A Modular Model Checker for Reference Nets:
MoMoC

Sven Willrodt, Daniel Moldt and Michael Simon
17.06.2020

University of Hamburg

Faculty of Mathematics, Informatics and Natural Sciences
Department of Informatics
http://www.informatik.uni-hamburg.de/TGI/

http://www.informatik.uni-hamburg.de/TGI/

Introduction
Reference Nets
Features
Architecture
Demo
Evaluation

Outlook

Introduction

Introduction

MoMoC is a novel Model Checking tool for Reference nets,
featuring a modular architecture.

Introduction

MoMoC is a novel Model Checking tool for Reference nets,
featuring a modular architecture.

MoMoC pursues two goals:

Introduction

MoMoC is a novel Model Checking tool for Reference nets,
featuring a modular architecture.

MoMoC pursues two goals:

e Teaching model checking

e Extensibility, to form a basis for further research on model
checking of Reference nets

Reference Nets

The Java Reference Net Formalism

Coloured Petri net (CPN) formalism

Primary formalism of the RENEW simulator

Java code inscriptions

Tokens: Java objects or net instances

Interaction: synchronous channels

Net Instance Tokens

e nets-within-nets

e follows the object-oriented paradigm
net template class
net instance instance/object
net elements internals of a class

uplinks of a net methods/interface of a class
invoking an uplink invoking a method

Java Reference Net Example

netB
@0
ni: new netB ni X

:ch(x)

e || ch
e

Java Reference Net Example

root net instance

@— OO

ni: new netB ni

|:;:| ni:ch(x)
aX)

Java Reference Net Example

root net instance netB
O—Dl:l—ni—ﬁQ netB[1] (/b\)
. h
ni: new netB ni X
I:;:l ni:ch(x)
gx) :ch(x)

Java Reference Net Example

root net instance

O—F

ni: new netB

-
[53 nichix
&

("b"

Features

Features

MoDULAR MODEL CHECKER (MoOMoC)

e Explicit CTL-Model Checking for Reference Nets

e Parsing

e Result visualization (exploration, colorization, layouting)
e Net Instance Quantifier

e Simpler net formalisms (P/T nets, CPNs) can be treated as
flat Reference nets

Atomic Propositions

e FIREABLE(T)
e DEADLOCK

Atomic Propositions

e FIREABLE(T)
e DEADLOCK
e Marking predicates..

Net-Instance-Quantifier

Problem: During runtime, net instances are not uniquely

identifiable by a name that must be entered before runtime.

Net-Instance-Quantifier

Problem: During runtime, net instances are not uniquely

identifiable by a name that must be entered before runtime.

Proposed solution: Net-Instance-Quantifier

Net-Instance-Quantifier

Problem: During runtime, net instances are not uniquely

identifiable by a name that must be entered before runtime.

Proposed solution: Net-Instance-Quantifier

!(Net,p) = Every net instance of the template Net satisfies p.
?(Net,p) = There exists a net instance of the template Net
that satisfies p.

Net-Instance-Quantifier

Problem: During runtime, net instances are not uniquely

identifiable by a name that must be entered before runtime.

Proposed solution: Net-Instance-Quantifier

!(Net,p) = Every net instance of the template Net satisfies p.
?(Net,p) = There exists a net instance of the template Net
that satisfies p.

Scales independently of the size of the reachability graph, however
net instances cannot be tracked over multiple states.

Uses ANTLR as a framework for parsing.

Parsing features of MoMoC:

e Parsing of different notations
e Normalization
e Reduction

e Encoding

Result Visualization

Goal: Comprehensive results that help teaching (CTL) Model
Checking

10

Result Visualization

Goal: Comprehensive results that help teaching (CTL) Model
Checking

e States of the RG can be explored

e RG can interactively be colorized with results of subroutines

10

Architecture

Goal: An extensible architecture that allows quick prototyping.

Goal: An extensible architecture that allows quick prototyping.

Query is handled by an interaction of three types of
interchangeable modules.

e Binding Core - Finds bindings and calculates successive
markings, thus defines the semantics

Goal: An extensible architecture that allows quick prototyping.
Query is handled by an interaction of three types of

interchangeable modules.

e Binding Core - Finds bindings and calculates successive
markings, thus defines the semantics

e Storage Manager - Stores the reachability graph and finds
cycles in the graph

Goal: An extensible architecture that allows quick prototyping.
Query is handled by an interaction of three types of
interchangeable modules.

e Binding Core - Finds bindings and calculates successive
markings, thus defines the semantics

e Storage Manager - Stores the reachability graph and finds
cycles in the graph

e Procedure - Contains logic and steps to process a query

Module Interaction

Procedure Binding Core StorageManager

preprocessing

nod
calculate bindings
bindings

process bindings

bindings

[calculate successor markings|

nodes

process nodes

nodes
—
new nodes:

process nodes

terminate 12

Demo

System sender:send([exchDesc,0])
receiver:receive([exchDesc,0])

receiver,
buffer N exchange
~
~
sender, — — — _ v~ _
buffer sender ~ receiver
init
0o——= XY;Z
Y

X:new Receiver;
y:new Sender;
z:new Buffer;

Buffer

:receive(["transmit",m]) transmit
capacity stored
:send(["fetch”,m]) receive

Sender
ow are you
message
new message
message
paused awaiting transmission

Jsend(["direct”,m]);
m
transmit

:send(["transmit",m]);

Receiver
:receive(["direct”,m])

waiting received

process message

13

System sender:send([exchDesc,0])
. receiver:receive([exchDesc,0])
receiver,

~
sender, — — — _ v~ _
buffer sender ~ receiver
init
0o——= X;Y:Z

X:new Receiver;
y:new Sender;
z:new Buffer;

Buffer

:receive(["transmit",m]) transmit

capacity stored

:send(["fetch”,m]) receive

"Hello"

Sender .."Good Day
ow are you
message
new message
message
paused awaiting transmission

jsend(["direct”,m]);
m
transmit

:send(["transmit",m]);

EG(!(Buffer, m(stored) = 0) A AF?(Receiver, m(received) = 1))

Receiver
:receive(["direct”,m])

waiting received

process message

13

14

1

1m

14

1

1m

Result
EG[ANDY[![Buffer, m(stored]=0],NOTIEG[NOT ?[Receiver, mreceived]=1]1]]]]
ffe ed]=0],NOT[EG[NOT [?(Receiver, m{received]=1]]]]] Specificati i)
Result: TRUE
Root Net: System[10786]

Show Reachability Graph

Normalized Spec.:EGIAND[![Buffer, m[stored]=0], NOT[ECINOT[?[Receiver, mlreceived]=11111]]

14

eived]=111111]

3]
ceiver, mrec

System[10786]
Normalized Spec.:EGIANDI![Buffer, m[stored]=0], NOT[EGINOT[?IRe

TRUE

Root Net:

d]= 111111

cevedl= L | goecification

1
1

gx =

D[![Buffer, m(stored]=0],NOTIEGINOT [P[Receiver, m(raceive

552%2»

EG[AN

14

Dy =

. ‘.4_ 44!..!'.7«
il

A\.v‘-ﬂﬂﬁnﬂ'wr‘ wo« b W» \»» \”4..‘
78" = NS TS
‘)4 X ‘»r/ o\

e
= av
d ﬁ\ Ves
T

VAN

| ‘v X—pP

[Receiver, mlreceived]= 111111l
Il [Receiver, mireceived]=11I1 | g 0 ification EG(I(Buff A i i v}

T[[Receiver, mireceived]=1111l1]

Result
EG[ANDY[![Buffer, m(stored]=0],NOTIEG[NOT ?[Receiver, mreceived]=1]1]]]]
¥ AND[![Buffer, mistored]=0],NOTIEG(NOT[Z(Receiver, mireceivedl=1Illl | gpecification EG((Buff o i i)
![Buffer, m(stored]=0] . Result: TRUE
A@INOTIEGINOT P(Receiver, mireceived]=1]]]] .
¥ EGINOT[IReceiver, mireceived]=11]] il SpEadd]

v NOT[IReceiver, mireceived]=1]]
TRecener, mireceived)=1]

Normalized Spec.:EGIAND[![Buffer, m[stored]=0], NOT[ECINOT[?[Receiver, mlreceived]=11111]]

Show Reachability Graph

7
N

4

=
X4

I

—7

N

14

Recelver, mireceived]= L1111
Receiver, mirecenedl=1Il] | g ocification EG((Buff . g ived)-1)}

T[[Receiver, mireceived]=1111l1]

i 3]

T[[Receiver, mireceived]=1111l1]

14

i 3]

T[[Receiver, mireceived]=1111l1]

14

Evaluation

Evaluation

e Teaching-size problems (<10k states) are unproblematic with
average computing power

e Colorization is helpful

Conclusion

e CTL Model-Checking of Reference nets

Modular architecture

Net Instance Quantifier

Result visualization

Outlook

Teaching-oriented goals:

e LTL-Model Checking
e Coverability graph

e Visualization of large RGs
— Interactive trace visualization

17

Outlook

Teaching-oriented goals:

e LTL-Model Checking
e Coverability graph

e Visualization of large RGs
— Interactive trace visualization

Efficiency-oriented goals:

e Code-specific improvements
e Transfer of known techniques to Reference nets

e Techniques that exploit the structural information contained

in Reference nets

	Introduction
	Reference Nets
	Features
	Architecture
	Demo
	Evaluation
	Outlook

