

A Proposal for Structuring Petri Net-Based

Agent Interaction Protocols

Lawrence Cabac, Daniel Moldt and Heiko Rölke

Department of Computer Science, TGI, University of Hamburg
{6cabac, moldt, roelke}@informatik.uni-hamburg.de

Abstract. In this paper we introduce net components as means for
structuring Petri net-based agent interaction protocols. We provide a
tool for effortless application of net components to nets. Thus we facili-
tate the construction of nets and unify their appearance. Net components
can be used to derive code for interaction protocols from a subset of ex-
tended AUML (Agent Unified Modeling Language) interaction protocol
diagrams. This allows for a smooth integration of some traditional soft-
ware development specification approaches with high-level Petri nets.
By using net components we do not only unify the structure of Mulan
agent protocols but also succeed to build a common language within a
community of developers who share the net components.

Keywords: agents, agent interaction protocols, AUML, high-level Petri nets,
Mulan, reference nets, Renew.

1 Introduction

From the beginning of computer science the readability of program code is a
well known problem. There are many means of improving readability. The goals
are to make code intelligible, easily accessible and clear. Generally, the problem
that lies behind the readability is the complexity of code.

Methods to achieve readability are for example structured programming (see
[4]) or object-oriented programming (see [19]). Also integrated development en-
vironments (IDE), syntax high-lighting and indentation of syntactical entities
add to readability. While the first ones of these concepts provide orientation on
an abstract level, the latter ones provide orientation on a basic cognitive level.
These problems do not only pertain to text but also to other representations of
code.

Visual programming languages (VPL) are subject to similar problems. The
statement which is known as ’Limit of Deutsch’ (see [15]) - the limitation of
the number of elements on a screen to fifty graphical objects - gives a glimpse
of the problem. Many advances try to hide the complexity by modularizing
the views. Complex structures are represented and thus hidden behind simple
elements, e.g.: icons. This leads to complex content of simple elements which
increases the number of available simple elements. Nevertheless, this is a good

approach, since it clarifies the overall structure of code through abstraction.
However, the arrangement of elements of code for visual programming languages
like LabVIEW (see [14]) or Prograph (see [20]) is restricted by their development
tools to guarantee a unified style.

Workflows are not considered to be programs but they describe processes just
like programs. During modeling of workflows very similar problems of complexity
occur. Van der Aalst et al. (see [22]) offer a proposal of “Workflow-Pattern”
for a unification of recurring patterns in workflows. The unification of parts of the
code by modeling with patterns and the naming of those parts of the workflow
are useful methods to facilitate the process of understanding the workflow.

Petri nets can also be used to describe processes. They can be simulated
(executed) - just like VPL. Thus they can be regarded as programs, and nets
themselves can be considered the code of the program.

Petri nets tend to grow in size with their complexity (see [8]). High-level
Petri nets use various concepts to handle complex coding. They are capable of
expressing complex structures in folded nets by introducing named tokens, thus
adding new elements to the formalism. Another approach to handle complexity
is to combine Petri nets with concepts of object orientation which leads to the
object-oriented Petri nets (OOPN) (see [16]). Agent-oriented Petri nets (AOPN),
such as those presented in [10], help develop multi-agent systems, especially
through their inherent concurrency.

There are general recommendations for the look and feel of Petri nets. These
relate usually to the simple elements of the Petri nets: Transitions, Places, Arcs
and Inscriptions. Jensen’s recommendations (see [9]) - based on the work of
Oberquelle (see [18]) - cover either the elements of the nets, or the rules
are fairly general and can be interpreted quite broadly. For special nets and
for the arranging of net elements - except for beautification - there exist no
additional rules; consequently the appearance of Petri nets varies extremely.
Naturally, the appearance depends on the programmer / modeler, the used Petri
net tool and the domain. In general, it can be of advantage to have a great
variety of appearances of Petri nets. In contrast, the representation of similar
nets in the same domain requires conformity. This is the case when implementing
application software with Petri nets.

The tool of choice for developing and modeling Petri nets at the Department
of Computer Science at the University of Hamburg is Renew (see [12]). Not only
does it allow to construct Petri nets but it also has the ability to simulate them
efficiently. The nets that are processed by Renew are reference nets (see [11]), an
extension to Coloured Petri Nets (CPN, see [9]). It is possible to use Java code
as inscriptions of net elements which can be of advantage, for example when
combining nets with a graphical user interface.

Mulan (Multi-Agent Nets) is based on Renew. It is a multi-agent system that
uses the advantages of Petri nets such as concurrency. Together with Renew it
provides the possibility to develop software with Petri nets by the agent-oriented
paradigm. Since agents are defined as individual and independent components
they offer an interesting approach to the development of software for concurrent

processes. Especially for concurrent and adaptive processes strong limitations
exist with conventional methods so that building a multi-agent system with
inherent concurrency is of advantage. This can easily be achieved by basing the
system on Petri nets.

Development of application software based on an agent-oriented software
system requires the development of interaction protocols so that the behavior
of the agents is well defined. The basic task for application programming with
Mulan is to develop Mulan protocols, which are Petri nets. The purpose of the
Mulan protocols is to define the behavior and the communication or interactions
of agents.

Mulan protocols perform several basic tasks which frequently re-occur. They
vary in the overall structure but perform similar tasks within this structure
like sending or receiving a message or deciding on a condition. However, those
nets can be rather huge so that implementation and debugging can be quite
difficult and time consuming. We model agent interaction using AUML (Agent
Unified Modeling Language) interaction protocol diagrams (see [7]), which is in
the context of UML (Unified Modeling Language) in the version of interaction
diagrams a commonly used and elaborated modeling technique.

In this paper we introduce net components as means for structuring Petri
net-based agent interaction protocols. We achieve to unify the structure of Mulan
protocols which increases their readability and build a common language within
a community of developers who share the net components.

In the next section we will present our multi-agent system infrastructure.
Then we introduce net components in general, the net components for Mulan
protocols and a tool that supports the construction of Petri nets with net com-
ponents. Finally we present a way to model the communication of agents with
AUML interaction protocol diagrams, describe the construction of Mulan proto-
cols with net components and show that net component-based Mulan protocols
reveal their structure due to the geometrical forms of the net components.

2 Petri Net-Based Multi-Agent System Infrastructure

In this section we present a short introduction to the Petri net-based multi-
agent system Mulan. Mulan is implemented with reference nets and runs within
Renew. Renew (Reference Net Workshop, see [12]) is a Petri Net editor and
simulator. Mulan (Multi-Agent Nets, see [10]) is a reference architecture to a
multi-agent system which complies with the FIPA specification for multi-agent
systems. CAPA (Concurrent Agent Platform Architecture, see [5]) extents Mulan
to provide FIPA-compliant communication and agent management.

2.1 Renew

With Renew it is possible to draw and simulate Petri nets and reference nets.
A net that is loaded into the editor can be executed by the simulation engine.
For this an instance of the net is created by the simulator. Any simulated net

can instantiate another net. Hence it is possible to produce many instances of
different nets. The relationship between net (also called net template) and net
instance can be compared to the relationship of class and object.

Fig. 1: Renew GUI, Petri net and net instance (producer-consumer example).

Figure 1 shows the graphical user interface (GUI) of Renew, a simple Petri
net in the back and a net instance. The user interface consists of the menu bar,
two palettes and a status line. The menu bar offers menus for general operations,
attribute manipulations, layout adjustment and Petri net-specific operations. It
also provides the possibility to handle the simulation. Of the two palettes the
first one consists of usual drawing tools while the second one holds the Petri
net drawing tools. The latter palette provides the tools for creating transitions,
places, virtual places, arcs, test arcs, reserve arcs, inscriptions, names and de-
scription nodes. In addition to these tools the editor reacts in a context sensitive
manner to facilitate the drawing of nets. One example is the dropping of arcs
on the background which can create a new place if the arc starts at a transition
and vice versa. Another example is the right click on inscribable elements which
produces an inscription for this element with a context sensitive default value.

Nets hold the initial marking where net instances hold the current marking.
In figure 1 the producer-consumer example has been started. In the net (back-
ground) one of two black tokens of the initial marking can be seen in the place
labeled “Producer”. While the net instance by default only shows the number of
tokens in a place it is also possible to show the contents of the places by clicking
on the numbers.

A special feature of Renew is that it can operate with reference nets. Renew
also allows to use any kind of Java objects as tokens. It is implemented in Java
and extendible through a plug-in mechanism. A plug-in for net components is
presented in section 3.3. Figure 2 shows the architecture of the whole system.

P
L
U
G
I
N

MULAN

RENEW

JAVA

Fig. 2: The architecture of the multi-agent system infrastructure.

2.2 Reference Nets

Reference nets are special high-level Petri nets in which the tokens can be nets
again. For these ”nets within nets” referential semantics is assumed. Tokens in
one net instance can be references to other net instances. The benefit of this
feature for Renew is that it is modular and extendible. Nets can call other nets
just like method calls of objects by using synchronous channels (see [11]).

A synchronous channel consists of two transitions which are called down-link
and up-link. These two transitions can only fire simultaneously and only if both
transitions are activated. Down-link and up-link can belong to one single net or
they can belong to two different nets. In both cases any object can be transferred
from either transition to the other. If two different net instances are involved it
is thus possible to synchronize those two nets and to transfer objects in either
direction by the synchronous channel.1

Mulan agents use the synchronous channels to start and stop their protocols.
Also the communication between the Mulan agent and its Mulan protocols is
realized with them. Messages are transferred from the agents to the protocols
and back. While the agent provides the functionality to transmit the message to
another agent the protocol is in charge of the processing of the message itself.

2.3 Mulan

Mulan is a multi-agent system that is based on Renew. It is implemented with
Petri nets as a system of reference nets (Mulan: Multi-Agent Nets) and it com-
plies with the open specifications of the Foundation for Intelligent Physical
Agents (FIPA, see [6]) for multi-agent systems.

The system consists of numerous Petri nets. This is illustrated in figure 3.
The figure shows the net within a net hierarchy of the system. Agents are nets
which exist on platforms which are also nets. There can be many platforms
and the agents can communicate with each other within and across platforms.

1 Additional information for Renew, reference nets and synchronous channels can be
found in [12].

Protocols are nets within the agents and control their behavior. The figure is
taken from [10].

p2

p3

p4

communication
structure

platforms

destroynew

internal
communication

in

re
protocols

conver-
sations

p

stop

inout

protocol

agent platformmulti-agent system

agent structure

p1

external
communication

M
OZ O

incoming outgoing

start

kb

pi

knowledge base

pro

out

Fig. 3: The structure of Mulan (compare [10]).

Agents communicate by sending messages to each other. A set of messages
sent back and forth between two or more agents is called conversation. The
conversation is determined by the protocols which the agents use during this
communication. So the conversation describes the agents’ interactions whereas
one or more protocols describe the behavior of one agent during the conversa-
tion.2 Conversations can be compared to FIPA interaction protocols while the
Mulan protocols as described here have no equivalent and are parts of the FIPA
interaction protocols.

2.4 Terminology

In this section some terminology shall be clarified. Descriptions of the terms
agent, protocol and net component are provided to give the reader a first notion
of them while the details are postponed to a later section.

2 This terminology differs slightly from the FIPA terminology.

Agent An agent is an independent software component that follows a goal,
which can be achieved alone or in combination with other agents. Agents com-
municate via messages and can act independently, or reactively. They can change
their behavior as needed, i.e. they are adaptive. Each agent has its own knowl-
edge base in which a part of the information of the agent’s environment and also
its means of reacting is stored. The adaptation of the agent’s behavior is achieved
by modification of the knowledge base. The interaction with other agents con-
stitutes the social behavior of the agents. All these features are the basis for
intelligent behavior. Informally agents can be regarded as software robots.

Protocol A protocol defines a certain behavior. In the agent-oriented view a
protocol determines the communicational behavior of agents. Mulan protocols
are - just like Mulan agents - Petri nets. An agent can use numerous protocols
and it can instantiate any number of instances of protocols.

Net Component A net component is a set of Petri net elements that belong
together in a syntactical sense. In addition, it also has a visual meaning. Both
the geometrical and the directional arrangements are defined. So in addition to
the syntactical unity also a visual unity is achieved. This visual character makes
it easy to identify the net component.

3 Net Components

This section introduces net components and their concept. In addition, an ex-
ample implementation of net components for Mulan protocols is presented. Net
components are meant to be combined with each other to form a Petri net.

3.1 Notions

A net component is a set of net elements that fulfills one basic task. The task
should be so general that the net component can be applied to a broad variety
of nets. Furthermore, the net component can provide additional help, such as
a default inscription or comments. One of the used components contains a pre-
defined but adjustable declaration node. In a formal way net components can
be seen as transition-bordered subnets. This suits the notion of net components
covering tasks.

Every net component has a unique geometrical form and orientation which
results from the arrangement of the net elements. A unique form is intended
so that each net component can easily be distinguished from the others and
identified. The geometrical figure also holds the potential to provide a defined
structure for the Petri net. The structuring of Mulan protocols is achieved by
the unique form of the net components and the notion that Mulan protocols can
be read from left to right.

In the default implementation a state is added at the outward connecting
transition (Interface Place) for convenient net component connection. Only one
arc has to be drawn to connect one net component to another. This is a simple
and efficient method that also emphasizes the control flow. The connection of
net components is provided by this place, which at all times should only contain
anonymous tokens.

Direct data exchange between net components is not desired to guarantee an
easy connecting interface. Instead data is handed to the data-containing places
via virtual places3. By adding an appropriate virtual place to the net component,
data can be transferred indirectly to the transition that uses a variable. In the
usual case this is done by using a test arc. Data is handled and stored in a data
block, which is located above the control flow part of the protocol. Annotations
of the data-containing places should be adjusted to the appropriate name as well
as the annotations of the corresponding virtual place.

3.2 The Mulan Protocol Net Components

We explain a selection of the net components so that their form and application
will be clear. In this section the net components for messaging and for basic flow
control are presented. There exist further net components which cover sequences,
sub calls and manual synchronization.4

wb[] Wissen

:access(wb)

p p Perf
p

p
P

P

p

>

:in(p)

START
(IN):start()

import de.renew.agent.repr.acl.*;
import java.util.*;
import de.uni_hamburg.informatik.tgi.siedler.insel.*;
import de.uni_hamburg.informatik.tgi.siedler.util.*;
import de.uni_hamburg.informatik.tgi.siedler.Bank.Transaktion;
import de.uni_hamburg.informatik.tgi.siedler.sl.*;
import de.renew.simulator.NetInstance;
NetInstance wb;
AclMessage p, p2,nachricht,ack ;
AgentIdentifier aId;
Insel insel;
Transaktion e;
boolean cond;
Object o;
Object[] os;
String s;
Vector v;
int x;
Iterator it;

:stop()

STOP

>

Fig. 4: Essential net components: NC start and NC stop.

Essential Net Components Beginning (NC start) and Ending (NC stop) are
needed in all protocols. There is exactly one start in every Mulan protocol, but

3 Virtual places can be regarded as references to the original places. Another well
known name for this is fusion-place. In Renew virtual places can be identified by
their doubled outline.

4 The full set of net components can be found in [3].

there may be more than one stop. The protocol is started when the transition
:start() is fired and stopped when one transition with the inscription :stop()
is fired. In addition the NC start also provides the declaration of the imports
and all variables which are used by the net components and the access to the
knowledge base (:access(wb)). The NC start always receives a message so this
functionality is also provided together with a data block, which holds the received
message. The message (performative ”p”) is received by the transition :in(p) and
is handed to the data block of the net component by a virtual place (”P”). The
message is finally held in the place Perf and information from the message can
be extracted at the preceding transition and stored in additional places. The four
transitions :start(), :stop(), :access(wb) and :in(p) are the uplinks of synchronous
channels. Interfaces of the net components - i.e. the elements that can connect
to other net components - are marked with ”>”.

p p Perf2

p

p

P2

p

IN

:in(p)

> >

P2
p2

p2

:out(p2)

OUT

> >

action p2=Sl0Creator(
 new AgentIdentifier("",null,null),
)

p

p pP3 Perf3

p2

p2

:out(p2) :in(p)

OUT-IN pp
P3

> >

action p2= Sl0Creator(
 new AgentIdentifier("",null,null),
)

Fig. 5: The net components for message transport: NC in, NC out, NC out-in.

Messaging Net Components These are the net components that provide the
means of communication. The NC in receives a message in the same manner
as the NC start (described in the preceding section). The message is handed to
the data block of the net component. Additional data containing places can be
added to the data block as desired. These places can contain elements that were
extracted from the messages, for example the name of the sender or the type
of the performative. The NC out provides the outgoing message task. The NC
out-in is a shorter implementation for the combination of both NC out and NC
in which provides a send request and wait-for-answer situation. It does not add
functionality but shortens the protocol significantly.

false

truecond

cond =

>

IF

>

> AJOIN >

>

>

PSPLIT

>

>

>

PJOIN

>

>

>

Fig. 6: Conditional and concurrent processing: NC cond, NC ajoin, NC psplit and NC
pjoin.

Control Flow Net Components: Alternatives, Concurrency The condi-
tional can be used to add an alternative to the protocol. It provides an exclusive
or (XOR) situation. To resolve the conflict the boolean variable cond should be
adjusted as desired. The NC psplit (parallel split) and the NC pjoin are provided
to enable a concurrent processing within a protocol. Note that the forms of these
differ significantly from NC cond and NC ajoin to have a clear separation.

action o =
 it.next();

it cond =
it.hasNext();

falsecond

it it

Object

o

action cond = it.hasNext();
action it = v.iterator();

Object

Iterator

true cond

it

> >

v

^

action os = v.toArray();

os
ForAll

o o

os

oo

osos

Object

o

> >

v

^

Object

Fig. 7: Loops. NC iterator and NC forall.

Loops These are the equivalent to the basic loops. The NC iterator provides
a loop through all elements of a set described by the Java Iterator. It processes

the core of the loop in a sequential order. The NC forall uses flexible arcs to
provide a concurrent processing of all elements of an array. Flexible arcs allow
to move multiple tokens with one single arc (see [21] and [13]). The number of
tokens moved by the flexible arc may vary, thus its name. In Renew the flexible
arcs are indicated by two arrowheads. A flexible arc puts all elements of an array
into the output place and it removes all elements of a pre-known array from the
input place. The cores of the loops are marked with ∧ (beginning) ∨ (ending).

Petri nets can be drawn with Renew in a fast and comfortable way. To be
able to use net components in a similar way it is desirable to have a seamless
integration of net components in Renew. This is provided by a simple palette
which is the usual container for the buttons of all drawing tools for net elements.

3.3 Realization

Renew supports a highly sophisticated plug-in architecture.5 It is appropriate to
extend Renew with a plug-in, so that the usual functionality is still completely
available. Once the palette is loaded into the system the net components are
always available for drawing until the palette is unloaded again. Figure 8 shows
the graphical user interface with the extension palette loaded.

Fig. 8: The graphical user interface of Renew with the net component extension.

All net components are realized as Renew drawings, so they can easily be
adjusted to the need of the programmer by editing within Renew. The net com-
ponent drawings are held in a repository, thus a general set of net components
can be shared by a group of programmers. Nevertheless users can also copy
and modify the repository to adjust the net components to their needs or build
new net components with Renew. It is also possible to use multiple palettes of
different repositories.

Net components are added to the drawing in the same way as the usual net
elements. The only difference is that after the new net component is drawn all
elements of it are selected automatically. This provides the possibility to adjust
the position of the net component in relation to the rest of the drawing.

5 Ongoing work of Jörn Schumacher.

4 Application of Net Components

This section deals with the modeling and the implementation of Mulan protocols.
We show the advantages of structured net component-based development of
Petri nets for Mulan protocols. Furthermore we investigate how to achieve a
suitable structure. First we show how modeling agent interaction can be done
with AUML interaction protocol diagrams. Then we present an example to show
how to derive code from the agent interaction protocol diagram. By joining net
components together we build the Mulan protocols for the agents. At last we
want show that net component-based Mulan protocols reveal their structure due
to the geometrical forms of the net components.

4.1 Modeling Agent Interactions

Modeling agent interaction can be done by using several means. The FIPA de-
fines the AUML interaction protocol diagrams for modeling interactions between
agents. These diagrams are an extension of the Unified Modeling Language
(UML) sequence diagrams (see [1]) but they are more powerful in their ex-
pressiveness. They can fold several sequences into one diagram. Thus they can
describe a set of scenarios.

AND XOR OR

Fig. 9: New elements of interaction protocol diagrams: AND, XOR, OR

Some additional elements are added to the usual sequence diagram. Those
additional elements provide alternative, concurrent and arbitrary splitting in a
manner of the three gates AND, XOR and OR.

Figure 9 shows the new elements in a horizontal version which are applied to
split the life line of an agent. In addition the FIPA also defines the vertical ver-
sions of those three elements to split the messages. Figure 10 shows an example
protocol diagram for the contract net protocol as presented in [7]. It shows the
other variant of the additional elements.

We use AUML interaction protocol diagrams to model the behavior of the
Mulan agents. The models of agent interaction are then implemented as reference
nets by using the net components.

Initiator Participant

cfg(action, precondition)

FIPA ContractNet Protocol

propose(procondition-2)

not-understood

refuse(reason-1)

dead-
line

reject-proposal(reason-2)

accept-proposal(proposal)

inform

failure(reason-3)

Fig. 10: The FIPA contract net protocol diagram.

4.2 Using and Applying Net Components

We restrict the interaction protocol diagrams to the usage of split figures for the
life line. By doing this we can achieve a structure that can directly be transformed
into a Petri net by using net components. Instead of using message split figures
we favor the opposite, i.e. message join figures.

Especially for alternatively sent messages a message join figure can at times
be of advantage, for example when the message is a reply. This is also intuitive
since the receiver of a reply expects only one answer.

The development of a Mulan protocol using net components illustrates the
procedure. For the reasons of clarity we present an agent version of the producer-
consumer example which is adjusted to be compliant with the FIPA request
protocol. Figure 11 shows the FIPA request protocol (see [7]) and an interaction
protocol diagram of the FIPA-request compliant producer-consumer example.
This version of the diagram only uses the split of the life line and the join of the
message arc in addition to the usual UML diagram elements.

To demonstrate the process of transforming the diagram into a net we would
like to show the development in detail in three steps. First, we divide the protocol
diagram into the two parts which belong to each agent and rotate the resulting
two diagrams by 90◦ so that they can be read from left to right.

As the second step we add the geometrical forms of the net component to
the appropriate parts of the diagrams. This shows that the net components can
be used for the implementation and it also shows the overall structure of the
Petri nets. Figure 13 shows the same diagram augmented with the geometrical
symbols of the net components.

ConsumerProducer
Initiator Participant

FIPA-Request-Protocol
folowing the FIPA-Request-Protocol
Producer-Consumer Example

refuse agree

request("consume")

refuse

agree

failure

inform-done

refuse
[refused]

request

agree
[agreed and

notification necessary]

failure

inform-result : inform

[agreed]

inform-done : inform

Fig. 11: Interaction protocol diagram of the FIPA Request and a FIPA
Request-compliant producer-consumer example.

In the third and last step we use the net component extension of Renew to
draw the Mulan protocols with the net components analogous to the symbols in
Figure 13. Still some work has to be done regarding the actions, the adjustments
of messages and other inscriptions. Both figures 14 and 15 show resulting Petri
nets of the produce and the consume protocol. Note that the nets are not shown
here to be read as Petri nets, although they are fully operational and can be
executed in Renew and Mulan without any changes. Instead they are presented to
get an impression of the structured layout, the application of the net components
and the analogies to the structure of the interaction protocol diagrams.

a)
Producer

b)
Consumer

Fig. 12: Two parts of the example diagram; one for each agent.

a)
Producer

b)
Consumer

Fig. 13: Both parts augmented by the symbols for the net components.

wb[]

p

p

>

:in(p)

START
(IN):start()

p

p pP3 Perf3

p2

p2

:out(p2) :in(p)

OUT-IN pp
P3

> >

false

truecond

>

IF

>

>

p2

p2

:out(p2)

OUT

> >

p p Perf2

p

p

P2

p

IN

:in(p)

> >

P2

:stop()

STOP

>

:stop()

STOP

>

aId

aId

Consumer
aId

action type = p.getPerformative()

type Answer
type

Answer
type

type

cond =
type.equals("agree")

name

own name
aId

action p2=Sl0Creator.createActionRequest
(aId,"consume")

wb:ask("consume", aIdVtS)
wb:ask("Name", name)

:access(wb)

send restart of
produce protocol

receive answer

action aId = (AgentIdentifier) aIdVtS.iterator().next()
Wissen

own name send consume request
and wait for
agreement

dummy
message

Consumer aId

action p2=new AclMessage(
 "request", null, aId, "start")

import de.renew.agent.repr.acl.*;
import de.renew.agent.repr.common.*;
import java.util.*;
import de.uni_hamburg.informatik.tgi.siedler.insel.*;
import de.uni_hamburg.informatik.tgi.siedler.util.*;
import de.uni_hamburg.informatik.tgi.siedler.Bank.Transaktion;
import de.uni_hamburg.informatik.tgi.siedler.sl.*;
import de.renew.simulator.NetInstance;
NetInstance wb;
AclMessage p, p2,nachricht,ack ;
Insel insel;
Transaktion e;
AgentIdentifier aId, name;
VTSet aIdVtS;
String type;
boolean cond;
Object o;
Object[] os;
String s;
Vector v;
int x;
Iterator it;

a)
Producer

Fig. 14: The resulting produce Mulan protocol.

[] Wissen

p p Perf

p

p
P

P

p

>

:in(p)

START
(IN):start()

false

truecond

>

IF

>

>

p2

p2

:out(p2)

OUT

> >

p2

p2

:out(p2)

>

OUT

false

truecond

>

IF

>

>

p2

p2

:out(p2)

OUT

> >

p2

p2

:out(p2)

OUT

action p2=p.reply(
 "inform", "done")

> >

:stop()

STOP

>

:stop()

STOP

>

:stop()

STOP

>

cond = rand1

rand1
rand1

random1

random2

cond = rand2

Zufaellig bestimmen, ob
der Consumer die Aufgabe

erledigen kann.

rand2

rand1 = false

Perf

p

Perf

action p2=p.reply(
 "agree",
 p.getContent())

action p2=p.reply(
 "failure",
 p.getContent())

[]
[]

>

Perf

p

p

random2
random1

:access(wb)

wb

rand2

rand2

rand2 = true

rand2 = false

rand1 = true

rand1

reply
agree

reply
inform-done

reply
failure

reply
refuse

action p2=p.reply(
 "refuse", p.getContent())

Perf
p

import de.renew.agent.repr.acl.*;
import java.util.*;
import de.uni_hamburg.informatik.tgi.siedler.insel.*;
import de.uni_hamburg.informatik.tgi.siedler.util.*;
import de.uni_hamburg.informatik.tgi.siedler.Bank.Transaktion;
import de.uni_hamburg.informatik.tgi.siedler.sl.*;
import de.renew.simulator.NetInstance;
NetInstance wb;
AclMessage p, p2,nachricht,ack ;
Insel insel;
Transaktion e;
boolean rand1, rand2;
boolean cond;
Object o;
Object[] os;
String s;
Vector v;
int x;
Iterator it;

b)
Consumer

receive consume
message

Fig. 15: The resulting consume Mulan protocol.

4.3 Mulan Protocols Structured by Net Components

The visual aspects of net components play a crucial role in recognition and thus
in readability. Since net components have a fixed geometrical structure they can
always be identified without reading any details of the net elements. The geomet-
rical form of the net itself becomes readable to the programmer without using
any modeling abstraction. Nevertheless a net constructed with net components
can be transformed directly into an interaction protocol diagram. We claim that
a well-structured Mulan protocol that uses net components exclusively is read-
able without reading any of the net elements. Figure 16 shows the registration
of a player at the game control.6 Again this net is presented here not to be read;
instead the net components should be regarded. Once they are identified they
can easily be mapped onto an interaction protocol diagram.

wb[] Wissen

p p Perf

p

p
P

P

p

>

:in(p)

START
(IN):start()

Spielerspieler

action spieler=p.getSender()

Aufruf

p

p pP3 Perf3

p2

p2

:out(p2) :in(p)

OUT-IN pp
P3

> >

action p2 = new AclMessage(
"request",null, new AgentIdentifier(

"Bank",null,null),"neuesKonto#"+spieler.getName());

p

false

truecond

>

IF

>

>

action s = p.getPerformative()

s
Type

cond =
"inform".equals(s);

xs

Type

Spieler moechte
sich anmelden

Bank: Konto
 eroeffnen fuer
 Spieler "xy"

Ergebnis Bank:
Konto eroeffnen

p2

p2

:out(p2)

OUT

> >>>
Spieler

wb:modify("spielerListe",liste);
action liste.add(spieler);

Insel:
Neuer Spieler

wb:ask("startKapital",sk)
:access(wb)

sk

p

p pP3 Perf3

p2

p2

:out(p2) :in(p)

OUT-IN
pp

> >

spieler

sk

action p2= new AclMessage(
 "request",
 null,
 aId,
 "Einzahlung#["+spieler.getName()+","+sk+"]")

StartKapital

StartKapital

Spieler

aId

p2

p2

:out(p2)

OUT

action p2=p.reply(
 "request",
 "failure")

> >

Perf Aufruf
p

Bank

Bank:
Startkapital

einzahlen
/

ack

import de.renew.agent.repr.acl.*;
import java.util.*;
import de.uni_hamburg.informatik.tgi.siedler.insel.*;
import de.uni_hamburg.informatik.tgi.siedler.util.*;
import de.uni_hamburg.informatik.tgi.siedler.Bank.Transaktion;
import de.uni_hamburg.informatik.tgi.siedler.sl.*;
import de.renew.simulator.NetInstance;

NetInstance wb;
AclMessage p, p2,nachricht,ack ;
AgentIdentifier aId, spieler,insel_aId, sl_aId;
Insel insel;
Transaktion e;

boolean cond;
Object o;
Object[] os;
String s;
Vector v;
int x,y;
Iterator it;

:stop()

STOP

>

action p2= new AclMessage(
 "inform",
 null,
 aId,
 "neuerSpieler#"+spieler.toString())

Insel

aId

insel_aId

Insel

aId

false

truecond

cond = x==y

IF

>

>

P3

>>

p2

p2

:out(p2)

OUT

> >

action p2=p.reply(
 "inform",
 "done")

Perf Aufruf

Spieler

spieler

p

wb:ask("Bank",aId)
wb:ask("startSchranke",x)
wb:ask("Insel",insel_aId)

x

Wissen
SartSchranke

wb

wb:replace("anzahlSpieler",s,
Integer.toString(Integer.parseInt(s)+1))

Integer.parseInt(s) x y

letzter Spieler?Anzahl
der

Spieler

p2

p2

:out(p2)

OUT

> >

action p2=new AclMessage(
 "inform",
 null,
 aId,
 "bauphaseBeginn#")

>

sl_aIdSpielleitung
AID

Bank

aId
:stop()

STOP

>

:stop()

STOP

>

Konto wurde erstellt?
Reply

Anmeldung ist
fehlgeschlagen

Reply
Anmeldung hat

funktioniert

Spielleitung
AID

Selbstaufruf
Multicast an alle

Spieler
bauphase beginnen

spieler

Wissen wb

StartSchranke

Fig. 16: Mulan protocol for the registration of a player.

Similar to the producer-consumer example in section 4.2 the registration
protocol in figure 16 can be read like a sentence from left to right. Due to the
usage of net components the basic tasks performed by this protocol and the
structure of the interaction can be read without the need to interpret the details
of the net itself. It can be seen that the game control is involved in several
communicative acts and two decisions. The general structure of the interaction
can thus be derived from the net itself. Only the participants of the conversation
are not identified yet. For this we recommend to add a comment for each net
component. Figure 17 shows the full conversation between the four agents as the
final interaction protocol augmented with the symbols of the net components.

6 For the multi-agent version of the “The Settlers of Catan” board game (see [2]).

BankPlayer Island

X

X

Protocol Diagram Register Player

inform newPlayer(NAME)

inform done

request newAccount(NAME)

reply

request deposit
(NAME, initial_fund)

inform

failure inform

failure

inform broadcast
(constructionBegin)

false true

all players
registered

request
register(NAME)

Game Control

Fig. 17: Mulan conform-structured agent interaction protocol for the registration of a
player.

5 Conclusion

The gap between traditional system modeling and the use of high-level Petri
nets is relatively large. Both areas can contribute to the requirements of actual
software development today. The latest developments in this area are AUML
(see www.auml.org) where concepts from agent orientation are integrated mostly
for a more compact representation. However, distributed systems require more
elaborated features. These are covered by high-level Petri nets like reference nets
(see [11]) in combination with an agent-oriented architecture (see [10]).

In this paper we were able to integrate all directions. For this we started
with the introduction of our multi-agent system infrastructure. The advantage
of using a Petri net-based system is its inherent concurrency. The implementation
of a multi-agent system with Petri nets is only possible if it can be backed up
with a powerful and efficient simulation tool. This was achieved by building the
system on Renew.

We showed how modeling of agent interaction can be done by using FIPA
interaction protocol diagrams. The notion of net components and a correspond-
ing set for Mulan agent interaction were presented. Together with the seamless
integration of the net components into Renew we now have a simple but powerful
tool to support net component-based Mulan protocol implementation. AUML
provides methods for modeling interactions which can be used to facilitate and
structure the agent interaction. The structure of the protocols can be unified and

clarified through the usage of net components. Unification is especially desired
when implementing in project groups. Through the net components a common
language and style can be achieved. Refactoring of protocols is facilitated because
the components are loosely interconnected. So remodeling of Mulan protocols is
supported.

We want to point out that by using net components we achieve a structure
for a Petri net layout that improves the readability significantly. Furthermore
the overall structure of the model is retained through the analogous construction
of interaction protocol diagrams and Mulan protocols. Developing and debug-
ging time for Mulan protocols can be reduced significantly and reuse of code
is facilitated. Although the structuring of the Mulan protocols is not achieved
automatically, the results can be seen in analogy to the structuring of program
code by using indentation, syntax highlighting or conventions like capitalizing.

Net components were presented here as a part of Mulan protocols. Neverthe-
less, it is possible to apply the same principles to other domains. As an example
we would like to mention the obvious solution for a Petri net-based workflow
engine (see [17]). It is possible to realize workflow patterns for this domain using
the Renew extension presented in section 3.3.

References

1. Grady Booch, James Rumbaugh, and Ivar Jacobson. The Unified Modeling Lan-
guage User Guide. Addison-Wesley, Reading, Massachusetts, 1996.

2. Tobias Bosch, Oliver Gries, Heiko Kausch, Maxim Klenski, Kolja Lehmann,
Michael Morales, Valentin Seegert, and Anatolij Vilner. Agentenorientierte Im-
plementierung des Spiels “Die Siedler von Catan”. Internal report, University of
Hamburg, Department of Computer Science, 2002.

3. Lawrence Cabac. Entwicklung von geometrisch unterscheidbaren Komponenten zur
Vereinheitlichung von Mulan-Protokollen. Studienarbeit, University of Hamburg,
Department of Computer Science, 2002.

4. O.-J. Dahl, E. W. Dijkstra, and C. A. R. Hoare. Structured Programming. Acad.
Press, London, 7th edition, 1975.

5. Michael Duvigneau, Daniel Moldt, and Heiko Rölke. Concurrent architecture for
a multi-agent platform. In Proceedings of the 2002 Workshop on Agent-Oriented
Software Engineering (AOSE’02). Springer Lecture Notes, 2002.

6. Foundation for Intelligent Physical Agents. http://www.fipa.org.
7. FIPA. FIPA Interaction Protocol Library Specification, August 2001.

http://www.fipa.org/specs/fipa00025/XC00025E.pdf.
8. K. Jensen and G. Rozenberg, editors. High-level Petri Nets – Theory and Appli-

cation. Springer-Verlag, Berlin Heidelberg, 1991.

9. Kurt Jensen. Coloured Petri Nets, volume 1. Springer-Verlag, Berlin, 2nd edition,
1996.

10. Michael Köhler, Daniel Moldt, and Heiko Rölke. Modeling the behaviour of Petri
net agents. In Proceedings of the 22nd Conference on Application and Theory of
Petri Nets, pages 224–241, 2001.

11. Olaf Kummer. Referenznetze. PhD thesis, University of Hamburg, Department of
Computer Science, Logos-Verlag, Berlin, 2002. R35896-7.

12. Olaf Kummer, Frank Wienberg, and Michael Duvigneau. Renew - The Refer-
ence Net Workshop. In Tool Demonstrations - 22nd International Conference on
Application and Theory of Petri Nets, 2001. See also http://www.renew.de.

13. Olaf Kummer, Frank Wienberg, and Michael Duvigneau. Renew - user guide.
Dokumentation, University of Hamburg, Department of Computer Science, 2001.
http://www.renew.de.

14. LabVIEW. Labview home, 2002. http://www.labview.com.
15. David McIntyre. Comp.lang.visual - Frequently Asked Questions List, 1998.

ftp://rtfm.mit.edu/pub/usenet/comp.lang.visual/comp.lang.visual Frequently-
Asked Questions (FAQ).

16. Daniel Moldt. Höhere Petrinetze als Grundlage für Systemspezifikationen. PhD
thesis, University of Hamburg, Department of Computer Science, August 1996.

17. Daniel Moldt and Heiko Rölke. Pattern based workflow design using reference
nets. In W.M.P. van der Aalst, A.H.M. ter Hofstede, and M. Weske, editors,
International Conference on Business Process Management, 2003.

18. Horst Oberquelle. Sprachkonzepte für benutzergerechte Systeme. Springer-Verlag,
Berlin, 1987.

19. Kirsten Nygaard Ole-Johan Dahl. SIMULA: An ALGOL-based Simulation Lan-
guage. Communication of the ACM, September 1966.

20. Inc. Pictorius. The home of visual object-oriented development environments.,
2002. http://www.pictorius.com/home.html.

21. Wolfgang Reisig. Elements of Distributed Algorithms: Modeling and Analysis with
Petri Nets. Springer-Verlag New York, October 1997.

22. W.M.P. van der Aalst, A.H.M. ter Hofstede, B. Kiepuszewski, and A.P. Barros.
Workflow Patterns, 2000.
http://tmitwww.tm.tue.nl/research/patterns/wfs-pat-2000.pdf.

		A Proposal for Structuring Petri Net-Based Agent Interaction Protocols

		Lawrence Cabac, Daniel Moldt and Heiko Rölke

		Introduction

		Petri Net-Based Multi-Agent System Infrastructure

		Renew

		Reference Nets

		Mulan

		Terminology

		Net Components

		Notions

		The Mulan Protocol Net Components

		Realization

		Application of Net Components

		Modeling Agent Interactions

		Using and Applying Net Components

		Mulan Protocols Structured by Net Components

		Conclusion

