man ihn nach vorne zieht.

## Zusammenfassung

#### Wir haben heute:

- Normalformen basierend auf Äquivalenz eingeführt
  - aussagenlogische Äquivalenzen übertragen
  - neue Äquivalenzen durch Quantoren
  - Gebundene Umbenennung von Variablen
  - Pränexform
- Normalformen basierend auf Erfüllbarkeitsäquivalenz eingeführt
  - Bindung freier Variablen
  - Skolemisierung
  - Klauselnormalform

Die Klauselnormalform wird uns bei der prädikatenlogischen Resolution niitzen!