
A Modular Model Checker for Reference Nets:
MoMoC

Sven Willrodt, Daniel Moldt and Michael Simon
17.06.2020

University of Hamburg
Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
http://www.informatik.uni-hamburg.de/TGI/

http://www.informatik.uni-hamburg.de/TGI/


Content

Introduction

Reference Nets

Features

Architecture

Demo

Evaluation

Outlook

1



Introduction



Introduction

MoMoC is a novel Model Checking tool for Reference nets,
featuring a modular architecture.

MoMoC pursues two goals:

• Teaching model checking
• Extensibility, to form a basis for further research on model

checking of Reference nets

2



Introduction

MoMoC is a novel Model Checking tool for Reference nets,
featuring a modular architecture.

MoMoC pursues two goals:

• Teaching model checking
• Extensibility, to form a basis for further research on model

checking of Reference nets

2



Introduction

MoMoC is a novel Model Checking tool for Reference nets,
featuring a modular architecture.

MoMoC pursues two goals:

• Teaching model checking
• Extensibility, to form a basis for further research on model

checking of Reference nets

2



Reference Nets



The Java Reference Net Formalism

• Coloured Petri net (CPN) formalism
• Primary formalism of the Renew simulator
• Java code inscriptions
• Tokens: Java objects or net instances
• Interaction: synchronous channels

3



Net Instance Tokens

• nets-within-nets
• follows the object-oriented paradigm

net template class
net instance instance/object

net elements internals of a class
uplinks of a net methods/interface of a class

invoking an uplink invoking a method

4



Java Reference Net Example

root net instance

netB

5



Java Reference Net Example

root net instance

netB

5



Java Reference Net Example

root net instance netB

5



Java Reference Net Example

root net instance

netB

5



Features



Features

Modular Model Checker (MoMoC)

• Explicit CTL-Model Checking for Reference Nets
• Parsing
• Result visualization (exploration, colorization, layouting)
• Net Instance Quantifier
• Simpler net formalisms (P/T nets, CPNs) can be treated as

flat Reference nets

6



Atomic Propositions

• FIREABLE(T)
• DEADLOCK

• Marking predicates..

7



Atomic Propositions

• FIREABLE(T)
• DEADLOCK
• Marking predicates..

7



Net-Instance-Quantifier

Problem: During runtime, net instances are not uniquely
identifiable by a name that must be entered before runtime.

Proposed solution: Net-Instance-Quantifier

!(Net, p) ≡ Every net instance of the template Net satisfies p.
?(Net, p) ≡ There exists a net instance of the template Net

that satisfies p.

Scales independently of the size of the reachability graph, however
net instances cannot be tracked over multiple states.

8



Net-Instance-Quantifier

Problem: During runtime, net instances are not uniquely
identifiable by a name that must be entered before runtime.

Proposed solution: Net-Instance-Quantifier

!(Net, p) ≡ Every net instance of the template Net satisfies p.
?(Net, p) ≡ There exists a net instance of the template Net

that satisfies p.

Scales independently of the size of the reachability graph, however
net instances cannot be tracked over multiple states.

8



Net-Instance-Quantifier

Problem: During runtime, net instances are not uniquely
identifiable by a name that must be entered before runtime.

Proposed solution: Net-Instance-Quantifier

!(Net, p) ≡ Every net instance of the template Net satisfies p.
?(Net, p) ≡ There exists a net instance of the template Net

that satisfies p.

Scales independently of the size of the reachability graph, however
net instances cannot be tracked over multiple states.

8



Net-Instance-Quantifier

Problem: During runtime, net instances are not uniquely
identifiable by a name that must be entered before runtime.

Proposed solution: Net-Instance-Quantifier

!(Net, p) ≡ Every net instance of the template Net satisfies p.
?(Net, p) ≡ There exists a net instance of the template Net

that satisfies p.

Scales independently of the size of the reachability graph, however
net instances cannot be tracked over multiple states.

8



Parsing

Uses ANTLR as a framework for parsing.

Parsing features of MoMoC:

• Parsing of different notations
• Normalization
• Reduction
• Encoding

9



Result Visualization

Goal: Comprehensive results that help teaching (CTL) Model
Checking

• States of the RG can be explored
• RG can interactively be colorized with results of subroutines

10



Result Visualization

Goal: Comprehensive results that help teaching (CTL) Model
Checking

• States of the RG can be explored
• RG can interactively be colorized with results of subroutines

10



Architecture



Modules

Goal: An extensible architecture that allows quick prototyping.

Query is handled by an interaction of three types of
interchangeable modules.

• Binding Core - Finds bindings and calculates successive
markings, thus defines the semantics

• Storage Manager - Stores the reachability graph and finds
cycles in the graph

• Procedure - Contains logic and steps to process a query

11



Modules

Goal: An extensible architecture that allows quick prototyping.
Query is handled by an interaction of three types of
interchangeable modules.

• Binding Core - Finds bindings and calculates successive
markings, thus defines the semantics

• Storage Manager - Stores the reachability graph and finds
cycles in the graph

• Procedure - Contains logic and steps to process a query

11



Modules

Goal: An extensible architecture that allows quick prototyping.
Query is handled by an interaction of three types of
interchangeable modules.

• Binding Core - Finds bindings and calculates successive
markings, thus defines the semantics

• Storage Manager - Stores the reachability graph and finds
cycles in the graph

• Procedure - Contains logic and steps to process a query

11



Modules

Goal: An extensible architecture that allows quick prototyping.
Query is handled by an interaction of three types of
interchangeable modules.

• Binding Core - Finds bindings and calculates successive
markings, thus defines the semantics

• Storage Manager - Stores the reachability graph and finds
cycles in the graph

• Procedure - Contains logic and steps to process a query

11



Module Interaction

12



Demo



EG(!(Buffer ,m(stored) = 0) ∧ AF?(Receiver ,m(received) = 1))

13



EG(!(Buffer ,m(stored) = 0) ∧ AF?(Receiver ,m(received) = 1)) 13



14



14



14



14



14



14



14



14



14



Evaluation



Evaluation

• Teaching-size problems (<10k states) are unproblematic with
average computing power

• Colorization is helpful

15



Conclusion

• CTL Model-Checking of Reference nets
• Modular architecture
• Net Instance Quantifier
• Result visualization

16



Outlook



Outlook

Teaching-oriented goals:

• LTL-Model Checking
• Coverability graph
• Visualization of large RGs
→ Interactive trace visualization

Efficiency-oriented goals:

• Code-specific improvements
• Transfer of known techniques to Reference nets
• Techniques that exploit the structural information contained

in Reference nets

17



Outlook

Teaching-oriented goals:

• LTL-Model Checking
• Coverability graph
• Visualization of large RGs
→ Interactive trace visualization

Efficiency-oriented goals:

• Code-specific improvements
• Transfer of known techniques to Reference nets
• Techniques that exploit the structural information contained

in Reference nets

17


	Introduction
	Reference Nets
	Features
	Architecture
	Demo
	Evaluation
	Outlook

