
Plugin-Agents as Conceptual Basis for Flexible

Software Structures

Lawrence Cabac, Michael Duvigneau, Daniel Moldt and Benjamin Schleinzer

University of Hamburg, Department of Computer Science,
Vogt-Kölln-Str. 30, D-22527 Hamburg

http://www.informatik.uni-hamburg.de/TGI/

Abstract. To allow for flexibility in software structures (architectures)
especially plugins and agents are proposed solutions. While plugins are
used to support the conceptual and practical issues within component
oriented software environments, agents are used in software areas where
social metaphors like (self-)adaptability, flexibility, mobility, interactivity
etc. are of interest. Common to both approaches is a strong relation
to a service-oriented view on exporting functionality. This contribution
illustrates the idea of the integration of both concepts on the formal basis
of high-level Petri nets.

Keywords: High-level Petri nets, Nets-within-nets, reference nets, Re-

new, plugins, Mulan, multi-agent systems, plugin-agents

1 Introduction

While plugins and agents differ considerably in the current common perspective
of software developers, there are some important similarities. On one side the
area of component oriented computing usually concentrates on the flexible com-
position of software parts. Additional functionality is the main focus (see [1,2]
for a thorough discussion of the concept). On the other side agents focus on the
powerful modeling metaphors and concepts of autonomous behavior, mobility,
pro-activeness, and communicative abilities [3]. There have been approaches to
combine (mainly technical) aspects from both areas, plugin systems and agents
technology [4,5]. This contribution now provides a more conceptual integration
based on the formal model of high-level Petri nets (reference nets [6]). The inte-
gration can be considered as plugin-agents.

2 Conceptual and Technical Background

The three parts Java, Renew and Capa provide a runtime environment for
plugin-agents and applications build on top. Renew can execute a multitude of
net formalisms like reference nets concurrently and is written in Java. Reference
nets combine object-based and nested modeling power with true concurrency.
Capa is a Fipa compliant multi-agent-system that’s implemented in reference
nets and (pure) Java.

Burkhard et al. (Eds.): Multi-Agent Systems and Applications V, LNCS 4696, pp. 340–342, 2007.
c© Springer-Verlag Berlin Heidelberg 2007



Plugin-Agents for Flexible Software Structures 341

Reference nets [6] are based on the colored Petri net formalism. They ex-
tend the colored Petri net formalism by combining the concepts of synchronous
channels and the nets-within-nets concept by Valk [7]. In addition, reference
nets [8] allow for net instances, dynamically changing nested net structures and
the ability to include Java inscriptions. Renew [9] is a tool for the construction
and execution of reference nets and their inspection (monitoring / debugging)
at runtime. Due to the nets-within-nets paradigm, thus allowing to model active
tokens embedded in an environment, the nested structures and the ability to
dynamically change that structure, reference nets are a good choice to model
plugins and agents.

Agents are designed to handle problems of conflicting functionality, service
dependencies, locality and privacy, compatibility and dynamic extensibility [10].
Agents have the ability to act independently and autonomously (i.e. they decide
on their reactions to inputs and act pro-actively, see [3]). Based on [11] Mulan

can be used to build highly abstract models based on agent concepts.
Plugins can be seen as dynamic components [12]. In the same way as compo-

nents, plugins provide functionality extension to enhance the software system [2].
However, plugins can achieve this goal in a dynamical manner by the mechanism
described through the plugin metaphor. All this is supported by a plugin man-
agement system (PMS), which provides an interface to register, deregister and
publish services of the plugins in the system. Each service has a description of
how other plugins can utilize that service. The PMS also handles dependencies
between plugins (compare [13]).

We combine advantages of both areas: agents and plugins. Agents do not
allow to extend the functionality of other agents (entities in the system). They
can nevertheless add to the functionality of a platform. By adding platform
functionality to an agent, it can be extended by a pluggable agent. This idea
leads to a natural inclusion of the plugin concept into agent technology.

Several advantages arise from the concept of a plugin-agent. We can assure
locality for an agent. Usually in a multi-agent system, it is not possible to en-
sure that an addressed agent is located at a given platform. Response times
can be reduced by using direct (synchronous) communication instead of time
consuming (asynchronous) message handling in interactive systems. Nowadays,
hardly any user accepts GUI interfaces that are not responsive. Locality and
direct (proprietary) communication can ensure a secure connection between two
entities. In mobile environments (mobile multi-agent system) user-personalized
plugins are able to provide sensitive personal data and personalized functionality
to mobile users, which can also connect at distinct and versatile platforms to the
multi-agent system.

3 Conclusion

The combination of agent technology and plugin technology seems tempting.
Advantages of both worlds can be used together to achieve more flexibility while
increasing clearness at the same time. Agent technology provides autonomous



342 L. Cabac, M. Duvigneau, D. Moldt and B. Schleinzer

behavior, pro-activity, distribution and even mobility, while plugin technology
provides well established concepts for light-weight extensible architectures.

Through explicit modeling of the concepts (plugin, agent and plugin-agent)
we achieve a clear and well founded architecture. The visual models enable us
to easily transfer conceptual knowledge to other developers. The operational
semantics of the Petri net models allows us to refine the models to obtain a
full fletched running agent framework providing those concepts. The executable
versions allow for application development (rapid prototyping).

References

1. Sametinger, J.: Software Engineering with Reusable Components. Springer (1997)
2. Schumacher, J.: Eine Plugin-Architektur für Renew – Konzepte, Methoden, Um-

setzung. Master’s thesis, University of Hamburg (2003)
3. Wooldridge, M.: Intelligent agents. Multiagent systems: a modern approach to

distributed artificial intelligence (1999) 27–77
4. Minh Vu, C.T.: E2 agent plugin architecture. In: 2005 International Conference

on Integration of Knowledge Intensive Multi-Agent Systems, KIMAS’05: Modeling,
Exploration, and Engineering. (2005)

5. Tu, M.T., Griffel, F., Merz, M., Lamersdorf, W.: A plug-in architecture providing
dynamic negotiation capabilities for mobile agents. Lecture Notes in Computer
Science 1477 (1998) 222–231

6. Kummer, O.: Referenznetze. Logos Verlag, Berlin (2002)
7. Valk, R.: Petri nets as token objects - an introduction to elementary object nets.

In Desel, J., Silva, M., eds.: 19th International Conference on Application and
Theory of Petri nets, Lisbon, Portugal. Number 1420 in LNCS, Berlin, Springer-
Verlag (1998) 1–25

8. Kummer, O.: Introduction to Petri nets and reference nets. Sozionik Aktuell 1

(2001) 1–9 ISSN 1617-2477.
9. Kummer, O., Wienberg, F., Duvigneau, M.: Renew – User Guide. University

of Hamburg, Faculty of Informatics, Theoretical Foundations Group, Hamburg.
Release 2.0 edn. (2004) Available at: http://www.renew.de/.

10. Cabac, L., Duvigneau, M., Moldt, D., Rölke, H.: Agent technologies for plug-in
system architecture design. In: Proceedings of the Workshop on Agent-oriented
Software Engineering (AOSE), Utrecht, Netherlands (2005)

11. Rölke, H.: Modellierung von Agenten und Multiagentensystemen – Grundlagen
und Anwendungen. Volume 2 of Agent Technology – Theory and Applications.
Logos Verlag, Berlin (2004)

12. Eichler, C.: Entwicklung einer Plugin-Architektur für dynamische Komponenten.
Master’s thesis, University of Hamburg (2002)

13. Cabac, L., Duvigneau, M., Moldt, D., Rölke, H.: Modeling dynamic architectures
using nets-within-nets. In: Applications and Theory of Petri Nets 2005. 26th Inter-
national Conference, ICATPN, Miami, USA, 2005. Proceedings. (2005) 148–167

http://www.renew.de/

	Plugin-Agents as Conceptual Basis for Flexible Software Structures
	Lawrence Cabac, Michael Duvigneau, Daniel Moldt and Benjamin Schleinzer

