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Abstract. We show that the familyem = mREG = mCF of regular multiset
languages is closed under applications of finite and iterated multiset-union, finite
and iterated multiset-intersection, and multiset-subtraction. For theSda$z*)

of semilinear subsets &¥, or that ofN¥, Sem := | J,.o Sem(IN¥), this amounts

to verify, that the component-wise maximum, minimum or non-negative subtrac-
tion of pairs of elements from two semi-linear sets is again semi-linear, and that
the iterated application can be replaced by a fixed finite application of multiset-
intersection, respectively multiset-subtraction.

We solve the three questions about closure properties that remained open in
[KuMi 01,KuMi 02], verify that the familymMON is not closed with respect to
multiset-intersection, and correct a small mistake in a proof in [EiSc 69,Bers 79].

1 Introduction

The interest in multisets and subsets of commutative monoids has increased in the last
years. This is described for instance in [HePP 97], [KuPV 01,KuMi 01,KuMi 02], and
many others not cited here. In standard formal language theory, see [Gins @BYaP
already some results have been obtained for commutative strings and languages thereof
in [CrMa 76,Latt 79,Kort 80], to name a few. In comparison, the arbitrary multiset
grammars of [KuPV 01,KuMi 01,KuMi 02] are in some sense equivalent to variants
of vector replacement systems, or Petri nets, see e.g. [JaVa 80,Pete B1,Jard 75].
However, the use of Petri nets is of quitéfdient nature.

In the context of multiset grammars, one began to collect results that parallel those
of standard formal language theory or help to clarify thi#edénce. For example, the
operation of multiset intersection has no adequate counterpart for strings in a non-
commutative monoid. Rational subsets of commutative monoids, on the other hand,
have been studied for a long time in [Pres 30,EiSc 69,GiSp 64,GiSpi6B/]abut the
question of taking the componentwise minimum, maximum, or positive subtraction was
not attacked in those papers, and these problems arose when considering finite multi-
sets, that are equivalent to vector sets. Using the results from [Biry 67,EiSc 69], see also
[Card 75,J& 77], we can solve the open questions from [KuPV 01,KuMi 01,KuMi 02]
without difficulty.
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2 Basic Definitions

Multisets over a domai are, in all generality, total mappings : D — IN U {co},
sometimes written as € (N U {0})P, whereN denotes the non-negative integers. The
valuem(d) gives the number of copies of the elemennh m, andm(d) = o means,
thatd occurs infinitely often withinrm. The usual addition is extended U {co} by
the obviouso + X := X+ o0 := oo for eachx € IN U {co}. Theweightof mis given by
Im| := Y gep M(d), and a multisen € NP is finite, iff M € N.

A usual set can easily be represented as muitise{0, 1}°, that is, the mappinm
is the characteristic function of the set, which is represented. The set of all subsets of
the setM will be denoted by ¥.

We will solely use finite multisets over a linearly ordered domain. For the domain
D :={as,...,a,}, amultisetm can be represented by the veatoe N", for whichm(i)
equals the number of occurrences of the eleragwithin m. In order to avoid the zero
entries in multisets with only a small number offdrent types of elements, we use the
notion from [KuMi 02] and use equivalence classes of strings flirmodulo the well
known Parikh mapping. The Parikh mappigig D* — NP is a homomorphism and
defined byy(w)(d) := |wlq for eachd € D, where|w|y denotes the number of occur-
rences of the symbal within w. The classW] := y~1(¥(W)) = {v € D* | ¢(V) = (W)}
will represent the multiset, wherem(d) = |wiy. Consequently, the empty multiset is
denoted by {].

Definition 1.  a) D® denotes the set of all finite multisets over the domain D. Any
set of multisets is called multiset language, thifsabd all its subsets are multiset
languages.

b) Multiset-addition is defined for nm, € D® by (my + mp)(d) := my(d) + my(d)
for each de D. For multiset languages B C D® let A+ B :={m +mp | my €
A, m; € B}

c) For any multiset language A& D® we define its addition-closures?A= A® U
{{A]}, where & := Jis1 A, A=A +Aand A = A

d) Multiset-subtraction is defined b§d € D : (M — mp)(d) := max0, my(d) —
my(d)).

e) Multiset-inclusion is defined as follows; m my iff Vd € D : my(d) < mp(d).

f.1) Multiset-union is defined byd € D : (my LI mp)(d) := maxmy(d), my(d)).

f.2) For multiset languages,B c D® let AV B:={(my Lmp | (my € A,mp € B}

f.3) For families¥1, F, of (multiset) languages lef; v 5 = {(LyU Ly | (L1 €
F1,L2 € Fa}

g.1) Multiset-intersection is defined Bd € D : (my mny)(d) := min(my(d), np(d)).

g,2) For multiset languages,B < D® let AA B = {(my iy | (Mg € A, € B

g.3) For familiesf1, > of (multiset) languages let; A 72 = {(L1 N Ly | (L1 €
F1. L2 € Fa}.

Remarks on Definition 2.1:
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In many references, e.g. [GrSc 93,HePP 97], the term multiset-union is used instead
of multiset-addition, but our definition of multiset-union coincides with set-union for
those multisets that represent sets. If we identify each eledherid with the multiset
[d], thenD is a multiset language, and the &#t of all multisets oveD is indeed the
full addition-closure of this multiset language. In [KuMi 01,KuMi 02] no distinction
has been made between the full addition-cloffrand the (positive) addition-closure
A%,

Since multiset languages (and families of multiset languages, as well as families of
string languages) are sets, we have to use set-union and set-intersection also in their
original meanings. Hence, as is well known in standard formal language theory, the
vedV) andwedgéA) are used for element-wise union, respectively intersection, of the
members in the multiset languages or families. Those can then be either multisets with
the appropriate maximum or minimum interpretation or they are languages (of strings
or multisets), where usual set-union resp. set-intersection has to be applied.

The setD® of all multisets overD is a commutative monoid with] as neutral
element and multiset-addition as operation. It is well accepted, that the rational subsets
in any commutative monoidM, +,0) are precisely the semi-linear subsetsvbf see
[EiSc 69,Bers 79], where, unfortunately, the proofs are a bit faultye will correct
this in what follows.

Definition 2. Let(M, +, 0) be any commutative monoid with two sided @étnd com-
mutative, associative addition. The famigt(M) is the least family of subsets of M
satisfying the following:

(R1) 0 € Rat(M),

(R2) Yme M : {m} € Rat(M),

(R3) If A B € Rat(M), then also AJ B € Rat(M),
(R4) If A B € Rat(M), then also A+ B € Rat(M),
(R5) If Ae Rat(M), then also A& € Rat(M).

Recall, thatA® := A® U {0} is the (commutative) submonoid generateddyvhere
A® is defined as in ¢) of Def. 2.1, and addition is generalized forAetsdB as in b) of
Def. 2.1. Since in a commutative monoid many equations can be simplified, for instance
(AU B)® = A® + B®, the notion of semi-linear sets eases the discussion. The identifica-
tion of rational subsets d¥l with the semi-linear subsets & has been proven for free
commutative monoids (M,,0) in [GiSp 64,GiSp 65], but is valid also for finitely gen-
erated commutative monoids, that are not freely generated. From the resuédeaf R
[Rede 63], we know, that each finitely generated commutative monoid can be finitely
presented. The commutative monoi#(+, 0) is such an example, that we will make
use of. The monoid¥, +, 0) is the free, commutative monoid engenerators, and
isomorphic to the monoid}®, +, [1]) for any finite seD := {ay, ..., an}. Thereby, each
element is in one-to-one correspondence with tha unit vector'(0,...0,1,0,...0),

L In both proofs it was claimed (in their respective notation) that B®)® = ({c} U B)®. This is
not correct, since in the former set no element fiBfnappears without the constambeing
added at least once.
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denoted here in its transposed versiomdsple, having the figure "1’ at thieth posi-
tion. It is known, [EiSc 69,Bers 79], th&at(M) is a boolean algebra for any finitely
generated monoit¥. We will use this especially foRat(N¥) andRat(Z").

There are some more elementary properties of rational sets, see [EiSc 69,Bers 79],
that shall be listed here for later use.

Theorem 1. Let(M, -, 1), and(M’, ©, €) be finitely generated commutative monoids.

1. For any homomorphism h M — M’, the set (R) € M’ is rational for each
rational subset R of M.

2. For any homomorphism hM — M’, the set h'(R) ¢ M’ is rational for each
rational subset R of K

3. If Ry and R are rational subsets of M, then alsgRRy, Ry xR, , and R \ R, are
rational subsets of M.

In Theorem 2.1 the first entry is easily proved by applying the homomorphism
to the elements within the rational expression Ryrthus yielding the rational ex-
pression forR'. Moreover, 1. and 2. also hold for free and finitely generated, non-
commutative monoids. 3. holds for all finitely generated monoids, which is Corol-
lary Ill.1 in [EiSc 69], and was shown for finitely generated free commutative monoids
(i.e. forNK) in [GiSp 64].

Definition 3. Let (M, +,0) be a commutative monoid,& M, and AC M finite, then
{c} + A® is called linear, and each finite union of linear sets is called semi-linear. We
will omit braces whenever possible, and write é® instead of{c} + A®.

The family of semilinear subsets of a commutative moidid+, 0) is denoted by
Sem(M), and S&em is used to denote the family of all semilinear subseis*dfor all
ke N.

Theorem 2. Rat(M) = Sem(M) holds for any commutative mondii, +, 0).

Proof: Obviously Sem(M) ¢ Rat(M). The converse is proved by structural induc-
tion: First, finite sets are semi-linear and the union of semi-linear sets is semi-linear
again by definition. It remains to show, that semi-linear sets are closed under the ele-
mentwise sum and addition-closure. Sircdistributes over finite unions, we only have
to verify that the sum of two linear sets is semi-linear. In fact, we again obtain a linear
set by the summationc A®) + (d+ B®) = c+d + A® + B® = (c + d) + (AU B)®.

Now, to prove that addition closure of semi-linear sets yields always semi-linear sets,
it is sufficient to show, thatd + A®)® is semi-linear, sinceG U D)® = C® + D®. One
verifies €+ A®)® = {c} + ({c} U B)® U {0}. Together with the trivial equatior\f)® = A®

the proof of Theorem 2.2 is completed.

Corollary 1. For each ke N we have Ae Sem(Z¥) and Be Sem(IN¥) implies An B €
Sem(INK).

Proof: This follows from the first and third entry in Theorem 2.1 by usifg ( 1) :=
(Z*,+,0)and M’, -, 1) := (NX, +, 0): ForA e Rat(Z¥) = Sem(Z¥) we findC := AnNK €
Rat(Z*), sinceNK is an element of the boolean algelRat(Z¥) = Sem(Z¥). Hence, by
Theorem 2.1, 1¢ ¢ NXis h(C) for the embedding homomorphisit Z* — NX, and
thus a rational subset @f¥, too. Sincerat(N¥) = Sem(IN¥) is closed with respect to
intersection, we finally concludén B = C N B € Sem(IN¥).
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3 New closure properties of multiset languages

Definition 4. Let Reg (resp.Cf, Cs) denote the families of regular sets (context-free,
context sensitive languages, respectively).

It was verified in [KuMi 01,KuMi 02] thatSem = mREG, wheremREG denotes
the family of multiset languages generated by regular multiset grammars. This followed
from the well known Theorem of Parikhand can also be deduced with the help of
Theorem 2.2, from [EiSc 69]: If one studies the Parikh image of regular languages in
Reg2*) = Rat(2*), then one may modify any rational expression for alsetRat(>*)
by replacing the non-commutative product by the commutative addition operation, and
the Kleene closure )by the addition-closure ) Working now in the commutative
monoid ¢°, +,[1]) of multisets, the Parikh image for the language represented by the
modified rational expression is identical with that of the former.

In [KuMi 01,KuMi 02] it was left open, whether the familgem(IN¥) is closed with
respect to elementwise multiset-union or multiset-intersection, that is, whisthére
Sem(IN¥) for A, B € Sem(INK) ande € {L1, r}.

Also the question, whethenMON or PsCS = ((Cs) is closed under, i.e., ele-
mentwise multiset-intersection, was not answered in [KuMi 01,KuMi 02].

The latter question can be answered easily:

Theorem 3. The familymMON is not closed with respect to multiset-intersection,

Proof: Let A ;= {[a],[b]}, thenB := AT A = {[4],[a], [b]}, but the empty multiset
[1] cannot be generated from a non-empty axiom using monotone rewriting rules.

However, this proof is not really satisfying, sinéeB € mMON might imply, that
(A B) \ F € mMON for some finite sef. As of now, we were not able to find a
counter example for this statement.

In the following we shall proof that the familgemis closed w.r.t. multiset-union,
multiset-intersection, and multiset-subtraction.

Theorem 4. The familiesRat(Z¥), andRat(N¥) are closed with respect to, r1, and —
that is, for A B € Rat(ZX) (or A, B € Rat(INK)) we have AIB € Rat(Z¥), AnB € Rat(Z"),
and A- B € Rat(Z¥) (e Rat(INK), respectively).

For the proof, we will describe the seisiB, AriB, andA—B by applying operations
to setsA, B € Rat(Z¥) (respectivelyA, B € Rat(NK)), with respect to which the family
Fat (Sem resp.) is closed.

Proof: Let A, B € Rat(Z¥) (respectivelyA, B € Rat(NK)), then by Theorem 2. 1,
3., Ax B e Rat(Z%) (A x B € Rat(N%)). For an easier reading, we will write the
elements ofA x B as matrix with two columns, i.eA x B € Rat(Z*<?). Now we use
the linear mapping : Z*? — 7 to obtain the vectors(a; — by, a, — by, ... a —
by) and "(by — a3, b, — a, ... by — a) from which we retrieve the information about
minimum or maximummaxa;, b)) = &, iff & — bj € N. SinceA x B is rational and
¢ is a homomorphism, it follows that(A x B) is rational, t00.¢(A x B) is defined

2 y(L) € Semfor each context-free (or regular) det Cf (resp.L € Reg)
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by multiplying each element ok x B, represented by & (x 2)-matrix fromzZ? (or

a b1
oo : 10 1 -1 & bp|
IN**¢) with the (2x 4)-matrix¢ = (O 1 -1 1 ) ForX :=| . . |this gives
ax by
Y := ¢(X) € Z¥“ by:
a bl a b1 a — b]_ b1 —a
ao bz 1 0 1 -1 3 ap b2 ap — bg b2 —ay
Do '(o 1 -1 1 )‘ Por a
a b a b a—be bx—a

The resulting rational s& := ¢(AxB) = {Y | Y = X-¢ for X € Ax B} € Rat(Z*%)
will then be intersected with an appropriate rational Betl < r < 2K, that selects
non-negative entries of the last two columns, and is to be followed by an projection
Trmax - Z¥4 — ZX (or similar 7 min, 7r.subt). There exist  different possibilities
to allow a non-negative entry in one of the two last columns of an element (matrix)
Y € C: Thei-th row of Y is either an element & x Z x N x Z, which means that
maxa;, b)) = a, or of Z x Z x Z x N, which means thamaxa;, b;) = b;. For each
of the X possible selections we define the rationalBett Z** and the projections
Tr.max Tr.mins @Ndr, supr that follow the intersectio®, := C N T,. These projections are
defined separately for each of the rowsTpfas follows:

If the i-th row of T, IS ZXZxINXZ, thenn, maxiS the projection onto the first column
of this row of Dy, yielding 7wy max(Dr)(i) = D (i, 1) = &. Likewise,r, min is the projection
onto the second column of this row Bk, yielding 7y min(Dr)(i) = D((i,2) = by, and
T subtr IS the projection onto the third column of this rowdf, yielding 7y supt(Dr)(i) =
D:(i,3) = g — by.

And if thei-th row of T, iISZxZxZxIN, thennr, maxis the projection onto the second
column of this row ofDy, yielding 7, max(Dr)(i) = Dy (i, 2) = bj. Likewise,m; min iS the
projection onto the first column of this row &%, yielding sz, min(Dr)(i) = D((i, 1) = &,
andr; supir IS the fix-projection onto zero, yielding suni(Dr)(i) = O.

It follows, thatAm B = |J mmadDy) is a rational subset &X, as well as are the
1<r<2k
setsALUB= |J mrmin(Dr),andA—B= U 7y.supe(Dr)-

l<r<2k 1<r<2k

This proof is valid also for the case of ordinary semilinear get8 e Rat(IN).
For this conclusion, we start with semi-linear s&t8 € Rat(N) ¢ Sem which are
considered as rational subsetsZif. We then do the transformations in the proof of
Theorem 2.4, yielding LI B € Rat(Z¥), but ALB ¢ NX implies AL B € Rat(N¥) by
Corollary 2.1. The same argumentation can be used foB andA — B.

Having shown, that semi-linear subsetszéfand of N are closed unden, rn, and
positive subtraction, we can in addition conclude, that also the indefinite itertion
or A" of a semi-linear seA C N remains semi-linear. These closure operations are
defined below by the obvious method.

Definition 5. The iterated multiset-union“2and iterated multiset-intersectiori'Af a
set Ae NKis defined by:
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a) A” = JA, where A := A, and A+DY .= AU | A,

i>1
b) A" := [JA, where A := A, and A+D7 .= ADT A,
i>1
Lemma 1. The familySem of semi-linear sets is closed with respect to iterated multiset

union and iterated multiset intersection. That is, the sétsafd A' are semi-linear for
each Ae Sem.

Proof: Let A € Rat(N¥) ¢ Sem then we showA” = A®Y from which the re-
sult follows from Theorem 2.4. For iterated multiset intersection we replabg n,
everywhere.

First we observed C AL A, from which AOY ¢ At+DY follows for eachi > 1.
Now, leta := (a;,ay,...,a) € A” be arbitrary, them = my Limy LI ... LI My_g LI My,
for k vectorsmj, (1 < i < K) having the maximung; as theiri-th component. Hence,

AY ¢ AWY and the result is proven for iterated multiset union. For iterated multiset
intersection recall the above remark.

From Theorem 2.4, we conclude as corollary the solution of the remaining open
question in the table to Theorem 6.2 in [KuMi 01], or in that to Theorem 3.3 in [KuMi 02].

Corollary 2. The familySem= mREG = mCF is closed under applications of multiset-
union, multiset-intersection, and multiset-subtraction.

Acknowledgementl thank my colleague Manfred Kudlek for pointing my interest to some open
questions in the field of multiset languages and multiset rewriting.

References

[Bers 79]  J. Berstel. Transductions and Context-Free Languages, Teubner (1979).

[Biry 67] P. Biryukov. Some algorithmic problems for finitely defined commutative semi-
groups, Siberian Mathematics Jourr@&{1967) 384-391.

[Card 75] E.W. Cardoza. Computational complexity of the word problem for commutative
semigroups, Project MAC, Techn. Memo. 67, M.I.T. (1978),Sc. thesis

[CrMa 76] S. Crespi-Rhegiz4). Mandrioli. Commutative grammars, Calcdl8 (1976) 173—
189.

[DaPa89] J. DassoyGh. Paun. Regulated Rewriting in Formal Language Theory, Springer
Verlag, Berlin, Heidelberg (1989).

[EiSc 69] S. Eilenbergv.P. Schiitzenberger. Rational sets in commutative monoids, Journal
of Algebra,13(1969) 173-191.

[Gins 75]  S. Ginsburg. Algebraic and Automata Theoretic Properties of Formal Languages,
North Holland Publ. Comp. Amsterdam (1975).

[GiSp 64] S. GinsburfE.H. Spanier. Bounded Algol-like languages, Transactions Amer.
Math. Society,113(1964) 333—-368.

[GiSp 65] S. GinsburtE.H. Spanier. Semigroups, Presburger formulas, and languages, Pacific
Journal of Mathematicd,6 (1965) 285-296.

[GrSc 93] D. Grief.D. Schneider. A Logical Approach to Discrete Math. Springer Verlag,
Berlin, Heidelberg (1993).



8 Matthias Jantzen

[HePP 97]

[Jaf 77]
[JaVa 80]

[KuMi 01]

[KuMi 02]

[KuPV 01]

[Kort 80]
[Latt 79]
[Pete 81]

[Pres 30]

[Rede 63]

T. Heash. FaunD. Pixton. Language theory and molecular genetics, in: Hand-
book of Formal Languages, vol 2, G. Rozenberg, A. Salomaa, (Eds.), Springer Ver-
lag, Berlin, Heidelberg (1997)295-360.

J.M. Jdfe. Semilinear sets and applications, Techn. Report/MI'E/ TR-183,
M.L.T. (1977),{M.Sc. thesis

M. JantzefR. Valk. Formal Properties of Pla@&ansition Nets, in: Net Theory and
Applications, W. Brauer (Ed.), Springer Verlag, Berlin, Heidelberg (1980).

M. Kudlek/V. Mitrana. Normal forms of grammars, finite automata, abstract fam-
ilies and closure properties of multiset languages, in: Proc. Multiset Processing,
C.S. Calude et al. (Eds.), Lecture Notes in Comput. 2285 Springer Verlag,
Berlin, Heidelberg (2001) 135-146.

M. Kudlek/V. Mitrana. Closure properties of multiset language families, Funda-
menta Informaticad9 (2002) 191-203.

M. Kudlek'Gh. PaunC. Martn-Vide. Toward a formal macroset theory, in: Proc.
Multiset Processing, C.S. Calude et al. (Eds.), Lecture Notes in Compu223§.
Springer Verlag, Berlin, Heidelberg (2001) 123-133.

J. Kortelainen. Properties of trios and AFLs with bounded or commutative genera-
tors, Dept. of Mathematics, Univ. of Oulu, Finland, Techn. Report No. 53 (1980).
M. Latteux. @nes rationnels commutatifs. J. Comput. Syst. S8.(3) (1979)
307-333.

J.L. Peterson. Petri Net Theory and the Modeling of Systems, Prentice Hall, Engle-
wood Cliffs (1981).

M. Presburgetiber die Vollsandigkeit eines gewissen Systems der Arithmetik
ganzer Zahlen, in welchem die Addition als einzige Operation hervortritt, Sprawoz-
danie z | Kongresu Matematykar Krajow Slowianskich, Warsaw (1930) 92-101.

L. Rdei Theorie der endlich erzeugten Halbgruppen, Hamburger mathem.
Einzelschriften, 41, Physica-Verlag,izburg (1963).



