
Intersecting Multisets and Applications to Multiset
Languages

Matthias Jantzen?
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Abstract. We show that the familySem= mREG = mCF of regular multiset
languages is closed under applications of finite and iterated multiset-union, finite
and iterated multiset-intersection, and multiset-subtraction. For the classSem(�k)
of semilinear subsets of�k, or that of�k, Sem :=

⋃
k≥0Sem(�k), this amounts

to verify, that the component-wise maximum, minimum or non-negative subtrac-
tion of pairs of elements from two semi-linear sets is again semi-linear, and that
the iterated application can be replaced by a fixed finite application of multiset-
intersection, respectively multiset-subtraction.
We solve the three questions about closure properties that remained open in
[KuMi 01,KuMi 02], verify that the familymMON is not closed with respect to
multiset-intersection, and correct a small mistake in a proof in [EiSc 69,Bers 79].

1 Introduction

The interest in multisets and subsets of commutative monoids has increased in the last
years. This is described for instance in [HePP 97], [KuPV 01,KuMi 01,KuMi 02], and
many others not cited here. In standard formal language theory, see [Gins 75,DaPǎ 89],
already some results have been obtained for commutative strings and languages thereof
in [CrMa 76,Latt 79,Kort 80], to name a few. In comparison, the arbitrary multiset
grammars of [KuPV 01,KuMi 01,KuMi 02] are in some sense equivalent to variants
of vector replacement systems, or Petri nets, see e.g. [JaVa 80,Pete 81,Jaff 77,Card 75].
However, the use of Petri nets is of quite different nature.

In the context of multiset grammars, one began to collect results that parallel those
of standard formal language theory or help to clarify the difference. For example, the
operation of multiset intersection has no adequate counterpart for strings in a non-
commutative monoid. Rational subsets of commutative monoids, on the other hand,
have been studied for a long time in [Pres 30,EiSc 69,GiSp 64,GiSp 65,Jaff 77], but the
question of taking the componentwise minimum, maximum, or positive subtraction was
not attacked in those papers, and these problems arose when considering finite multi-
sets, that are equivalent to vector sets. Using the results from [Biry 67,EiSc 69], see also
[Card 75,Jaff 77], we can solve the open questions from [KuPV 01,KuMi 01,KuMi 02]
without difficulty.
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2 Basic Definitions

Multisets over a domainD are, in all generality, total mappingsm : D → � ∪ {∞},
sometimes written asm ∈ (�∪ {∞})D, where� denotes the non-negative integers. The
valuem(d) gives the number of copies of the elementd in m, andm(d) = ∞ means,
that d occurs infinitely often withinm. The usual addition is extended to� ∪ {∞} by
the obvious∞ + x := x+∞ := ∞ for eachx ∈ � ∪ {∞}. Theweightof m is given by
|m| :=

∑
d∈D m(d), and a multisetm ∈ �D is finite, iff |m| ∈ �.

A usual set can easily be represented as multisetm ∈ {0,1}D, that is, the mappingm
is the characteristic function of the set, which is represented. The set of all subsets of
the setM will be denoted by 2M.

We will solely use finite multisets over a linearly ordered domain. For the domain
D := {a1, . . . ,an}, a multisetmcan be represented by the vectorm ∈ �n, for whichm(i)
equals the number of occurrences of the elementai within m. In order to avoid the zero
entries in multisets with only a small number of different types of elements, we use the
notion from [KuMi 02] and use equivalence classes of strings fromD∗ modulo the well
known Parikh mapping. The Parikh mappingψ : D∗ → �|D| is a homomorphism and
defined byψ(w)(d) := |w|d for eachd ∈ D, where|w|d denotes the number of occur-
rences of the symbold within w. The class [w] := ψ−1(ψ(w)) = {v ∈ D∗ | ψ(v) = ψ(w)}
will represent the multisetm, wherem(d) = |w|d. Consequently, the empty multiset is
denoted by [λ].

Definition 1. a) D~ denotes the set of all finite multisets over the domain D. Any
set of multisets is called multiset language, thus D~ and all its subsets are multiset
languages.

b) Multiset-addition is defined for m1,m2 ∈ D~ by (m1 + m2)(d) := m1(d) + m2(d)
for each d∈ D. For multiset languages A, B ⊆ D~ let A+ B := {m1 + m2 | m1 ∈

A,m2 ∈ B}.

c) For any multiset language A⊆ D~ we define its addition-closures A~ := A⊕ ∪
{[λ]}, where A⊕ :=

⋃
i≥1 Ai , Ai+1 := Ai + A and A1 := A.

d) Multiset-subtraction is defined by∀d ∈ D : (m1 − m2)(d) := max(0,m1(d) −
m2(d)).

e) Multiset-inclusion is defined as follows: m1 v m2 iff ∀d ∈ D : m1(d) ≤ m2(d).

f.1) Multiset-union is defined by∀d ∈ D : (m1 tm2)(d) := max(m1(d),m2(d)).

f.2) For multiset languages A, B ⊆ D~ let A∨ B := {(m1 tm2 | (m1 ∈ A,m2 ∈ B}.

f.3) For familiesF1,F2 of (multiset) languages letF1 ∨ F2 := {(L1 ∪ L2 | (L1 ∈

F1, L2 ∈ F2}.

g.1) Multiset-intersection is defined by∀d ∈ D : (m1um2)(d) := min(m1(d),m2(d)).

g,2) For multiset languages A, B ⊆ D⊕ let A∧ B := {(m1 um2 | (m1 ∈ A,m2 ∈ B}.

g.3) For familiesF1,F2 of (multiset) languages letF1 ∧ F2 := {(L1 ∩ L2 | (L1 ∈

F1, L2 ∈ F2}.

Remarks on Definition 2.1:
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In many references, e.g. [GrSc 93,HePP 97], the term multiset-union is used instead
of multiset-addition, but our definition of multiset-union coincides with set-union for
those multisets that represent sets. If we identify each elementd ∈ D with the multiset
[d], thenD is a multiset language, and the setD~ of all multisets overD is indeed the
full addition-closure of this multiset language. In [KuMi 01,KuMi 02] no distinction
has been made between the full addition-closureA~ and the (positive) addition-closure
A⊕.

Since multiset languages (and families of multiset languages, as well as families of
string languages) are sets, we have to use set-union and set-intersection also in their
original meanings. Hence, as is well known in standard formal language theory, the
vee(∨) andwedge(∧) are used for element-wise union, respectively intersection, of the
members in the multiset languages or families. Those can then be either multisets with
the appropriate maximum or minimum interpretation or they are languages (of strings
or multisets), where usual set-union resp. set-intersection has to be applied.

The setD~ of all multisets overD is a commutative monoid with [λ] as neutral
element and multiset-addition as operation. It is well accepted, that the rational subsets
in any commutative monoid (M,+,0) are precisely the semi-linear subsets ofM, see
[EiSc 69,Bers 79], where, unfortunately, the proofs are a bit faulty1. We will correct
this in what follows.

Definition 2. Let (M,+,0) be any commutative monoid with two sided unit0 and com-
mutative, associative addition. The familyRat(M) is the least family of subsets of M
satisfying the following:

(R1) ∅ ∈ Rat(M),

(R2) ∀m ∈ M : {m} ∈ Rat(M),

(R3) If A, B ∈ Rat(M), then also A∪ B ∈ Rat(M),

(R4) If A, B ∈ Rat(M), then also A+ B ∈ Rat(M),

(R5) If A∈ Rat(M), then also A⊕ ∈ Rat(M).

Recall, thatA~ := A⊕ ∪ {0} is the (commutative) submonoid generated byA, where
A⊕ is defined as in c) of Def. 2.1, and addition is generalized for setsA andB as in b) of
Def. 2.1. Since in a commutative monoid many equations can be simplified, for instance
(A∪ B)~ = A~ + B~, the notion of semi-linear sets eases the discussion. The identifica-
tion of rational subsets ofM with the semi-linear subsets ofM has been proven for free
commutative monoids (M,+,0) in [GiSp 64,GiSp 65], but is valid also for finitely gen-
erated commutative monoids, that are not freely generated. From the results of Rédei,
[Rede 63], we know, that each finitely generated commutative monoid can be finitely
presented. The commutative monoid (�k,+,0) is such an example, that we will make
use of. The monoid (�k,+,0) is the free, commutative monoid onn generators, and
isomorphic to the monoid (D~,+, [λ]) for any finite setD := {a1, . . . ,an}. Thereby, each
elementai is in one-to-one correspondence with thei-th unit vector>(0, . . .0,1,0, . . .0),

1 In both proofs it was claimed (in their respective notation) that (c+ B~)~ = ({c} ∪ B)~. This is
not correct, since in the former set no element fromB~ appears without the constantc being
added at least once.
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denoted here in its transposed version asn-tuple, having the figure ’1’ at thei-th posi-
tion. It is known, [EiSc 69,Bers 79], thatRat(M) is a boolean algebra for any finitely
generated monoidM. We will use this especially forRat(�k) andRat(�k).

There are some more elementary properties of rational sets, see [EiSc 69,Bers 79],
that shall be listed here for later use.

Theorem 1. Let (M, ·,1), and(M′,�,e) be finitely generated commutative monoids.

1. For any homomorphism h: M → M′, the set h(R) ⊆ M′ is rational for each
rational subset R of M.

2. For any homomorphism h: M → M′, the set h−1(R) ⊆ M′ is rational for each
rational subset R of M′.

3. If R1 and R2 are rational subsets of M, then also R1 ∩R2, R1 ×R2 , and R1 \R2 are
rational subsets of M.

In Theorem 2.1 the first entry is easily proved by applying the homomorphism
to the elements within the rational expression forR, thus yielding the rational ex-
pression forR′. Moreover, 1. and 2. also hold for free and finitely generated, non-
commutative monoids. 3. holds for all finitely generated monoids, which is Corol-
lary III.1 in [EiSc 69], and was shown for finitely generated free commutative monoids
(i.e. for�k) in [GiSp 64].

Definition 3. Let (M,+,0) be a commutative monoid, c∈ M, and A⊆ M finite, then
{c} + A~ is called linear, and each finite union of linear sets is called semi-linear. We
will omit braces whenever possible, and write c+ A~ instead of{c} + A~.

The family of semilinear subsets of a commutative monoid(M,+,0) is denoted by
Sem(M), andSem is used to denote the family of all semilinear subsets of�k for all
k ∈ �.

Theorem 2. Rat(M) = Sem(M) holds for any commutative monoid(M,+,0).

Proof: ObviouslySem(M) ⊆ Rat(M). The converse is proved by structural induc-
tion: First, finite sets are semi-linear and the union of semi-linear sets is semi-linear
again by definition. It remains to show, that semi-linear sets are closed under the ele-
mentwise sum and addition-closure. Since+ distributes over finite unions, we only have
to verify that the sum of two linear sets is semi-linear. In fact, we again obtain a linear
set by the summation: (c + A~) + (d + B~) = c + d + A~ + B~ = (c + d) + (A ∪ B)~.
Now, to prove that addition closure of semi-linear sets yields always semi-linear sets,
it is sufficient to show, that (c + A~)~ is semi-linear, since (C ∪ D)~ = C~ + D~. One
verifies (c+A~)~ = {c}+ ({c} ∪B)~ ∪ {0}. Together with the trivial equation (A~)~ = A~

the proof of Theorem 2.2 is completed.

Corollary 1. For each k∈ � we have A∈ Sem(�k) and B∈ Sem(�k) implies A∩ B ∈
Sem(�k).

Proof: This follows from the first and third entry in Theorem 2.1 by using (M, ·,1) :=
(�k,+,0) and (M′, ·,1) := (�k,+,0): ForA ∈ Rat(�k) = Sem(�k) we findC := A∩�k ∈

Rat(�k), since�k is an element of the boolean algebraRat(�k) = Sem(�k). Hence, by
Theorem 2.1, 1.,C ⊆ �k is h(C) for the embedding homomorphismh : �k → �k, and
thus a rational subset of�k, too. SinceRat(�k) = Sem(�k) is closed with respect to
intersection, we finally concludeA∩ B = C ∩ B ∈ Sem(�k).
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3 New closure properties of multiset languages

Definition 4. Let Reg (resp.Cf , Cs) denote the families of regular sets (context-free,
context sensitive languages, respectively).

It was verified in [KuMi 01,KuMi 02] thatSem= mREG, wheremREG denotes
the family of multiset languages generated by regular multiset grammars. This followed
from the well known Theorem of Parikh2, and can also be deduced with the help of
Theorem 2.2, from [EiSc 69]: If one studies the Parikh image of regular languages in
Reg(Σ∗) = Rat(Σ∗), then one may modify any rational expression for a setL ∈ Rat(Σ∗)
by replacing the non-commutative product by the commutative addition operation, and
the Kleene closure ( )∗ by the addition-closure ( )~. Working now in the commutative
monoid (Σ⊕,+, [λ]) of multisets, the Parikh image for the language represented by the
modified rational expression is identical with that of the former.

In [KuMi 01,KuMi 02] it was left open, whether the familySem(�k) is closed with
respect to elementwise multiset-union or multiset-intersection, that is, whetherA} B ∈
Sem(�k) for A, B ∈ Sem(�k) and} ∈ {t,u}.

Also the question, whethermMON or PsCS= ψ(Cs) is closed underu, i.e., ele-
mentwise multiset-intersection, was not answered in [KuMi 01,KuMi 02].

The latter question can be answered easily:

Theorem 3. The familymMON is not closed with respect to multiset-intersection,u.

Proof: Let A := {[a], [b]}, thenB := Au A = {[λ], [a], [b]}, but the empty multiset
[λ] cannot be generated from a non-empty axiom using monotone rewriting rules.

However, this proof is not really satisfying, sinceA, B ∈ mMON might imply, that
(A u B) \ F ∈ mMON for some finite setF. As of now, we were not able to find a
counter example for this statement.

In the following we shall proof that the familySem is closed w.r.t. multiset-union,
multiset-intersection, and multiset-subtraction.

Theorem 4. The familiesRat(�k), andRat(�k) are closed with respect tot, u, and−
that is, for A, B ∈ Rat(�k) (or A, B ∈ Rat(�k)) we have AtB ∈ Rat(�k), AuB ∈ Rat(�k),
and A− B ∈ Rat(�k) (∈ Rat(�k), respectively).

For the proof, we will describe the setsAtB, AuB, andA−Bby applying operations
to setsA, B ∈ Rat(�k) (respectivelyA, B ∈ Rat(�k)), with respect to which the family
Rat (Sem, resp.) is closed.

Proof: Let A, B ∈ Rat(�k) (respectivelyA, B ∈ Rat(�k)), then by Theorem 2. 1,
3., A × B ∈ Rat(�2k) (A × B ∈ Rat(�2k)). For an easier reading, we will write the
elements ofA × B as matrix with two columns, i.e.,A × B ∈ Rat(�k×2). Now we use
the linear mappingϕ : �k×2 → �k×4 to obtain the vectors>(a1 − b1,a2 − b2, . . .ak −

bk) and>(b1 − a1,b2 − a2, . . .bk − ak) from which we retrieve the information about
minimum or maximum:max(ai ,bi) = ai , iff ai − bi ∈ �. SinceA × B is rational and
ϕ is a homomorphism, it follows thatϕ(A × B) is rational, too.ϕ(A × B) is defined

2 ψ(L) ∈ Semfor each context-free (or regular) setL ∈ Cf (resp.L ∈ Reg)
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by multiplying each element ofA × B, represented by a (k × 2)-matrix from�k×2 (or

�k×2) with the (2× 4)-matrixϕ :=
(
1 0 1 −1
0 1 −1 1

)
. For X :=


a1 b1

a2 b2
...

...
ak bk

 this gives

Y := ϕ(X) ∈ �k×4 by:
a1 b1

a2 b2
...

...
ak bk

 ·
(
1 0 1 −1
0 1 −1 1

)
=


a1 b1 a1 − b1 b1 − a1

a2 b2 a2 − b2 b2 − a2
...

...
...

...
ak bk ak − bk bk − ak

 .
The resulting rational setC := ϕ(A×B) = {Y | Y = X ·ϕ for X ∈ A×B} ∈ Rat(�k×4)

will then be intersected with an appropriate rational setTr , 1 ≤ r ≤ 2k, that selects
non-negative entries of the last two columns, and is to be followed by an projection
πr,max : �k×4 → �k (or similar πr,min, πr,subtr). There exist 2k different possibilities
to allow a non-negative entry in one of the two last columns of an element (matrix)
Y ∈ C: The i-th row of Y is either an element of� × � × � × �, which means that
max(ai ,bi) = ai , or of � × � × � × �, which means thatmax(ai ,bi) = bi . For each
of the 2k possible selections we define the rational setTr ⊆ �

k×4 and the projections
πr,max, πr,min, andπr,subtr that follow the intersectionDr := C∩Tr . These projections are
defined separately for each of the rows ofTr as follows:

If the i-th row ofTr is�×�×�×�, thenπr,max is the projection onto the first column
of this row ofDr , yieldingπr,max(Dr )(i) = Dr (i,1) = ai . Likewise,πr,min is the projection
onto the second column of this row ofDr , yielding πr,min(Dr )(i) = Dr (i,2) = bi , and
πr,subtr is the projection onto the third column of this row ofDr , yieldingπr,subtr(Dr )(i) =
Dr (i,3) = ai − bi .

And if the i-th row ofTr is�×�×�×�, thenπr,max is the projection onto the second
column of this row ofDr , yieldingπr,max(Dr )(i) = Dr (i,2) = bi . Likewise,πr,min is the
projection onto the first column of this row ofDr , yieldingπr,min(Dr )(i) = Dr (i,1) = ai ,
andπr,subtr is the fix-projection onto zero, yieldingπr,subtr(Dr )(i) = 0.

It follows, thatAu B =
⋃

1≤r≤2k
πr,max(Dr ) is a rational subset of�k, as well as are the

setsAt B =
⋃

1≤r≤2k
πr,min(Dr ), andA− B =

⋃
1≤r≤2k

πr,subtr(Dr ).

This proof is valid also for the case of ordinary semilinear setsA, B ∈ Rat(�k).
For this conclusion, we start with semi-linear setsA, B ∈ Rat(�k) ⊆ Sem, which are
considered as rational subsets of�k. We then do the transformations in the proof of
Theorem 2.4, yieldingA t B ∈ Rat(�k), but AtB ⊆ �k implies A t B ∈ Rat(�k) by
Corollary 2.1. The same argumentation can be used forAu B andA− B.

Having shown, that semi-linear subsets of�k and of�k are closed undert,u, and
positive subtraction, we can in addition conclude, that also the indefinite iterationAt,
or Au of a semi-linear setA ⊆ �k remains semi-linear. These closure operations are
defined below by the obvious method.

Definition 5. The iterated multiset-union At,and iterated multiset-intersection Au of a
set A∈ �k is defined by:
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a) At :=
⋃
i≥1

Ai , where A1 := A, and A(i+1)t := A(i)t t A.

b) Au :=
⋃
i≥1

Ai , where A1 := A, and A(i+1)u := A(i)u u A.

Lemma 1. The familySem of semi-linear sets is closed with respect to iterated multiset
union and iterated multiset intersection. That is, the sets At, and Au are semi-linear for
each A∈ Sem.

Proof: Let A ∈ Rat(�k) ⊆ Sem, then we showAt = A(k)t, from which the re-
sult follows from Theorem 2.4. For iterated multiset intersection we replacet by u,
everywhere.

First we observeA ⊆ A t A, from which A(i)t ⊆ A(i+1)t follows for eachi ≥ 1.
Now, let a := (a1,a2, . . . ,ak) ∈ At be arbitrary, thena = m1 tm2 t . . . tmk−1 tmk,
for k vectorsm j , (1 ≤ i ≤ k) having the maximumai as theiri-th component. Hence,
At ⊆ A(k)t and the result is proven for iterated multiset union. For iterated multiset
intersection recall the above remark.

From Theorem 2.4, we conclude as corollary the solution of the remaining open
question in the table to Theorem 6.2 in [KuMi 01], or in that to Theorem 3.3 in [KuMi 02].

Corollary 2. The familySem= mREG = mCF is closed under applications of multiset-
union, multiset-intersection, and multiset-subtraction.

Acknowledgement:I thank my colleague Manfred Kudlek for pointing my interest to some open
questions in the field of multiset languages and multiset rewriting.
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[Rede 63] L. Ŕedei Theorie der endlich erzeugten Halbgruppen, Hamburger mathem.
Einzelschriften, 41, Physica-Verlag, Ẅurzburg (1963).


