Michael Köhler-Bußmeier and Manfred Kudlek.
Linear properties of zero-safe nets with debit tokens.
Fundamenta Informaticae, 85(1-4):329-342, 2008.
Kurzfassung: In this contribution we study an extension of zero-safe nets that allows to model cooperation scenarios. Since zero-safe nets cannot be represented as finite nets in general, we study an extension of the firing rule having a close connection to blind counter automatons and the theory of semi-flows. As a main result we obtain, that a representation can always be given as a finite P/T net - although our firing rule is an extension of the original one - i.e. it preserves all the events that have been allowed before.
@Article{Koehler+08a, author = {K{\"o}hler-Bu{\ss}meier,Michael and Kudlek, Manfred}, title = {Linear Properties of Zero-Safe Nets with Debit Tokens}, year = 2008, journal = {Fundamenta Informaticae}, volume = 85, number = {1-4}, pages = {329--342}, abstract = {In this contribution we study an extension of zero-safe nets that allows to model cooperation scenarios. Since zero-safe nets cannot be represented as finite nets in general, we study an extension of the firing rule having a close connection to blind counter automatons and the theory of semi-flows. As a main result we obtain, that a representation can always be given as a finite P/T net - although our firing rule is an extension of the original one - i.e. it preserves all the events that have been allowed before.} }
Diese Informationen werden zur Verfügung gestellt, um technische und Forschungsarbeiten zeitnah bekannt zu geben. Das Urheberrecht und alle damit verbundenen Rechte verbleiben bei den Autoren bzw. anderen Rechteinhabern. Von jedem, der Informationen dieser Seiten übernimmt, wird erwartet, dass er sich an die jeweiligen Bedingungen und Beschränkungen der Rechteinhaber hält. Meist bedeutet dies, dass die hier bereitgestellten Daten nicht ohne explizite Genehmigung der Rechteinhaber weiterveröffentlicht werden dürfen.