Generating Code Structures for Petri Net-Based
Agent Interaction Protocols Using Net Components

Lawrence Cabac

Department of Computer Science, TGI, University of Hamburg

6cabac@informatik.uni-hamburg.de

March 31, 2004

Abstract

In this paper we introduce a straight forward approach for generating Petri Net code
structures from AUML agent interaction protocol diagrams. This approach is based on the
usage of net components which provide basic tasks and the structure for Petri Nets. Agent
interaction protocol diagrams are used to model agent conversations on an abstract level. By
mapping elements of the diagrams to net components we are able to generate code structures
from the drawings. We provide tool support for this approach by combining a tool for net
components with a tool for drawing agent interaction protocol diagrams. This combined tool
is integrated into Renew (The Reference Net Workshop).

Keywords: agents, agent interaction protocols, AUML, high-level Petri nets, Mulan, net components,
reference nets, Renew.

1 Introduction

Computer aided software engineering (CASE) tools are programs that support the development of
large software systems. They provide tools for modeling and constructing applications. Further-
more they provide the possibility to generate code from the models to facilitate the development
and to strip the developing process of unnecessary recurrent and error-prone manual tasks. Suc-
cessful tools for various programming languages exist and are in extensive use.

While modeling with Petri nets is common, still the idea of programming with Petri nets is a
possibility that is not well accepted. But especially when it comes to concurrent and distributed
processes, e.g. multi agent systems, the advantages of Petri nets are undeniable. For this reason we
build concurrent and distributed software systems as multi agent systems on the basis of reference
nets [§] - a high-level Petri net formalism. The framework’s reference architecture for the multi
agent system is Mulan (MULti Agent Nets, [, E]). It is implemented in reference nets and can
be executed efficiently in Renew (The Reference Net Workshop, [9], [8]).

The process of implementing application software in Mulan requires the construction of Mulan
protocols which define the behavior of the agents. A Mulan protocol is a reference net that
describes the communication and the internal behavior of an agent. Since the construction of
a large system requires building many Mulan protocols which frequently use similar parts of
functionality, the need for software engineering methods and techniques becomes evident. This
includes standardization, conventions and tool support.

We have established two methods to handle the complexity of Mulan protocols and support
their construction. First we use net components [2] to construct the Mulan protocols to achieve a
unified and structured form of the protocols. Second we model the agent interaction on an abstract
level using agent interaction protocol diagrams [3]. Agent interaction protocol diagrams are defined

2 NET STRUCTURES 2

in the AUML (Agent Unified Modeling Language [6]) standardized by the FIPA (Foundation of
Intelligent Physical Agents [5]). The advantages of modeling in AUML are its standardization and
the intuitive graphical representation of the architecture and the processes.

By offering tool support for the construction and modeling of Mulan protocols, we have suc-
ceeded in speeding up their development. Also the form and the structure of Mulan protocols
have become unified and easily readable. Another advantage is that agents’ communications are
documented in the agent interaction protocol diagrams. Therefore the oversight over the system
has been enhanced.

In this paper we want to describe one further step towards an integrated development environ-
ment for Mulan applications. By combining the two described approaches we are able to generate
code (Petri net) structures from the agent interaction protocol diagrams.

The following pages will briefly introduce the Mulan net components and the modeling of agent
conversations with agent interaction protocol diagrams. Finally a prototype tool for code (Petri
net) generation will be shown by a simple example.

2 Net Structures

In this section we introduce net components, show how they provide a structure for Mulan pro-
tocols, describe the way we model agent communication with AUML diagrams and present how
agent interaction protocol diagrams are mapped to Petri net structures using the net components
for Mulan protocols.

2.1 Net Components

A net component is a subnet. It consists of net elements and additional elements such as default
inscription or comments. It fulfills one basic task that is so general that the net component can
be applied to a broad variety of nets. A net component is defined by its net elements but it also
has a fixed geometrical structure and orientation. This structure contributes to the net structure
of the net in which the net component is used. In addition, the geometrical form makes the net
component easily identifiable to the developer.

NC in NC out NC cond NC psplit NC iterator NC forall
@-vTd—o—Orerrz
—O

Object
Object @)

; out(p2
) = PSPLIT

cond =

action it = v.terator();
action cond = it.hasNext();

action p2=SI0Creator.createActionRequest(
ald,
“content)

Figure 1: A selection of the Mulan net components responsible for message passing, splits and
loops.

A set of net components for the Mulan protocols exists that facilitates the construction (mod-
eling) of these Petri nets. Figure [l shows a selection of the most frequent used Mulan net com-
ponents. The readability of Mulan protocols that are built with net components is increased
significantly. Furthermore the structure of the net is unified since it depends on the structure of
the net components.

2 NET STRUCTURES 3

2.2 Structured Petri Nets

Petri nets are graphs, i.e. they have a graphical representation. A graphical representation is
useful for the understanding of the behavior of a model. A graphic/diagrammatic representation
can be more comprehensive than a textual. Nevertheless a diagram can also be very confusing
if it does not provide a clear structure or if substructures of similar behavior are displayed in
many different ways. One of the greatest advantages of a diagrammatic representation is that
reappearing structures can be perceived by the human cognitive system without any effort.

With the usage of net components reappearing net structures are effortlessly recognizable and
a conventionalized style of the developed Petri nets is achieved.

2.3 Modeling Agent Interaction

Modeling agent interaction can be done by using several means. The FIPA [5] uses the AUML
agent interaction protocol diagrams [6] for modeling interactions between agents. These diagrams
are an extension of the Unified Modeling Language (UML) sequence diagrams [I] but they are
more powerful in their expressiveness. They can fold several sequences into one diagram by adding
additional elements (AND, XOR and OR) to the usual sequence diagram. Thus they can describe
a set of scenarios. Figure Plshows the FIPA Request Protocol and a compliant Producer Consumer
example.

\ K Producer-Consumer Example \

FIPA-Request-Protocol :
following the FIPA-Request-Protocol

Initiator Participant

Producer Consumer

request

request("consume")

refuse U

[refused] #;—

refuse

agree

[agreed and
notification necessary]
refuse ; agree
failure 8

inform-done : inform

[agreed] — ﬂ failure
inform-result : inform

NS 2N el /

Figure 2: Agent interaction protocol diagrams of the FIPA Request Protocol and a compliant
Producer Consumer example.

There are several advantages in the method of modeling agent interactions with agent interac-
tion protocol diagrams. Three of them are:

e The models are easily readable by all participants, because they are close to UML.
e Abstract modeling increases the oversight over the system.

e A means of communication, specification and documentation is established.

3 FROM MODEL TO NET 4

2.4 Mapping Agent Interaction Protocol Diagrams to Mulan Protocols

The combination of the two introduced tools is done as follows. By using agent interaction protocol
diagrams for modeling agent communication the structure of the Mulan protocols can be derived
directly from the diagram. This is done by mapping the relating elements in the agent interaction
protocol diagrams to the net components. In detail this means (compare with figures [l and Bl to

B):

o A message arc is the abstract representation of the basic messaging net components (NC out
and NC in).

e A split figure is the abstract representation of the conditional (NC cond) or a parallel split
(NC psplit).

e A life line between a role descriptor and an activation marks the start of a protocol (NC
start)

Several other net components are not yet represented in the abstract model since there exist
no elements to represent their functionality in agent interaction protocol diagrams. It seems that
for some of these basic tasks the notation of the agent interaction protocol diagrams has to be
extended.

e Loops are not well represented yet. There exist proposals for their representation, but there
is no way yet to determine whether a sequential or a concurrent process is desired.

e Sub-calls: It is possible to nest agent interaction protocol diagrams, but the semantics for
that is not fixed.

In general the main problem is that the semantics of the agent interaction protocol diagrams
are not very clear nor fixed. This can be of advantage while modeling. The process of modeling
can be accelerated by postponing the description of details to the implementation or some implicit
knowledge defines the missing semantics. In contrast, if there is the need to define a specific
mapping, clear semantics is desired.

3 From Model to Net

This section describes the tool support for mapping agent interaction protocol diagrams to Mulan
protocol structures. The tool generates Petri net structures that can be compared to program
source code skeletons. To achieve a functional Mulan protocol the inscriptions have to be adjusted
and - if needed - the classes for the messages have to be implemented. Furthermore, the net has
to be adjusted (refactored) if an element has to be used that is not yet provided, e.g. loops.

3.1 Code Generation

In the last developer version of Renew, a tool for applying net components to nets and a tool
to draw agent interaction protocol diagrams were included. The developers of Mulan protocols
were able to draw diagrams to model the behavior of agents with the diagram tool. Diagrams
were used as means of specification, documentation and communication among the developers
of Mulan applications. The basic communication protocols were established and defined using
these diagrams. So agent interaction protocol diagrams only defined the way of communication
between the agents but not the internal behavior. Usually, but not necessarily, different developers
implement the Mulan protocols for each agent defining the external and the internal behavior of
an agent. As long as the different developers constructed the Mulan protocol according to the
given agent interaction protocol diagrams, the agents could communicate in a correct way.

The process of constructing the Mulan protocol requires the manual task of mapping the
diagram structures to each Mulan protocol. This was done by connecting net components with each

3 FROM MODEL TO NET 5)

other using the net components tool. Many elements in the agent interaction protocol diagrams
could be mapped onto net components in a straight forward fashion as described in section 224
It seems obvious that this task can be performed automatically by the here introduced tool.
Since agent interaction protocol diagrams describe the interactions and the splitting of activities,
we decided to implement a prototype that is capable of generating Petri net skeletons from the
diagrams that reflect these structures. To be able to execute the generated code, it has to be refac-
tored and adjusted with additional functionality. This is a common approach for code generation:
The parts that can be derived from the model are generated and the rest is added manually.

3.2 Geometrical Arrangement of Mulan Protocols

In addition to textual code generation, the construction of Petri nets also has to deal with the
layout of the generated nets. The structure of nets is crucial to readability. If the code is used
as it is generated, there is no need to design the layout of the code. But if the code has to be
adjusted, the programmer has to understand the code. So the layout becomes important.

Net components provide a structure for Petri nets. This is not only true to the manually made
nets but also for generated code. For each net component only some additional information is
needed that provides the knowledge of how it can be connected to other net components and how
this is reflected in the layout. The net structure results from the smaller structure of the net
components just like the structure of a snowflake results from the structures of atoms of water.
So net components provide the structure by imposing their own structure onto the net structure.

3.3 Example: Producer Consumer

Generating code skeletons from the Producer Consumer example agent interaction protocol dia-
gram is possible and results in two Mulan Protocol skeletons. Figure Bl shows the diagram from
which the code is generated.

Figure Bl shows the source of the model augmented with the geometrical representation of the
corresponding net components and figures Bl and [show the two parts of the model that match
the two Mulan protocols, rotated by ninety degrees. The resulting skeletons are shown in Figures
and All augmented models are just presented here to illustrate the matching of diagram
elements to net components. They are not necessary for the generation of the Mulan protocols.
The generated Mulan protocol skeletons are shown (figures Bl and B)as they are generated without
any modification of the nets or the inscriptions.

3 FROM MODEL TO NET 6

Producer Consumer

Figure 3: Source for generation of the Producer Consumer example.

Producer Consumer

5)

Figure 4: The source from figure Bl with the geometrical representation of the corresponding net
components.

3 FROM MODEL TO NET 7

Producer

Figure 5: The Producer part of the source from figure Bl with the geometrical representation of the
corresponding net components. Rotated by ninety degrees to fit the orientation of the resulting

Mulan protocol.

@ Td——Operz
0

@ T——Orerz @+ C3——Orerz
in(p)
access(wb) O
pwOwissen
b
IN
pp,
i) ‘out(p2)
7y
2
b P
IN
:start() P, p2
action p2=SI0Creator.createActionRequest(
import de.renew.agent repr.acl.*; ald, .
import java.util; "content’) out(p2)
import de.uni_hamburg.informatik.tgi.siedler.insel.*;
import de.uni_hamburg.informatik tgi.siedler.utiL*
import de.uni_hamburg.informatik.tgi.siedler.Bank Transaktion;
import de.uni_hamburg.informatik.tgi.siedler.sl.%
import de.renew.simulator.Netinstance;
out

Netinstance wb;

AcIMessage p, p2,nachricht,ack ;
Agentidentifier ald;

Insel insel;

Transaktion e; action p2=Sl0Creator.createActionRequest(
boolean cond; -

poclean ‘content’)

Object[] os;

String s;

Vector v;

inty;

lterator it;

Figure 6: Generated Producer Mulan protocol skeleton

3 FROM MODEL TO NET 8

Consumer

Figure 7: The Consumer part of the source from figure Bl with the geometrical representation of
the corresponding net components. Rotated by ninety degrees to fit the orientation of the resulting
Mulan protocol.

out(p2)

ction p2=SI0Creator.createActionRequest(
ald,

@ T——Oper2 -

access(wh) “content’)
®—>@’.+?Wlssen
ction p2=SI0Creator.createActionRequest(
ald
y g “out(p2
:in(p) “content’) (p2)
P

IN @
start() PP,

1

cond =
action p2=Sl0Creator.createActionRequest(
ald,
“content’)

‘out(p2)

import de.renew.agent.repr.acl.*;
import java.util.*;

import de.uni_hamburg.informatik.tgi.siedler.insel.*; action p2=SI0Creator.createActionRequest(
import de.uni_hamburg.informatik.tgi.siedler.util.*; ald,

import de.uni_hamburg.informatik.tgi.siedler.Bank.Transaktion;

import de.uni_hamburg.informatik.tgi.siedler.sl.*;

import de.renew.simulator.Netinstance;

“content”)

Netinstance wb;

AcIMessage p, p2,nachricht,ack ;
Agentidentifier ald;

Insel insel;

Transaktion e;

boolean cond;
Object o;
Object(] os;
String's;
Vector v;
inty;

Iterator it;

Figure 8: Generated Consumer Mulan protocol skeleton.

4 CONCLUSION 9

The results of this simple example are satisfying. The Mulan protocols do not need to be
refactored because the conversation deals only with communication and decisions. But to convert
these skeletons into executable Mulan protocols, we still have to work on them. The relevant data
has to be extracted from the messages and from the agents’ knowledge bases. Furthermore we
have to define the decisions and the outgoing messages.

It seems that for more complex communication protocols, dealing with internal behavior, loops
or sub-calls, this simple approach is not powerful enough. But since most of the used net compo-
nents deal with message passing, splits, starting and stopping, this approach will already generate
more than ninety percent of the Petri net code structure. Only the parts that deal with broadcast-
ing or multi-casting messages, or the parts that deal with internal behavior have to be adjusted
manually.

4 Conclusion

Software engineering methods have been developed to enhance the construction of large software
systems and are used and applied successfully. These methods can also be applied for software
development based on high-level Petri nets. With more extensive use of these conventional tech-
niques the process of Petri net-based software developing can be improved. The advantages of
Petri nets lie in in their inherent concurrency; UML is a powerful modeling language that is well
accepted and widely spread. Both, UML and Petri nets, can contribute to the construction of
large distributed and/or concurrent systems. Combining their advantages results in a powerful
method to develop applications.

The advantages of tool supported Mulan protocol development are clear. By using net com-
ponents the Mulan protocols are structured and their structure is unified. This increases the
readability of Mulan protocols and the software development is accelerated. The integration of
UML-based modeling into the developing process has contributed to the clearness of the system
and its overall structure. Besides the developing process, also the focus of development was al-
tered by using AUML. The center of focus shifted from the agent’s process to the communication
between the agents.

The introduction of UML-based modeling into the developing process and the unification of net
structures turned out to be a successful approach. Nevertheless, the integration of conventional
methods (UML) and development of software with Petri nets can be driven further. In this paper
we presented one step towards an integrated development environment (IDE) for the construction
of Mulan-based application software. By merging the two approaches, net components and agent
interaction protocol diagrams, we are able to generate skeletons of Mulan protocols from interaction
diagrams.

For the development of large applications on the basis of the Petri net-based multi agent system
Mulan tool support is needed on different levels of abstraction. This includes the construction
of Mulan protocols, the modeling of agent interaction and the debugging of the system during
development. The first two points are covered by the tool support for net components and agent
interaction protocol diagrams. Additionally we now can also ease the developing process by
generating code (Petri net) structures from diagrams.

The integration of methods and techniques can also be driven further. For a representation
of all Mulan net components in the agent interaction protocol diagrams the notation for these
diagrams has to be augmented by corresponding elements. Another useful approach is to integrate
a round-trip engineering functionality into the diagram tool so that changes that are made in the
Mulan protocols are reflected in the diagrams.

References

[1] Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Language User
Guide. Addison-Wesley, Reading, Massachusetts, 1996.

REFERENCES 10

2]

[3]

Lawrence Cabac. FEntwicklung von geometrisch unterscheidbaren Komponenten zur Verein-
heitlichung von Mulan-Protokollen. Studienarbeit, University of Hamburg, Department of
Computer Science, 2002.

Lawrence Cabac, Daniel Moldt, and Heiko Rolke. A proposal for structuring petri net-based
agent interaction protocols. In Lecture Notes in Computer Science: 24th International Con-
ference on Application and Theory of Petri Nets, Eindhoven, Netherlands, June 2003. Sprin-
ger-Verlag, June 2003.

Michael Duvigneau, Daniel Moldt, and Heiko Rélke. Concurrent architecture for a multi-
agent platform. In Proceedings of the 2002 Workshop on Agent-Oriented Software Engineering
(AOSE’02). Springer Lecture Notes, 2002.

Foundation for Intelligent Physical Agents. http://www.fipa.org.

FIPA. FIPA Interaction Protocol Library Specification, August 2001.
http://www.fipa.org/specs/fipa00025/XC00025E.pdf.

Michael Kohler, Daniel Moldt, and Heiko Rolke. Modeling the behaviour of Petri net agents. In
Proceedings of the 22nd Conference on Application and Theory of Petri Nets, pages 224-241,
2001.

Olaf Kummer. Referenznetze. PhD thesis, University of Hamburg, Department of Computer
Science, Logos-Verlag, Berlin, 2002. R35896-7.

Olaf Kummer, Frank Wienberg, and Michael Duvigneau. Renew - The Reference Net Work-
shop. In Tool Demonstrations - 22nd International Conference on Application and Theory of
Petri Nets, 2001. See also http://www.renew.de.

	Introduction
	Net Structures
	Net Components
	Structured Petri Nets
	Modeling Agent Interaction
	Mapping Agent Interaction Protocol Diagrams to Mulan Protocols

	From Model to Net
	Code Generation
	Geometrical Arrangement of Mulan Protocols
	Example: Producer Consumer

	Conclusion

